
143

Chapter 6

Boot with Integrity, or
Don’t Boot

You can’t build a great building on a weak foundation. You must have
a solid foundation if you’re going to have a strong superstructure.

—Gordon B. Hinckley

You are on a business trip and staying in a nice hotel. You leave your laptop in the room
while going out for a dinner appointment. The laptop has its full disk-encryption feature
enabled. Being reasonably paranoid, you even turned off the laptop. You believe that
the laptop and your confidential files stored in it are safe and secure. However, that
may not be true. An “evil maid” who can physically access the laptop on the sly for
just two minutes may be able to steal your drive encryption password without a trace.
Consequently, the confidentiality of all encrypted data on the laptop is in danger.

How does the evil maid do it? The trick is the boot process. End-to-end security is
essential. The boot security is as critical as, if not more critical than, runtime security.

For the past decade, the effort of securing computers has been focused largely on
mitigating runtime threats. Numerous solutions have been developed to safeguard the
integrity of computer systems and protect users’ assets. These solutions include but
are not limited to antivirus, network firewalls, and password managers. Some of these
solutions are software-based; others are either dedicated hardware devices or hybrid
designs made up of software and hardware. Most of these solutions mean to thwart
certain types of security threats at runtime of the system. Drive encryption programs
including TrueCrypt, PGP, and BitLocker) adopt a preboot authentication that is
launched during the boot process as an extension of the BIOS before the operating system
(such as Windows, Linux, Android, iOS, and so forth) is loaded.

The problem is the lack of end-to-end protection. Most software solutions are
available only after being loaded by the operating system. In other words, during the boot
process—that is, from the moment a user presses the power button to when the operating
system takes control and finishes loading the security solutions—the computer is not
benefiting from the services offered by the security measures and is hence vulnerable.
Drive encryption schemes that start during the boot do not depend on the operating
system to function, but they do rely on the integrity of the boot loader that loads them.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

144

Admittedly, runtime protection is pivotal. The amount of time a computer typically
spends on boot today is fairly small compared to how long the operating system is
running. Operating systems have extensive interfaces and connectivity that make the
attack surface wide and open. In contrast, the boot is a relatively short and contained
process. As a result, attacks against the boot are more difficult to mount and succeed.

But a building is only as strong as its foundation. Hacking a computer’s boot loader
is similar to replacing a mansion’s concrete foundation with sand. The components
that are involved in the boot process comprise the root of trust for the entire system.
A compromised boot loader renders the operating system—and all programs running on
it—untrustworthy, including the antivirus, firewalls, and even drive encryption utilities.

Boot Attack
The boot process and components participating in the process vary, depending on the
architecture of the system. How a computer boots today is significantly different and
more complex than it was a decade ago. At a high level, most computers follow the boot
sequence shown in Figure 6-1.

Figure 6-1.  Boot flow

The BIOS (basic input/output system) is a firmware component stored in nonvolatile
memory, usually a flash chip. The BIOS loads the boot loader, which is the first software
component loaded during the boot process. The boot loader is stored in the hard drive,
together with the operating system and applications.

For attackers, it is preferable to compromise a component that is loaded earlier
than one loaded later, because taking control at an early stage enables control over all
subsequent components. Successful attacks against user-mode software programs may
not be glorious accomplishments in the security community nowadays. Instead, the BIOS
and boot loader are becoming more interesting targets. A number of such attacks were
published in the recent years. Here are two examples:

•	 Attacking BIOS: This type of attack replaces an authentic BIOS
with an attacker’s BIOS that contains malicious code. There have
been attacks against the UEFI (Unified Extensible Firmware
Interface) secure boot.

•	 Attacking boot loader: This type of attack usually installs a boot
kit (a variant of root kits that runs in the kernel mode) under an
attacker’s control that infects the boot loader. The boot kit can be
used to steal secrets during the boot path; for example, logging
the user’s drive encryption password.

If an adversary manages to modify the BIOS or boot loader code without
authorization, then a straightforward damage he can realize is to corrupt the BIOS or boot
loader and render the computer unbootable and inoperable (this category of attack is
called bricking). The most famous example of this kind is the CIH virus, which resulted

Chapter 6 ■ Boot with Integrity, or Don’t Boot

145

in reportedly millions of computers failing to boot in the late 1990s. The CIH virus,
named after its author Chen Ing-Hau, a student at Taiwan’s Tatung University, flashes
and rewrites the BIOS region with junk so the infected computers can no longer start.
Generally speaking, bricking the attacker’s own device yields no benefits to the attacker.
But if such bricking attacks can be mounted remotely and widely spread with viruses like
CIH, it will cause substantial monetary loss.

In today’s operating system, writing to flash or a boot loader without physical access
is an incredibly privileged operation and hence more difficult to implement than 20 years
ago. The bricking attacks against the boot path cause little or no harm on newer computers
that are shipped with backup BIOS images on the flash and recoverable boot loaders on
a special region of the hard drive or from the manufacturer-provided recovery disc. Most
reputable antivirus utilities are capable of monitoring the integrity of the boot loader and
of killing viruses that infect the boot loader. Pure bricking attacks against the boot path are
considered out of scope in the remainder of this chapter.

Evil Maid
Joanna Rutkowska of the Invisible Things Lab was the first to describe the “Evil Maid”
attack1 in October 2009. In the Evil Maid attack, the maid attacker boots the victim’s
unattended laptop with her USB stick, which contains a bootable and stripped Linux
operating system. The USB stick then uses the POSIX command dd to install a malicious
boot kit, which changes the legitimate boot loader with a hook for recognizing and
recording the full drive encryption passphrase later when the victim turns on his laptop
and types in the passphrase on the keyboard. The malicious boot kit also recalculates
certain fields of the MBR (master boot record), including the boot loader hash and size,
in order to make it look like a legitimate MBR. The recorded passphrase is stored on the
hard drive and it can be sent over the network to the attacker, or simply be retrieved by
the evil maid the next day, when she can access the laptop and boot to her USB stick
again. Once the encryption passphrase is acquired, the maid can just clone the victim’s
encrypted drive so she can steal all data on it.

Notice that the Evil Maid attack works only on a laptop that is turned off, because the
attack takes advantage of the lack of boot integrity protection, and the drive encryption
passphrase is entered by the user only during boot. If the maid deliberately turned off a
sleeping or hibernating computer in order to mount her attack, then the victim would
notice that something was wrong and suspect that someone had done something to his
laptop. However, why would the victim power off his laptop in the first place, while he is
going out for just an hour for dinner? The average user may not do so.

As a matter of fact, a paranoid professional user who has heard of the “cold boot”
attack2 may actually turn off his laptop even if he will be away for a short time. The
researchers that presented the cold boot attack reports found that, based on experiments,
the DRAM (dynamic random-access memory) still retains its content within a certain
amount of time after the power is removed, even at the room temperature. Colder
environments prolong the duration of the memory remanence. This observation is
contrary to the popular assumption that DRAM would lose its data almost instantly when
not being refreshed. The time period for which data resides in DRAM after power removal

Chapter 6 ■ Boot with Integrity, or Don’t Boot

146

is generally long enough for an experienced attacker to figure out the drive encryption key
from the DRAM. To counter such attacks, it is advisable to power down a laptop before
leaving it unattended.

As you can see from the scenarios of the Evil Maid attack, without boot integrity
protection, drive encryption techniques are able to safeguard your data only for cases
where a thief steals and possesses your computer for good and attempts to retrieve
plaintext data from it. If an attacker can secretly and physically access your computer for
some period of time without you knowing, and then return it back to you, then the drive
encryption cannot protect your data. This is not the fault of any specific drive encryption
solution, but the limitation of the technology defined by its security model. The Evil
Maid attack is simply out of scope if the user temporarily gives up the physical control of
his laptop, that is, this scenario is not something that the encryption itself is intended or
capable to mitigate.

To address this loophole, the security protection must start from the very beginning
and cover the entire boot process. If the boot path is secured on the platform, then an evil
maid will not be able to easily alter the MBR, so full drive encryption schemes can survive
the attack.

BIOS and UEFI
The BIOS is the first piece of firmware that executes upon computer power-on. It is stored
in nonvolatile memory, such as a flash chip on the motherboard. The fundamental
functionality of the BIOS firmware is to initialize and self-test low-level hardware
components of the computer, such as the CPU, keyboard, display, DRAM, and so forth, as
well as to load the boot loader for the operating system from the hard drive. For a system
with the security and management engine enabled, the BIOS is also responsible for
communicating with the engine for basic configuration and reserving a predefined size of
DRAM for the engine’s dedicated access.

In fact, the BIOS is a standard that defines the platform firmware interface to
the operating system. The term BIOS also refers to the firmware that implements the
standard. In recent years, the UEFI standard3 has been replacing the conventional
BIOS standard, which has several limitations (such as a 16-bit real mode and a 1MB
addressable memory) that are posing difficulty in meeting the needs of modern
computers. Like the BIOS, the UEFI specification defines an interface between
the operating system and the platform firmware, and the interface is designed to
communicate only necessary information in order for the operating system to start.
Besides supporting larger memory and a disk boot, the UEFI also introduces useful add-on
features such as secure boot. Notice that the UEFI is backward-compatible with the BIOS
standard. In this chapter, the term BIOS refers to the platform firmware that runs at boot,
which may be either a conventional BIOS or a UEFI-compatible one.

Everything starts with BIOS on a computer, including security. If the BIOS is
compromised, then all security countermeasures deployed after BIOS are essentially at
risk. The era of the CIH virus—when a Windows application could program the flash and
corrupt the BIOS—is long gone. Nevertheless, security researchers have reported BIOS
alteration attacks using advanced techniques in recent years.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

147

BIOS Alteration
At the Black Hat Europe conference in 2006, John Heasman presented a rootkit made
possible by altering BIOS’s ACPI (advanced configuration and power interface) table4
The rootkit can infect Windows during Windows installation. This attack requires the
capability of reflashing the flash chip where the BIOS is stored. At the 2009 CanSecWest
Security conference, Anibal Sacco and Alfredo Ortega demonstrated patching malicious
code into the decompression routines of the BIOS.5 Similar to Heasman’s finding,
physical access and reflashing capability is required to mount the attack.

Requiring physical access and reflashing BIOS firmware with an attacker’s
code significantly limits the value of the proposed attacks, because nowadays, most
manufacturers do not allow arbitrary programming of the BIOS. When manufacturers
issue BIOS updates for adding hardware support and fixing bugs, the new BIOS images are
usually digitally signed with the manufacturer’s private key. Only if the signature checks
out by the operating system will the BIOS update be scheduled to launch after reboot.

At the Black Hat USA conference in 2009, Rafal Wojtczuk and Alexander Tereshkin
presented an attack against certain vulnerable BIOS.6 The attack exploits a buffer overflow
bug in these BIOSes to subvert the integrity protection (digital signature) on the BIOS
update. The attack is more sophisticated than the ones introduced by Heasman, Sacco,
and Ortega, because it does not require physical access, making remote and wide
deployment possible.

Software Replacement
Attacks can be classified into various models according to the intension. With the
exception of the CIH virus, the attacks discussed so far in this chapter target taking control
of victims’ computers and stealing secrets or performing other harmful operations.

In other models, however, attackers are playing with and hacking their owner
devices, in the attempt to achieve certain goals:

•	 Install adversary’s software system on a low-end device: The
software shipped with low-end hardware by its OEM (original
equipment manufacturer) may come with limited functionalities.
It is to the user’s interest to replace the original software stack
with unauthorized software, where more powerful functionalities
are available; for example, installing Android on a GPS (Global
Positioning System) or media player device. Notice that the low-end
device may not be equipped with premium hardware features,
which limits what the adversary’s software is able to accomplish.

•	 Install adversary’s software system on a high-end device: The high-end
device features hardware capabilities to support premium
functionalities, such as enhanced high-definition movie playback,
near field communication (NFC), and so forth. The adversary’s
software can bypass certain restrictions. For example, content
protection may be deployed by an OEM’s software to enforce a
movie rental period. The adversary’s software may remove such
policy so that the user can own the movie permanently.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

148

Jailbreaking
Jailbreaking or rooting refers to the action of overcoming certain restrictions of the
firmware and software stack that are installed on the device by the device OEM or carrier
(in the case of a smartphone). Essentially, jailbreaking is a form of privilege escalation
that allows the user to gain the root privilege and full control of his device.

It is common practice for OEMs and wireless carriers to implement restrictions in the
firmware and software that is shipped with the hardware. There are a number of reasons
for this practice. For example, here are a few:

Selling applications and additional services to users after they •	
purchase the device

Protecting the device from malware and viruses•	

Promoting the OEM’s software products by preinstalling and •	
locking them down in the operating system

Preventing the wireless device under service contract from being •	
used with other carriers

Collecting usage data from wireless subscribers•	

Jailbreaking would invalidate all aforementioned purposes; hence it is against the
OEM and carrier’s interest. For example, a jailbroken iPhone or iPad may be able to run
third-party applications that are not authorized by or purchased from the official Apple
App Store. It is also possible to jailbreak a smartphone, unlock premium services, and
enjoy them for free, while the carrier intended to collect extra charges for these services.
For example, tethering or Hotspot is usually a paid function charged by the amount of
4G data shared between the smartphone and other non-4G platforms, such as a laptop.
Software of a jailbroken phone may cheat the carrier by reporting tethering or Hotspot
traffic as regular 4G data, hence avoiding extra charges.

Besides circumventing restrictions in the existing firmware and software stack, a
more sophisticated form of jailbreaking is to install a completely different software system
and possibly repurpose the device. This is especially interesting for devices that are
equipped with powerful hardware capabilities but limited software functionalities. HP’s
TouchPad is such an example.

Launched in July 2011, the TouchPad was discontinued less than two months
later. Remaining inventories were sold at extremely low prices to clear the stock. The
TouchPad was made of state-of-the-art hardware specifications for that time, including
a 1024×768–pixel touch screen, 16GB or 32GB of storage, and 1GB of memory. The
operating system preinstalled on the TouchPad was the webOS, which suffers several
limitations, such as very small number of available apps, compared to its competitors,
iOS and Android. Obviously, it is to the users’ interest if a “better” operating system can
be installed to run on the TouchPad hardware. In October 2011, the first Android-based
jailbreak was released by CyanogenMod.i The CyanogenMod converts the TouchPad to a
dual-boot system that supports both webOS and Android.

iCyanogenMod is a free open source operating system for smartphones and tablets, based on the
Android mobile platform.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

149

In most cases, jailbreaking is made possible by exploiting design flaws or
vulnerabilities in the firmware or software. For example, if a manufacturer’s firmware is
not digitally signed, then it is convenient to replace it with an adversary’s firmware. Even
if the architecture and design are sound, bugs in implementation may be exploited to
allow jailbreaking.

Now, when the device owner is the hacker, how does the device protect itself from
being broken? Clearly, a meaningful integrity protection scheme would have to depend
on a root of trust that is in hardware and intact from alteration. How do Intel’s CPU and
security and management engine help with this matter?

Trusted Platform Module (TPM)
Discussions regarding the integrity of firmware and software on a platform always involve
trusted platform module7 (TPM). The TPM is a public standard that defines the interfaces
of a security coprocessor. A TPM implementation is a hardware device that provides
cryptographic functionalities for the software to invoke.

Because the TPM is hardware, it is more difficult for attackers to break its security
and protections. Attacks against hardware are usually attempted through side channel
analysis; for example, timing information, power consumption, and electromagnetic
emissions. These attacks require not only physical access, but also special equipment and
advanced skills. These requirements limit the scope of the damage of successful attacks,
because the hardware attacks cannot be reproduced widely and easily by spreading
viruses or malware.

Beside its hardware nature, another important feature of the TPM is its
independence. The TPM is a module isolated from the main operating system. Its
operations do not rely on and is not impacted by the operating system or the software
running on it. This makes the TPM a trustworthy “third-party” for examining the integrity
of the software stack.

TPM may be implemented as a physically discrete device or as a logical component
inside a security coprocessor. Recent generations of Intel’s secure and management
engine features a firmware TPM, which is used to support secure boot designs as well as
other purposes defined in the TPM standard. For more information about the TPM on the
embedded engine, refer to Chapter 7 of this book. Despite the existence of the firmware
TPM, it is also possible to include a discrete TPM in the platform. Intel’s secure boot
architecture, Intel Boot Guard, can work with either the firmware TPM or a discrete TPM.

Platform Configuration Register
The primary goal of the TPM is to protect the integrity of the platform. As such, it is
equipped with implementations of hash algorithms and one or more banks of platform
configuration registers (PCRs). During the boot process, the PCRs can be used to store
and report the hash results for every firmware and software component. The operation of
hashing a boot component is often referred to as a measure. The operation of measuring
the next component is often referred to as an extend, because the measurement of the
next component is against not only the next component, but also all components that

Chapter 6 ■ Boot with Integrity, or Don’t Boot

150

have been measured before it. In other words, the measurement is always incremental.
This is defined in the following formula:

digestnew hashA old ew: lg n= ()H digest data

In this formula, || means concatenation and data
new

 refers to the binary data of the
component being measured. H

hashAlg
 is the chosen hash algorithm, like SHA-256. From

the formula, it is easy to understand that an altered component that is loaded during the
boot process will result in incorrect or unexpected measurements for not only itself, but
also all components loaded after it, even though those components are intact. Typically,
the measurements are checked later locally or reported to remote servers for attestation.
The TPM serves as secure storage only and does not perform the comparison for
measurements.

Notice the PCR is not specific for the boot time measurement. Rather, supporting the
integrity of boot components is just one of many usage models of the PCR. Per the TPM
specification, the PCRs are designed for generalized representation of a platform state,
and platform-specific specifications may define additional PCR behaviors. In general,
a platform specification may define a PCR to represent any value that is authoritatively
known by the TPM or has been securely communicated to the TPM.

Many secure boot architectures take advantage of the TPM’s measurement
capability. However, the TPM has other useful ingredients in addition to the PCR, and
the TPM is not just about protecting boot integrity. The TPM has a range of cryptographic
capabilities, such as sealing and binding data, to help secure the platform not only during
boot but also at runtime.

Field Programmable Fuses
Newer security and management engines shipped with select Intel platforms in and after
2013 support a feature called field programmable fuses. As its name indicates, it allows
fuses to be burned after leaving Intel’s manufacturing facility, in the OEM’s factory or
in the field. The field programmable fuses are essentially another nonvolatile storage
medium. However, it is not the only nonvolatile storage in the engine.

Field Programmable Fuses vs. Flash Storage
The security and management engine’s kernel contains a storage manager that manages
nonvolatile data that must persist across power cycles. Nonsensitive data can be stored
in plaintext; secrets can be protected with confidentiality, integrity, and anti-replay. The
embedded applications that invoke the storage manager are free to apply one or more of
these protection options for their data. The data is stored on the flash device in a special
partition. The same flash also stores the BIOS, the embedded engine’s binary image, as
well as other system firmware.

Now that nonvolatile data can be stored on the flash, why the field programmable
fuses? When comparing the field programmable fuses with the flash storage, anti-replay
becomes an interesting aspect. Two anti-replay mechanisms are supported by the

Chapter 6 ■ Boot with Integrity, or Don’t Boot

151

storage manager: native monotonic counter and RPMC (replay-protected monotonic
counter) flash:

•	 Native monotonic counter: The monotonic counter resides in the
chipset’s RTC (runtime clock) power well. Upon RTC power loss,
for example, due to coin battery removal, all anti-replay blobs
managed by the engine are invalidated by the storage manager.
Because of this limitation, the applications must be able to
re-create the blobs in case they are lost.

•	 RPMC flash: The flash device natively mitigates anti-replay
attacks. The advantage is the independence of the RTC power
well. The disadvantage is the cost of the RPMC flash. Not all OEMs
use RPMC flash parts for all products.

The field programmable fuse scheme provides anti-replay protection that completely
eliminates the dependency on RTC well or RPMC flash. Thanks to its nature, writing a
fuse is a one-time operation. That is, once a fuse has been burned (its value changing
from 0 to 1), the operation cannot be reversed, and the fuse will assume the value of 1
from then on. This characteristic makes field programmable fuses especially suitable for
holding data that requires certain properties:

The data must survive flash wipe or corruption. Such data includes •	
platform state information, OEM programmable confidential
information, and so forth. The security and management engine’s
verified boot architecture uses the field programmable fuses for
OEMs to program digests of their public keys.

The data is used to support security claims; loss of the data may •	
result in security vulnerabilities. For example, the fuses can be
used to permanently record the fact that a security enhancement
feature, such as anti-theft or TPM, has been enabled for this
platform. If an attacker (owner of the device) intends to bypass
specific restrictions by reflashing the firmware image with
another version that does not support the security enhancement,
then the image replacement will be caught by the fuses.

The storage manager is not able to provide this level of protection with its anti-replay
mechanisms.

In addition to anti-replay, the fuse block is hidden inside the security and
management engine and invisible to the outside of the engine. In other words,
confidentiality and integrity are native characteristics of the field programmable fuses,
without having to apply encryption and hashing algorithms.

The main drawback of field programmable fuses is the relatively small number
of fuses available on die. For a typical configuration of the engine, there are 1024
programmable fuses in a 32×32 array layout. About one in every four fuses is reserved
for locking, repairing, and redundancy check purposes, leaving only a few hundred fuses
for applications to program. As such, the uses of the field programmable fuses are not a
runtime matter, and must be predefined and allocated carefully on a case-by-case basis.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

152

Field Programmable Fuse Task
From the firmware architecture perspective, the field programmable fuse manager is
implemented in its own task (container). See Chapter 4 of this book for more information
about the security and management engine’s task isolation infrastructure. Being a
dedicated task, other tasks are not able to penetrate the field programmable fuses.
Firmware modules that own fuses can program or sense the fuses by calling the field
programmable fuse task via the intertask calling mechanism supported by the kernel.

The flow for programming a fuse is depicted in Figure 6-2. The figure does not detail
steps for the fuse manager to burn a fuse; for example, a valid bit check, a redundancy check,
and so forth. The flow for sensing the value of a fuse is similar and is not shown in this figure.

Application A calls kernel for inter-
task function program_fuse(x) to

program fuse x

Kernel checks if application A
is allowed to consume the
field programmable fuses

manager

Access allowed? No
Kernel returns

error to application
A

Kernel notifies field
programmable fuse manager
of the call from application A

Field programmable fuses
manager checks if application
A is allowed to program fuse x

Programming allowed? No
Field programmable

fuses manager returns
error to kernel

Kernel returns
error to application

A

Field programmable fuses
manager programs fuse x

Yes

Yes

Field programmable fuses
manager senses fuse x

fuse x = 1? N o
Field programmable

fuses manager returns
error to kernel

Kernel returns error
to application A

Field programmable fuses
manager returns success to

kernel

Yes

Kernel returns success
to application A

Figure 6-2.  Flow for application A to programming fuse x

Chapter 6 ■ Boot with Integrity, or Don’t Boot

153

Depending on the nature of the data, there are five usage models of the
programmable fuses:

•	 Single-bit one-time programming: The data is of Boolean
type. Once programmed, the change becomes permanent
and it can no longer be reverted. This usage requires only one
fuse. For example, once the OEM finishes the manufacturing
process, it programs a single-bit one-time fuse to show that
manufacturing is completed. Certain configurations of the
security and management engine are intended for only OEMs to
use; it is not supposed to be touched by end users. The firmware
logic for handling such configurations consults this “end of
manufacturing” indicator fuse, before proceeding with the
configuration manipulation.

•	 Single-bit multiple-time programming: The data is of Boolean
type. It may change a limited number of times, say n, during the
lifetime of the platform. In this case, n fuses are necessary for
storing the data, and one of the n fuses is programmed every
time the value of the data flips. Take the anti-theft technology for
example. Once enrolled, the anti-theft technology automatically
shuts down the platform per the user-configured policy if
it detects that the system is in a stolen state. The shutdown
is performed only if the platform is enrolled, therefore the
enrollment status is critical for enforcing the shutdown. Users are
free to opt out after enrollment or enroll again (that is, changing
the enrollment status) for a limited number of times. For a single-bit
multiple-time programming fuse, the field programmable
fuse manager counts the number of the n fuses that have been
burned. If the number is odd, then the data is assumed to be true,
implying, for example, the anti-theft is currently enrolled; if the
number of is even or zero, then the data bit is assumed a value of
false.

•	 Multiple-bit one-time programming: The data consists of multiple
bits. It cannot be changed once programmed. For this usage, the
number of fuses required is equal to the bit size of the data. For
example, in Intel’s verified boot architecture, the OEM programs
its 256-bit hash of OEM’s RSA public key to field programmable
fuses during the manufacturing process. The OEM also programs
its secure boot policies to designated fuses. Once done, the value
cannot be erased or updated during the lifetime of the platform.

•	 Multiple-bit multiple-time programming: The data consists of
multiple bits. It may change for a limited number of times. For
this usage, the number of fuses required is equal to the data’s
bit size multiplied by the number of times the data is allowed to
change during the lifetime of the platform.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

154

•	 Incremental integer: The data is a non-negative integer that
assumes values from 0 to m, inclusive. The data assumes an
initial value of 0 and can only be updated from smaller to greater;
for example, from 1 to 3, but not from 3 to 2. A set of m fuses
are required for this usage model. The number of burned fuses
represents the value of the data. A typical usage is the version
number of a firmware component. When vulnerabilities are fixed
in a firmware patch, the version number of the new release will
be incremented by one from the previous vulnerable version.
The latest version number is recorded in the fuses. When the
embedded engine loads the firmware, it checks the firmware’s
version number and compares with what is shown by the fuses. If
the former is greater, the fuses are updated with the new version
number; if the former is smaller, then the system concludes that it
is under a rollback attack and proceeds accordingly.

Intel Boot Guard
Intel Boot Guard technology provides hardware-based boot integrity protection that
prevents malicious firmware and software from taking over boot blocks. It does so by
detecting an unauthorized boot block and disallowing it to execute. The Boot Guard is a
hardware and firmware solution that does not depend on any software.

Intel released the authenticated code module, or ACM, for OEMs to enable the Intel
Trusted Execution Technology8 (TXT) and the Boot Guard feature. As will be described
later in detail, the ACM plays a pivotal role and carries critical tasks in the Boot Guard
solution. Digitally signed by Intel, the ACM component is stored on the flash together
with BIOS and other firmware components. The public key for verifying the signature on
the ACM is hard-coded in Intel’s CPU. There is a security version number associated with
the ACM module, which is used to identify and revoke vulnerable ACM releases and stop
the system from booting.

To take advantage of the Boot Guard technology, the OEM must implement a new
firmware component to the boot flow, called the initial boot block, which is loaded
before the BIOS. The initial boot block is responsible for checking the integrity of BIOS,
initializing memory, and loading BIOS into the system memory. Just like the ACM, the
initial boot block is stored on the flash chip. The boot flow is shown in Figure 6-1, and the
additions of the ACM and the initial boot block are shown in Figure 6-3.

Figure 6-3.  Boot flow with ACM and initial boot block

Chapter 6 ■ Boot with Integrity, or Don’t Boot

155

Note that this is a simplified boot flow. The boot flow with the TXT is more
complicated. Intel Boot Guard technology defines three boot configurations:

•	 Measured boot: Measures the initial boot block into the platform’s
secure storage device, such as a TPM.

•	 Verified boot: Cryptographically verifies the integrity of the initial
boot block using a digital signature scheme. The verified boot
reduces material cost because it offers boot protection without a
TPM device.

•	 Measured boot + verified boot: Measures and verifies the initial
boot block.

But, why is it necessary to introduce the initial boot block? Why can’t the Boot Guard
directly verify the BIOS? Here are a couple reasons.

•	 Size: The size of today’s BIOS image is in the scale of megabytes
and increasing. However, the initial boot block is desired to be
small enough to fit in the on-die memory of Intel silicon in all
compatible platforms. In other words, the architecture must work
with fixed and limited memory size. This is not scalable for a BIOS
whose size may increase.

•	 Flexibility: Modularity in design provides flexibility and the ease
of changing only parts of the product. Also, an OEM can use one
private key to sign the initial boot block and another key to sign the
BIOS. Even in the event the private key for signing the BIOS image
is leaked or compromised, there is no need to recall hardware.

Operating System Requirements for Boot Integrity
Microsoft’s Windows Certification Program9 specifies a requirement for boot integrity.
Intel’s Boot Guard technology helps OEMs meet this requirement for their Windows-
based systems:

Boot Integrity: Platform uses on-die ROMii or One-Time Programmable
(OTP) memory for storing initial boot code and initial public key (or hash
of initial public key) used to provide boot integrity, and provides power-
on reset logic to execute from on-die ROM or secure on-die SRAM.iii

Google does not pose requirements for boot integrity for Android-based systems.
In fact, most Android device manufacturers do not implement a secure boot, and
intentionally allow a custom operating system to be loaded.10 CyanogenMod is one of the
most famous customized mobile operating systems derived from Android. Tutorials and
materials for rooting Android devices are publicly available.

iiRead-only memory
iiiStatic random-access memory

Chapter 6 ■ Boot with Integrity, or Don’t Boot

156

OEM Configuration
The Boot Guard configurations set by the OEM slightly vary among different products. In
general and at a minimum, the OEM is responsible for configuring its public key hash for
a verified boot, and the boot policies via the security and management engine.

The security of a verified boot is rooted to the OEM’s asymmetric keypair. The OEM
generates a 2048-bit RSA keypair as its root key for signing manifests for the initial boot
blocks. The private portion of the root keypair must be kept securely, and signing manifests
for initial boot blocks shall be its sole usage. On the other hand, the SHA-256 hash of the
public key is programmed to the field programmable fuses during the manufacturing
process. The public key hash consumes 256 fuses that belong to the multiple-bit one-time
programming category, which cannot be updated once written. Because of the one-time
programming limitation, the OEM will not be able to renew the root key or update the
hash, even if the private key is compromised. Therefore, the OEM must protect its root
private key in a signing server with strong protection from attacks or leakage.

In addition to programming its public key hash, the OEM is also responsible for
defining its boot policies and saving them in the field programmable fuses. The boot
policies are also a one-time configuration that cannot be revised. The policies instruct the
Intel hardware with regard to the following:

What boot protections are enabled—that is, measured boot only, •	
verified boot only, neither, or both

What actions to take upon ACM failure•	

What action to take upon initial boot block failure•	

In the scenario that the CPU is unable to load the ACM from the flash or the digital
signature of the ACM fails to verify, the CPU may either (based on the OEM’s setting for
the second bullet in the preceding list) enter the shutdown state or proceed with booting
from the legacy vector. Although the instant shutdown option offers the highest level of
integrity protection, it is generally not recommended because it may potentially lead to a
large number of customer support calls. And problems are extremely difficult to debug if
the system powers itself off at a very early stage of the boot process.

After the ACM is checked out successfully, the initial boot block becomes the
next subject of interest. Recall that the security and management engine is capable
of triggering instant shutdown of the platform (see Chapter 4 for details). When a
boot integrity-check fails, it is the engine’s responsibility—according to the OEM’s set
policies—to shut down the platform and terminate the boot process. The OEM can
determine when the shutdown should happen upon failure. A few options are available:

•	 Unrestricted: Do not shut down the system; let it boot and run
normally as if the failure did not occur.

•	 Remediation: Let the system continue to boot but shutdown
ungracefully after a certain amount of time. The amount of
time (for example, 30 minutes) should be enough for a repair
technician to perform basic remediation work, such as updating
the initial boot block or BIOS from the operating system. Yet, the
time before shutdown should not be too long; otherwise, the boot
policy becomes meaningless.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

157

•	 Diagnostics: This is similar to the remediation option, but the
timer is set to a much smaller value, such as one minute. This
option allows the manufacturer’s support engineers to retrieve
debug information from the system.

•	 Zero-tolerance: Shut down the platform immediately upon a boot
integrity failure. Similar to the case of ACM failure, this option is
generally not recommended.

The security and management engine offers two methods for the OEM to program its
public key hash and the boot policies to the designated field programmable fuses. In both
cases, the configuration is allowed only before the end of the manufacturing process:

	 1.	 Through HECIiv commands sent from the host operating
system. The commands are honored by the engine only before
the “end of manufacturing” HECI message is received and
recorded. This method is not available for production parts.

	 2.	 Through image building. Intel provides OEMs with a software
program called firmware image tool to build a flash image from
various components, such as binaries of BIOS, the security and
management engine, and so on. The tool allows an OEM to
configure the engine for Boot Guard support, including setting
its public key hash and boot polices. These values will be
automatically programmed to the field programmable fuses by
the engine’s firmware as soon as the “end of manufacturing”
HECI message is received and recorded.

The boot policy configuration applies to both the measured boot and verified boot.

Measured Boot
The measured boot mechanism is made possible by the Intel TXT. The Intel TXT is
designed to harden platforms at the hardware level, from hypervisor, firmware (BIOS, root
kit, and so forth), and other software-based attacks.

The Windows Certification Program requires measuring all boot components using
a TPM. Intel’s measured boot meets this requirement because the initial boot block is
measured as the first boot component:

During the boot sequence, the boot firmware/software shall measure all
firmware and all software components it loads after the core root of trust
for measurement is established. The measurements shall be logged as well
as extended to platform configuration registers in a manner compliant
with the following requirements.

ivHECI, or host-embedded communication interface, is the two-way communication channel
between the security and management engine and the host operating system. Refer to Chapter 3 for
more information about the HECI.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

158

The Intel TXT works by creating a measured launched environment (MLE), which
enables precise comparisons between the current state of the platform and known-good
references for all components of the boot process. The measurements (extended hashes
of components) are stored in the platform’s secure storage device, usually a TPM, and
are available for local or remote attestation. If measurements match known-good
configurations, then the TXT marks the system trusted; otherwise, the TXT marks the
system untrusted and follows defined fallback policies. It can either abort the boot
process or let the platform continue to operate—but with degraded functionality, such as
forbidding it from running sensitive tasks, for example.

For the measured boot, the CPU loads the ACM after verifying the signature associated
with it. The ACM calculates the hash of the initial boot block and stores the measurement
in a PCR slot of the platform’s discrete or firmware TPM device. The measurement is
available for attestation later.

Verified Boot
The measured boot mechanism relies on a dedicated storage device, typically PCR slots
of a TPM, to securely store measurements of the initial boot block and other components
involved in the boot process. Unfortunately, a TPM may not be available on all form
factors. This is especially the case for low-cost mobile devices. Specifically, for systems
in which TPM is not required for other functionalities, adding a TPM merely for the
purpose of safeguarding the boot integrity increases not only the BOM (bill of materials)
cost but also development and integration effort, which may not yield a good return-
on-investment. However, the boot integrity can still be a critical requirement for those
devices. The verified boot mechanism provides an alternate approach without relying
on a TPM or other devices. Notice that the verified boot mechanism by itself does not
measure all boot components. Therefore, without a measured boot, it may not satisfy the
Windows Certification Program requirements.

Cryptographically, data integrity is achieved by employing either a hash (including
a keyed hash and a plain hash) or a digital signature as a “measurement.” Without an
independent and trusted reference, the “known good” measurement must be kept
within the platform and intact from unauthorized alteration. The verified boot features
a hardware-based root of trust for verifying the integrity of the initial boot block. Next,
the initial boot block verifies the integrity of the BIOS, the BIOS verifies the integrity of
the boot loader, and the boot loader verifies the integrity of the operating system, and so
forth. The integrity of successive components loaded following the initial boot block is
guaranteed by a chain of trust.

Manifests
The initial boot block binary is associated with a manifest, called the initial boot block
manifest, or IBBM for short. The IBBM contains the following fields:

	 1.	 The security version number of the IBBM

	 2.	 The SHA-256 hash of the initial boot block

Chapter 6 ■ Boot with Integrity, or Don’t Boot

159

	 3.	 The RSA signature on (1) and (2)

	 4.	 The RSA public key that is used to verify (3), referred to as the
IBBM public key onward

The IBBM 2048-bit RSA keypair is also generated by the OEM, but it is different
from the OEM root RSA keypair introduced earlier; although an OEM is free (but not
encouraged) to utilize the same keypair for both. The only usage of the IBBM RSA keypair
is to sign IBBMs. The IBBM RSA private key must be kept securely by the OEM. The OEM
root public key hash is stored in the security and management engine’s programmable
fuses. In contrast, the IBBM public key appears only in the IBBM.

The IBBM is not the only manifest in the picture. The OEM uses its root keypair to
sign another manifest, namely the key manifest, which contains the following fields:

	 5.	 The security version number of the key manifest

	 6.	 The SHA-256 hash of the IBBM public key

	 7.	 The RSA signature on the (5) and (6)

	 8.	 The OEM root public key, used to verify (7)

The hash of the OEM root public key (8) is stored in the programmable fuses. Both
the IBBM and the key manifest are stored on the flash. The relationships among the root
key hash, two manifests, and the initial boot block are better explained graphically in
Figure 6-4.

...110100100100010000
01001110101010101001
01010010111011101010
10101011010101001101
00010101000000000111
11001001010110011001
01010001111101001010

01011001…

initial boot block

hash of initial boot block

IBBM

IBBM public key

RSA signature on “IBBM
security version number”
and “hash of initial boot

block”

IBBM security version
number

hash of IBBM public key

key manifest

OEM root public key

RSA signature on “key
manifest security version

number” and “hashof
IBBM public key”

key manifest security
version number

SHA-256SH A -256

hash of OEM root public
key

field programmable fuses

SH A -256

hardware firmware

Figure 6-4.  Using the OEM public key hash to verify the initial boot block via the key
manifest and IBBM

As Figure 6-4 depicts, the root of trust is the OEM root public key hash located in
the fuse hardware and handled by the security and management engine. This makes the
verified boot a hardware-based scheme that is significantly more difficult to compromise
than software solutions.

The key manifest seems an unnecessary middleman sitting between the OEM root
public key hash and the IBBM. Why not just use the OEM root key to sign the IBBM
directly? The indirection introduced by the key manifest is desirable for OEMs that

Chapter 6 ■ Boot with Integrity, or Don’t Boot

160

manufacture multiple product lines. With the key manifest, the OEM can use a single root
key for all its products, but different IBBM keys for different product lines.

For the sake of revocation, both manifests are versioned.

The security version number of the key manifest enables the •	
OEM to revoke the IBBM keypair should it be compromised. If
the IBBM keypair must be replaced, then the OEM will generate
a new IBBM keypair and place its public key hash in a new key
manifest, and at the same time increment the security version
number of the key manifest.

The security version number of the IBBM covers the initial boot •	
block, and it allows the OEM to revoke and patch a vulnerable initial
boot block. When a new initial boot block is released, the security
version number of the IBBM must be incremented accordingly.

The two version numbers are examined by the security and management engine
during the verified boot process. If the engine finds that the version number of a manifest
being loaded is greater than the corresponding value recorded in the field programmable
fuses, then it programs a certain number of fuses to reflect the greater version number.
The fuses reserved for the security version numbers belong to the category of incremental
integer. The version number of a manifest being loaded being smaller than the
corresponding value recorded in the fuses is an indicator of a rollback attack, where
an attacker unlocks the flash part and replaces a good and later version of the manifest
with a vulnerable and older version. In this situation, the embedded engine will react
accordingly per the boot policies in the fuses configured by the OEM.

Admittedly, revocation relying on security version numbers has its limitations. The
mechanism works only if the platform has already run, at least once, a later manifest or
an initial boot block with a greater version number, and then the manifest or initial boot
block is rolled back to an earlier and vulnerable version. If the attacker blocks manifest
or initial boot block updates (this is rather trivial to do) in the first place, so the platform
has no chance to ever see the patched manifest or initial boot block, then the revocation
design backed by security versioning will not be able to protect the platform. To make the
situation worse, an advanced attacker may reverse-engineer the new initial boot block
release and figure out the security bugs that were fixed, and attempt to exploit the bugs in
the old initial boot block.

Verification Flow
The verification of the initial boot block is a collaborative effort by the security and
management engine and the ACM running on the CPU. The ACM is responsible for the
following:

Loading the initial boot block firmware and the two manifests •	
from the flash

Retrieving the OEM’s public key hash, boot policy, its own •	
security version number, and the security version numbers of the
two manifests from the engine

Chapter 6 ■ Boot with Integrity, or Don’t Boot

161

Verifying the integrity of the initial boot block using the manifests •	
and OEM’s public key hash

Notifying the engine of updating the security version numbers if •	
necessary

Enforcing boot policy in the event of a communication error or a •	
time-out with the engine

The security and management engine is responsible for the following:

Reading OEM’s public key hash, boot policy, ACM security •	
version number, and the security version numbers of the two
manifests from field programmable fuses, and sends to the ACM

Incrementing security version numbers of the ACM and the two •	
manifests in the fuses upon requests from the ACM

Enforcing boot policies in the event of a communication error or •	
time-out with the ACM

Performing appropriate actions upon failure of verification, per •	
the boot policies

Figure 6-5 presents the high-level sequence diagram. In the figure, the security
version number check performed by the ACM is against three elements: the ACM, the
key manifest, and the IBBM. For the boot process to succeed, all three values seen by the
ACM must be equal to or greater than the respectively referenced values reported by the
security and management engine. If one or more of the security version numbers need
updating, then the ACM notifies the engine after all checks have passed.

Chapter 6 ■ Boot with Integrity, or Don’t Boot

162

Security and
Management Engine ACM

Read OEM public key hash, boot
policies, and security version numbers

from field programmable fuses

All security versions OK?
No

Yes

SHA-256 hash of the
OEM public key in the key manifest equals

the hash from fuses?

No

Yes

The RSA signature on
the key manifest is good?

No

Yes

SHA-256 hash of the IBBM
public key in the IBBM equals the hash from

the key manifest?

No

Yes

The RSA signature on
the IBBM is good?

No

Yes

SHA-256 hash of the initial boot block
equals the hash from the IBBM?

Enforce shut-down per boot
policies

No

Initial boot block verified
successfully

Yes

Security version
update required?

Yes
Perform security version

update to field
programmable fuses

Hand control to the initial
boot block

No

OEM public key hash, boot policies,
recorded security version of ACM,

and recorded security versions of manifests

New security version numbers

Figure 6-5.  The initial boot block verification flow for the verified boot

Chapter 6 ■ Boot with Integrity, or Don’t Boot

163

References
1. � Joanna Rutkowska, “Evil Maid Goes After TrueCrypt,” http://theinvisiblethings.

blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html, accessed on
March 20, 2014.

2. � J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten,
“Lest We Remember: Cold Boot Attacks on Encryption Keys,” Proc. 17th USENIX
Security Symposium, San Jose, CA, July 2008.

3. � Unified EFI, Inc., “Unified Extensible Firmware Interface Specification,”
www.uefi.org, accessed on March 20, 2014.

4. � John Heasman, “Implementing and Detecting an ACPI BIOS Rootkit,” Black Hat
Europe, March 3, 2006, Amsterdam, the Netherlands.

5. � Anibal Sacco and Alfredo Ortega, “Persistent BIOS Infection,” CanSecWest, March 19,
2009, Vancouver, BC.

6. � Rafal Wojtczuk and Alexander Tereshkin, “Attacking Intel® BIOS,” Black Hat USA,
July 30, 2009, Las Vegas, NV.

7. � Trusted Computing Group, “Trusted Platform Module Library,”
www.trustedcomputinggroup.org, accessed on March 20, 2014.

8. � Intel Trusted Execution Technology, www.intel.com/txt, accessed on
January 30, 2014.

9. � Microsoft Corporation, “Windows Certification Program: Hardware Certification
Taxonomy & Requirements—Systems,” December 16, 2013, pp. 125.

10. � N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostiainen,
Elena Reshetova, and Ahmad-Reza Sadeghi, “Mobile Platform Security,” Morgan &
Claypool Publishers, 2013, pp. 40.

http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.com/2009/10/evil-maid-goes-after-truecrypt.html
http://www.uefi.org/
http://www.trustedcomputinggroup.org/
http://www.intel.com/txt

	Chapter 6: Boot with Integrity, or Don’t Boot
	Boot Attack
	Evil Maid
	BIOS and UEFI
	BIOS Alteration
	Software Replacement

	Jailbreaking
	Trusted Platform Module (TPM)
	Platform Configuration Register

	Field Programmable Fuses
	Field Programmable Fuses vs. Flash Storage
	Field Programmable Fuse Task

	Intel Boot Guard
	Operating System Requirements for Boot Integrity
	OEM Configuration

	Measured Boot
	Verified Boot
	Manifests
	Verification Flow

	References
	Sec20

