
331

Chapter 22

Platform Security
Technologies That Use
TPM 2.0

Okay, we’ve written a whole book on TPMs, and you’ve apparently read the whole
thing. Perhaps our attempts to keep the book interesting were successful. . .or you’re
extraordinarily persistent. . .or maybe you just cheated and skipped to the conclusion.

Either way, we’ve reached the end of the matter. TPMs are great and awesome, the
security equivalent of sliced bread, no doubt about it. And TPMs by themselves offer a
good level of security. For instance, an application like Microsoft’s BitLocker can use a
TPM to securely store a hard disk encryption key and control access to the key.

But there are also platform-level technologies that combine TPMs with other
platform- and vendor-specific security features to produce even stronger solutions. The
goal of this chapter is to describe three of those technologies and how they integrate with
TPMs.

The Three Technologies
Three major platform technologies use TPMs. This chapter describes these three
technologies at a high level, how they make use of TPM 2.0 devices, and how they
empower applications to use TPMs. This chapter aims to be non-partisan and, for that
reason, steers clear of comparisons of these three technologies and avoids marketing-
oriented statements.1 This is a TPM 2.0 book, so the focus is on how TPMs are used in
each of these environments. In the interests of maintaining neutrality and accuracy,
the sections on the technologies were written by experienced current and former
representatives of the companies mentioned.

1It should be noted that Intel sponsored the publishing of this book, including the publishing costs.
Intel seeks to advance the adoption of TPM 2.0 devices for the betterment of the computing security
ecosystem.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

332

Some Terms
Before we go any further, we need to define some terms:

•	 Trusted computing base (TCB): Everything in a computer system
that provides a secure environment. Basically, it’s the set of
hardware and software components that must trusted in order to
provide security to the system.

•	 Measured boot: A boot method where each component is
measured by its predecessor before being executed. Typically
these measurements are accumulated in PCRs via extend
operations.

•	 Chain of trust: A chain of operations that comprise a measured
boot.

•	 Root of trust for measurement (RTM): The base component of a
chain of trust that is implicitly trusted. As such, it must be small
and immutable (in ROM or protected by hardware).

•	 Static root of trust (SRTM): The base component of the chain of
trust that starts at power-on and extends to sometime before the
OS boots. In the server version of Intel TXT, the SRTM is the CPU
microcode. In other architectures, the SRTM is a ROM image.

•	 Dynamic root of trust (DRTM): The chain of trust that starts after
the OS has booted in non-secure mode. This allows the dynamic
establishment of a measured boot environment. In Intel TXT,
the CPU microcode is also the DRTM. DRTM is sometimes called
delayed launch.

•	 Authenticated code module (ACM): ACMs are Intel TXT digitally
signed code modules that are invoked by the special Intel TXT
GETSEC instruction. ACMs are the next components to execute
after the SRTM and DRTM components execute. Which ACM is
invoked and which sub-functionality is invoked is determined by
a register setting when the GETSEC instruction is executed.

•	 Unified extensible firmware interface (UEFI): A standardized
version of BIOS that is CPU independent and standardizes boot
and runtime services.

•	 SEC phase: The security phase of the UEFI BIOS. This is the first
code to execute after reset.

•	 PEI phase: The pre-EFI phase of UEFI BIOS. This is the next phase
after the SEC phase. The SEC and PEI phases together comprise
what used to be called the BIOS boot block.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

333

Intel® Trusted Execution Technology (Intel® TXT)
Intel TXT has been shipping since 2002 in client machines and since 2010 in servers.
Intel TXT provides a chain of trust that is rooted in the microprocessor’s hardware and is
extended in stages to the OS and even to applications, depending on how higher levels of
software make use of it.

This section describes Intel TXT at a high level first, including its features that offer
advantages over a TPM-only solution, and then delves into the details of how it uses
TPM 2.0’s capabilities. At a high level, the advantages of Intel TXT over a TPM-only
solution are a hardware-based root of trust, a smaller TCB, and specific checks of the
hardware and software configuration performed by the ACMs. This section highlights
how these advantages are implemented.

Other Intel technologies use TPMs, including Intel Boot Guard. This chapter doesn’t
describe these technologies or how they use TPM 2.0 devices, because Intel TXT is
currently the most prevalent technology and a representative example of how TPM 2.0
devices are used. Also note that there are two flavors of Intel TXT: one for client platforms
and one for server platforms. Many of the principles of operation are shared, but we focus
on the server version, because it uses a superset of TPM functionality.

High-Level Description
Intel TXT for servers can defend against BIOS attacks, reset attacks, rootkits, and software
attacks and allows the system integrator and user many options for configuring the level
of protection. Although it does prevent or mitigate some attacks, its primary purpose is
to notify the user and system software of the presence of a possible attack and prevent
a verified launch if an attack is detected. Intel TXT hardware and software and the TPM
are tightly integrated in a way that protects both the TPM and the TXT registers from
unauthorized access. Critical measurements stored in the TPM cannot be spoofed, and
the TPM protects OEM and user policies from unauthorized alteration.

How does it do this? A short description is that a chain of trust is extended from the
Intel processor and/or chipset hardware through the BIOS. Then, after the OS has booted,
if the user desires to enter secure mode at the OS level, a measured launch sequence
is initiated by the OS or a software program running on top of the OS (DRTM). This
measured launch ensures that there are no security holes in the system before launching
the OS and entering secure mode. Basically, a chain of trust may be extended from the
hardware all the way up to the highest levels of software, enabling a system administrator
or user to create and use security policies. This chain of trust always measures
components before actually executing them.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

334

Intel TXT Platform Components
There are many components to Intel TXT:

•	 CPU and chipset hardware: The chipset contains special Intel TXT
registers, many of which are readable and/or writeable only by
Authenticated Code Modules and CPU microcode.

•	 CPU microcode: This is hardwired firmware inside the
microprocessor for executing groups of micro-operations that are
combined to perform assembly language instructions as well as
other internal CPU functions.

•	 Intel Authenticated Code Modules (ACMs): These ACMs can
only be created by Intel and are digitally signed with a private
key that is only known to Intel. The public key is hardwired into
hardware registers in the chipset, and only a module signed with
the matching private key is allowed to execute. ACMs are invoked
by Intel microcode, and they function as extensions of microcode.
For server Intel TXT, there are two ACMs, the BIOS ACM and the
SINIT (measured launch initialization) ACM:

The BIOS ACM contains several sub-functions (calls), two of ··
which are:

The ·· Startup ACM2 call is called by CPU microcode at
power-on to start the SRTM. It typically measures the
BIOS boot block, or, as it’s called in UEFI, the SEC and
PEI phases of BIOS.

The ·· Lock Config call is made by the BIOS just before
it exits the part of the BIOS measured by the Startup
ACM. This performs some bookkeeping and locks some
registers to prevent hostile software or firmware from
changing critical hardware settings.

The SINIT ACM contains only one call and is called by the ··
OS or applications running under the OS in order to perform
a measured launch (DRTM).

Both ACMs always run in a special internal CPU memory that
prevents DMA accesses to the memory and any snooping of
the ACM code and data.

2The Startup ACM isn’t a separate ACM, but a function contained in the BIOS ACM. The
misleading name has historical roots.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

335

•	 GETSEC: This is a special Intel TXT assembly language instruction
that invokes a function determined by a register setting. These
functions invoke microcode flows used to enter, launch, and exit
ACMs and exit the measured launch environment (MLE).3 Which
sub-functionality (leaf4) is invoked by the GETSEC instruction is
determined by a register setting. This is how the BIOS ACM Lock
Config and SINIT ACM calls are invoked.

•	 BIOS enabling for Intel TXT: There is a table inside the BIOS, the
firmware interface table (FIT), that tells the microcode and ACM
whether Intel TXT is enabled, where the BIOS ACM is located,
and which sections of BIOS to measure.

•	 TPM:

PCRs in the TPM are used to store measurements of ··
components involved in the boot process. Some of these
PCRs can only be extended by microcode, and some are
only extended by ACMs.

NV indices are used to track some state information required ··
by the verified launch process.

The specifics of PC-compatible TPMs are described in detail
in the TCG PC Client Platform TPM Profile (PTP) Specification.
That specification describes the accessibility and number of the
PCRs, special interfaces for measuring BIOS boot code, and
other special TPM features used to support PC platforms.

•	 OS/middleware enabling for Intel TXT: The OS or middleware
has to start the measured launch. In some cases, this might be an
application or module running under the OS; in others, it might
be a commercial virtual machine manager (VMM) software
package.

•	 High level applications that use Intel TXT to make security
decisions: Intel’s Mount Wilson software is an example of this. For
more examples and a much more detailed explanation of such
high-level descriptions, read the book Building the Infrastructure
for Cloud Security: A Solutions View (Apress, 2014).

All of these components work together to enable Intel TXT.

3For a full description of this instruction and its leaves, see the “Safer Mode Extensions” chapter in
the Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B. This manual can be
downloaded from www.intel.com.
4Leaf is TXT jargon for a sub-function within an ACM.

http://www.intel.com/

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

336

Intel TXT Boot Sequence
Let’s look at one possible boot sequence at a medium level of detail. If you desire more
details, see the book Intel Trusted Execution Technology for Server Platforms
(Apress, 2013).

One quick note about error handling so that we don’t have to describe it repeatedly
in the following sequence: if a failure occurs at any point in the sequence, a chipset
register is written with an error indication. This chipset register, TXT.ERRORCODE, is only
writable by ACMs and microcode to prevent less privileged and possibly hostile code
from clearing it. An error value in this register prevents a measured launch later in the
boot cycle, as described shortly.

Figure 22-1 and Figure 22-2 illustrate the Intel measured launch process and how
various components interact with the TPM. Figure 22-1 is a complete timeline from
power-on through launching a trusted OS. This includes the SRTM before OS boot and
the DRTM initiated by the OS. Figure 22-2 provides more detail about the secure launch
sequence, specifically the steps taken to verify that both the platform and the system
software are trusted.

Figure 22-1.  Intel TXT boot timeline

Figure 22-2.  Breakout of measured launch details

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

337

The boot sequence is illustrated by Figure 22-1 and consists of two stages: the SRTM
stage and the DRTM stage. The SRTM stage starts with the CPU microcode and extends
up to OS boot. The DRTM stage starts when the SINIT ACM is invoked and extends
through OS boot.

The first part of the sequence (SRTM) starts at power-on and protects against BIOS
and reset attacks:

1.	 Microcode: When reset is de-asserted, the microcode checks
the BIOS FIT to determine where the BIOS ACM is located
in the BIOS image. The microcode verifies the signature of
the BIOS ACM and does some other sanity checks on the
ACM. If all is well—the ACM is uncorrupted, and it’s the
correct ACM—then the microcode starts the ACM running in
protected CPU internal memory.

2.	 Startup ACM: The BIOS ACM contains a few different entry
points that can be invoked by microcode or the BIOS. The
Startup ACM call is invoked by microcode when the platform
is powered-on or reset. This call’s main function is to measure
certain portions of the BIOS that must be trusted to operate
correctly in order to guarantee system integrity, as well as to
extend those BIOS measurements into PCR0. The regions
of BIOS to be measured are specified by entries in the FIT
table which are configured by the BIOS OEM. Some critical
regions of the FIT table itself as well as the reset vector and
some other regions of BIOS are required to be measured, and
the BIOS ACM ensures that this is the case. Other regions
of BIOS can be optionally measured, and it’s up to the BIOS
developer to properly configure the table to measure the
correct regions of BIOS. The whole BIOS image doesn’t
need to be measured, and any regions of flash memory that
can change under normal boot situations aren’t measured,
because this will cause false failures. At a minimum, to
guarantee system integrity, the boot block of the BIOS must
be measured—this block includes the basic system and
memory initialization code. If the Startup ACM detects an
error (probably indicating some sort of security issue), it sets
an error code in TXT.ERRORCODE register and resets the CPU,
and then the microcode directs the CPU to the reset vector. In
this case, only a non-verified launch is possible. If the Startup
ACM code completes successfully, the BIOS is executed.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

338

3.	 BIOS continues the static chain of trust: The BIOS continues
the chain of trust by measuring any additional BIOS code
to PCR0 and measures other platform components to other
PCRs. BIOS also creates a log of everything measured to
the PCRs. All code in the BIOS trust boundary must be
measured before that module executes. And before the BIOS
executes any unmeasured code (code outside the BIOS
trust boundary), it calls the BIOS ACM to lock the platform
configuration to prevent untrusted code from altering the
platform configuration. These calls to the BIOS ACM also test
and perform security checks to ensure system integrity.

4.	 Option ROMs: Unless provided by the OEM, option ROMs are
outside the trust boundary and option ROM code is measured
into PCR2 while any option ROM configuration is measured
into PCR3.

5.	 OS boot: When the BIOS completes, it boots to the OS loaded
on the system. The OS is running in normal, non-verified boot
mode, but it’s locked and loaded to perform the DRTM phase
of booting.

The second part of the sequence (DRTM) starts at the GETSEC(SENTER) leaf, which is
invoked by the OS or a software component running in the OS. This provides a dynamic
root of trust for measurement that measures the SINIT ACM and the MLE, which is
sometimes the VMM.

6.	 Measured launch: When the OS wants to boot into trusted
mode, it executes the GETSEC(SENTER) instruction. This
causes a microcode flow that verifies the SINIT ACM in a
manner similar to the BIOS ACM (see steps 1 and 2), loads it,
and starts executing it.

7.	 SINIT ACM: The SINIT ACM verifies that no other security
issues have occurred by checking the TXT.ERRORCODE register.
It does some hardware configuration checks for certain
security issues. It then measures the trusted OS code. The
ACM also includes a Launch Control Policy (LCP) engine
that performs policy checks, which includes checking the
measured OS code and PCRs against lists of known good
values. If any checks fail in the SINIT ACM, a platform reset
is performed. If all is well, the ACM performs the measured
launch and the OS enters secure mode. This is referred to as
the Measured Launch Environment (MLE). Measurements of
the SINIT ACM, policies, and measured OS code are extended
into PCR17 and 18.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

339

8.	 Trusted mode: At this point, the trusted environment has
been enabled, and the OS has access to Locality 2 and thus
the dynamic PCRs. The trusted OS continues the dynamic
chain of trust by measuring additional OS components and
configuration into PCRs 18–22.

9.	 Applications: Local applications can use the values in PCRs to
seal secrets that can only be unsealed when the platform is in
that same trusted environment. For example, the OS can seal
an encryption key it uses to encrypt private and privileged
information. Only when the platform successfully performs
the measured launch can the OS recover the key and decrypt
the data. This is sometimes referred to as local attestation.
Remote attestation is where external agents use the PCR
values to make a trust decision—perhaps quarantining an
untrusted platform while connecting trusted platforms to the
production network.

10.	 Termination: The final stage is when the OS terminates the
trusted environment. This can either shut down the platform
(power-off or restart) or just exit the trusted mode, in which
case the OS can re-enter it by performing another measured
launch without the need to reset the platform. After the MLE
shutdown, the OS no longer has Locality 2 access to the TPM.

This seems like a lot of detail, but we’ve actually skipped the low-level details of the
Intel TXT policy, the security checks performed by the ACMs, the details of how TPM NV
indices are used for communicating TXT status, and the BIOS enabling and provisioning
of TXT.

How TPM 2.0 Devices Are Used
So, how do TPMs fit in this picture? Intel TXT uses PCRs and NV indices, primarily.
Other TPM 2.0 features figure into how PCRs and NV indices are accessed and used:
special hardware-triggered TPM commands, policy commands, and localities. These are
described at a high level here.5

5TPM 1.2 also had PCRs, NV indices, hardware-triggered TPM commands, and localities. Policies
and algorithm agility are the new TPM 2.0 features used by TXT.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

340

NV Indices
NV Indices play an important role in Intel TXT. They are used to do the following:

Securely pass information and states between ACMs•	

Securely maintain state between platform resets and power cycles•	

Allow OEM and platform owner to provide hashes of two policy •	
lists, platform supplier and platform owner, of known good
platform configurations

Protect OEM and user policies from malicious alteration•	

Access to these indices is controlled by index attributes and a combination of
password and index policy authorizations as described in Chapters 13 and 14 of this
book. The ACM verifies that the attributes are correct before trusting their content.

PCRs
PCRs are used by both ACMs. Because TPM 2.0 supports algorithm agility, Intel TXT
supports this agility at all levels from ACMs through Intel TXT launch-measured policies
and BIOS trust policies. The details of this agility support are described in detail in the
Measured Launched Environment Developer’s Guide, which you can download from
Intel’s web site, and the Intel TXT BIOS Writer’s Guide, which is available to OEMs.

The BIOS ACM extends the BIOS measurements and other early initialization values
into PCR0. BIOS extends measurements of other platform configuration components into
PCR0-7.

When doing a measured launch, the GETSEC(SENTER) instruction microcode
performs the special hardware-triggered _TPM_Hash_Start, _TPM_Hash_Data, and
_TPM_Hash_End commands. These commands are triggered by writing to special TPM
interface registers that can only be written from Locality 4. Chipset hardware restricts
access to these Locality 4 registers to hardware or, in this case, microcode. The special
hash commands extend PCR17 with measured launch measurements during the
microcode’s execution of the GETSEC(SENTER) instruction.

After entering the SINIT ACM, this ACM extends other dynamic launch
measurements into PCR17 and PCR18. If the Intel TXT measured launch policies are
satisfied, then the OS is trusted and has access to PCRs 17-22; the OS uses these to
measure additional OS code and OS configuration. Later, when higher-level software
makes decisions about levels of trust, these measurements are used.

Conclusion: Intel TXT
This completes a high-level view of how Intel TXT uses TPM 2.0 devices. If you’re
interested, you can dive into the details by accessing the Intel documents referenced
earlier.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

341

ARM® TrustZone®

ARM TrustZone has been a feature of the ARM processor architecture since 2002 and
first appeared in real processors—specifically the 1176JZF™—shortly afterward in 2003.
Since then, not much has changed with TrustZone itself, but many additional features,
technologies and use cases have grown up around it.

It’s not uncommon for TrustZone and Intel TXT to be compared and/or lumped
together as each architecture’s ‘security extension’, but below a rather superficial level
the two aren’t particularly similar and such comparison doesn’t aid understanding.
This section explores a little of what TrustZone is, how it works, and how it relates to
TPM technology. At a high level, TrustZone provides a safe place for a software TPM
implementation to execute.

High-Level Description
At the simplest level, TrustZone provides a facility to create a virtual second processor
inside a single system on chip (SoC). Through the implementation of a special operating
mode, the SoC is able to create two separate parallel software stacks (or ‘worlds’): the
Normal World (NWd), which runs the main OS and user interface, and the Secure
World6 (SWd), which runs a trusted software stack implementing security features. The
two worlds are kept separate by the SoC hardware so that the main OS can’t interfere
with programs or data in the SWd. This enables users to retain trust in the integrity and
confidentiality of SWd data even when they can’t trust the state of the device as a whole.

Typically, a system designer doesn’t want to impact the user experience of the device
and so keeps the SWd hidden away, often using it to create a virtual security processor
that the main OS calls when needed. For the most part, this idea of a virtual security
processor is useful, but one very important detail must be made clear: while the SWd is
completely protected from direct access by untrusted NWd code, the reverse isn’t true.
SWd code can, in principle, access any memory or device in the system. This asymmetric
setup has many positive implications—high-speed data transfer and the ability to
integrity-check NWd memory among them—but it also gives the SWd control over the
entire device, not just the security module it implements.

TrustZone Is an Architectural Feature
The first thing to understand about TrustZone is that it’s an architectural feature of ARM.
And to understand that, you need to remember how the ARM partner ecosystem works.

6Note a slight problem of terminology here. The original naming of these architectural features
follows a secure vs. non-secure theme, but as we all know, there is no such thing as absolute
security: every protection system has its limits. In recent years, this terminology has given way to
the more subjective trusted vs. normal concept, but remnants of the secure naming remain in the
names of various components. This chapter uses the (non-)secure and (un-)trusted terms
interchangeably.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

342

ARM (the company) doesn’t make chips itself: it designs processors and subsystems
and controls an architecture specification that other companies take as the blueprint for
their own chips. An architectural feature is something that is baked into the architecture
specification and is implemented through standard mechanisms and signals (not
as software or an auxiliary module/IP block) and is promised to be compatible on
any ARM-based SoC regardless of any differentiating features they may implement.
ARM-based SoCs are required to conform to the architecture specification (and pass a
conformance test), so by specifying it in the architecture, it’s assured that all such SoCs7
have TrustZone.8

Another principal driver for implementing TrustZone as an architectural feature is
that the security separation is then enforced by the chip hardware and doesn’t rely on
software or logical access control systems (which always fall to bugs in the end). This
benefit is realized in ideal conditions and makes TrustZone extremely elegant and robust,
although there are practical limitations on how much device makers can rely on this in
the real world.

Protection Target
TrustZone is designed primarily to defeat software-borne attacks9 such as those coming
from rogue websites, errant downloads, root kits, and the like. It isn’t designed to protect
against concerted, targeted hardware penetration or lab attacks (like a smartcard might
be). This makes sense when we consider the evolution of computing devices over the
past decade or so: they have become increasingly networked, connected, and dynamic.
Bulk data transfer is the norm, and data and applications flow seamlessly from one
device to another with limited checks and balances. In such an environment, the growth
in potential for scalable indiscriminate software attacks far outstrips those for targeted
physical intrusion.

To be clear, in the TrustZone threat model, all software in the NWd is considered
potentially hostile (either by rootkit infection or by deliberate replacement of kernel or
similar). So while the SWd and NWd kernel often work together to provide overall device
and application security, the SWd should never rely on information it receives from the
NWd when making security decisions. This is important when considering TPM-like
use cases.

7Specifically Cortex™-A class (or application) processors. ARM also designs R (realtime) and M
(microcontroller) class processors, which don’t have the kind of TrustZone feature described here.
8As you’ll see later, simply having TrustZone isn’t necessarily useful. It does have to be
implemented correctly, something that requires skill and care.
9The term shack attack is sometimes used in association with TrustZone to describe a low-value,
low-skill type of physical attack somewhere between the all-software hack attack and the high-end,
skilled, and expensive lab attack. An example of a shack attack might be nondestructive bus probing
on exposed wires. The degree to which an SoC can protect against shack attacks depends on the
chip hardware design and isn’t inherent to the TrustZone system.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

343

System-Wide Security
ARM often describes TrustZone as system security,10 but what does that mean? In this
case, the system refers to everything in the SoC connected to the central processor by the
AMBA®11 AXI™ bus.12 So in addition to providing simple memory and process separation
for the two-worlds model, it also extends protection to data and interrupts handled by
peripherals.13

Bus masters can be marked secure, meaning they’re controlled by software running
in the SWd, or insecure, meaning they can be accessed by either world.14 When a secure
peripheral interacts with the system, nothing in the untrusted world can see it or directly
interfere with it: not even kernel code. Typical use cases for such a thing would be a
Secure Element chip (cryptographic key storage device not accessible to normal code) or
a touchscreen UI (trusted user interaction).

Implementation of TrustZone
The successful implementation of TrustZone in an SoC and system depends on many
aspects of design but there are three major pieces to consider: the NS bit, the Monitor,
and secure interrupt handling.

The NS bit
The NS (or ‘Non-Secure’) bit is the central manifestation of TrustZone in the ARM
processor architecture. It’s a control signal that accompanies all read and write
transactions to system bus masters, including memory devices. As the name suggests, the
NS bit must be set low in order to access SWd resources.

To understand how something so simple can reliably achieve world separation, it’s
sometimes useful to think of NS as an extra address bit15 that effectively partitions the
memory space into two parallel logical regions: 32-bit space plus NS. This analogy makes
TrustZone isolation and error behavior intuitive: attempts from NWd to access SWd
memory will fail, even if it knows the exact 32-bit address it wishes to attack, because the
33rd bit is different and so doesn’t map to the desired memory location.

10www.arm.com/products/processors/technologies/trustzone/index.php.
11Advanced Microcontroller Bus Architecture. See http://en.wikipedia.org/wiki/Advanced_
Microcontroller_Bus_Architecture for further definitions and acronyms.
12Technical note: Only AXI masters are able to correctly preserve TrustZone signals. Work is
required to securely integrate AHB™ or APB™ devices.
13Again, peripheral here refers to masters connected directly to the AMBA AXI bus inside the SoC.
It doesn’t mean external devices like VDUs or printers.
14Remember the asymmetrical nature of TrustZone: SWd can access everything.
15The “33rd (or 41st or 65th) address bit” analogy can fail when you look at certain deep details, but
it’s close enough to be useful.

http://www.arm.com/products/processors/technologies/trustzone/index.php
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
http://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

344

Clearly the security of the system would break down if NWd code were somehow
able to set the NS bit in resource requests directly, so it’s set, maintained, and checked
by processor registers and bus components such as the memory controller and address
space controller. Returning to the 33rd bit analogy for a moment, code makes a normal
32-bit request; and the processor hardware, knowing that the code is executing in
insecure mode, adds NS=1 to the transaction.

The Monitor
Of course, nothing is ever quite as simple as a single bit in the architecture. A small
amount of firmware is required to coordinate the two worlds, facilitate switching, and so
on. This firmware16 component is called the Monitor.

Alongside the two explicit operating modes (Secure and Non-Secure), there is a third
processor mode called Monitor mode that runs a third separate software stack. In order
to transition from NWd to SWd (or vice versa), requests must transition through Monitor
mode and the Monitor firmware ensures that the transition is allowed, orderly, and
secure.

The Monitor is able to access all the crucial security data in the system, so its quality
and integrity are paramount. The code should be as small as possible and tested and
reviewed17 regularly in order to be, if such a thing is possible, bug-free.

World Switching

When NWd software wishes to contact SWd, it must issue a Secure Monitor Call (SMC)
instruction. This invokes the Monitor, which must set the state of the NS bit in the Secure
Configuration Register in the System Control Processor (CP15) (so that bus and memory
devices know which world is executing and therefore calling them) and bank-sensitive
registers to keep the system secure and consistent.

SMC calls are very simple: they take a single 4-byte immediate value that indicates
to the software in the SWd what service is being requested, and the SWd runs that service.
It’s the responsibility of the system designer(s) to agree on conventional numbering and
meanings for each value.18

16Note a coming confusion: from ARM V8, there is an official definition of firmware for Exception
Level 3 (high privilege level) that is more than just the Monitor components. This text only refers
to the code responsible for coordinating world switching, not any other firmware duties such as
power management.
17The Monitor may even be a legitimate target for formally proven code.
18To help with this, ARM publishes various recommended calling conventions, but the system isn’t
required to follow them.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

345

Interrupts
Earlier we introduced the idea that interrupts from secure peripherals can be routed
directly to the SWd without ever passing through any untrusted code at any privilege
level. At this point, it’s important to introduce another configuration for peripherals: not
secure or insecure, but switchable. Some peripherals (a touchscreen, for example) only
need to be secured part of the time: when executing sensitive transactions. At all other
times, it’s acceptable, even required, for the NWd to have control.

To police this and ensure that the correct software stack has control at the correct
time, all such interrupts are actually caught by the Monitor, and the Monitor decides
(based on a configuration table) which driver (SWd or NWd) should receive the interrupt.
When entering a secure transaction, the SWd can reserve the peripheral, meaning it
receives all the interrupts. When it has finished, it can release the peripheral, informing
the Monitor that it should send interrupts on to the NWd driver instead.

To deal with the various practical issues of performance, potential conflicts, and so
on, a typical ARM system reserves the two interrupt signals for separate purposes: IRQ19
for normal interrupts and FIQ20 for secure.21 This allows certain efficiencies such as static
routing tables for certain events.

Relationship to TPMs
Historically, ARM SoCs have been most prevalent in mobile devices: smartphones,
tablets, and the like. As such, TrustZone systems haven’t typically used a separate
hardware TPM, but rather have used TrustZone as the TPM.

Starting around a decade ago with the Mobile Trusted Module specification, and
continuing today with the TPM 2.0 Mobile and PC Client specifications, the trusted
computing community has developed the concept of a firmware TPM. With fTPM, rather
than relying on separate hardware chips, the TPM functionality is implemented in a
protected firmware execution space such as TrustZone and then called by the NWd OS
for measurements, sealing, and so on in the normal way.

While no hard-and-fast requirements or architecture are specified for the precise
implementation of the fTPM (beyond conformance to the TPM 2.0 library specification of
course), the operating environment is required to provide some fundamental protection
for the TPM roots of trust and PCRs. In keeping with the TrustZone protection target, no
software outside of the TPM implementation should be able to modify or access roots of
trust directly, or manipulate PCRs except though the authorized interfaces.

A well-implemented TrustZone system is able to provide these guarantees (and,
indeed, several implementations are commercially available).

19An interrupt request (IRQ) is a signal sent from a hardware peripheral to alert the processor to an
event.
20A fast interrupt request (FIQ) is an additional signal like IRQ but is (supposedly) handled faster.
21Although not actually required, there are two reasons for this recommendation: compatibility
(existing NWd software makes much more use of IRQ than FIQ) and security (the ARM
architecture allows for masking control of FIQ in CP-15 but not IRQ).

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

346

AMD Secure Technology™
The AMD Secure Processor™ (formerly known as the Platform Security Processor [PSP])
is a dedicated hardware security subsystem that runs independently from the platform’s
main core processors and is integrated into the SoC. It provides an isolated environment
in which security-sensitive components can run without being affected by the software
running as the main system workload. The PSP can execute system workloads as well as
workloads provided by trusted third parties. Although system workloads are preinstalled
and provide SoC-specific security services, the system administrator has complete control
over whether and which third-party workloads are installed on the PSP. The PSP is made
up of the following components:

Dedicated 32-bit microcontroller (ARM with TrustZone •	
technology)

Isolated on-chip ROM and SRAM•	

DRAM carved out via hardware barrier and encrypted•	

Access to system memory and resources•	

Secure off-chip NV storage access for firmware and data•	

Platform-unique key material•	

Hardware logic for secure control of CPU core boot•	

Cryptographic coprocessor (CCP)•	

The PSP uses the ARM TrustZone architecture, as described in the section on ARM
TrustZone, but there are some differences: rather than being a virtual core, the PSP is a
physically disparate core integrated into the SoC that has dedicated SRAM and dedicated
access to the CCP. The PSP provides the immutable hardware root of trust that can be
used as the basis for optionally providing the chain of trust from the hardware up to
the OS.

The CCP is made up of a random number generator (RNG), several engines to
process standard cryptographic algorithms (AES, RSA, and others depending on
processor model), and a key storage block. The key storage block contains two key storage
areas: one dedicated to storing system keys that can be used by privileged software but
that are never readable; and the other into which keys can be loaded, used, and evicted
during normal operation by software running either on the PSP or on the main OS.
During boot, SoC-unique e-fused keys are distributed to the CCP system key
storage block.

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

347

Hardware Validated Boot
Hardware Validated Boot (HVB) is an AMD-specific form of secure boot that roots
the trust to hardware in an immutable PSP on-chip ROM and verifies the integrity of
the system ROM firmware (BIOS). The PSP ROM contains the initial immutable PSP
code. The PSP ROM validates a secure boot key and then uses the key to validate the
PSP firmware, which it reads from system flash. The PSP firmware loads and starts the
system application execution. The system manufacturer can choose whether the PSP
validates the BIOS platform-initialization code. The PSP then initiates BIOS execution.
The PSP completes its own initialization and enters steady state while the BIOS and OS
finish booting on the x86. The platform manufacturer decides whether to implement
UEFI secure boot. The platform manufacturer also decides what interfaces are provided
for the user to select whether UEFI secure boot is enforced. In this way, the platform
manufacturer decides when to terminate the chain of trust that was rooted in the
immutable hardware.

Figure 22-3 shows the scope of HVB as it relates to the UEFI secure boot.

Figure 22-3.  Hardware Validated Boot Overview

Chapter 22 ■ Platform Security Technologies That Use TPM 2.0

348

TPM on an AMD Platform
As a founding member of the Trusted Computing Group, AMD strives to support a wide
range of options for the OEM and platform owner. To this end, platform manufacturers
have several choices when integrating TPMs into AMD-based platforms. Platform
manufacturers can continue to choose among the discrete TPM hardware options that
are widely available; or the platform manufacturer can choose to integrate an AMD-
provided TPM application as one of the system applications running on the PSP SWd.
This firmware TPM utilizes the CCP for cryptographic processing.

SKINIT
SKINIT is the instruction that initiates the late launch CPU reinitialization to start the
DRTM. SKINIT takes one parameter: the address of the Security Loader (SL) code. The
SL must fit within 64KB of memory known as the Security Loader Block (SLB), which
is protected from tampering and snooping. CPU microcode ensures that the CPU is
reinitialized to a known state so that the developer can launch whatever SL code they
need to run in the secured state. The SL is expected to validate and initialize a Security
Kernel (SK) and then to transition control to the SK. The SKINIT instruction writes the
contents of the SLB to an address that is redirected into the TPM via the _Hash_Init,
_Hash_Start, and _Hash_End signals. These signals measure the contents of the SLB into
PCR 17. Further details about the CPU characteristics that are validated and how the
SKINIT instruction works are available in the AMD64 Architecture Programmer’s Manual
Volume 2: System Programming.22

This concludes a whirlwind overview of AMD Secure Technology™ that covers the
high points of the introduction of an on-chip hardware root of trust into AMD SoCs.
More information can be found on AMD’s web site: www.amd.com/en-us/innovations/
software-technologies/security.

Summary
This chapter has discussed three platform technologies that use TPM 2.0: Intel TXT,
ARM TrustZone, and AMD Secure Technology. There are other technologies on PCs and
other platforms that also use TPM 2.0, and, we hope, many more will be developed in the
future. And this is where you, the reader, come in. Go out and do wonderful things
with TPMs!

22http://developer.amd.com/resources/documentation-articles/developer-guides-
manuals/.

http://www.amd.com/en-us/innovations/software-technologies/security
http://www.amd.com/en-us/innovations/software-technologies/security
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/

	Chapter 22: Platform Security Technologies That Use TPM 2.0
	The Three Technologies
	Some Terms

	Intel® Trusted Execution Technology (Intel® TXT)
	High-Level Description
	Intel TXT Platform Components
	Intel TXT Boot Sequence

	How TPM 2.0 Devices Are Used
	NV Indices
	PCRs
	Conclusion: Intel TXT

	ARM® TrustZone®
	High-Level Description
	TrustZone Is an Architectural Feature
	Protection Target
	System-Wide Security

	Implementation of TrustZone
	The NS bit
	The Monitor
	World Switching

	Interrupts
	Relationship to TPMs

	AMD Secure Technology™
	Hardware Validated Boot
	TPM on an AMD Platform
	SKINIT

	Summary

