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Introduction

Malware, virus, e-mail scam, identity theft, evil maid, password logger, screen scraper…
Cyber security concerns everyone. Computers can be your trusted friends or traitors. 

The Internet is a scary place. Going on the Internet is like walking the streets of a crime-ridden 
neighborhood. Cyber criminals work to steal your privacy, money, assets, and even identity. 
Cyber-attacks are intangible, invisible, and hard to detect. Due to the increasing popularity of 
mobile devices, the danger is several-fold worse today than it was seven years ago.

Technologies that created the security problem as a side effect are supposed to resolve 
the problem. Prevention is the key—the potential loss and cost of dealing with incidents is 
simply too high to afford.

However, it is more difficult to defend a castle than to build it. The mitigation against 
cyber-attacks is complicated and involves multiple layers of building blocks:

Algorithm•	 : An algorithm is a set of mathematical calculations that 
realize a specific cryptographic functionality, such as encryption, 
digital signature, hashing, and so forth.

Protocol•	 : A protocol is a set of rules and messages that govern the 
transmission of data between two entities. Security protocols are 
always built on cryptographic algorithms.

Application•	 : An application is a computer program that 
accomplishes a specific task, such as authenticating a user to a 
protected database. Applications are built with algorithms and 
protocols as the backbone.

Algorithms and protocols are often standardized and used across the industry for 
compatibility and interoperability. On the other hand, applications may be standardized, 
but in most cases they are invented and deployed by individual vendors to distinguish 
their products from competitors.

Algorithms, protocols, and applications can be realized in software, hardware, or 
combinations of both. Security measures that are rooted in hardware are more robust 
than those rooted in software, because attacks against well-designed hardware-based 
protections not only require advanced expertise, but also cost significant resources. 
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■ Introduction

Intel is committed to delivering state-of-the-art solutions for supporting a safe 
computing environment. The embedded engine built in most Intel platforms today is 
a major achievement of that effort. It features hardware implementations for standard 
algorithms and protocols, as well as innovative applications that are exclusively available 
on Intel products, including:

Privacy safeguard with EPID (enhanced privacy identification)•	

Strong authentication and secure transaction with IPT (identity •	
protection technology)

Verified boot process•	

. . . and many more•	

Thanks to these protections, users are largely shielded from dangers when they 
are surfing the Web. With peace of mind, people can enjoy all the good things that 
technologies have to offer.

This book takes the readers through an extensive tour of the embedded engine, 
exploring its internal architecture, security models, threat mitigations, and design details 
of algorithms, protocols, and interesting applications. 

The journey begins now.
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Chapter 1

Cyber Security in the  
Mobile Age

The number of new security threats identified every month continues 
to rise. We have concluded that security has now become the third 
pillar of computing, joining energy-efficient performance and Internet 
connectivity in importance.

—Paul S. Otellini

This book is an in-depth technical introduction to an embedded system developed 
and manufactured by Intel Corporation. The embedded system is not an independent 
product; it is a native ingredient inside most of Intel’s computer product portfolio, 
which includes servers, desktops, workstations, laptops, tablets, and smartphones. 
Although not well known to most end users, the embedded system plays a critical role 
in many consumer applications that people use every day. As such, its architecture, 
implementation, and security features are worth studying.

Depending on the end product in which the embedded engine resides, the engine is 
denominated differently:

For the embedded system shipped with computing devices •	
featuring Intel Core family microprocessors, it is called the 
management engine.

For the embedded system shipped with computing devices •	
featuring the Intel Atom system-on-chip (SoC), it is called the 
security engine. Note that not all Atom platforms use the security 
engine introduced in this book.

For the sake of convenience, this book refers to it as the security and management 
engine, the embedded engine, or simply the engine.
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Three Pillars of Mobile Computing
In August 2010, Intel announced the acquisition of security giant McAfee. Paul S. Otellini, 
Intel’s president and CEO at the time, emphasized that “security has become the third 
pillar of computing” when commenting on the investment. The other two pillars of 
computing are energy-efficient performance and Internet connectivity.

The three pillars summarize the core characteristics for computing, especially 
mobile computing. Intel’s security and management engine is an embedded component 
that serves as the backbone that supports the three pillars for multiple forms of 
computers, including mobile endpoints, desktops, workstations, and servers. As its 
name indicates, the engine’s main functionalities are security and management. In the 
meantime, power efficiency and connectivity are also addressed in its design.

Power Efficiency
Mobile devices distinguish themselves from stationary platforms in mobility and 
independence of AC (alternating current) power supply. The battery life is hence an 
important factor for evaluating the quality of a mobile product. Before the battery 
technology sees a major breakthrough, computer manufacturers have to strive to deliver 
hardware and software with low energy consumption.

A number of general strategies can be employed to save power:

Decrease the processor’s clock frequency, with the potential •	
tradeoff of performance. For example, the security and 
management engine runs at a significantly lower speed than the 
platform’s main processor. This is possible without degrading 
the user experiences, because the engine is not designed to be 
involved in performance-critical paths.

Dim the display screen and shut down devices that are not being •	
used or place them in sleep states. For example, after being idle 
for a configurable amount of time, like 30 seconds, the security 
and management engine may completely power off or run in 
a low-power state with very low clock frequency. Events that 
may wake up the engine to its full-power state include device 
interrupts and messages received from the host operating system.

Simplify and adjust hardware and software logic. Redundant •	
routines should be removed. For example, applying blinding to 
public key operations is meaningless, because there is no secret 
to be secured from side-channel attacks; whenever feasible, favor 
performance over memory consumptions for runtime programs. 
These are part of the design guidelines for the security and 
management engine.



Chapter 1 ■ Cyber Security in the Mobile Age 

3

Internet Connectivity
Needless to say, the majority of applications running on a mobile device rely on network 
connections to function. Looking into the architecture, there are two models of splitting 
the workload between the local device and the cloud:

The main functionality of the cloud is storage, for contents such •	
as movies, music, and personal files. The local device carries 
out most of computational tasks. This model requires stronger 
computing capability of the mobile devices, which may imply 
higher prices.

Besides storage, the cloud also performs a certain amount of •	
computations for the device. The device is responsible for only 
limited computations, and its main tasks are input and output. 
This model is advantageous in lowering the cost of the device. 
However, it requires high network bandwidth and powerful 
servers that are able to support a large number of devices 
simultaneously.

Security
Security is not standalone, but closely relevant to the other two pillars. Security is 
becoming vitally important for computers, thanks to the increasing connectivity. While 
enjoying all the benefits and conveniences the Internet has to offer, connected devices 
are also exposed to widespread attackers, viruses, and malware on the open network. The 
new challenges of securing mobile platforms are originated from three characteristics of 
mobile computing:

•	 Always connected: Smartphones and tablets may never be turned 
off. Attacks can be mounted at any time and take any amount  
of time.

•	 Large data transmission: Because of its convenience, mobile 
devices are used more often for operations that involve secure 
data transmission with servers, for example, web site logon, 
financial transaction, online purchase, and so forth. This makes 
attacks that require collecting a large amount of data more likely 
to succeed.

•	 Privacy: Mobile devices hold sensitive data that would not 
normally appear on stationary computers. The data includes  
but is not limited to phonebook and location information.  
A security objective for mobile devices is to protect users’ 
personal information.

To mitigate these threats, security researchers have invented and deployed various 
countermeasures to safeguard computers and prevent leakage and abuse of assets. They 
include software-based solutions, like antivirus programs, firewalls, and so on, and 
hardware-based solutions, such as secure boot.



Chapter 1 ■ Cyber Security in the Mobile Age 

4

Now let’s take a look at the relationship between security and power. Unfortunately, 
improvements in security and reduction in energy consumption are largely contradictory. 
A security measure, although an essential element, costs power to accomplish its 
work that is not functionally beneficial. However, an insecure system is not practically 
usable. Well-designed cryptography and security implementations can provide desired 
protection strengths with minimum power consumption. The following are some 
strategies that can be considered:

Offload intensive mathematical operations to hardware engines •	
that operate at lower frequency. Most cryptography algorithms 
are built on complex mathematics. The dedicated hardware 
should feature specific logic for underlying operations, so the 
calculation can be completed faster with lower power, compared 
to general-purpose processors.

Utilize efficient algorithms and parameters; for example, when •	
designing elliptic curve cryptography, select the curves carefully, 
and use the ones that require the fewest operations without 
degrading the security strength.

Avoid overengineering. Choose algorithms and key sizes •	
that meet, but don’t overwhelmingly exceed, robustness 
requirements. For example, using a public key cryptosystem with 
security strength of 256 bits to protect a 128-bit symmetric key is a 
waste of computing power.

Store keys and other secrets in secure, nonvolatile memory if •	
possible and avoid repeated derivations for every power cycle.

BYOD
Bring Your Own Device, or BYOD, is a fast-growing emerging application thanks to the 
booming mobile computing development. An increasing number of companies now 
support BYOD programs and allow employees to use their personal mobile devices for 
work, such as sending and receiving corporate e-mails and accessing work data.

According to a survey1 conducted by Intel, the following are the three top-ranked 
benefits voted by corporate IT (information technology) managers across different 
continents:

Improve efficiency and worker productivity•	

Increase opportunities for worker mobility•	

Save costs by not having to purchase as many devices for •	
employees to use
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Alongside the gains are risks and challenges. Not surprisingly, security is the 
number-one rated barrier of deploying BYOD in most countries, especially for heavily 
regulated industries. With BYOD, it is increasingly common to see malware that targets 
the IT infrastructures of government agencies and industrial companies. The safety level 
of a corporate asset is equal to the strength of the weakest link that handles the asset. 
Because the employees’ devices are handling confidential business data, they must apply 
the required security enforcements per the company’s IT policies.

Here are a few security considerations when converting an employee’s device  
for BYOD:

•	 Secure boot: The system integrity must be guaranteed. Rootkits 
and malware that infects the boot flow place the entire operating 
environment at risk. It is recommended that rooted mobile 
devices should not be permitted for BYOD. Refer to Chapter 6 for 
technical insights into Intel’s Boot Guard technology.

•	 Hard-drive encryption: The whole drive, or at least the partition 
that stores business data, should be encrypted with a standard 
algorithm. The encryption key may be randomly generated at 
the first boot and sealed in a dedicated trusted device, such as a 
TPM2 (Trusted Platform Module). The key may also be calculated 
from the user’s credentials using a one-way function with a salt 
at each boot. Regardless of how the key is generated, it should be 
unique per device. Deriving the key solely from a password is not 
a good idea, because the employee may use the same password 
for multiple purposes.

•	 Strong authentication: The minimal length and complexity of 
the login password should be enforced. A password should be a 
combination of characters and cannot be a four-digit number. 
The device memory should not contain plaintext secrets before 
the device is unlocked by the employee. In addition, some 
business applications may warrant additional multifactor 
authentication at runtime.

•	 Isolated execution: Sensitive applications should execute in a 
secure mode that is logically separated from the nonsecure mode 
and other irrelevant applications. Intel’s proprietary features, 
like TXT3 (Trusted Execution Technology) and the upcoming 
SGX4 (Software Guard Extensions) technology, have built 
infrastructures for isolated execution.

•	 Employee privacy: Depending on the organization’s BYOD policy, 
the employee’s personal data, such as photos, videos, e-mails, 
documents, web browse cache, and so on, may need to be 
secured from access or abuse by business applications. This can 
be achieved by the same isolation technique mentioned earlier.
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•	 Remote wipe capability: Mobile device theft is on the rise, rapidly. 
Consumer Reports projects that about 3.1 million American 
consumers were victims of smartphone theft in 2013, more than 
double the 1.4 million in 2012. Once a BYOD device is reported 
stolen, even though the hard drive is encrypted, it is still essential, 
for defense in depth, to wipe the hard drive and prevent loss of 
business data and personal information. In April 2014, major 
industry players, including Apple, Google, Microsoft, Samsung, 
Nokia, AT&T, Sprint, and others, signed on to the “Smartphone 
Anti-Theft Voluntary Commitment”5 that pledges to implement 
a “kill switch” feature by 2015 that can wipe the data of a lost 
phone and disallow the phone from being reactivated without an 
authorized user’s consent.

While tightening up the security of employees’ mobile equipment and getting ready 
for BYOD, an inevitable side effect is the increased power consumption and worsening 
battery life. To improve employee satisfaction, the strategies discussed in the previous 
section should be taken into account when defining BYOD policies.

Incident Case Study
What’s happening in the area of cyber security? From credit card fraud to identity theft, 
from data breach to remote execution, cyber security is being covered increasingly by the 
media—not only technical journals but also popular newspapers and magazines—and is 
drawing a lot of public attention. The subject of cyber security is no longer an academic 
matter that concerns only researchers and computer manufacturers. In the era of mobile 
computing, cyber security is a problem that impacts everyone’s life more realistically  
than ever.

eBay Data Breach
In a press release from May 21, 2014, the giant Internet auction house eBay said it would 
ask its 145 million customers to change their passwords, due to a cyber-attack that 
compromised a database containing encrypted passwords and other nonfinancial data.6

How did it happen? According to the press release, the cyber-attack occurred 
between February and March of 2014. It comprised a small number of employee login 
credentials, allowing unauthorized access to eBay’s corporate network. The company 
later clarified that the passwords were not only “encrypted,” but also protected by eBay’s 
“sophisticated and proprietary hashing and salting technology,” and there was no 
evidence that the stolen data could be used in fraudulent actives.

Despite the fact that the stolen passwords were protected (encrypted and hashed), 
there are still a series of implications of the incident:

Users’ private information—including name, postal and e-mail •	
addresses, phone number, date of birth, and so forth—was stored 
in the clear and leaked.
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Depending on the encryption or hashing algorithms (which •	
are not disclosed by eBay) that are used to protect passwords, 
dedicated attackers may be able to reverse-engineer the 
algorithms and retrieve clear passwords.

Password reuse among multiple sites is a poor but extremely •	
popular practice. Even if a victim changes her password for eBay.
com, her cyber security is still in danger if she also uses the same 
password for other web sites, such as Amazon.com. Therefore, an 
eBay user must change passwords for all web sites for which the 
compromised password is used, to be safe.

Target Data Breach
On December 19, 2013, Target, the second largest retail store in the United States, 
reported a data breach that resulted in approximately 40 million credit and debit card 
numbers being stolen.7 Victims were consumers who shopped at Target stores (excluding 
Target.com) between November 27 and December 15, 2013 and paid with payment cards. 
In January 10, 2014, the company further announced that, in addition to the 40 million 
stolen cards, personal information, including names, phone numbers, and postal and 
e-mail addresses of approximately 70 million customers, was also compromised due to 
the incident. In other words, nearly one-third of the total population of the United States 
was impacted.

Following one of the most massive breaches in US history, in February 2014 Target 
reported that its net earnings for the holiday season had plunged 46 percent year-to-year. 
On March 5, the company’s chief information security officer resigned from the job. Two 
months later, Target’s chairman, president, and CEO Gregg Steinhafel also stepped down, 
after as many as 35 years of service at the company. The press release described that 
Steinhafel “held himself personally accountable” for the breach.

The company explained in January 2014 that the breach was due to login credentials 
being stolen from one of its vendors and then used to access Target’s internal network. 
The attacker might have exploited vulnerabilities in the management software deployed 
in the internal network to access the secret data. Target did not disclose the name of the 
vendor or the management software.

From the brief description, one may reasonably deduce what happened: the attacker 
logged into Target’s network using the stolen credentials. He then installed malware on 
the flawed management software to exploit the vulnerability. The malware scanned in 
the host memory for payment card numbers and then secretly uploaded to a remote 
server established by the attacker that harvested them. Furthermore, the fact that online 
purchases at Target.com were not affected suggested that the malware might have 
infected point-of-sale (POS) machines. A research conducted by Intel’s McAfee Labs 
following the incident had identified a number of malware that aims at POS endpoints 
and transaction verification systems.8
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The breach unfolded several problems with Target’s information security 
management:

Vendors’ access to Target’s network was not protected with a •	
sufficiently strong authentication method. A credential that 
can be stolen and used without the victim’s knowledge is 
likely a username and password. This old and simple way of 
authentication is very vulnerable and too weak to fortify  
valuable assets.

The vendor’s account was allowed to perform privileged •	
operations after accessing Target’s internal network, and the 
operations were not closely monitored and examined. The 
principle of least privilege should always be exercised as a best 
practice of information security, not only in computer product 
designs but also in enterprises’ IT management.

The third-party management software suffered critical security •	
flaws. Either the software vendor did not know about the 
vulnerability until the breach took place or Target did not apply 
patches that fixed the vulnerability in a timely manner.

OpenSSL Heartbleed
The Request for Comments 6520 “Transport Layer Security (TLS) and Datagram 
Transport Layer Security (DTLS) Heartbeat Extension,”9 published by the Internet 
Engineering Task Force (IETF) in February 2012, introduces and standardizes the 
heartbeat extension for the TLS/DTLS protocol. In a nutshell, it is a simple two-way 
protocol between a client and a server that have already established a secure TLS/DTLS 
session. One party sends a heartbeat request message with an arbitrary payload to its 
peer, who in turn sends back a heartbeat response message that echoes the payload 
within a certain amount of time. This extension is mainly used for checking the liveliness 
of the peer.

The core of the mobile computing is interconnectivity—connections between 
a client (laptop, smartphone, tablet, and so forth) and a server, between two servers, 
or between two clients. There exist various protocols that offer secure links between 
two entities, for example, the SIGMA (SIGn and message authentication) protocol 
introduced in Chapter 5 of this book. However, TLS/DTLS is used in the majority of 
secure connections over the Internet today. It provides not only one-way or mutual 
authentication but also encryption and integrity for messages. Most implementations of 
TLS/DTLS take advantage of the open-source OpenSSL cryptography library.

Heartbleed is a severe security bug in OpenSSL.10 The vulnerability was first reported 
by Neel Mehta of Google’s security team on April 1, 2014. The Finnish cyber security 
company, Codenomicon, found the same issue independently at almost the same time 
and named it Heartbleed. The bug was fixed promptly in an OpenSSL release on April 7.
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A heartbeat request message consists of four elements:

1.	 Message type (1 byte)

2.	 payload_length in bytes (2 bytes)

3.	 Payload (length is determined by payload_length)

4.	 Padding (at least 16 bytes)

The total size of a heartbeat request message is transmitted to the receiver in variable 
TLSPlaintext.length or DTLSPlaintext.length, whose value must not exceed 16384 according 
to the protocol. Notice that the 16-bit integer payload_length can denote up to 65535. 
The bug in the vulnerable OpenSSL releases lies in the receiver side of the heartbeat 
implementation. The code misses bounds checking and fails to make sure that the  
payload_length is such that the total size of the four fields is not greater than the actual 
message size indicated by TLSPlaintext.length or DTLSPlaintext.length. The flawed 
implementation outputs a response heartbeat message with memory buffer of size 
calculated based on payload_length, instead of TLSPlaintext.length or DTLSPlaintext.length.

To exploit the vulnerability, a malicious TLS/DTLS client assigns a small number to 
TLSPlaintext.length or DTLSPlaintext.length, manipulates payload_length to its allowed 
maximum, 65535, and sends the falsified heartbeat request to a vulnerable server. On 
the server side, nearly 64KB of the memory beyond the payload is transmitted back to 
the malicious client in the heartbeat response. Although the attacker cannot choose the 
memory region at which he can peek, the leaked memory likely contains information 
used for the current TLS/DTLS session, including the server’s secrets. And the attacker 
can iterate heartbeat requests repeatedly to gather more memory content from the server. 
Similar attacks can be launched from a rogue server to attack flawed clients.

Figure 1-1 shows the attack scenario. The attacker’s client first establishes a TLS/DTLS  
connection with the target server. The client then sends a manipulated heartbeat 
request to the server. The message is only 28 bytes in size, but it specifies, on purpose, 
the payload length as 65535—the maximum value that can be represented by a 16-bit 
integer—although the actual payload is only 9 bytes long: {ed 15 ed 7c 05 9f 7b 99 62}. 
In the OpenSSL implementation, the size of the padding field is fixed at the minimum 
allowed by the standard, 16 bytes.
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The server with a buggy OpenSSL library calculates the total size of the heartbeat 
response buffer by adding the sizes of the message type (1 byte), payload_length field  
(2 bytes), payload (payload_length bytes), and padding (16 bytes), which works out to be 
1+2+65535+16=65554 bytes in this case. Due to the missing bounds check, the server fails 
to realize that the size of its response has exceeded the maximum, 16384 bytes, defined by 
the specification. The size of the response also exceeds the size, 28 bytes, of the received 
heartbeat request. That is, as many as 65535-9=65526 bytes of the server’s memory  
(an illustrative example is underlined in the figure: {96 89 e3 07 ee f2 ee 2c 00 aa 
3c fd e8 ed 2a 79 ...}) following the payload is sent to the client in the heartbeat 
response. The leaked memory could contain the server’s private key.

The bug had existed in OpenSSL for over two years before it was discovered. The two 
most popular open-source web servers, Apache and nginx, both leverage OpenSSL and 
are hence vulnerable. Among all active Internet web sites in the world, two out of three 
use Apache or nginx, as reported by Netcraft’s April 2014 Web Server Survey.11 Affected 
sites include popular ones such as Yahoo! and Flickr. Other than web servers, OpenSSL 
is the dominant library embedded in many other types of networked computer products 

Target
TLS/DTLS server

Attacker’s 
TLS/DTLS client

Heartbeat request

(D)TLSPlaintext.length = 28 bytes
message_type = REQUEST
payload_length = 65535 bytes
payload = ed15ed7c059f7b9962 (9bytes)
padding =
c1533444c8d1d98b3e3c259f03830072 (16
bytes)

Heartbeat response

(D)TLSPlaintext.length = 65554 bytes
message_type = RESPONSE
payload_length = 65535 bytes
payload =
“ed15ed7c059f7b99629689e307eef2ee2c00
aa3cfde8ed2a79… (65535 bytes)
padding =
c1533444c8d1d98b3e3c259f03830072 (16
bytes)

TLS/DTSL session establishment

Figure 1-1.  Heartbleed attack
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as well, such as secure teleconferencing devices. Intel’s AMT12 (advanced management 
technology) software development kit is also affected. Famous cryptographer Bruce 
Schneier described the incident as “catastrophic.”

Unfortunately, fixing the bug on the servers is just the beginning of the firefighting. 
The certificates of impacted servers must be revoked by the issuing certification 
authorities, and new certificates must be issued for servers’ new key pairs. In the worst 
case, if the server’s private key had been stolen before the fix was applied and the 
attacker was also able to obtain TLS/DTLS session caches between the server and its 
(potentially a large number of) clients, then secrets transmitted in those sessions were 
also compromised. Typically, the secrets transported over TLS/DTLS are end users’ 
passwords, financial transactions, credit card numbers, e-mails, and other confidential 
information. What’s worse, there is no trace of whether Heartbleed exploitations had 
happened and when. Therefore, it is almost impossible to accurately assess the total loss 
caused by the bug due to its retroactive nature.

When it rains it pours. On June 5, 2014, OpenSSL released another security advisory 
for six recently reported and fixed flaws.13 These bugs were more difficult to exploit than 
Heartbleed, but still drew significant media attention in the wave of Heartbleed.

Key Takeaways
What can we learn from the repeated cyber security crisis? How does a company fight 
against cyber-attacks that make it the headlines? How to protect users’ safety on the 
Internet? Following is a postmortem on the recent incidents.

Strong Authentication
Organizations, such as law enforcement agencies, offline and online retailers, financial 
institutions, medical facilities, and so on, that possess and process high-value assets 
should consider implementing strong authentication for access control. A strong 
authentication mechanism would require multiple factors of credentials for logging in. 
The second credential factor is usually a physical object—for example, a token—that 
belongs to a legitimate user.

Today, multifactor authentication is no longer an expensive investment, thanks to 
the emergence of innovative technologies. For many applications, the potential monetary 
loss due to identity theft far surpasses the cost of deploying multifactor authentication. 
Chapter 10 discusses strong authentication in detail and Intel’s unique and cost-effective 
solution to the problem—IPT14 (Identity Protection Technology).

Network Management
Organizations should closely monitor all network activities and flag suspicious 
operations. Advanced firewall devices and antivirus programs should be employed to 
detect malware and respond correspondingly. Intel’s AMT, a core member of the vPro 
technology, provides a hardware-based out-of-band platform management solution that 
reduces cost and simplifies network administrators’ work.
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Boot Integrity
A platform that has been infected by virus, malware, or rootkits is running in a state that 
is different from its trusted and known-good state. Secure boot mechanisms, available 
on most new computers, examine the integrity of the platform’s firmware and software 
components during power-on. They are designed to detect changes in platform state and 
identify malicious programs on the system.

In addition, secure boot can collaborate with other security measures to store secrets 
inside hardware, so that the confidential data is available for use only if the platform is 
running in a trusted state.

Hardware-Based Protection
Sophisticated viruses are capable of scanning a system’s memory for signatures of 
interesting data, such as transactions and payment card numbers. For software-based 
protections, sensitive data has to appear in the system’s memory in the clear at some point 
to be consumed by software programs. The duration of the exposure may be very short but 
still enough for malware to do its work. Even though the data is properly protected during 
transmission and at rest, attackers only need to circumvent the weakest point.

The ultimate solution is to depend on hardware for security, in which case the 
secrets are never exposed in the system’s memory in the clear. Successful attacks against 
hardware launched from a remote location, if not impossible, would require extremely 
advanced skills to find and exploit critical hardware vulnerabilities.

State-of-the-art computers are equipped with necessary devices and hardware-based 
countermeasures to safeguard users’ confidentiality, at rest and at runtime. For example, 
the TPM serves as the hardware root of trust (see Chapter 7 for more information) for a 
platform; Intel’s SGX technology allows software programs to create and run in dedicated 
enclaves that are inaccessible by other components, including ring 0 drivers.

Open-Source Software Best Practice
Besides open-source operating systems such as Linux, open-source implementations 
of standardized protocols and functionalities have become a mainstream. Open-source 
software is gaining widespread popularity on endpoint devices and clouds because of 
many advantages it fosters: low cost, maturity, allowing faster development cycle and 
reduced maintenance effort, and so on. Developers simply port the functional modules 
they need and integrate with their products, instead of writing from scratch. They usually 
do not have to dig into the internal details of how the libraries structure and function. All 
they need is to understand the API (application programming interface) and invoke it.

This practice is good and bad. Although it saves engineering resources, on the other 
hand, it also poses risks because engineers are blind to the code that they are responsible 
for. One of the major disadvantages of free open-source software is that the volunteering 
authors provide the source code as-is and are not liable for consequences of bugs in the 
code, therefore the users must exercise caution during integration.

Open-source software, especially those that have been used for a long period of 
time by a large number of commercial products, normally enjoys high quality and 
performance with regard to functionality. However, the security side is a completely 
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different story. For software development, writing working code is a relatively easier 
job compared to security auditing that requires dedicated resources with specialized 
expertise for code review and penetration testing, which, due to funding shortage, is often 
inadequate for open-source software.

Many adopters do not exercise comprehensive security validation for open-source 
modules of the products like they do for their owned components. This is usually due 
to lacking an in-depth understanding of the open-source modules, which renders it 
difficult or impossible to come up with effective test cases that are likely to identify critical 
vulnerabilities. Another excuse for deprioritizing security validation on open source is 
the presumption, and de facto an illusion, that open-source software “must be” mature 
because it is open and can be read and reviewed by anyone, plus it has been deployed 
by countless other products for so many years. In reality, the openness does not imply 
secure code. The security validation gap of using open-source software should be filled by 
individual product owners.

Eventually, the amount of resources that should be spent on comprehending and 
validating open-source code is a judgment call about opportunity cost. If vulnerabilities 
are discovered in released products, will the expense of fixing the issue and deploying 
the patch be higher than the investment on validation? Notice that there is an intangible 
price of brand name damages that must be taken into consideration as well.

In the security and management engine’s firmware, only a small fraction originates 
from open-source domain, and it is only used in modules that do not assume security 
responsibilities. For example, the TLS implementation in the AMT firmware application 
is not ported from OpenSSL and hence not affected by OpenSSL’s vulnerabilities such as 
the Heartbleed. The validation of the engine does not discriminate between open source 
and closed source. Thorough testing is performed against open-source software used by 
the engine.

As a good general guideline, the technical white paper “Reducing Security Risks from 
Open-Source Software”15 proposes five steps that organizations should go through to take 
advantage of open source and lower the associative risks:

1.	 Identify and analyze all usages of open source.

2.	 Assess open source for vulnerabilities ad resolve issues.

3.	 Develop open-source usage policies.

4.	 Develop a patch management process.

5.	 Create a compliance gate.

Third-Party Software Best Practice
Before purchasing commercial software from for-profit vendors or outsourcing software 
development to external parties, buyers should ask the following:

What is the security development process exercised by the vendor?•	

What types of security auditing are preformed? Is it done by the •	
vendor itself or external consultants?

What is the vulnerability tracking and response process?•	
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Security validation is a pivotal stage in software development. A vendor with a good 
quality control system should apply proven techniques, such as static code analysis, 
penetration testing, and so forth, to their product development life cycle.

Even though the third-party software has been tested for security by its vendor,  
in many cases it is still worth it for the adopter to conduct independent code review and 
end-to-end validations, either in-house or by hiring specialized security auditing firms. 
This is necessary especially for modules that process sensitive data.

Note■■   Consider performing comprehensive security validation and auditing for open-source 
and third-party software.

Security Development Lifecycle
The Security Development Lifecycle, or SDL, is a process consisting of activities and 
milestones that attempt to find and fix security problems during the development 
of software, firmware, or hardware. The SDL is extensively exercised by technology 
companies, for example, Microsoft and Intel. Different companies decide their specific 
procedures and requirements for SDL, but they all aim at the same goal: to produce  
high-quality products with regard to security and to reduce the cost of handling aftermaths 
for vulnerabilities found after release.

Intel is committed to securing its products and customers’ privacy, secrets, and 
assets. To build a solid third pillar for computing, a sophisticated SDL procedure of five 
stages is implemented at Intel to make security and privacy an integral part of product 
definition, design, development, and validation:

•	 Assessment: Determine what SDL activities are applicable and will 
be performed.

•	 Architecture review: Set security objectives, list a threat analysis, 
and design corresponding mitigations.

•	 Design review: Map security objectives to low-level design 
artifacts. Make sure designs meet security requirements.

•	 Development review: Conduct a comprehensive code review to 
eliminate security vulnerabilities, such as buffer overflow.

•	 Deployment review: Perform security-focus validation and 
penetration testing and assure that the product is ready for 
release, from both the privacy and security perspectives.

The SDL process applies to hardware, firmware, and software, with small differences 
in different stages.

Intel takes users’ privacy seriously. The privacy aspect is called out in the SDL 
process and evaluated separately, in parallel with the technical aspect of security, 
throughout all the five phases. Figure 1-2 shows the SDL phases and components. 
A product may ship only after the deployment privacy and security review has been 
accomplished and approved.
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Assessment
The SDL assessment happens as part of the definition stage of a new product. The privacy 
assessment asks whether the product will collect users’ personal information, and if so, 
what kinds of information, what it will be used for, and what techniques are employed 
to protect it from leakage and misuse. Intel has invented advanced technologies to 
safeguard users’ fundamental right to privacy. Chapter 5 of this book is dedicated to 
privacy protection and Intel’s EPID (enhanced privacy identification) scheme. The 
discussion in this section will focus on the security aspect of SDL.

Based on the nature and properties of the product, the assessment review concludes 
the set of SDL activities that must be conducted during the remainder of the product 
development life cycle. Generally speaking, a security feature—such as a TPM device 
or a cryptography engine—is subject to a complete SDL review, including architecture, 
design, implementation, and deployment. On the other hand, only select SDL stages 
may be required for those functions that are not sensitive to security per se, for example, 
Intel’s Quiet System Technology (QST). Normally, architecture and design reviews may be 
skipped if the risk of waiving is deemed low; however, implementation and deployment 
reviews are almost always planned for all features.

Assessment

Architecture

Design

Implementation

Deployment

Privacy
review

Security
review

SDL
phase

Product
milestone

Definition

Release

Figure 1-2.  SDL phases and components
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Architecture
In this phase, the architecture owners of the product put together an intensive 
architecture description that presents the following points:

•	 Security architecture: The architecture includes components of 
the products, functionalities of each component, internal and 
external interfaces, dependencies, flow diagrams, and so on. 
A product’s architecture is driven by its assets and functional 
requirements.

•	 Assets: Assets are valuable data that must be protected by the 
product, for confidentiality, integrity, and/or anti-replay. For 
example, the endorsement private key is a critical asset for a TPM 
and may not be exposed outside of the TPM. Notice that an asset 
is not necessarily the product’s native value; it can also be users’ 
data, such as passwords and credit card numbers. The security 
and management engine processes various types of user secrets 
and it is responsible for handling them properly per defined 
objectives.

•	 Security objectives: Security objectives are the goals that the 
product intends to meet for protection. For example, guarding 
the endorsement private key for confidentiality and integrity is 
a security objective for a TPM device; whereas thwarting denial 
of service (DoS) when an attacker is physically present is a not a 
security objective for the security and management engine.

•	 Threat analysis: Based on the in-scope security objectives, a list 
of possible attacker threats to compromise the objectives and 
assets are documented and analyzed. For example, in order to 
steal TPM’s endorsement private key, an attacker may utilize 
side-channel attacks by accurately measuring power and time 
consumptions during a large number of the TPM’s endorsement 
signing operations.

•	 Mitigations against threats: The mitigation plans detail how 
the architecture is designed to deter threats, protect assets, and 
achieve security objectives. In most cases, effective mitigations 
are realized through well-known and proven cryptography and 
security approaches. Note that security through obscurity is not a 
meaningful mitigation approach.

Figure 1-3 illustrates the components of the architecture review and relationships 
among them.
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The architecture with aforementioned content is peer-reviewed and challenged 
by a group of architects and engineers with extensive experience and strong expertise 
in security. It is possible that a proposed new product be killed because one or more 
security objectives that are considered mandatory cannot be satisfied by a feasible and 
reasonable architecture. If and once the security architecture is approved, the SDL review 
process will move on to the design stage.

Design
During the design phase, high-level requirements are converted to prototypes. The 
design work for a software or firmware product contains a wide range of aspects. From 
the security perspective, in general, the most interesting ones are internal flows and 
external interfaces:

•	 Internal flows: A few security best practices should be followed in 
the flow design. For example: involve as few resources as possible; 
minimize dependency on shared objects and other modules; apply 
caution when consuming shared objects to prevent racing and 
deadlock conditions; avoid using recurrence on embedded systems.

•	 External interfaces: API must be defined with security in mind. 
For example: simplify parameters; do not trust the caller; 
always assume the minimum set of privileges that are needed to 
complete the tasks; verify the validity of input parameters before 
use; handle DoS attacks properly, if required.

Mitigations Threats

Security
objectives

Assets

Architecture

drive

defines

thwart

compromise

protect

Figure 1-3.  Components of the architecture review and their relationships
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Besides generic design principles, every product has its unique set of security 
objectives and requirements derived from the architecture review, which must be 
reflected in the design. The mitigations against threats and the protection mechanisms 
for assets are materialized in the design phase as well.

The design of cryptography should follow latest applicable government and industry 
standards. For example, encrypting data with AES16 (advanced encryption standard); 
applying blinding to private key operations, if mitigation against timing attacks is an 
objective. Proprietary algorithms should be introduced only if absolutely necessary. 
Notice that use of nonstandard cryptography may pose difficulty in achieving security 
certifications such as the FIPS (federal information processing standard) 140-2 standard.17

Implementation
Engineers who implement the product in hardware or software languages should be 
knowledgeable about security coding practices. Members of the development team that is 
responsible for the security and management engine are required to complete advanced 
security coding classes and a training session on the security properties of the embedded 
engine, prior to working on the implementation.

Here are a few sample guidelines for software and firmware development:

Use secure memory and string functions (for example, •	
memcpy_s() instead of memcpy()) where applicable. Note that this 
recommendation does not apply to certain performance critical 
flows, such as paging.

Comparison of two buffers should be independent of time to •	
mitigate timing attacks. That is, memcmp() should process every 
byte instead of returning nonzero upon the first unmatched byte 
among the two buffers.

Beware of buffer overflows.•	

Make sure a pointer is valid before dereferencing it.•	

Beware of dangling pointers.•	

Beware that •	 sizeof(struct) may result in a greater value than 
the total sizes of the structure’s individual components, due to 
alignments.

Set memory that contains secrets to zero immediately after use.•	

Beware of integer overflows and underflows, especially in •	
multiplication, subtraction, and addition operations.

Remember bounds checks where applicable.•	

Do not trust the caller’s input if it is not in the trust boundary. •	
Perform input parameter validation.
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When comparing the contents of two buffers, first compare their •	
sizes. Call memcmp() only if their sizes are equal.

Protect resources that are shared by multiple processes with •	
mechanisms such as semaphore and mutex.

In addition, the development team that owns the security and management engine 
also observes a list of coding BKMs (best known methods) that are specific for the 
embedded engine. These BKMs are an executive summary of representative firmware 
bugs previously seen on the engine. It is crucial to learn from mistakes.

In practice, production code that is developed from scratch by an engineer with a 
secure coding mindset may be less of a problem. The more worrisome code in a product 
is usually those taken from nonproduction code. For example, proof-of-concept (POC) 
code created for the purpose of functional demonstration is often written with plenty of 
shortcuts and workarounds, but without security practice or performance considerations 
in mind. It is a bad practice to reuse the POC code in the final product, if and when the 
POC hatches to production, because in most cases, it is more difficult and resource 
consuming to repair poor code than to rewrite. Another source of possibly low-quality 
code similar to POC code is test code.

Following the completion of coding, the implementation review kicks off. The review 
is a three-fold effort: static analysis, dynamic analysis, and manual inspection. They may 
occur in tandem or in parallel.

The static analysis analyzes a software or firmware program by scanning the source 
code for problems without actually executing the program. A number of commercial 
static analysis tools are available for use for large-scale projects. If the checkers are 
properly configured for a project, then static analysis is often able to catch common 
coding errors, such as buffer overflows and memory leaks, and help improve software 
quality dramatically. However, despite its convenience, static analysis is not perfect. 
Particularly for embedded systems, because the tools in most cases do not fully 
comprehend the specific environments and hardware interfaces, a relatively large 
number of false positives may be reported. Notice that engineering resources must be 
allocated to review every reported issue, including those false positives. For the same 
reason, static analysis tools may fail to identify certain types of coding bugs.

In contrast to static analysis, dynamic analysis executes a software or firmware 
program on the real or a virtual environment. The analysis tests the system with a 
sufficiently large number of input vectors and attempts to exercise all logical paths of 
the product. The behavior of the system under test is observed and examined. Security 
coding bugs, such as a null pointer dereference, can be revealed when the system crashes 
or malfunctions. Such issues can be extremely hard to find without actually running  
the program.

The manual inspection is a source code review performed by fellow engineers 
that are familiar with the module, but did not write the code. The purpose is to make 
sure that the implementation correctly realizes the product’s specific security design 
and architecture requirements. For example, an invocation of encryption for a secret 
is according to the specified algorithm, mode, and key size. Apparently, these kinds of 
issues cannot be found by the automatic tools. In addition, the review also checks that 
the generic coding guidelines are followed and tries to capture flaws in the code that were 
missed by the static and dynamic analysis.
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As depicted in Figure 1-4, the implementation review is an iterative process. After 
functional or security bugs are fixed or other changes (like adding a small add-on 
feature) are made, the updated implementation must go through the three steps again. 
To conserve engineering resources, the manual code review may cover only the changed 
portions of the code. The two automatic analysis should be executed regularly, such as on 
a weekly basis, until the final product is released.

Code complete

Static analysis Dynamic analysisManual review

Deployment review

Bug fixesBug count is zero? No

Figure 1-4.  Iterations of the implementation review. In this figure, static analysis,  
dynamic analysis, and manual review are performed in parallel

Deployment
The deployment review is the last checkpoint before shipment. Sophisticated validations 
are performed against the product in this stage. The materials to help validation engineers 
create a test plan include output of the previous stages, such as security objectives of the 
architecture phase and the interface definition of the design phase. Comprehensive test 
cases aiming at validating the product’s security behaviors are exercised.

Interface Testing
The first test object is the product’s interface. Figure 1-5 is a graphical illustration of the 
interface test case design. Note that the output validation takes security objectives as 
input. A bug will be recorded when the behavior of the system under test violates one or 
more requirements.
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There are two categories of interface tests:

•	 Positive test: A positive test first invokes the product’s interface 
with valid input vectors as specified in the design documents, and 
then verifies that the output from the system under test is correct 
per the security objectives and requirements. In most cases, there 
exist an infinite number of valid input value combinations. The 
test console may randomly generate valid inputs, but common 
cases (most frequently used values) and corner cases (extreme 
values) should be covered.

•	 Negative test: A negative test manipulates the input and invokes 
the product’s interface with invalid input. The product is 
expected to handle the unexpected input properly and return 
an appropriate error code. It requires in-depth knowledge of the 
product in order to create good negative test cases that are able to 
expose security vulnerabilities.

To emphasize how pivotal the negative tests are, take the Heartbleed for example. 
Using the Request for Comments 6520 as the requirement document, a simple negative 
test that acts like a malicious client that sends a heartbeat request with an excessive 
payload_length to the server under test would have caught the issue, because instead 
of notifying the client of an error (expected behavior), the flawed server would happily 
respond with its internal memory content of the illegitimate size requested by the client.

In addition to the scenario of “should bailout but does not,” another common failure of 
negative tests is system crash, which can be a result of a variety of possibilities, for example, 
improper handling of invalid input parameters, buffer overflow, and memory leaks.

Fuzz testing, a kind of the negative testing, has become very popular in the recent 
years. The fuzz testing is an automated or semiautomated technique that provides a large 
set of invalid inputs to the product under test. The inputs are randomly generated based 
on predefined data models that are fine-tuned for the specific interface that will be tested. 
By looking for abnormal responses, such as crashing, security vulnerabilities such as 
buffer overflow can be uncovered.

Input generator Output validator

Interface definition
Security objectives
and requirements

System under test

Console

Test result

Figure 1-5.  Interface test design
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Penetration Testing
The second type of tests intends to verify that the implementation is in accordance 
with the threat mitigation plan. A test of this type emulates an attack that is in the threat 
analysis of the architecture phase, observes the response of the product under test, and 
makes sure that it matches the behavior required by the mitigation plan. This type of 
testing is known as penetration testing, or pentest for short.

For example, the security and management engine reserves an exclusive region 
of the system memory for the purpose of paging. Any entity other than the engine 
changing the content of the region is deemed a severe security violation. Such an attack 
is considered and documented in the threat analysis, and the corresponding mitigation 
required is to trigger an instant power down of the platform as soon as the embedded 
engine detects the alteration.

A basic test for this case would flip a random bit in the reserved region of 
the host memory using a special tester and see whether the system indeed shuts 
down immediately as expected. Passing this basic test proves the correctness of the 
implementation at a certain confidence level. However, a more advanced test would 
understand the integrity check mechanism used for paging and replace the memory 
content with a calculated pattern that may have a higher chance of cheating the 
embedded system, and hence bypassing the protection. Obviously, design of such smart 
tests requires the knowledge of internal technical information of the product. This is 
called white box testing.

Before rolling out the product, a survivability plan should be drafted and archived. 
The survivability plan specifies roles, responsibilities, and applicable action items upon 
security vulnerabilities are found in the field.

CVSS
Even after going through stringent review and testing, vulnerabilities reported—either 
by internal teams or external sources—after the product is released are not uncommon. 
It is important to fairly evaluate the severity of escaped defects in order to take the right 
actions accordingly. For rating vulnerability, an industry standard used by the National 
Institute of Standards and Technology’s National Vulnerability Database (NVD) is the 
CVSS18 (Common Vulnerability Scoring System).

The CVSS defines three groups of metrics to describe vulnerability. They are base, 
temporal, and environmental, respectively:

•	 Base group: Represents fundamental characteristics of 
vulnerability. Such characteristics do not change over time or 
environment.

•	 Temporal group: Includes characteristics that change over time, 
but not environments.

•	 Environmental group: Covers characteristics that are relevant and 
unique to a particular environment.
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Specifically for assessing severity of vulnerabilities of the security and management 
engine’s firmware, the CVSS is slightly adjusted to better suit the nature of the engine:

The access vector options used are •	 network, local, or physical. 
Firmware bugs that can be exploited remotely via the network are 
more critical. “Local” means that an attacker must access the host 
operating system with ring 0 privilege in order to mount an attack. 
“Physical” refers to the capability of reading and/or writing the flash 
chip that holds the firmware’s binary image and nonvolatile data.

Authentication refers to authenticating to the embedded engine, •	
not the host operating system. Some of the firmware applications, 
such as AMT, may require user authentication. However, 
authentication is not required for invoking most of the engine’s 
features from the host operating system.

Because the engine is a privileged device in the system, the •	
confidentiality, integrity, and availability requirements are all 
rated at high in most cases.

Each group consists of several factors to be rated by the analysis. Figure 1-6 lists the 
factors under each group. The CVSS formula calculates a base score, a temporal score, 
and an environment score, respectively, from applicable factors. The calculation yields 
a score ranging from 0 to 10 inclusive, where a higher number indicates worse severity. 
According to NVD’s standard, vulnerabilities are labeled “low” severity if they have a base 
score of 0.0 to 3.9, “medium” for a base score of 4.0 to 6.9, and “high” for 7.0 to 10.0.
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Access vector
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Exploitability

Remediation level

Authentication Report confidence

Confidentiality impact
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Figure 1-6.  CVSS matric groups
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Once a firmware bug is reported, the remediation plan depends on the CVSS score of 
the bug. The following are the general guidelines:

If the defect is of low severity, then do not fix or fix in the next •	
scheduled release.

If the defect is of medium severity, then fix it in the next •	
scheduled release. Prevent firmware downgrade from a firmware 
version with the fix to any vulnerable version.

If the defect is of high or critical severity, then fix it in an ad-hoc •	
hot-fix release. Prevent firmware downgrade from a firmware 
version with the fix to any vulnerable version. If exploitation of the 
bug may result in leakage of the chipset key or EPID private key, 
then launch the rekey operation with a remote server after the 
firmware is updated.

Notice that bug fixes also pose potential risks—they may introduce new functional 
bugs or security vulnerability, or break working flows. Therefore, complete functional 
testing and select security reviews should be performed against the fixes for quality control.

Limitations
The CVSS is especially useful for rating software vulnerabilities. However, it is not perfect 
when used on hardware, in particular because it does not comprehend survivability.

For example, the level of difficulty of patching a hardware bug is not taken into 
account. The remediation may include the following:

Documentation and specification change•	

Software workaround by remote update•	

Firmware workaround by remote update•	

Recall (in the worst case)•	

Such factors should be weighed when evaluating hardware issues.
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Chapter 2

Intel’s Embedded Solutions: 
from Management to 
Security

Security is, I would say, our top priority because for all the exciting things 
you will be able to do with computers—organizing your lives, staying 
in touch with people, being creative—if we don’t solve these security 
problems, then people will hold back.

—Bill Gates

Teflon, the famous chemical, was discovered by Roy Plunkett of E. I. du Pont de Nemours 
and Company (commonly shortened to DuPont), in 1938 and trademarked in 1945. 
Teflon’s major application today is in manufacturing nonstick cookware. However, it was 
not intended for helping grandmas make delicious pancakes when it was first discovered. 
For decades, it has been used in artillery shell fuses and the production of nuclear 
materials.

Temper foam was invented in 1966 by Chiharu Kubokawa and Charles A. Yost of 
NASA’s Ames Research Center to protect astronauts’ bodies when they are hurtling 
toward the earth. Today, temper foam is used to make mattresses that people sleep on 
every night.

The list of old inventions finding new applications in new domains goes on. The new 
applications benefit a much wider population and improve more people’s quality of life.

When Intel’s Active Management Technology (AMT) first appeared in 2005, it was 
marketed as an advanced system management feature for Intel 82573E series gigabit 
Ethernet controllers. In 2007, a new embedded coprocessor, namely the management 
engine, was introduced. Originally, the management engine was designed primarily 
for implementing the AMT rather than running security applications. At that time, the 
main problem that was supposed to be resolved by the embedded engine and AMT was 
the high expense and difficulty of system management by network administrators. The 
management engine was a component of Intel chipsets with vPro technology. The Intel 
AMT implementation was moved from gigabit Ethernet controllers to the management 
engine and became a feature of vPro.
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Intel AMT is not the only application on the management engine. The first security 
application on the engine was the integrated TPM (Trusted Platform Module, see 
Chapter 7 for details). The number of security applications has been increasing in recent 
years with every release of the engine. In the latest releases, most applications running 
on the engine are related to security. The applications either realize “pure” security 
functionalities, or provide security infrastructures for other consumer features. For 
example, TPM and Boot Guard (refer to Chapter 6 of this book for details about Intel’s 
Boot Guard technology) are security modules, whereas the dynamic application loader 
(DAL, see Chapter 9) is not implemented for security per se, but requires security as a 
building block.

In addition to more powerful applications and functionalities, the embedded 
engine has also been deployed on more platforms—not only chipsets for traditional 
personal computers, laptops, workstations, and servers, but also SoC (System-on-Chip) 
products, for example, in-vehicle infotainment, tablets, and smartphones, where security 
is becoming a critical infrastructure. The AMT is still widely provisioned on desktop 
computers and laptops, but has become an optional add-on for other mobile devices. On 
Intel’s SoC platforms, the engine carries only security applications.

Just like Teflon and temper foam, today, the engine is realizing its greater value 
in the new usage model—providing robust security solutions and trusted execution 
environments to all forms of computer systems. The security and management engine is 
contributing to the promotion of people’s computing experience every day and making a 
more substantial impact than ever before.

This book is not the first literature on the engine. Back in 2009, Intel Press published 
Active Platform Management Demystified: Unleashing the Power of Intel vPro Technology, 
authored by Intel’s Arvind Kumar, Purushottam Goel, and Ylian Saint-Hilaire.1 It will be 
referred to as the “2009 AMT book” in this chapter.

The 2009 AMT book is a systematic introduction to the management engine and 
AMT. It raises the platform management problems to be resolved, evaluates existing 
solutions, and then proposes the innovative AMT solution. It covers technical details 
of the management engine and the AMT, as well as instructions for setting up and 
configuring the AMT.

Although the engine’s design has been improved in many ways since the 2009 AMT 
book was published, the fundamental architecture of the engine remains unchanged.  
A large portion of the technical descriptions in the 2009 AMT book still applies to today’s 
security and management engine. Even after five years, it is still the best reference for 
infrastructures of the management engine and the AMT.

The remainder of the chapter is organized as follows. In the next section, we briefly 
revisit the 2009 AMT book. We will begin with a review of the hardware and firmware 
architectures of the management engine, and then look at the platform management 
problems and compare different solutions by analyzing their advantages and 
disadvantages. Next, a high-level introduction to the architecture of the AMT is presented. 
Finally, select security applications that feature on the security and management engine 
today are presented, with reasons for housing the applications in the embedded engine.
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Management Engine vs. Intel AMT 
What are the differences between the two terminologies, management engine and AMT? 
Do they mean the same thing?

The management engine refers to a computing environment consisting of dedicated 
hardware and firmware components. It has its own real-time operating system and 
hardware resources such as processor and memory. Just like a computer with Core CPU 
(central processing unit), applications can be installed and executed on the management 
engine. The applications are not generic software. They are implemented in firmware and 
designed specifically for running on the engine.

On the other hand, Intel AMT is a firmware application running on the management 
engine. It invokes the infrastructure and kernel application programming interfaces 
(APIs) provided by the management engine to build system management functionalities.

When the management engine was first introduced, Intel AMT was the primary 
application and it had attracted tremendous media attention. Hence some literatures use 
“management engine” and “active management technology” interchangeably. Today, 
although Intel AMT is still the most senior member of the application family, many new 
applications have joined the family and been deployed on the engine.

Intel AMT vs. Intel vPro Technology
Intel’s vPro technology is a marketing name that covers a wide range of security and 
management features that are built in Intel processors and chipsets. The vPro technology 
resolves prevailing manageability, security, and energy efficiency problems with 
hardware-based protection, which is considered, when compared with software-based 
solutions, less vulnerable to threats such as viruses, worms, and hackers.

Many consider the AMT to be the essence of vPro. However, the vPro technology is 
comprised of not only AMT, but also other useful ingredients, such as:

Intel Trusted Execution Technology•	 2 (TXT)

Intel Virtualization Technology•	 3

Intel Identity Protection Technology•	 4 (IPT)

Intel Anti-Theft Technology•	 5 (will be end of life in January 2015)

Besides AMT, some of these vPro ingredients also rely on the embedded engine to 
function. For example, IPT (refer to Chapter 10) and Anti-Theft.

Management Engine Overview
The management engine is made up of hardware and firmware. However, outside of its 
boundary, appropriate software drivers and applications must be installed on the host 
in order for the host to communicate with the embedded system through the dedicated 
host-embedded communication interface (HECI).
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Hardware
The hardware is comprised of a processor, code and data caches, DMA (direct memory 
access) engines, cryptography engines, read-only memory (ROM), internal memory 
(static random-access memory, or SRAM), a timer, and other supporting devices. The 
devices are connected through an internal bus that is not exposed to the external world. 
This ensures independence, isolation, and security of the engine. The management 
engine’s hardware devices are only accessible by the processor, the DMA engines, and the 
cryptography engine.

The hardware architecture is illustrated in Figure 2-1.
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Figure 2-1.  Hardware architecture of the management engine

Early generations of the management engine used ARC as the central processing 
unit. Other processors have replaced ARC in newer generations. The processor model 
and frequency in a specific engine depends on the form factor on which the engine is 
deployed. The model of the processor does not impact the engine’s high-level firmware 
architecture.

There is a small code and data cache to help the processor reduce the number of 
accesses to the internal SRAM. The internal SRAM is the memory that stores firmware 
code and data at runtime. The capacity of SRAM varies depending on the product, but 
generally ranges between 256KB and 1MB.

In addition to the internal SRAM, the management engine also uses a certain 
amount of DRAM (dynamic random-access memory) from the main system memory. 
Code and data pages that are not recently accessed may be evicted from the SRAM and 
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swapped out to the reserved memory. When a page is needed again, it will be swapped 
in to the SRAM. During the boot process, the DRAM region that will be used by the 
management engine is reserved by the BIOS (basic input/output system) for the engine’s 
dedicated access. The reserved region, by design, is not visible to the main host operating 
system. That being said, the management engine’s security architecture assumes that the 
BIOS may be compromised and the local host may be able to read and write the reserved 
memory region. The size of the reserved memory varies from product to product, but 
usually in the range between 4MB and 32MB. This is only a small fraction of the DRAM 
installed on today’s computing devices, and hence the impact to the main operating 
system performance is negligible.

For many embedded applications, it is necessary to transmit bulk data between 
the embedded memory and the host memory. However, the engine’s processor cannot 
address the host memory. Therefore, dedicated DMA engines are introduced for 
moving data between the engine’s memory and the main system’s memory. Notice that 
the reserved memory is considered the engine’s memory and not the host memory. 
When addressing the host memory, the DMA engines can only understand physical 
addresses and not virtual addresses that are specific to operating systems processes. 
The DMA engines can only be programmed by the embedded firmware running on the 
management engine. The DMA engines can also be used to move a large amount of data 
between two buffers of the engine’s internal memory. Experiments show that, when data 
is greater than 1KB in size, it is more efficient to invoke a DMA engine for data copying 
than calling memcpy() of the processor. The firmware cannot program a DMA engine to 
move data between two host memory locations.

The cryptography engine device offloads and accelerates heavily-used cryptography 
algorithms so those resource-consuming operations can be performed faster and 
they do not occupy the processor’s clock cycles. The algorithms implemented by the 
cryptography engine include AES (Advanced Encryption Standard), SHA (Secure Hashing 
Algorithm), DRNG (Deterministic Random Number Generator), big number arithmetic, 
and so on. See Chapter 3 of this book for a complete list of algorithms and their API 
descriptions. The cryptography engine is only accessible by the engine’s firmware. They 
are not directly available to the host, although some embedded applications implement 
and expose external interfaces for the host applications to take advantage of the 
cryptography engine. Notice that the cryptography driver in the firmware kernel not only 
abstracts interfaces for the cryptography engine hardware, but also implements other 
cryptography algorithms that are not available in the hardware.

Overlapped I/O
As shown in Figure 2-1, there are three master devices—processor, DMA, and 
cryptography engine—on the management engine. They all can access the embedded 
memory and process data. These devices are independent of each other and therefore 
can function at the same time without mutual interference, as long as the assets (for 
example, memory and global variables) that are being accessed by more than one 
device are properly protected against racing conditions. The protection is usually 
realized by employing semaphores or mutexes. By commanding multiple devices to 
work simultaneously, firmware applications can be optimized to minimize the system 
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resource idle time and boost performance. The mechanism implemented by the security 
and management engine is de facto equivalent to overlapped I/O (input/output) or 
asynchronous I/O for traditional operating systems.

The idea is straightforward. After process A initializes a long cryptography operation, 
such as the exponentiation and modulo of RSA (a popular asymmetric-key cryptosystem 
invented by Ron Rivest, Adi Shamir, and Leonard Adleman) decryption, instead of 
sitting idle and waiting for its completion, the processor may switch to process B and 
perform operations that do not require the cryptography engine. In the meantime, the 
processor may either periodically inquire about the status register for completion of the 
RSA operation or watch for an interrupt signaled by the cryptography engine. Similarly, 
the DMA engines can also participate in the synchronization to further expedite the 
operations.

An interesting example of the overlapped I/O design is the flow for decrypting and 
parsing an H.264 video frame during movie playback. For this application, the player 
running on the host receives encrypted video frames from a remote content server, but 
the player as user-mode software is not allowed to access the content key or the clear 
content. The wrapped content key is sent to the security and management engine, which 
in turn uses its device private key to unwrap and retrieve the plaintext content key. The 
engine then decrypts the encrypted frames, performs slice header parsing, and sends 
back the resulting headers to the host. Finally, the player submits the encrypted frames 
and parsed headers to the GPU (graphics processing unit) through the graphics driver for 
playback.

Because of the limited memory capacity of the embedded memory, a large frame has 
to be split into chunks before it is processed. The optimal size of a chunk depends on how 
much embedded memory is available.

The firmware has three tasks in this usage:

1.	 Copy a chunk of an encrypted video frame from the host 
memory to the internal memory. This step is carried out by a 
DMA engine.

2.	 Decrypt the encrypted frame. For most cases, it is an AES 
decryption, offloaded to the cryptography engine.

3.	 Parse the clear frame. This step is conducted by the 
embedded processor.

The firmware runs the three steps repeatedly on all chunks of the frame, until the 
entire frame is processed.

A sequential approach would be to repeatedly exercise steps 1 to 3 for all chunks of a 
frame, respectively. The advantage is obviously simple firmware control logic. Figure 2-2 
depicts an example of a frame that consists of four chunks. For simplicity, assume that the 
three tasks for a chunk— DMA copy, decryption, and parsing— take the same amount 
of time (denoted as one time slot in the figure). The number of time slots needed for 
processing a frame of n chunks is 3 × n. Processing all four chunks of the frame takes as 
many as 12 time slots.
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Obviously, the sequential approach lacks efficiency. In this design, when step 1 is 
running, the DMA engine is busy; however, the cryptography engine and the processor 
are both idle. Similarly, in step 2 and step 3, only one device is working at any moment 
and the other two are not being used.

To implement an overlapped I/O optimization, the firmware must simultaneously 
manage three chunks of the frame (namely: previous chunk, current chunk, and next 
chunk) of the same size in three distinct memory buffers.

The firmware first initializes DMA for the next chunk of frame, then triggers the 
AES decryption for the current chunk (the current chunk has been DMA’ed into the 
embedded memory in the previous iteration), and finally parses the previous (decrypted) 
chunk of the frame (the previous chunk has been DMA’ed into the embedded memory 
and decrypted in the previous two iterations). When the parsing is finished, the 
processor waits for the completion of the AES and the DMA. Figure 2-3 explains the flow 
graphically.
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It is easy to see from Figure 2-3 that processing four chunks takes only six time slots 
thanks to the overlapped I/O optimization. In general, the number of time slots taken for 
processing a frame of n chunks is n + 2.

Note that for the security and management engine, the processor, the DMA engines, 
and the cryptography engine all operate at the same speed. The exact frequency 
varies among different products. This is the major difference between the embedded 
overlapped I/O and its counterparts for the host operating systems, where the I/O 
devices, that is, hard drive, keyboard, and so forth, are usually operating at significantly 
slower speed than the main processor.

Admittedly, managing three masters may result in fairly complex firmware logic. 
The best practice for software engineering tells us that complicated code is more prone 
to bugs and errors. Therefore, such optimization strategies should be exercised with extra 
care. And the implementation must go through thorough testing and validation to cover 
all corner cases. For certain use cases, such as video frame parsing, as the throughput 
requirement is extremely high to guarantee smooth playback, utilizing the overlapped 
I/O trick is necessary.

Note■■   If multiple master devices are available on the embedded system, consider  
overlapped I/O to improve performance.

Firmware
The security and management engine’s embedded firmware implements the runtime 
operating system, kernel, and applications.
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Figure 2-3.  Frame parsing flow using overlapped I/O
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There are numerous products and form factors of the engine. A specific version of 
firmware is intended for running on the corresponding engine hardware only, and a 
specific engine is intended for running the corresponding version of the firmware; for 
example:

Intel series 5 chipset (codename IbexPeak) can load only security •	
and management engine firmware version 6.x. It cannot load 
version 5.x or other firmware. It cannot load firmware from a third 
party or a hacker.

Security and management engine firmware version 6.x can •	
only execute on the Intel series 5 chipset. It cannot be executed 
on series 6 or other chipset generations. It cannot be executed 
on SoC products, nor can it run on a third-party’s or a hacker’s 
hardware platforms.

Security and management engine firmware designed for the Bay •	
Trail tablets cannot execute on Intel chipsets or other generations 
of Intel tablets.

The hardware and firmware mapping is enforced by different image signing keys. 
The hash values of the signing public keys are hardcoded in the ROM on different 
products.

Figure 2-4 shows the high-level architecture of the management engine firmware.
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Figure 2-4.  Firmware architecture of the management engine
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There are two storage media—ROM and flash nonvolatile memory—that store the 
firmware’s binary data and executable code. The ROM inside the management engine 
stores the boot loader. The code in ROM cannot be modified once manufactured. Thanks 
to this property, ROM is used as the root of trust of the engine. The boot loader code is 
usually smaller than 256KB.

The rest of the firmware is stored in flash. The flash is divided into multiple regions, 
for security and management engine firmware, BIOS, network controller, and so forth, 
respectively. Depending on which embedded applications are chosen to be included, 
the management engine firmware can consume from a few hundred kilobytes to 1.5 
megabytes of flash space. The region for firmware is further divided into regions for 
executable code, configuration data, embedded applications’ variable storage, and so 
on. The OEMs (original equipment manufacturers) are mandated to lock down the 
flash so it cannot be altered after the manufacturing process is completed. However, 
the management engine does not depend on the flash lockdown for security. The threat 
analysis assumes the flash can be replaced or reprogrammed by an attacker as he wishes.

As shown in Figure 2-4, firmware modules are logically divided into two categories: 
privileged and nonprivileged. The privileged firmware boots the engine, loads other 
modules, abstracts hardware devices (such as DMA engines and cryptography engines), 
schedules threads, manages synchronization objects (such as semaphores, timers, 
and mutex), and coordinates communications between embedded applications. The 
privileged firmware is the kernel and it implements only infrastructure for internal 
applications. It usually does not contain applications or expose external interfaces that 
are visible to the host.

The nonprivileged firmware is made up of one or more applications that realize 
their designed functionalities. The management engine firmware must contain at least 
one nonprivileged application. The Intel AMT, a nonprivileged module, is one of such 
applications. One notable difference that distinguishes the AMT from other applications 
is that the AMT also includes network stacks. Although most applications leverage the 
kernel for external communication, the AMT uses firmware wired and wireless network 
stacks for communicating with the remote managing console. As will be described 
later in this chapter, the firmware shares the same network devices with the host. The 
nonprivileged modules are further separated from each other by task isolation. The 
boundary between the privileged and nonprivileged domains is safeguarded by hardware 
and the privileged, to prevent privilege escalation attacks from the nonprivileged code.

Chapter 4 of this book provides a detailed introduction about the firmware 
architecture.

Software
Two classes of software programs run alongside the engine: drivers and user-mode 
applications.

The HECI is intended for transmitting a small amount of data between the host 
and the management engine firmware. The HECI is implemented as a circular buffer 
with limited bandwidth; therefore, the size of the data in general should be smaller than 
10KB. The data transmitted through HECI can be commands for the firmware and the 
firmware’s responses, but not massive data. The DMA engines should be used to move 
large amounts of data between host and firmware.
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During the boot process, the BIOS can exchange messages with the firmware through 
HECI. On the host operating system, only ring 0 drivers may access the HECI device to 
send and receive messages. Together with the management engine firmware, Intel also 
releases HECI driver software for the HECI communication for various operating systems. 
The HECI driver is also called the management engine interface (MEI) driver. On Linux 
and Android, it is a device driver that supports the main kernel-based distributions.

Most firmware applications serve the role of trusted execution environments for 
the corresponding host applications. The firmware applications are typically used for 
handling sensitive secrets that must not be visible to the host and for offloading critical 
operations that involve the secrets. The software and firmware together realize specific 
functionalities. The software agents communicate with firmware applications through the 
HECI interface and DMA.

For example, a movie player application sends a 128-bit or 256-bit encrypted content 
key to firmware in a HECI message, and then the firmware uses the unique device key 
stored in the engine to decrypt the content key. Then the player sends another HECI 
command to initialize playback. Note that the device key must be securely provisioned to 
the engine beforehand and the device key must never be exposed to the host.

The software may also place bulk data, such as an encrypted video frame of over 
1MB in size, in the host memory and notifies the firmware of the data size and the 
physical address thorough a HECI command. Upon receiving the HECI command, the 
firmware invokes its DMA engine to bring in the video frame from the host. Note that 
the embedded engine’s DMA devices understand physical memory address only. Virtual 
memory must be converted to physical memory by a ring 0 driver before delivering to  
the firmware.

Platform and System Management 
As defined in the 2009 AMT book, a platform is a computer system and all of its hardware 
components: motherboard, disk storage, network interface, and attached device, that is, 
everything that makes up the computer’s hardware, including BIOS. On the other  
hand, a system has a broader definition. It includes both the software and the hardware  
of a computer.

Today, the concept of a “platform” for mobile devices should be extended to cover 
hardware that is not present in traditional computer systems. There is a long list of 
hardware that is commonly embedded in mobile platforms: GPS (global positioning 
system), cameras, sensors, fingerprint reader, and so forth.

The network administrator’s responsibility is to make sure all computers in an 
enterprise are up and running normally. Even before the Intel AMT was invented, 
there were numerous manageability solutions available in the market to help network 
administrators do their jobs.

Software Solutions
There are several categories of manageability software. For example, firewalls analyze 
network data packets and determine whether they should be allowed or blocked, based 
on the rules and policies configured by network administrators. Antivirus software 
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detects and removes malicious software programs from the system. Remote desktop 
control agents such as VNC (virtual network computing) and SSH (secure shell)  
enable IT support technicians to remotely manage a system to perform diagnosis and 
resolve problems.

Although very convenient and useful in daily system management, software 
solutions also suffer from obvious limitations:

•	 Dependability: Manageability software runs in the operating 
environment that they are attempting to monitor, manage, 
and repair. When the operating system is not booting or not 
configured correctly, the software manageability solutions may 
fail to function.

•	 Availability: Manageability software is not able to perform 
management tasks when the system is in low-power states 
(sleeping or hibernating).

•	 Reliability: Manageability software is usually launched during 
boot and runs quietly in the background. However, it may be 
accidentally or intentionally turned off by end users or other 
system “clean-up” utilities.

•	 Security: Software solutions are naturally less trustworthy than 
hardware solutions. They are vulnerable to denial of service (DoS) 
attacks, may be compromised to report bogus information, or 
may even be hijacked and become a threat to other computers in 
the same network.

Hardware Solutions
In contrast to software solutions, hardware solutions for manageability do not depend on 
the operating system or software programs; hardware solutions can be functioning when 
the computer is in a low-power state; and hardware-based security measures can be 
applied if desired.

The KVM (keyboard, video, and mouse) is a representative hardware approach. In a 
typical KVM setup, the computer being managed is locally connected to a network KVM 
device, which connects the computer’s I/O devices to a remote management console over 
the network. A network administrator can manage numerous computers from a single 
console simultaneously. Sitting in his office, the administrator can see the display of the 
computer being serviced and control its keyboard and mouse, as if he is sitting in front 
of the managed computer. Figure 2-5 is a symbolic representation of the management 
solution based on network KVM.
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The equipment cost is the main factor that prevents the network KVM solution from 
being deployed on every computer. As can be seen in Figure 2-5, the KVM stands on 
the side of the computer; there must be a KVM device to support a computer (multiple 
computers physically located in the same location can share a multiport network KVM). 
The retail price of a 16-port network KVM ranges from a few hundred to over a thousand 
US dollars. This significantly raises the cost of network and system administration.

A more advanced hardware management solution is the baseboard management 
control (BMC). The BMC is a specialized embedded system that monitors various 
physical states, including, but not limited to, the temperature, humidity, or voltage of a 
computer or server. If a reported value strays out of the normal range, the administrator 
will be notified. A BMC combined with network KVM can realize very powerful 
management functionalities, including remotely power cycling, seeing displays, and 
controlling the keyboard and mouse. See Figure 2-6 for a symbolic representation  
of the BMC.
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Figure 2-5.  Network KVM connected to a managed computer

BMC

Management
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Figure 2-6.  Baseboard management controller

The powerful capability and convenience of BMC comes with a price. Due to the 
cost, BMC is usually only justifiable for deploying on large servers that carry critical tasks.
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In-Band Solutions
An important component of any management methodology is how the data of the 
managed machine is transmitted to the managing console for diagnosis and analyzed. 
The communication link determines the security and reliability of the communication.

An in-band solution leverages the communication and network stacks of the 
underlying operating system and is often utilized by software management solutions, 
such as VNC, SSH, and so on. The in-band communication suffers the same limitations of 
software management, that is, dependability, availability, reliability, and security.

Out-of-Band Solutions
In contrast to in-band, an out-of-band solution employs dedicated channels for 
communicating with the console. Generally speaking, out-of-band solutions are more 
robust and secure than in-band solutions, thanks to the isolation from the host being 
managed.

For example, a network KVM device implements a network interface separated from 
the network stack of the managed computer’s operating system. The connections of KVM 
and the computer run side by side and are independent of each other.

The 2009 AMT book extends the definition of “out-of-band” for a special case, 
where the wired or wireless network adaptor is shared by both the operating system 
and an isolated management device. In this case, although the management device is 
located inside the chassis of the computer and it is not equipped with dedicated network 
hardware, it is still considered out-of-band because the management does not depend on 
the operating system. Figure 2-7 illustrates the sharing of a network card.
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Figure 2-7.  Out-of-band management: both the operating system and the hardware 
management traffic can use the same network hardware

Sharing a network device such as a NIC (network interface card) certainly reduces 
the bill of material (BOM) cost, but this slightly compromises functionality and security 
compared to using a dedicated network device. Functionality-wise, if the network card 
itself is malfunctioning and requires troubleshooting, then the communication channel 
between the computer and the managing console is essentially broken. Because no data 
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can be received from the problematic computer, the administrator may have to debug the 
issue on site. Security-wise, for the network sharing to function properly, it is required 
that both the network driver on the operating system and the management device agree 
and obey a predefined protocol. If the driver is compromised and does not follow the 
protocol, it may cause a racing condition on the hardware and mount, and at a minimum, 
denial of service attacks, so that the system data cannot be sent to the console.

To avoid the complications of network device sharing, most security applications 
running on the embedded engine, unlike the AMT, do not use the firmware’s network 
stacks to communicate with remote entities. Instead, if an application is required to 
exchange data with a remote server (for example, an authentication server), then it will 
rely on software programs running on the host operating system as the proxy.

Intel AMT Overview
We have seen different management solutions and their pros and cons. Table 2-1 gives  
a summary.

Table 2-1.  Comparison of Management Solutions

Solution Functionality Dependability Reliability Availability Security Cost

Software,  
in-band

Fair Poor Poor Poor Fair Good

Hardware, 
out-of-band 
with separate 
network device

Good Good Good Good Good Poor

Hardware,  
out-of-band 
with shared 
network device

Good– 
(cannot 
debug NIC)

Good Good Good Good Good

As shown in Table 2-1, there is no perfect solution. However, the hardware out-of-
band solution with a shared network device is the best option overall. Intel AMT is such a 
solution with the following desirable characteristics:

It resides in the chipset and it is always available on all Intel vPro •	
platforms.

It is independent of the host operating system and power state.•	

It is functional even if the host is in a lower power state or has •	
crashed.

It shares the network device with the host so that the hardware •	
overhead is minimal.
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The AMT ships with three software components: BIOS extension, local management 
service and tray icon, and remote management. They serve three configuration scenarios, 
respectively: through HECI before the operating system is loaded, through HECI after the 
operating system is loaded, and through the network.

BIOS Extension
The BIOS extension for the engine is called the Intel management engine BIOS 
extension (MEBX). It is a BIOS component similar to other extension ROMs. It allows the 
administrator and the user to perform basic configurations for the management engine 
and the AMT, including changing the password for authentication, turning on and off the 
AMT, assigning Internet Protocol (IP) addresses, configuring network protocols, selecting 
the engine’s sleep and wake policies, and so on.

The primary reason for introducing the BIOS extension is to protect end users’ 
privacy. By the nature of BIOS, it requires a human being’s physical presence and 
knowledge of the correct password to authenticate to the management engine and 
change configurations.

The BIOS extension communicates with the embedded engine through the 
HECI channel. A HECI driver is implemented in the BIOS extension to facilitate the 
communication. The BIOS extension does not implement encryption algorithms. There is 
no protection applied to the HECI interface, and the messages are sent in the clear. Data 
sent to the engine by the BIOS extension is stored by the engine securely in nonvolatile 
memory with appropriate protections.

The BIOS extension executes before the BIOS delivers the end-of-POST (power-on 
self-test) signal to the embedded engine. The engine relies on the end-of-POST signal to 
determine whether a received HECI command was initialized from the BIOS extension or 
from the local host operating system. Select settings are deemed legitimate only if made 
through the BIOS extension interface. The embedded engine rejects such commands by 
returning an error if they are received after the end of POST.

Figure 2-8 demonstrates the flow of interactions between the host and the 
management engine during and after the boot process. The initial boot block is a 
firmware module loaded before the BIOS to facilitate the secure boot path. After the 
BIOS has initialized the system DRAM and reserved the exclusive region for the engine to 
access, it sends a DRAM-init-done HECI message to notify the engine.
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Figure 2-8.  Interaction between the host and the engine for AMT configuration, with MEBX 
loaded during the boot process
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The HECI commands initiated from the MEBX are delivered to and handled by the 
kernel or the AMT firmware module. Because end-of-POST has not happened yet, the 
firmware will always honor the requests, perform configurations, and return to the MEBX. 
Once the administrator has finished his configuration work, he exits the MEBX. Next, the 
BIOS sends the end-of-POST command to the management engine, signaling that the 
BIOS is now handing the control to the boot loader and the operating system. An AMT 
configuration command received by the engine after end-of-POST will be examined and 
processed only if it is permitted after end-of-POST, based on predefined policies.

Notice that the BIOS may not be an Intel production. Therefore, the BIOS, including 
all BIOS extensions, is excluded from the engine’s trusted boundary. The engine does not 
depend on the integrity of the BIOS to achieve its security objectives. For example, during 
authentication, the password entered by an administrator or user is transmitted from the 
BIOS extension to the engine for examination, and not in the other direction. And even 
though an end-of-POST message never reaches the engine, the engine will not leak any 
secrets. By design, the most harmful attack a compromised BIOS component is able to 
launch against the engine should be to DoS the engine. For example, if the DRAM-init-
done message never reaches the engine, then the engine will be operating in a degraded 
mode, because it does not have DRAM to run applications that require a large amount of 
memory.

Local Management Service and Tray Icon
The purpose of the AMT’s local management service is to provide a similar programming 
interface for both local and remote applications.

As depicted in Figure 2-9, the local AMT application or the AMT user notification 
service opens a virtual network connection to the AMT firmware and it uses WSMAN 
(Web Services-Management). The application or the UNS does not have any knowledge 
about the firmware’s HECI mechanism. The local management service consumes the 
HECI driver and redirects the network traffic to the HECI link to the embedded engine. 
The AMT application is developed by third-party software vendors, and the user 
notification service is provided by Intel.
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There is also a tray icon application that is developed by Intel. The tray icon 
application fetches status information of the management engine from the HECI 
interface.

Remote Management 
Intel releases the AMT SDK (software development kit) to facilitate developers to 
interact with the AMT firmware and integrate the AMT features into their existing system 
management consoles and applications.

Earlier versions of AMT supported EOI (External Operations Interface) over SOAP 
(Simple Object Access Protocol), but the latest AMT releases only support the WS-
Management interface.

Refer to the Intel AMT Implementation and Reference Guide6 for details on the 
remote management development with AMT SDK.
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Figure 2-9.  Local software components of the AMT
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The Engine’s Evolvement: from Management to 
Security
Seven years since its first deployment, the management engine has become the security 
and management engine. The evolvement did not happen overnight. The shift of focus 
from system manageability to security reflects the increasing importance of security in 
today’s computing industry and ecosystems.

The security and management engine has a number of desirable properties that 
make it not only a good manageability solution but also an excellent security solution.

Embedded System as Security Solution
What makes a solution a good one for running security applications?

Advanced techniques have been developed for creating trustworthy software 
solutions. These techniques include a managed runtime environment (MRTE), tamper-
resistant software (TRS), a secure virtual machine (VM), Intel TXT, Intel Software Guard 
Extensions (Intel SGX), and so forth. Refer to the Intel Corporation white paper “Using 
Innovative Instructions to Create Trustworthy Software Solutions,” for an introduction 
to the various secure software solutions.7 However, these solutions suffer from different 
restrictions. And software, by its nature, is more vulnerable to attacks. It is hard for 
software to gain a comparable level of trust as equivalent hardware solutions. For 
example, several content protection schemes allow playback of certain high-definition 
contents only if the video path is protected by hardware.

Although it could provide very strong protection, a pure hardware solution is not 
preferable either. The problem of realizing security applications in hardware is the lack of 
flexibility and high cost. For convoluted features, it is very difficult to avoid bugs. Software 
programs can be patched with minimum overhead, but hardware issues may not be 
patchable and may require recall, which is a disaster for computer manufacturers.

A firmware/hardware hybrid is the solution that inherits the advantages of both 
software and hardware. On one hand, firmware runs on dedicated hardware and features 
hardware-level protection for security applications. On the other hand, the firmware 
can be stored in rewritable nonvolatile storage, and enjoys simpler deployment and the 
flexibility of being patched or updated at a relatively small cost.

The security and management engine is such a firmware/hardware hybrid product. 
Security-wise, a few highlights of the design are listed next. More details can be found in 
Chapter 4 of this book.

•	 Independency: The engine enjoys its own computing environment 
that is independent of the main operating system running on the 
host. The engine can run normally when the operating system 
crashes with a blue screen or cannot boot. Even if the host is 
sleeping or hibernating, the engine can also run normally. Notice 
that the reserved memory may not be available when the host is 
in a low-power state. Consequently, certain firmware features that 
require a large amount of memory may not function when the 
system is in a low-power state.
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•	 Isolation: The engine does not share a processor or main memory 
with the host. The reserved memory is under strong confidentiality 
and integrity protection (see Chapter 4 of this book for details), so 
it is virtually isolated from the rest of the DRAM that is controlled 
by the host operating system. The networking devices, even if 
compromised, do not compromise the engine’s security objectives. 
The DMA engine and HECI channel do not rely on the correct 
behavior of the host. In general, an external adversary (malware, 
virus, and so forth) is not able to infect the firmware.

•	 Closed system: The engine loads only firmware that is digitally 
signed by Intel for the engine. Attackers cannot easily change the 
firmware kernel or add/remove applications.

•	 Small attack surface: The only general interface that is available 
to all firmware modules to the host is the HECI channel. A 
small number of modules may invoke DMA and other low-
level I/O, such as GPIO (general-purpose input/output), as 
needed. And only the AMT application may access the network. 
Data intake from these interfaces is not trusted by the security 
and management engine, and is fully validated before being 
processed. Invalid input data may cause wrong calculated 
responses from the engine, but will not crash the engine or 
compromise the security of the engine.

•	 Programmability: In addition to its native firmware applications, 
the engine opens its security capability to third-party host 
applications by exposing security APIs through HECI. See Chapter 
9 of this book for more information.

•	 Power efficiency: Because the engine runs at a low frequency 
(from approximately 200MHz to 400MHz, depending on the 
product) compared to the main CPU, the power consumption is 
in the scale of milliwatts. In addition, the engine supports power 
gating. After being idle for a configurable number of seconds, it 
enters the sleep state to conserve power. Events that can wake up 
the engine include a HECI message from the host or interrupts 
from I/O devices.

Flexibility-wise, only a small portion (more specifically, the boot loader and standard 
library functions) of the engine’s firmware is stored in ROM for the sake of root security 
and performance, and all application firmware is stored in flash. This enables a firmware 
update to fix or patch hardware or firmware bugs in the field.

We have seen the advantages. But is the engine perfect? What about the “cons”?

•	 Cost: The engine is a separate core and it shares few hardware 
devices with the main operating system. Although more isolated 
and secure, this adds the BOM cost of the platform, compared to 
security solutions that do not introduce a dedicated processor.
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•	 Limited computing bandwidth: To save power and cost, the engine’s 
processor runs at a relatively low frequency. This restricts it from 
serving applications that require high throughput. However, note 
that most security applications do not require overwhelming 
performance and the bandwidth is not a major concern.

•	 Difficult firmware update deployment: It is relatively easy for 
software to push patches and updates to end users’ devices. This 
helps software vendors fix vulnerabilities and add new features 
in a timely manner. The story of a firmware update is completely 
different, however. Because the firmware is part of the security 
and management engine, and a component of the chipset or SoC, 
firmware hotfixes and maintenance releases must be thoroughly 
tested for compatibility by OEMs before being pushed to devices 
that are in the field. This process usually takes anywhere from a few 
weeks to a few months, and may not happen at all. To address the 
problem of firmware updates, a stringent security review process is 
exercised in the attempt of minimizing the need for hotfixes.

Overall, the pros of using the engine as the security solution outweigh the cons, 
making the engine the ideal place for security solutions.

Security Applications at a Glance
Realizing these attractive properties of the infrastructure, no one would be satisfied if the 
management engine remained just a system management tool. System manageability is an 
important and useful application, but it does not make use of the full potentials offered by 
the engine. Now that the engine is available on the system, why not make the most out of it?

First, the engine should be used as frequently as possible—not only when 
management service is requested on the system. After all, how often do system problems 
happen? They do not happen every day.

Second, a successful state-of-the-art technology should not benefit only the network 
administrators and the employees in enterprises. It should bring values to a larger 
population.

There are clearly many more possibilities and opportunities to be explored on the 
security and management engine. In today’s mobile age, the demand for secure mobile 
services that involve valuable assets is gaining significant momentum. As a result, the 
embedded engine is reborn with new security features that are serving all end users  
every day.

EPID 
Thanks to its direct access to hardware and isolation from the host operating system, 
it is convenient to leverage the security and management engine as the root of trust 
for the platform. The EPID (enhanced privacy identification) is a security mechanism 
exclusively built in the engine and serves as the hardware security root of trust for various 
applications running on the platform.
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During Intel’s manufacturing process, a unique EPID private key is retrieved from 
an internal key generation server and programmed to the engine’s security fuses. At 
runtime, the engine’s firmware uses the EPID private key to prove to the local host or a 
remote server that it is a genuine Intel platform and eligible for premium services that 
are available only to Intel products. Those applications rely on a hardware infrastructure 
that is only supported by Intel’s products. For example, the CPU upgrade service, PAVP 
(protected audio and video path), and so on.

Leakage of an EPID private key would allow hackers to write software masquerading 
as Intel hardware. Such attacks may break into the applications that were built on the 
EPID and then steal secrets, such as user’s stock brokerage passwords or copyrighted 
contents. To prevent the EPID key from being compromised, comprehensive protection 
mechanisms for the EPID private key at rest and at runtime are implemented by the 
engine. Of course, the EPID key generation process is also safeguarded with very strong 
and restrictive policies. In fact, except for the purpose of debugging, no human being is 
supposed to know any EPID private key value. Having said so, a key revocation scheme is 
supported by the engine in case of incidents.

To summarize the requirements, the EPID credential must be unique per platform; 
it must always be available; and the deletion, alteration, theft, or cloning of the EPID 
credential on one platform to another platform shall not be feasible without employing 
special hardware equipment and significant resources. Such a level of security strength 
is very difficult, if not impossible, to achieve by software solutions. The security and 
management engine is the ideal place to implement EPID functionalities. It offers not 
only ample security protection, but also flexibility in supporting EPID applications 
because the engine is a hardware/firmware hybrid device.

Chapter 5 of this book has more information on EPID.

PAVP
Some applications need to securely display frames and play audio to the user. The 
security requirement is that software running on the host operating system must not be 
able to peek or steal the contents being securely played back.

For example, alongside the wide deployment of the media playback feature on 
mobile computing devices is the problem of protecting copyrighted contents from 
piracy. Some content creators (such as movie studios) consider software protection 
insufficient and require their high-definition content, when playing back on computers, 
to be protected by hardware mechanisms. In other words, if a user’s computer is not 
equipped with the required hardware capability, then that user won’t be able to enjoy 
those contents.

Another example for the secure display usage is Intel IPT, where a sprite of keypad is 
displayed on the screen for the user to enter a password by mouse clicks. The sprite must 
be hidden from the host to prevent attacks by screen scrapers.

Intel’s PAVP technology is a hardware scheme that protects video and audio assets 
from software attacks. Initially introduced for Blu-ray, PAVP is now used by a range of 
applications that rely on content protection to function.
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The PAVP is realized by a few components: player software and graphics drivers on 
the host, the security and management engine, and the GPU. The ultimate security goal of 
content protection is to make sure that the content encryption key and the clear content 
are only visible to hardware and not exposed to any software components, including ring 
0 drivers.

The responsibilities of the engine in the PAVP solution include:

Establishing a PAVP session between the software and the GPU.•	

Delivering content encryption keys to the GPU.•	

Implementing the HDCP•	 8 (high-bandwidth digital content 
protection) protocol.

Chapter 8 has more information on PAVP.

IPT
Identity theft is one of the most infamous and costly cybercrimes. Anyone that uses the 
Internet to manage assets (such as music, photos, social life, financial accounts, and 
so on) can potentially be a victim. Strong authentication and transmission protection 
is necessary to deter identity theft. Intel IPT, backed by the security and management 
engine together with other components, is a cutting-edge technology for protecting end 
users’ identities.

The IPT is an umbrella product name that comprises a numbers of features, 
including, as of this writing, OPT (one-time password), PTD (protected transaction 
display), PKI (public-key infrastructure), and NFC (near-field communication). 
Additional functionalities may be introduced to the IPT family in the future. These 
features work collaboratively to offer comprehensive identity safeguarding for the users 
for multiple scenarios.

•	 OPT: Implements as the second factor in a multi-factor 
authentication solution. The user’s computer is the second factor 
(something you have), and the OPT is generated by the security 
and management engine’s firmware and transmitted to the 
remote server for authentication. The technology eliminates  
the need for a physical token, meanwhile maintaining the  
security level.

•	 PTD: Allows a trusted entity to draw and display a secure sprite on 
the screen directly with the help of PAVP. The sprite is completely 
invisible to the host software stack. The secure display is 
commonly utilized for delivering sensitive information that is for 
the user’s eyes only—for example, a keypad for authentication.
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•	 PKI: Provides a robust private key management mechanism, 
including key generation, key storage, signature generation, and 
decryption. Once a private key is generated by or imported to 
the security and management engine, it will never be output in 
the clear. The engine performs private key operation under the 
hardware protection.

•	 NFC: Allows a user to tag his NFC-capable credit card against the 
NFC sensor on his computer to conveniently complete online 
transactions with positive identity authentication.

More technical details about the security and management engine’s role and 
responsibility for IPT can be found in Chapter 10.

Boot Guard
Intel Boot Guard is the technology for protecting boot integrity for Intel platforms. The 
system’s boot block is measured by hardware and the boot is allowed if and only if the 
measurement is successful, that is, the boot block is not altered. The hardware elements 
that perform the boot integrity check are the security and management engine and  
the CPU.

Intel Boot Guard offers two configurations: verified boot and measured boot. The 
engine is equipped with an array of field programmable fuses. For verified boot, an OEM 
programs the fuses with the hash value of its public key before the conclusion of the 
manufacturing process. The corresponding private key is used by the OEM to sign its 
initial boot block module, the first OEM’s component that executes during boot. During 
the boot process, the engine and the CPU first verify the public key in the OEM’s initial 
boot block manifest by comparing its hash with the preconfigured hash in the field 
programmable fuses, and then verify the OEM’s signature on the initial boot block using 
the public key.

Alternative to using a digital signature, the measured boot configuration leverages the 
TPM on the platform. The TPM can be either a discrete TPM or a firmware-based TPM 
that is built in the security and management engine.

Chapter 6 of this book has more technical details on Intel Boot Guard technology.

Virtual Security Core: ARM TrustZone
ARM is an industry leader in low-cost and low-power processors, with applications in a 
host of mobile embedded devices, especially in the smartphones and tablet markets.

ARM deploys several security measurements among various families of products. 
For instance, the SecurCore family9 provides mitigations against software, hardware, 
and side-channel attacks, for small form factors, such as smart cards. In particular, the 
SecurCore solutions enable customization of security features for a specific design and 
provide development process tools with added security controls.
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For SoC platforms, ARM’s security solution is called the TrustZone technology10 
(a.k.a. security extension). TrustZone is supported by ARM1176 and the Cortex-A series 
processors. In contrast to Intel’s security and management engine that uses a dedicated 
security core, the TrustZone takes a different approach. The TrustZone splits a physical 
processor core and treats it as two virtual cores (or modes): one nonsecure mode and 
one secure mode. The nonsecure mode is also called normal mode or untrusted mode; 
the secure mode is also called trusted mode. The two modes share the same hardware 
resources but they operate independently. Some literatures refer to “mode” as “world.”

Secure Mode and Nonsecure Mode
Context switch between the nonsecure mode and the secure mode is conducted through 
a third mode, the monitor mode, which is managed inside the secure mode. The current 
mode of operation is indicated by the nonsecure (NS) bit, which is bit 0 of the secure 
configuration register (SCR). The SCR is a read/write register that is accessible in the 
secure mode only, and recommended by ARM to be programmed by the monitor mode. 
Besides the NS bit, the SCR is also used to configure whether an interrupt—FIQ (fast 
interrupt request) or IRQ (interrupt request)—should be branched to the monitor mode 
for processing. The entry to the monitor mode can be triggered by software executing a 
dedicated instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the 
hardware exception mechanisms.11 Figure 2-10 shows the relationships among the secure 
mode, nonsecure mode, and the monitor mode.

Normal world user
mode

Normal world
privileged mode

Secure world
user mode

Secure world
privileged mode

Monitor mode

Normal world Secure world

Figure 2-10.  Modes in an ARM core implementing the security extensions
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The switches between the two modes are strictly controlled by hardware. The secure 
mode is essentially another level of execution privilege. The secure mode must not leak 
secrets to the normal world or allow any form of privileged escalations. Applications run 
mostly in the normal mode, but small security-specialized code that handles secret data 
and sensitive operations is executed in the secure mode. For example, the key processing 
for content protection is run in the secure mode.

In addition to the processor, the separation of the two modes permeates all 
hardware, most interestingly, memory and device buses.

Memory Isolation
The memory infrastructure inside and outside of the processor core must also be isolated 
into two modes accordingly.

The level 1 (L1) cache in the processors is managed by the so-called memory 
management unit (MMU), which converts the virtual address space that is seen by the 
software running on the processor onto the physical address space. The MMU features 
an L1 memory translation table with an NS field, and entries in the TLB (translation 
look-aside buffer) are tagged with the NS bit. The secure mode relies on the value of the 
NS field to determine the value of the NS bit of the SCR when it is accessing the physical 
memory locations. The nonsecure mode ignores the NS field. In other words, the secure 
mode is always allowed to access memory belonging to both the secure mode and the 
nonsecure mode. Select processor models feature Tightly Coupled Memories (TCMs), 
which are high-performance SRAM that exist at the same level of L1 cache. There can 
be up to two blocks of TCM present on each instruction and data interface. Software can 
configure the TCMs to be accessible to the secure mode or nonsecure mode.

The Memory Protection Unit (MPU) was introduced to ARM cores starting from 
ARM7. This unit allows partitioning of memory into different sections and assigning them 
different security attributes, for example, marking the code section as read-only in order 
to prevent runtime alteration attack at runtime. The read/write permissions are based on 
two-level User and Privilege mode access; if a User mode application tries to access the 
Privilege mode memory, then the processor triggers an exception. The initial boot routine 
and interrupt handling vectors executes in the Privilege mode.

Bus Isolation
The isolation of bus interfaces and devices is required to prevent attacks from system 
devices. The AMBA3 (the third generation of the Advanced Microcontroller Bus 
Architecture) AXI (Advanced Extensible Interface) bus protocol defines controls to 
identify operating modes for all transactions. The AXI bus adds metadata to bus control 
signals and labels all read and write transactions as secure or nonsecure. The hardware 
logic in the TrustZone-enabled AMBA3 AXI bus fabric ensures that secure-mode 
resources cannot be accessed by nonsecure mode components.

The AMBA3 APB (Advanced Peripheral Bus) is used for secure peripherals and 
interrupts. The APB is attached to the system bus using an AXI-to-APB bridge. The APB 
per se is not equipped with an NS bit or its equivalent. Therefore, the AXI-to-APB bridge 
hardware ensures that the security of APB peripheral transactions is consistent with the 
AXI security signals.
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Physical Isolation vs. Virtual Isolation 
Conceptually, TrustZone has its similarities to Intel TXT in the sense that both achieve 
isolation between the secure and nonsecure modes through a trusted virtual machine or 
execution environment. In reality, on many Intel platforms, the security and management 
engine is the counterpart for security solutions that are realized by TrustZone on  
ARM platforms.

The obvious advantage of TrustZone over a dedicated security core is its lower BOM 
cost—only one core is needed for two modes of operation. But are there tradeoffs?

Although ARM’s TrustZone and Intel’s security and management engine both 
feature hardware-based security operating environments, their architectures are 
completely different. The isolation between the nonsecure mode and the secure mode is 
virtual for TrustZone, versus physical for the security and management engine. For the 
virtual separation mechanism, safeguarding the border of the virtually secure world and 
defending against threats could be a challenging task.

In addition to security, power efficiency is another important consideration for 
modern mobile platforms that aggressively power save. For TrustZone, the secure 
mode and the nonsecure mode run at the same frequency. In contrast, the security and 
management engine runs at a lower frequency than the main processor, resulting in less 
power consumption at the tradeoff of a slower operation of security tasks, which in most 
cases do not require high performance.

Furthermore, as described earlier in this chapter, Intel’s embedded solution is also a 
management engine. Its many unique properties make it an excellent choice for platform 
management applications.
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Chapter 3

Building Blocks of the 
Security and Management 
Engine

Technology is nothing. What’s important is that you have a faith in 
people, that they’re basically good and smart, and if you give them tools, 
they’ll do wonderful things with them.

— Steve Jobs

The kernel of Intel’s security and management engine provides useful tools to application 
developers. Wonderful applications can be created on the engine with these tools.

The engine is designed to execute applications—both natively built on the engine 
and dynamically loaded from the host operating system. It is not a general-purpose 
environment per se; however, it is designed to be a foundation for various kinds of 
applications, especially ones that realize security functionalities.

In order to support and engage with existing and future applications, the kernel 
of the engine must provide a comprehensive set of basic services and tools to fulfill 
requirements of upper-level modules. As the number of applications running on 
the engine keeps growing, the number of kernel functions has grown accordingly to 
accommodate new functional requirements.

This chapter introduces interesting features and interfaces of the engine’s kernel. 
Because security is the main usage of the engine and the main subject of this book,  
I will focus on the cryptography functions first. Besides general functionality, to address 
the specific requirements of embedded mobile systems, I will also review a number of 
design strategies and useful tricks for improving performance, saving power and memory 
consumption, and protecting privacy.

All cryptographic algorithms implemented by the security and management engine 
follow applicable US government and industry standards. There are some proprietary 
Intel security heuristics for the kernel’s hardening measures, but they are not available to 
applications.
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This chapter begins with a quick reference to the cryptography standards and then 
reveals how the engine implements them in its embedded environment. The focus 
is on the input and output interface of the cryptographic algorithms, rather than the 
mathematical details of the algorithms. Readers interested in understanding how  
the algorithms are designed should refer to generic cryptography lectures.  
D. R. Stinson’s Cryptography: Theory and Practice (Chapman and Hall/CRC, 2005)1 is a 
good introductory textbook on cryptography.

Random Number Generation
The random number generator (RNG) is the most invoked cryptography function on the 
engine. Except for hash, all cryptographic algorithms use keys, which are generated by 
a well-designed and well-implemented RNG. The security and management engine’s 
firmware applications use the kernel’s RNG for generating keys and nonces (a nonce is a 
random number that is used only once).

The RNG is a hardware device of the engine, and the kernel firmware wraps the 
hardware RNG and implements interface for applications to invoke. The RNG device 
consists of the following components:

•	 Nondeterministic random bit generator (NDRBG): This provides 
seeding materials to the pseudo random number generator. The 
entropy source consists of variations of temperature, voltage, and 
power. The output of the NDRBG is a derivative of the collected 
white noises. There is real-time health test logic associated to the 
NDRBG to examine the quality of its entropy output.

•	 Deterministic random bit generator (DRBG): This implements 
the DRBG specified in National Institute of Standards and 
Technology (NIST) special publication 800-90A,2 with the 
Advanced Encryption Standard (AES) counter-mode option. After 
the (Edward) Snowden leaks, NIST strongly advised against use of 
the DRBG with Dual Elliptic Curve option,3 but the AES counter-
mode option is still an approved and recommended DRBG.

•	 Built-in selftests (BISTs) compliant with the Federal Information 
Processing Standards (FIPS) 140 standard, required BISTs 
are performed by the RNG, including power-on selftests and 
continuous selftests.

The power-on selftest is a known-answer test. During the •	
boot of the security and management engine, the RNG 
feeds its DRBG logic with a hardcoded seed and checks if 
the resultant random number matches the corresponding 
hardcoded answer.

The runtime selftest runs whenever a new random number, •	
32 bits in size, is generated at runtime. It checks whether 
the current output number is identical to the immediately 
previous random number the RNG generated. If the two are 
equal, then the current output number is discarded and a 
new random number is generated.
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The only kernel interface exposed for the RNG is a function for getting a random 
number with the size specified by the caller. The function does not restrict an upper 
limit of the size, as long as the caller has allocated sufficiently large memory to hold the 
random number. All applications share the same instance and state of the RNG. There are 
no interfaces for an individual application to reseed the DRBG or restart the RNG device. 
Reseeding and re-initialization are managed by the RNG internally according to the NIST 
DRBG specification. Figure 3-1 shows the interface of kernel RNG’s API (application 
programming interface).

Kernel
RNG

size
Application

random number

Figure 3-1.  Kernel RNG API

Message Authentication
In cryptography, message authentication, or secure hash, refers to the procedure of 
“compressing” a large amount of data (message M) into a smaller message digest, H. For 
a given hash function, the size of H is a constant regardless of the size of M. The digest H 
generated by a good hash algorithm would look like a random string.

M can be of variable lengths, but H has a fixed size: the number of possible M 
values is much greater than the number of possible H values. Therefore, there may be 
many different M values that correspond to the same H value. Cases where two distinct 
messages (M and M´) correspond to the same digest (H) are called “collision.”

A message authentication scheme must be very “sensitive,” that is, the digest H for 
a given M should look like a random bit string; even if only 1 bit of M has changed (been 
altered, added, or removed), the new digest should look like a completely different 
random bit string, with overwhelming probability. Because of this, the digest H can be 
thought of as fingerprints of a human being M.

Besides the sensitivity, a good message authentication scheme must have the 
following important properties:

•	 One-way: It is easy to calculate H from M, but it is computationally 
difficult to derive a message M from H. Because there may be 
multiple M values that map to the same H, the hash scheme must 
make sure that it is difficult to derive any such M from a given H.

•	 Collision-free: It is computationally difficult to find two messages 
M and M´ that correspond to the same H. Note that the sizes of M 
and M´ do not have to be the same.

These two facts make the secure hash algorithm useful in many cryptography and 
security applications. For example, an e-mail authentication server may calculate and 
store the digest of your password, instead of the password itself, when you set up the 
e-mail account. After initial setup, when you enter your password during login, the 
password is hashed, and the resultant digest is compared against the digest previously 
stored on the server at initial setup.
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The hash’s one-way property makes sure that no one, including the authentication 
server, is computationally capable of retrieving the plaintext password from its digest, 
even though the digest is leaked or known by an attacker. The collision-free property 
guarantees that it is practically impossible to find and use a string other than your 
password to authenticate to the e-mail server.

A hash function takes one input M, and generates one output, the message digest H. 
There is no secret, key, or randomness involved in the hash calculation. Anyone who 
knows M can derive H. Sometimes it is desirable to employ a key in the hash calculation, 
so that only with the key can the correct digest be obtained. This is called keyed-hash 
or HMAC (Keyed-Hash Message Authentication Code). An HMAC algorithm takes two 
inputs, M and key K, and generates H. In this case, H changes when M or K changes.

The engine supports standard message authentication schemes:

MD5 (Request for Comments (RFC) 1321•	 4)

SHA-1 (Federal Information Processing Standards (FIPS) •	
Publication 180-45)

SHA-224 (FIPS 180-4)•	

SHA-256 (FIPS 180-4)•	

SHA-384 (FIPS 180-4)•	

SHA-512 (FIPS 180-4)•	

HMAC keyed hash with the preceding underlying hash schemes •	
(FIPS 198-16)

Figure 3-2 shows the engine’s kernel interface for hash.

Figure 3-3 shows the engine’s kernel interface for HMAC.

Kernel
hash

message
Application

digest

Figure 3-2.  Kernel hash API

Kernel
HMAC

message

keyApplication

digest

Figure 3-3.  Kernel HMAC API
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The output hash is 16 bytes long for MD5, 20 bytes for SHA-1, 28 bytes for SHA-224, 
32 bytes for SHA-256, 48 bytes for SHA-384, and 64 bytes for SHA-512. As MD5 and SHA-1 
have smaller output digests, there are well-known attacks against them that reduce 
security strength. NIST recommends against using MD5 and SHA-1 and recommends 
moving to SHA-256 and above. Intel’s security and management engine continues to 
support MD5 and SHA-1 for legacy and backward compatibility.

For example, a lot of network equipment deployed in the field today still utilizes 
SSL/TLS crypto suites that use MD5 or SHA-1 for message authentication. The Intel 
AMT (Advanced Management Technology) application must continue to accept them. 
However, new firmware applications shall not use MD5 or SHA-1. Note that HMAC-MD5 
and HMAC-SHA-1 are still approved algorithms by NIST and are being used in various 
applications for the security and management engine.

On the engine, among these secure hashing algorithms, the most frequently invoked 
ones—MD5, SHA-1, SHA-256, and their HMAC variants—are implemented by hardware 
with firmware wrappers in kernel. The others are implemented by firmware. The 
firmware implementation was ported from the Intel Integrated Performance Primitives 
crypto library.7

Hash with Multiple Calls
The kernel interface for message authentication allows the caller to set up a context and 
pass in the message to be hashed in more than one call. In general, this resume capability 
is required by applications that do not have the entire message data at once.

In an embedded environment where memory is a very valuable resource, even 
if the entire message can be available at once, it may still be preferable to call the 
hash function multiple times, in order to reduce runtime memory consumption. For 
example, to hash 1MB of data, an application can choose to allocate 64KB of memory 
and call the hash function 16 times—or allocate 1KB of memory and call the hash 
function 1024 times. Because a call to kernel API implies performance overhead (see 
Chapter 4 of this book for details), this is a tradeoff between memory consumption and 
runtime performance.

In any case, the engine’s kernel is stateless, and the hash context must be maintained by 
the application between calls. Figure 3-4 depicts the kernel interface for resume hash/HMAC. 
The application should start with a “first chunk” call, followed by any number (including 
zero) of “middle chunk” calls, and finally a “last chunk” call. For HMAC, the context 
returned from the first chunk call contains a “working” derivation of the HMAC key, so 
that the application does not need to input HMAC key again in later middle chunk and 
final chunk calls.
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Figure 3-4.  Kernel hash/HMAC resume API

Symmetric-Key Encryption
Symmetric-key encryption refers to schemes where both encryption and decryption 
processes use the same key, in contrast to asymmetric-key encryption where encryption 
and decryption use two different keys. The most popular symmetric-key scheme used in 
computing today is defined in AES published by NIST in 2001.8 The algorithm specified in 
AES is based on the Rijndael cipher, developed by Belgian cryptographers Joan Daemen 
and Vincent Rijmen.

AES
AES defines three key sizes: 128, 192, and 256 bits. The kernel of the security and 
management engine supports all three key sizes of AES.

In general, greater key size provides stronger protection. However, it is worth noting 
that due to recently published related-key attacks,9 256-bit AES can be broken with a 
complexity of 299.5, which makes it weaker than a 128-bit AES in theory (128-bit AES may 
be broken with a complexity of 2126 due to bicliques). Nevertheless, to date, no known 
attack against any key sizes of AES is computationally feasible.

AES is a block cipher and it has a fixed block size of 128 bits. In other words, the 
algorithm first splits the input data (plaintext for encryption or ciphertext for decryption) into 
multiple blocks, each 128 bits, and then performs a cipher operation on every block. Mode of 
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operation describes how to repeatedly apply a single-block operation to encrypt data that is 
larger than a block. Various modes of operation are defined for block ciphers. The kernel of 
the security and management engine supports the following modes of operation:

ECB (electronic codebook)•	

ECB-CTS (ECB ciphertext stealing)•	

CBC (cipher block chaining)•	

CBC-CTS (CBC ciphertext stealing)•	

CFB (cipher feedback)•	

OFB (output feedback)•	

CTR (counter)•	

For the engine, the most-used key sizes and modes are implemented in hardware, 
including 128-bit and 256-bit keys with ECB, CBC, and CTR modes. The other modes 
are implemented in firmware, with underlying basic AES encryption and decryption 
offloading to the AES hardware.

For block cipher, all the modes except ECB require an initialization vector (IV) of 
the block size as input to the encryption function. The same IV must be input to the 
decryption function.

For the CTR mode, the IV consists of two portions: a nonce and counter. The kernel 
allows the caller to specify sizes of the counter and nonce, as long as the counter is at least 
32 bits and their total length is equal to the block size.

For AES, the plaintext and the ciphertext always have the same size, regardless of key 
size and mode of operation. The CTR and OFB modes have a nice native feature: the size 
of the data does not have to be a multiple of the block size. That means you can encrypt 
2 or 31 bytes of plaintext using CTR or OFB, and the resultant ciphertext is 2 or 31 bytes. 
The other modes, other than ECB-CTS and CBC-CTS, require data size to be a multiple 
of 128 bits. Also note that for CTR and OFB modes, the same algorithm is used for both 
encryption and decryption.

The CTS variant of ECB and CBC applies smart tricks to the last incomplete block 
and the last complete block of data for the underlying mode, so that the data size does not 
have to be a multiple of the block size (but the data must be longer than one block). The 
CTS mode is widely used in network protocols such as Kerberos, which is supported by 
an Intel AMT application running on the engine.

There are certain requirements and best practices about which modes to use when 
designing an application and how to use them. Here are some critical rules that may not 
be very well known by all software engineers:

For better security, avoid using the ECB mode for data that is •	
longer than one block.

For the CTR mode, the same key and IV combination can only •	
be used once and must not be repeatedly used for encrypting 
more than one data block. If the same key and IV combination 
is used to encrypt more than one block of data, then the security 
is broken and plaintext can be easily derived from ciphertexts 
without knowing the key.
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Let the AES key be k and IV be iv. In a typical chosen-plaintext attack scenario, the 
attacker chooses plaintext block p (128 bits) and calls a problematic AES-CTR oracle that 
uses a constant k and iv. The oracle outputs ciphertext c. According to the CTR mode 
definition,
 
c := AES(k, iv) XOR p
 
where AES(k, iv) denotes the ciphertext for AES block encryption with plaintext iv using 
key k, and a XOR b denotes result of bitwise exclusive disjunction operation for two bit 
strings a and b of the same size. Notice that
 
AES(k, iv) = c XOR p
 

The attacker knows both p and c. His goal is to derive the plaintext p´ for another 
block of ciphertext c´ he receives by eavesdropping. Without figuring out k or iv, p´ can be 
easily calculated as follows:
 
p' := AES(k, iv) XOR c' = c XOR p XOR c'
 

For the CBC mode, the IV must be “unpredictable.” •	
Unpredictability means not only that the IV cannot be a constant 
when encrypting multiple pieces of data, but also that an 
adversary must not be able to control or know the IV before the 
encryption happens. In practice, it is recommended to randomly 
generate IV for each piece of data to be encrypted.

Let the AES key be k. Consider a chosen-plaintext attack on a problematic AES-CBC 
oracle that uses predictable IV. The attacker has managed to acquire values of the iv and 
the first ciphertext block c (128 bits), and his goal is to guess the plaintext p. According to 
the CBC mode definition,
 
c := AES(k, iv XOR p).
 

The attack is allowed to submit his chosen plaintext p´ and have the oracle perform 
AES-CBC encryption using the same key k. Because IV is predictable, the attacker knows 
the value of the IV, denoted iv´, which will be used in his encryption request. Let p_guess 
represent the attacker’s “guessed” value of p. He calculates p´ and submits to the oracle:
 
P' := iv XOR iv' XOR p_guess.
 

The oracle performs encryption as follows and outputs c´:
 
c' := AES(k, iv' XOR p')
    = AES(k, iv' XOR (iv XOR iv' XOR p_guess))
    = AES(k, iv XOR p_guess).
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With c and c´ in hand, the attacker just needs a simple comparison. If c = c´, then  
p = p_guess. Otherwise, a new p_guess is chosen and p´ submitted. The attacker repeats 
his guess until c´ matches c. It may look an unscalable brute force effort. However, for many 
applications (for example, a social security number), the number of possible plaintext 
values is small and it is not infeasible to exhaust all possibilities. Using random IV thwarts 
this attack.

Note■■  F or the CTR mode, the same key and IV combination can only be used once.  
For the CBC mode, the IV must be unpredictable.

Before performing encryption or decryption, the AES key is first expanded using 
the Rijndael key schedule to generate “round keys” that are used in encryption and 
decryption. Most software libraries of AES provide a function for initializing and 
expanding the AES key into round keys. For encryption/decryption calls, the round keys 
are passed in, in lieu of the original AES key, to avoid repeating key expansion operations. 
However, this trick is not implemented by the security and management engine. Thanks 
to dedicated hardware, the key expansion is not a bottleneck for performance.

DES/3DES
In addition to AES, for backward compatibility, the kernel of the security and 
management engine also supports DES (data encryption standard),10 an older standard 
for encryption that was replaced by AES.

DES has a fixed block size of 64 bits, and key sizes of 56 (DES), 112 (two-key 3DES), 
and 168 (three-key 3DES) bits, respectively. 56-bit DES is considered insecure because 
the key size is too small, but 3DES is still being used by many devices in the field today. 
The security and management engine supports DES and 3DES in ECB, CBC, and CTR 
modes. They are all implemented by firmware.

Figure 3-5 illustrates the kernel API for symmetric key encryption/decryption.
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encryption/
decryption

plaintext/ciphertext

Application

ciphertext/plaintext

key

IV (if not ECB mode)

mode of operation

updated IV (if not ECB mode)

Figure 3-5.  Kernel AES/DES/3DES API
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Asymmetric-Key Encryption: RSA
Today, RSA11 is the most widely deployed asymmetric-key encryption scheme. RSA 
stands for the last names of Ron Rivest, Adi Shamir, and Leonard Adleman—the three 
cryptographers who first invented and published the algorithm back in 1977.

For symmetric-key cryptography like AES or DES/3DES, the encrypter and decrypter 
must both know the same key beforehand. If the encrypter and decrypter have no prior 
knowledge of each other but want to communicate securely, how do they agree on the key?

Consider a real-world scenario. When making the first purchase on Amazon using 
your new smartphone, how does the phone transmit your credit card number and order 
information securely to Amazon’s server so eavesdroppers on the open Internet cannot 
see? The solution is offered by asymmetric-key cryptography, where the encryption 
method uses one key, called a public key, and the decryption method uses another key, 
called a private key. A public key and a uniquely corresponding private key form a key 
pair, and they both belong to the decrypter.

The public key is not a secret. It is published and available to anyone who wishes to 
send encrypted messages to the decrypter. The private key is known to only the decrypter 
and it must be kept secret. Only the decrypter who knows the private key is able to 
decrypt a message encrypted with its public key. Hence, asymmetric-key cryptography is 
also known as public key cryptography.

During an online purchase, your smartphone first encrypts your credit card number 
with Amazon’s public key and then transmits the encrypted card number. Since only 
Amazon knows the private key, it is the only entity that can decrypt the message and 
retrieve your card number. Eavesdroppers on the network can’t decrypt the data.

In reality, what is encrypted using Amazon’s public key may not be your credit card 
number, but an AES key randomly generated by your smartphone. After the encrypted 
AES key is transmitted to and decrypted by Amazon, your phone and Amazon can use AES 
to protect the credit card number and other order information. But why bother to use 
AES if public key encryption works? The reasons are speed and power. Symmetric-key 
cipher is always much faster and less resource-consuming than asymmetric-key cipher. 
Therefore, the latter is often only used for encrypting symmetric keys for AES and HMAC, 
and not the bulk data. At a high level, the interactions between the client and the server 
are shown in Figure 3-6.

Client Server

ciphertext

server’s public key

ciphertext = encrypt_pubKey(data)

plaintext = decrypt_privKey(ciphertext)

Figure 3-6.  Asymmetric key encryption and decryption
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One may question how the client can be confident that the public key indeed 
belongs to the server it intends to connect with, and not a man-in-the-middle. The trust 
is established by the PKI (public key infrastructure) system rooted to a CA (certification 
authority) that is trusted by both the client and the server. The book Active Platform 
Management Demystified—Unleashing the Power of Intel vPro Technology (Intel Press, 
2009)12 elaborates details on PKI and how the AMT application running on the security 
and management engine implements PKI.

The security and management engine implements the following functions for RSA, 
compliant with the PKCS #1 standard issued by the RSA Laboratories:

Key pair generation•	

Key pair validation•	

Raw encryption and decryption•	

Encryption and decryption with PKCS #1 v1.5 padding•	

Encryption and decryption with OAEP padding•	

Key Pair Generation and Validation
The kernel’s key pair generation for k-bit RSA, where k is an even integer, exercises the 
following steps:

	 1.	 The first step of generating an RSA key pair is to generate two 
big prime integers of length k/2 bits each.

To generate a big prime number, first generate a random 
number and then run a primality test against the random 
number. The primality test ensures that the candidate has an 
acceptably high probability of being a prime. For k-bit RSA 
key pair generation, the kernel generates two distinct big 
random numbers. For each of the two numbers, set the most 
significant two bits to 1 and the least significant bit to 1. 
Setting the most significant two bits to 1 ensures that the 
product of the two numbers is exactly k bits and not fewer 
than k bits. Setting the least significant bit ensures the number 
is odd, because an even, big number cannot be prime.

	 2.	 Run a simple primality test on the two numbers (prime 
candidates), respectively.

The simple primality test works as follows. The smallest 
2048 primes are hardcoded in firmware. The security and 
management engine hardcodes only 2048 primes, but if space 
allows, then hardcoding more prime numbers would speed 
up the key generation further, because composite candidates 
can be eliminated sooner.
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Divide the candidate by every one of the 2048 primes, one 
after another, and save the 2048 remainders. If any of the 2048 
remainders is 0, then the candidate is composite. However, 
do not give up on the candidate yet. Instead, add 2 to every 
one of the 2048 remainders respectively, and divide the 2048 
updated remainders by the 2048 corresponding small primes. 
Keep adding 2 to the remainders until a certain numbers of 
additions have been performed, or all 2048 divisions result in 
nonzero remainders. If a certain number of additions of 2 have 
been made and still some of the 2048 remainders are 0, then 
eliminate this candidate and generate a new random number 
as a candidate.

	 3.	 Run a comprehensive primality test against the candidate.

The security and management engine uses the Miller-Rabin 
primality test.13 Notice that depending on the length of the 
prime candidate, the number of rounds of Miller-Rabin tests 
varies. For example, for a 1024-bit candidate, at least three 
rounds of Miller-Rabin tests must be run to ensure that the 
error rate (falsely identifying a composite to be a prime) is14 
less than 2–80. If the candidate is found a composite, then 
generate a new candidate.

	 4.	 After two probable prime numbers p and q are generated, 
calculate their product

 
          n = p * q
 

Note that n has k bits in it. n is called modulus.

	 5.	 Choose a value for the public exponent e. e must be smaller 
than (p-1)*(q-1) and coprime to (p-1)*(q-1); that is, the 
greatest common divisor of e and (p-1)*(q-1) must be 1.

The speed of the encryption operation is determined by e 
and the number of nonzero bits (this is also called Hamming 
weight) in the binary representation of e. Prime 65537 is 
a popular choice for e, as it has only two nonzero bits in 
its binary representation. 3 and 17 used to be popular 
choices but they are considered not strong enough by many 
applications today owing to published cryptanalysis.15

If you choose a prime such as 65537 as e, then divide 
(p-1)*(q-1) by e. If it is exactly divisible, then e and 
(p-1)*(q-1) are not coprime, and a new p or q must be 
generated.

	 6.	 Calculate d, the multiplicative inverse of e, such that
 
          d·e º 1 mod (p-1)*(q-1).
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d is a k-bit integer calculated using the extended Euclidean 
algorithm.

	 7.	 If the application requests, calculate the following private key 
components for the Chinese Remainder Theorem. These key 
components are all k/2-bit long. Using them in the decryption 
operation proves to be more efficiently than using the k-bit d.

 
          d_P := d mod (p-1)
          d_Q := d mod (q-1)
          q_inv := q-1 mod p
 

Among all of the preceding values, the public key consists of n and e. The private 
key consists of n, d, p, q, d_P, d_Q, and q_inv. NIST recommends using at least 2048-bit 
n, which provides equivalent security strength of 112 bits. The security and management 
engine supports RSA key sizes of up to 4096 bits for encryption and decryption. For key 
pair generation, the engine supports up to 2048 bits. Most applications running on the 
engine and in the mobile computing industry today use 2048-bit RSA.

The key pair generation is an expensive and lengthy operation. Generating a 2048-bit 
key pair takes an average of 30 seconds on the security and management engine. Most of 
the generation time is spent on searching for prime numbers p and q.

The simple primality test described in step 2—although not a standard step in the 
key generation process—is a very useful trick to expedite the prime number search. On 
the security and management engine, this step improves the search time for a 1024-bit 
prime by as much as 65%. The following illustrates its pseudo code.

Algorithm X-Y:  Preliminary Primality Test

Input: prime candidate
Output: if candidate may be a prime, updated candidate (if it may be a prime)
 
SmallestPrimes[NUM_OF_SMALL_PRIMES] = {/* hardcode smallest  
NUM_OF_SMALL_PRIMES primes here */}
Remainders[NUM_OF_SMALL_PRIMES] = {0}
 
delta = 0
for i from 0 to NUM_OF_SMALL_PRIMES-1
  remainders[i] = candidate % SmallestPrimes[i]
 
Loop:
for i from 0 to NUM_OF_SMALL_PRIMES-1
  If ((Remainders[i] + delta) % SmallestPrimes[i] == 0)
    delta = delta + 2
      If delta < MAX_DELTA /* upper limit of delta before giving up this 
candidate */}
        goto Loop
      Else
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        return COMPOSITE
 
candidate = candidate + delta
 
return MAY_BE_PRIME
 

The logic under Loop is based on the following theorem:

Theorem: If x = k*p+r, then x%p = r%p.
Proof: x%p = (k*p+r)%p = ((k*p)%p + r%p)%p = (0 + r%p)%p = r%p.

Taking advantage of this simple theorem, instead of the large candidate x, the prime 
search uses the small sum r of the remainder and delta in the modulus operation. This 
trick significantly reduces computation time.

Note■■  T o find a big prime number from a random number, always run the preliminary 
primality test (prime sieve) and adjust the random number, if possible, before running the 
Miller-Rabin test.

The key pair generation is a blocking call. Because it takes several seconds to return, 
under certain circumstances, applications may prefer to abort the key generation before 
its completion. The kernel API provides an optional callback and abortion capability. The 
application may pass in a pointer to a callback function. The kernel, while performing the 
key pair generation, will periodically call back and see whether the application wants to 
stop the generation. The callback option is especially useful when a power event, such as 
a shutdown, happens in the middle of a key pair generation, in which case the application 
must not block the power event and must abort the generation as soon as possible.

Some applications running on the security and management engine need a RSA key 
pair during service enrollment or provisioning that is initiated by an end user. A key pair 
will be generated during the enrollment or provisioning operation, and the user has to 
wait for a key pair generation to complete. Obviously, having a customer waiting for  
30 seconds or longer is not a user-friendly design.

To improve the user’s experience, every time the kernel boots, it voluntarily 
generates a certain number of 2048-bit RSA key pairs and stores in a cache in memory. 
When an application invokes key generation, a pregenerated key pair is returned 
immediately, and then the kernel generates a new key pair in a low-priority thread to fill 
the cache.

Note■■   Consider pregenerating RSA key pairs to improve the user’s experience.

The kernel’s RSA key generation API is shown in Figure 3-7. The figure shows the 
scenario where the key generation runs to completion. Figure 3-8 shows the scenario 
where the generation is aborted.
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Kernel
RSA keypair 
generation

Application

n, e, p, q, d, d_p, d_q, q_inv

key size k

callback function pointer

abort?

no

abort?

no

…...

Figure 3-7.  Kernel RSA key pair generation completion flow
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Figure 3-8.  Kernel RSA key pair generation abortion flow
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RSA keypair 

validation
Application

Valid or invalid

Key components

Figure 3-9.  Kernel RSA key pair validation API

The key pair validation tests whether p and q are probable prime numbers and 
verifies the relationships among the key components passed in by the application  
(see Figure 3-9).

Encryption and Decryption
For encryption, first represent the plaintext as a big number m such that 0 <= m < n, and 
then calculate ciphertext c as
 
c := me mod n
 
c must be smaller than n. For decryption, first check whether c is smaller than n. If so, 
recover plaintext by calculating
 
m := cd mod n
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It is obvious that the encryption, usually performed by a client such as a smartphone 
that has limited computational resources, is much faster than decryption, because e is a 
small integer, whereas d is a big integer as long as k bits.

For kernel’s RSA decryption function, if the caller passes in private key elements d_P, 
d_Q, and q_inv, then the kernel will use a more efficient way to calculate m from c:
 
m1 := cd_p mod p
m2 := cd_q mod q
h := q_inv·(m1 – m2) mod p
m := m2 + h·q
 

Using the Chinese Remainder Theorem, all modulo operations are with modulus  
p or q, which is half the size of modulus n, hence resulting in better performance.

The “raw” RSA encryption without any padding is vulnerable to several known attacks. 
For example, if m is so small that me < n, then c = me mod n = me and m can be easily 
calculated by taking the eth root of c. For mitigation, m should be padded with a carefully 
designed scheme so that the padded plaintext does not fall into ranges that are exposed 
to attacks. Because the plaintext message has to be padded before encryption, it must be 
somewhat smaller than k bits. PKCS and OAEP are the two best-known padding schemes. 
The security and management engine’s kernel supports these two padding schemes.

Figures 3-10 and 3-11 demonstrate the APIs for RSA encryption and decryption, 
respectively.

Kernel
RSA encryption

Application

c

padding scheme (or raw)

m

public key

Figure 3-10.  Kernel RSA Encryption API

Kernel
RSA decryption

Application

m

padding scheme (or raw)

c

private key

Figure 3-11.  Kernel RSA decryption API

Digital Signature
The digital signature is realized using public key cryptography, where the signer (the only 
entity that is able to generate the signature) signs a message with its secret private key and 
the verifier (anyone) verifies the signer’s signature with the signer’s public key.
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As seen earlier, plaintext and ciphertext, when treated as integers, in RSA encryption/
decryption must be smaller than n in value. However, there should not be such a length 
restriction on the message to be signed. Therefore, the hash function is used to convert 
a long message to its small-size digest. What is being signed is the digest instead of the 
message itself. The two properties of the hash function—collision-free and one-way—make 
sure that the message cannot be forged, and signing the digest is as good as signing the 
message.

RSA
The k-bit RSA signature generation follows these steps:

	 1.	 Calculate h = hash(m).

	 2.	 Apply padding scheme to h and result in k-bit value, em.

	 3.	 Calculate signature s = emd mod n or use the Chinese 
Remainder Theorem. This is a RSA raw decryption operation, 
though some literatures call it “private key encryption.”

The Kernel API for RSA signature generation is depicted in Figure 3-12.

Kernel
RSA signature 

generation
Application

signature

padding scheme

message

private key

hash function

Figure 3-12.  Kernel RSA signature generation API

RSA signature verification follows the following steps:

	 1.	 Calculate em' = se mod n. This is a RSA raw encryption 
operation, though some literatures call it “public key 
decryption.”

	 2.	 Examine whether em' is formatted correctly according to the 
padding scheme. If the formatting of em' is wrong, then reject 
the signature.

	 3.	 Extract the message digest portion h' from em' according to 
the padding scheme.

	 4.	 If h'== hash(m), then accept the signature; otherwise, reject 
the signature.

The Kernel API for RSA signature verification is depicted in Figure 3-13.



Chapter 3 ■ Building Blocks of the Security and Management Engine

74

P1

y

x

P1+P2

P2

Figure 3-14.  Elliptic curve and point addition
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Figure 3-13.  Kernel RSA signature verification API

The signing uses a private key, and the operation is slower. Signing is usually 
performed by a server with strong computational resources. The signature verification 
uses a public key and is usually performed by a client such as a mobile device.

The most popular signature-padding schemes are PKCS#1 and SSA-PSS. The kernel 
of the security and management engine supports both schemes.

ECDSA
The digital signature scheme based on elliptic curve cryptography (ECDSA) is becoming 
more and more popular thanks to its high security strength and smaller key sizes 
compared to RSA. ECDSA is especially suitable for mobile embedded devices where the 
following are true:

Storage and memory space is limited•	

The entire key data may not be available at once•	

An elliptic curve has the following definition:
 
y2 = x3 + ax + b
 
where a and b are predefined constants. Conceptually, an elliptic curve looks like 
Figure 3-14.
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The ECDSA curves supported by the security and management engine are the 
curves defined for prime finite fields (“P curves”) in NIST’s DSS standard.16 Within a finite 
field, all coordinates are smaller than modulo p, where p is a large prime defined in the 
standard. The exact shape of the curve is determined by domain parameters, including 
a and b. A point on the curve is denoted as (x, y), where x and y are in [1, p-1] (that is, 
this is on a finite field). A special point called “base point” G, also a domain parameter, is 
defined for a given elliptic curve.

The point addition is a basic operation defined on elliptic curve. Figure 3-14 
demonstrates point addition of two points, P1 and P2. To calculate the sum of two points 
P1+P2, first connect them with a straight line and then extend the line to meet the elliptic 
curve at the third node. The opposite point to the x axis of the third node is the sum of P1 
and P2.

To add a point P to itself, draw a tangent line at the point and let the line meet the curve 
at the second node. Then the opposite to the x axis of the second node is the double of P.

Multiplication on an elliptic curve is realized by repeated additions. If a point P is 
added to itself k–1 times, then it becomes a scalar multiplication: an integer k multiplied 
by a point, denoted as Q = k * P. Notice that Q is also a point on the curve.

Note■■  F or a big integer k, it is easy to calculate Q=k*P from k and P, but it is very  
difficult to derive k from Q and P.

Key Pair Generation and Validation
The mathematical foundation of ECC as an asymmetric key cryptography is the difficult 
problem of deriving k from Q and P in Q = k*P. The ECDSA key pair is defined by taking 
advantage of this important property. The private key PrivKey is a big number, between  
1 and n-1 inclusive.i The private key is generated randomly. The corresponding public key 
is a point PubKey on the curve such that
 
PubKey = PrivKey * G
 

Obviously, the key pair generation of ECDSA is much faster than that of RSA, as the 
private key is just a random big number. On the other hand, the private keys p and q of 
RSA must be prime numbers, which takes significantly more resources to obtain. On the 
security and management engine, generating a 256-bit ECDSA key pair takes about  
10 milliseconds, which is imperceptible from an end user’s perspective. The engine does 
not implement a key pair cache for ECDSA.

A major advantage of ECDSA over RSA signature is its smaller key size (hence 
smaller storage space required) with strong security protection. The security strength of 

in is the order of the elliptic curve. The order of a curve is a prime integer n such that n * G = O, 
where O represents the point at infinity.
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ECDSA is half of the size of the private key. So a 256-bit private key would provide 128-bit 
equivalent security as symmetric key cryptography. For comparison, the 2048-bit RSA 
provides only 112-bit of security.

This chapter does not describe the complete steps of ECDSA signature generation 
and verification. Instead, critical elliptic curve point operations used in ECDSA are 
explained, and optimization strategies for them are discussed in detail.

Scalar Multiplication
The scalar multiplication is the most intensive step in ECDSA signature generation and 
verification. The add-and-double algorithm is used to calculate k*P.

	 1.	 Represent k in its binary form with digits 0 and 1.

	 2.	 Start from result of “0” and scan the binary representation of k 
from left (most significant bit) to right (least significant bit).

For a bit that is 0, double the result. Move to the next bit.•	

For a bit that is 1, add point •	 P to the result and double the 
updated result. Move to the next bit.

	 3.	 The resulting point after processing the rightmost bit is the 
final result.

Table 3-1 shows the computation of 198*P using the add-and-double algorithm. The 
first row in the table shows the binary representation of the scalar (198). The second row 
shows the result of the doubling operation from the row immediately to its left. The third 
row shows the result of the addition operation if the first row shows 1 in the column.

Table 3-1.  Calculation of 198P Using Add-and-Double Algorithm

k=198 1 1 0 0 0 1 1 0

Double 0 2*P=2P 2*3P=6P 2*6P=12P 2*12P=24P 2*24P=48P 2*49P=98P 2*99P=198P

Add P P 2P+P=3P 6P 12P 24P 48P+P=49P 98P+P=99P

It is easy to see from the calculation that the scalar multiplication does not require 
the knowledge of the entire k before calculation can begin. Calculation can start as 
soon as some bits of k are available, and continues simultaneously while the rest of k is 
received. The portion of k that has been processed can be deleted from memory. The 
parallel processing can save substantial time for mobile devices. The RSA signature 
scheme does not have such flexibility.

Let the bit length of k be m and the number of 1s in the binary representation of k be w. 
The scalar multiplication of k*P requires m–1 point doublings and w-1 point additions. 
Note that doubling is in fact addition. On average w = 0.5*m, Therefore,
 
m + w -2 = 1.5*m -2
 
point additions are required for calculating k*P.
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Window Method
To reduce the number of point additions and speed up ECDSA arithmetic, one may apply 
a precomputation trick, namely, the “window method,” to the scalar multiplication. 
Instead of treating the binary representation of k as an m-bit string, the window method 
treats it as ceiling(m/t)ii “windows,” where each window is made up of t consecutive bits 
(i.e., the width of a window is t bits).

	 1.	 Split the binary representation of k into windows of t bits.  
If m is not divisible by t, then pad (t-(m mod t)) zeros to the 
left of the most significant bit of k, before splitting the binary 
representation of k into windows.

	 2.	 Precompute 2*P, 3*P, …, (2t-1)*P and store results in 
memory. The number of required precomputations is (2t-2).

	 3.	 Start from result of “0” and scan binary representation of k 
from left to right.

For a window that is 0, calculate •	 (2t)*P' where P' is the 
result of previous column. Move to the next window.

For a window that has value of •	 v, calculate (2t)*(v*P + P'). 
Move to the next window.

	 4.	 The resultant point after processing the rightmost column is 
the final result.

For example, the binary expression 11000110b of integer 198 can be split into four 
windows, with a window size of 2:
 
[11][00][01][10]
 

Here, window value 11b corresponds to 3P. Window value 10b corresponds to 2P. 
They must be precomputed before the scalar multiplication starts. Table 3-2 explains the 
calculation of 198P with windows size 2.

iiceiling(x) returns the smallest integer equal to or greater than the fraction x.

Table 3-2.  Calculation of 198P Using Window Method with Window Size 2

k=198 11 00 01 10

Quadrupling 0 4*3P=12P 4*12P=48P 4*49P=196P

Add P 48P+P=49P

Add 2P 196P+2P=198P

Add 3P 3P
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Table 3-3.  Numbers of Addition Operations for m=256

t 1 2 3 4 5 6 7 8

A 0 2 6 14 30 62 126 254

B 127 95 74 59 49 41 33 31

C 255 254 253 252 251 250 249 248

A+B+C 382 351 333 325 330 353 411 533

Savings 0% 8.1% 12.8% 14.9% 13.6% 7.6% -7.6% -39.5%

For window size of t = 2, a quadrupling (multiplying by 4) is performed when moving 
to the next column. A quadrupling is equivalent to 2 point additions (first calculate  
2*P' = P'+P', then 4*P' = 2*P'+2*P'). In general, for window size of t bits, t additions 
are required when moving to the next column.

For window size of t = 2, there are 2t possible values of a window. For windows with 
a nonzero value, an addition operation is required. On average, (2t-1)/2t of all windows 
are nonzero.

To ramp up, using the window method to calculate k*P, there are three steps that 
need additions:

Precomputation•	

•	 A = 2t-2

Additions for processing a column•	

•	 B = ceiling((2t-1)/2t * ceiling(m/t)-1)

Additions when moving to the next column•	

•	 C = (ceiling(m/t)-1) * t

The total number of additions is A+B+C.
Table 3-3 compares total numbers of additions with different choices of t for m = 256 

(256-bit is one of the most commonly used ECDSA key sizes).

From the comparison, it is obvious that for m = 256, the optimal window size 
is 4 (emphasized in bold in the table). The number of precomputations increases 
exponentially with t. When the window is wider than 4 bits, the precomputation cost 
starts to outweigh the benefit of saving of additions during the scalar multiplication.

Dual Scalar Multiplication
Besides the “single” scalar multiplication Q = k*P, the ECDSA signature verification also 
uses a “dual” scalar multiplication:
 
Q = k1 * P1 + k2 * P2
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The dual scalar multiplication can be implemented by first performing two 
independent single scalar multiplications and then a point addition. However, this is not 
as fast as utilizing a smaller trick with a trivial precomputation cost of P1+P2.

Table 3-4 shows the computation of 197*P1 + 172*P2 using the precomputation 
trick.

Table 3-4.  Calculation of 197*P1 + 172*P2 Using Precomputation Trick

k1=197 1 1 0 0 0 1 0 1

k2=172 1 0 1 0 1 1 0 0

Double 0 2P1+2P2 6P1+4P2 12P1+10P2 24P1+20P2 48P1+42P2 98P1+86P2 196P1+172P2

Add P1 3P1+2P2 197P1+172P2

Add P2 6P1+5P2 24P1+21P2

Add 
P1+P2

P1+P2 49P1+43P2

For two scalars k1 and k2, there are four possibilities of their bit value combination, 
{0, 0}, {1, 0}, {0, 1}, and {1, 1}, corresponding to points 0, P1, P2, and P1+P2, respectively. 
P1 and P2 are already available; P1+P2 must be precomputed.

For a column that is {0, 0}, double the result. Move to the next bit.•	

For a column that is {1, 0}, add •	 P1 to the result and double the 
updated result. Move to the next bit.

For a column that is {0, 1}, add •	 P2 to the result and double the 
updated result. Move to the next bit.

For a column that is {1, 1}, add •	 P1+P2 to the result and double the 
updated result. Move to the next bit.

The resultant point after processing the rightmost column is the final result.
Let the bit length of k1 be m1 and that of k2 be m2; let the Hamming weight of k1 

be w1 and that of k2 be w2. Using the traditional add-and-double algorithm without 
precomputing P1+P2, calculating k1*P1+k2*P2 requires
 
(m1-1 + m2-1) + (w1-1 + w2-1) + 1 = m1 + m2 + w1 + w2-3
 
point additions. On average, w1 = 0.5*m1 and w2 = 0.5*m2. In the ECDSA signature 
verification, m1 = m2. Let m1 = m2 = m. The total number of additions becomes
 
m1 + m2 + 0.5*m1 + 0.5*m2 - 3 = 1.5 (m1 + m2) - 3
                              = 3*m - 3
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Using the method introduced in Table 3-4, one has to perform m-1 doublings and 
on average 0.75*m - 1 additionsiii during the scalar multiplication. Beforehand, one 
addition is needed for precomputing P1+P2. Treating doubling as addition, the total 
number of required additions is
 
(m - 1) + (0.75*m - 1) + 1 = 1.75*m - 1
 

When m is large, the trick saves approximately
 
(3 - 1.75) / 3 * 100% = 41.7%
 
of addition operations, with a tiny tradeoff of storing point P1+P2 in memory. Thus this is 
a very useful trick to speed up ECDSA on embedded systems.

The window method can also be applied to the dual scalar multiplication, in 
which case a window will have a height of 2 for k1 and k2. However, the amount of 
precomputations and memory consumption increases considerably with the increase of 
the window size.

Hardware Acceleration
To speed up RSA and ECDSA calls, the security and management engine has 
implemented hardware logic for the following big number arithmetic:

Multiplication•	

Addition•	

Subtraction•	

Modulo•	

Exponentiation and modulo (using Montgomery multiplier)•	

Other Cryptography Functions
Besides the functions described earlier, the kernel supports a number of other 
algorithms:

ECDH (elliptic curve Diffie-Hellman) key agreement•	

AES-CMAC message authentication•	

RC4 stream cipher•	

DSA (digital signature algorithm)•	

iiiThe joint Hamming weight of k1 and k2 is defined as the number of nonzero columns of the binary 
representations of k1 and k2. A column is nonzero if at least one of the bits of k1 and k2 is nonzero 
for the column. There are four possible combinations of a column, {0, 0}, {0, 1}, {1, 0}, and {1, 1}, 
and they appear with the same probability, hence on average, 75% of all columns are nonzero 
columns and require addition.
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The design principle of the kernel is to support any cryptography algorithms that 
are required by at least one application. Depending on the data throughput expectation 
of the application and available gate areas in hardware, the requested cipher may be 
implemented either wholly in firmware or partially in hardware.

To save valuable resources in the embedded system, cryptography algorithms that 
are not used by any applications are not included in the system.

Secure Storage
In addition to cryptography, the kernel of the security and management engine supports 
other infrastructural functionalities that are needed by applications.

A partition of the SPI flash chip is reserved for storing the security and management 
engine’s nonvolatile data. As the flash size is very limited, the files cannot be too large. 
Generally speaking, the storage is intended for keys and credentials, such as device 
private keys, AMT passwords, and so on. It is not designed for storing bulk data such as 
video frames or network traffic.

The kernel’s storage manager lets applications choose what protections are required 
by individual files:

•	 Encryption: 128-bit or 256-bit AES, in CTR mode

•	 Integrity: HMAC-SHA-1 or HMAC-SHA-256

•	 Anti-replay: To mitigate a physical attack of replacing the file with 
a previous version of the file

•	 No protection: The file will be stored in plaintext without integrity 
or anti-replay protection

During boot, the kernel derives a 128-bit AES key and a 256-bit AES key used for 
file encryption and decryption. The kernel also derives an HMAC key used for HMAC-
SHA-1 and HMAC-SHA-256. These keys are referred to as storage keys. The storage keys 
are derived from security fuses that are random and unique for each instance of the part 
and burned into the security fuse block during manufacturing. Because the storage keys 
are different on every part, even if a file is copied from one part to another, it will fail the 
HMAC integrity check and will not be accepted by the firmware.

Although all files on the security and management engine use the same storage 
keys for protection, the storage manager in the kernel enforces access isolation so that a 
process is not able to access files that belong to other processes. The owning process of 
a file can also configure its file properties so the file can be shared with other specified 
processes with read and/or write privileges.
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Debugging
For engineering firmwareiv running on preproduction parts,v developers use debuggers 
that allow halting the processor, stepping through source code, and reviewing variable 
values and memory contents.

On production parts, however, the debug port is disabled by a fuse and only 
production-signed firmware images can execute. How to debug an application on 
production parts with signed firmware? The security and management engine offers 
two ways—debug messaging and special production-signed firmware—to facilitate 
debugging on production parts.

Debug Messaging
The kernel exposes a function that lets a calling application send messages through the 
engine’s LAN interface to a debug console. Applications can call this kernel function at 
interesting spots and milestones. This is similar to debugging using printf in software 
development. Applications must be careful not to send out sensitive information.  
A timestamp will be appended by the kernel for all messages.

Special Production-Signed Firmware Based on  
Unique Part ID
Production-signed firmware has the capability of overwriting the “debug port disabled” 
fuse and enabling debug port on production parts. Of course, generic released firmware 
that is production-signed must never open the debug port—otherwise, it would be a 
critical vulnerability.

To enable engineers to debug on production parts, Intel may sign special firmware 
with a production RSA key. The special firmware

Boots normally when running on the specific production part on •	
which the debugging will be performed.

Halts when running on all other production parts.•	

Enables the debug port.•	

Has a special version number such that attempt of updating from •	
a released firmware to this special firmware will fail. That is, the 
debug engineer must physically flash this special firmware to the 
flash chip on the specific part.

ivDebug-signed firmware is signed with a debug RSA key, not one of the production RSA keys.
vA preproduction part has the debug port enabled and allows debug-signed firmware to run.  
A production part has the debug port disabled by fuse and allows only production-signed 
firmware to run.
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The security fuses that are random and unique for each part are used to derive not 
only the storage keys but also a 128-bit value used as the unique part ID. Although the ID 
is unique, it does not pose privacy concerns because the part itself is the only entity that 
knows the value.

Obviously, the special firmware must hardcode the unique ID of the specific 
production part. During boot, the special firmware reads the unique ID from the part it 
is running on and compares with the hardcoded ID. If they match, it continues to boot 
and enables the debug port; otherwise, it is considered an attack. The firmware clears 
memory and halts the processor immediately.

But this method requires the knowledge of the unique ID of the part before the 
special firmware can be created. It means the released firmware must have an interface 
for outputting the unique ID to the host. Does this interface introduce privacy concerns? 
To avoid raising such concerns, the security and management engine invents a trick 
of randomization for the unique ID. With this trick, the value sent to the host is never 
the real unique ID, but a saltedvi randomization of it. The host receives a different 
randomized ID every time it retrieves the ID from the released firmware, even if it is the 
same hardware part.

Algorithm 3-1 explains the procedure of generating a salted part ID. The algorithm is 
implemented on released firmware.

Algorithm 3-1.  Salted Part ID Generation on Released Firmware

Input: unique ID uid (128 bits)
Output: salted ID sid (128 bits)
 
random_string = get_random(32 bits);
hash = SHA-256(uid || random_string);
sid = leftmost 96 bits of hash || random string;
 

The logic in the special production-signed firmware for checking the salted ID is 
detailed in Algorithm 3-2.

Algorithm 3-2.  Checking Part ID on Special Production-Signed Firmware

Input: unique ID uid (128 bits), salted ID sid (128 bits)
Output: matched or mismatched
 
random_string = right most 32 bits of sid;
hash = SHA-256(uid || random_string);
if (left most 96 bits of hash == left most 96 bits of sid)
  return matched;
else
  return mismatched;
 

viA salt is random data that is used as an additional input to a hash function.
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In both algorithms, SHA-256 can be replaced by another one-way function such 
as HMAC, in which case uid can be used as a message and random_string can be used 
as the HMAC key. The algorithms are meant to demonstrate the idea, and the sizes of 
variables can be changed depending on platform.

After the debug engineer retrieves the salted part ID from his production part, he 
notifies the build engineer of the salted ID. The build engineer then hardcodes the salted 
ID, creates the special firmware, and signs it with a production RSA key. The signed 
firmware image is sent to the debug engineer, who then flashes to his part and launches 
the debugger, just like on a preproduction part.

It is worth noting that, by the security policy, a production part contains top secrets 
that even debug engineers are not supposed to access—for example, an EPID (Enhanced 
Privacy Identification, see Chapter 5 of this book for details) private key. The special 
firmware erases all such secrets from memory before enabling the debug port. Debugging 
critical features such as EPID must be done with test keys and not real production keys.

Once debugging is completed, the part used for debug should be destroyed. The 
special production-signed firmware should be destroyed also.

Secure Timer
There is a protected real-time clock in the engine. Applications can use the clock through 
two kernel APIs:

•	 Start timer: An application calls this function to initialize/reset 
its timer. A new timer is created and it immediately starts to run. 
A handle will be returned to the caller for identifying the timer in 
the future.

•	 Get current timer value: An application calls this function with a 
timer handle to retrieve the current value of the specific timer. 
The current value shows the number of seconds that have elapsed 
since the start timer function was called.

Notice that the secure timer in the kernel shows time that has elapsed, but does not 
provide current date/time information. This is because the kernel has no secure way of 
receiving the date/time from a time server outside of the embedded system.

Applications are responsible for getting current UTC (Universal Time Coordinated) 
time from a trusted external time source. For example, EPID clients use X.509 certificates 
for authentication and key establishment. The EPID manager firmware must validate the 
client’s certificate before serving the client. To make sure the certificate has not expired, 
the firmware must always know the current date/time.

To get the current date/time information, the EPID manager requests a real-time 
OCSP (Online Certificate Status Protocol) response from a trusted OCSP server, which 
was endorsed by Intel. The response contains the current date/time. The EPID manager 
saves the date/time (baseline) in a file in the kernel’s secure storage and calls the kernel’s 
Start timer function that starts the timer. Later, when the EPID manager is verifying the 
validity period of a certificate, it calls the Get current timer value function and calculates 
the current date/time by adding the kernel’s returned value to the baseline. The EPID 
manager requests a new real-time OCSP response every 30 days to calibrate its timer.
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Host-Embedded Communication Interface
Almost all applications on the security and management engine need to communicate 
with software programs running on the host. The link between the host and the engine is 
called a host-embedded communication interface, or HECI.

There is a HECI driver that runs in ring 0 of the host operating system and manages 
the HECI device on the PCI bus. Individual software programs must call the HECI driver 
to send messages to and receive responses from the embedded engine. On the embedded 
side, the kernel implements a HECI driver that is the counterpart of the HECI driver 
on the host. It manages HECI connections for all embedded applications. The host 
application and its corresponding embedded application must agree on the same unique 
HECI client ID beforehand. The client IDs are hardcoded in both software and firmware. 
The host application and the embedded application must also agree on structures of 
predefined messages so that the sender and the recipient can understand each other. 
Incorrectly formatted messages should be rejected gracefully and should not cause 
crashes.

The HECI interface per se is not secured. No encryption is performed on messages 
in transit by the HECI drivers. If required, the applications must apply appropriate 
protection, such as an encryption and integrity check, to the messages before 
transmitting them.

Due to bandwidth considerations, the HECI channel is designed to carry short and 
simple data, rather than bulk data such as network traffic or video and audio frames. The 
maximum size of a HECI message is configurable per product, depending on the worst-case 
usage model, and ranges between 1KB and 12KB. Firmware applications usually use 
HECI to receive control commands from the host and to send back status information 
to the host. For example, an EPID client sends a HECI message to the EPID manager 
firmware to establish a secure session; the firmware then responds with its ephemeral 
Diffie-Hellman public key.

Figure 3-15 shows the HECI message data flow among software applications, the 
host HECI driver, the embedded HECI driver, and embedded applications.
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Figure 3-15.  HECI architecture overview

Reception of messages is signaled through system interrupts. The embedded HECI 
driver is a dispatcher that delivers messages received from the host to the right recipient 
applications. The separation among different HECI clients is realized by the task isolation 
mechanism described in Chapter 4.

Direct Memory Access to Host Memory
The security and management engine is equipped with direct memory access (DMA) 
devices that allow firmware to access (read and/or write) the host’s memory space by 
referencing its physical addresses. The kernel exposes an API for select applications to 
perform DMA operations between memory of the host and the embedded system.

Applications may use DMA to exchange large amounts of runtime data with the host. 
For example, AMT network traffic, video and audio frames, and so on. Such data is too 
large and too slow to transmit over the HECI interface.

Although DMA is certainly a convenient way to transmit data between the host and 
the embedded system, it grants the embedded engine with arguably dangerous privileges 
and creates security concerns. Vulnerability in the engine, if found by hackers, may be 
exploited to attack the host’s memory.

At the Black Hat conference in 2009, Alexander Tereshkin and Rafal Wojtczuk 
demonstrated an attack that exploited a flaw of the management engine.17 The attack 
manages to read and write arbitrary host memory, with certain exceptions, through the 
embedded DMA engine from a root kit. See Chapter 4 for more descriptions of the attack.
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Although the design flaw exploited by the attack is not in the DMA component, the 
DMA engine is a key factor that makes the attack possible. To minimize the abuse of 
DMA, the firmware architecture should apply tighter control and exercise the security 
design principle of least privilege. Today, the security and management engine enforces 
stringent restrictions for applications accessing the host memory:

The kernel’s DMA API is only open to applications that •	
have justifiable need to access host memory. The white list 
of applications that are permitted to DMA with the host is 
hardcoded in firmware and cannot be changed at runtime.

For those allowed applications, the kernel enforces minimum •	
privileges (read only from host, write only to host, or read and 
write). That is, an application that only needs read access is 
forbidden from writing to host memory.

A small and isolated component in the kernel is responsible •	
for determining whether DMA access requested by the calling 
application is legitimate, and if so, the range of host memory 
addresses to be accessed by the application. During development 
and validation, very thorough and comprehensive review and 
testing is performed on this component in the attempt to make it 
a bug-free component.
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Chapter 4

The Engine: Safeguarding 
Itself before Safeguarding 
Others

To be a blacksmith, you must be tough yourself.

—Old Chinese Proverb

Alexander Tereshkin and Rafal Wojtczuk, from the Invisible Things Labs of Poland, 
introduced the concept of “Ring -3 rootkit” at the 2009 Black Hat conference in Las Vegas.1  
They presented an attack against host memory through a rootkit installed on Intel’s 
management engine. Audiences, many hearing about the management engine for the first 
time, were impressed by the sophisticated attack. People asked: If the embedded system 
itself is buggy, how could users trust it to safeguard users’ valuable assets?

The security and management engine is a small computer, with its own processor,i  
memory, and nonvolatile storage. It has the capability of performing certain tasks that do 
not require high bandwidth or data throughput. It acts as a helpful assistant to the main 
operating system, to carry security sensitive operations that are too risky to be executed 
on the more exposed main processing environment. In addition to security, the engine 
also enables platform manageability features and capabilities, such as AMT (Active 
Management Technology; see Chapter 2).

Due to the nature of the engine, in order to perform its assigned tasks, the engine 
has to communicate with the host operating system and the CPU, and access the host 
memory. For certain cases, the engine has even more privileges than ring 0 software.

As such, the engine itself becomes a possible security backdoor and an interesting 
target of hackers. Sophisticated attacks may be able to exploit the engine’s vulnerabilities, 
if they exist, and leverage its wide range of privileges to attack against the host system.

iIn this chapter, processor refers to the engine’s processing unit.  The system’s main processor is 
referred to as a CPU (central processing unit).
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Therefore, making it strong and robust against attacks is the fundamental goal when 
building the engine. But how is the goal achieved? This chapter reveals the techniques 
deployed to safeguard the security and management engine from attacks. Note that 
descriptions of techniques in this chapter are based on the latest engine release for 2014. 
Security is a progressive effort for the engine. Some of the latest safeguarding features 
may not be available on older versions of the engine.

The security and management engine is equipped with powerful privileges, which 
are necessary for the engine to perform defined security functionalities. The embedded 
engine is not restricted by security measures enforced by the user’s operating system, 
Windows, Linux, or Android. The engine is able to access virtually the entire host 
memory space with the exception of certain system-reserved regions. The engine can 
also communicate with the CPU of the platform and instruct the CPU to perform specific 
operations. For power management, the engine has the capability to instantly power 
down the entire platform.

However, the security and management engine is not a black box to the host.  The 
engine reports its status at runtime to the host via a register that is read only by ring 0 
drivers of the host operating system.

Access to Host Memory
Recall that the HECI (host-embedded communication interface) introduced in Chapter 
3 is a communication channel between the engine and the host. However, it suffers from 
narrow bandwidth—only a small amount of data can be transmitted per transaction. 
Due to such restrictions, HECI is commonly used for delivering control and management 
commands, but not bulk data.

Many applications on the engine have the need to exchange large amounts of data 
between the engine and its software counterparts running on the host operating system. 
For example, for content protection usage, the engine must first copy encrypted video 
and audio frames from the host to the embedded memory, and then perform decryption. 
A movie can have hundreds of thousands of frames, and they must be processed at high 
speed to ensure smoothness of the playback. Another example: the wireless LAN (WLAN) 
embedded application must copy network traffic data to the host memory and send it 
through the WLAN adapter.

To support such uses, the backbone of the engine contains dedicated DMA (direct 
memory access) hardware that copies data between the host memory and the embedded 
memory. The engine’s firmware kernel is the only entity that manages DMA operations 
between the host and the engine through the DMA devices. Embedded applications call 
a kernel API (Application Programming Interface) to request DMA to and from the host 
memory. Host memory is referenced by its physical address.

Obviously, reading and writing arbitrary host memory is a superior privilege that, 
if abused, can result in serious security consequences. The attack against the engine 
presented by Alexander Tereshkin and Rafal Wojtczuk exploited a buffer overflow bug in 
the BIOS2 and a critical design flaw in the engine, and managed to turn the engine into a 
rootkit that can write to arbitrary host memory.

To respond to the attack, in addition to fixing the BIOS’ buffer overflow bug 
and correcting the engine’s design flaw, several hardening measures have also been 
implemented on the engine.
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•	 Small DMA driver: Have a small “privileged” component, named 
“DMA driver,” in the firmware kernel manage the DMA devices. 
The kernel is logically isolated from other firmware modules. The 
kernel is subject to more stringent code review and validation to 
ensure it is free of bugs.

•	 Restrictive access control: The DMA access is not granted to 
all firmware applications.  An application must show justified 
reasons to invoke the DMA engine. The list of applications that 
are allowed DMA access is predefined and hardcoded in the DMA 
driver. At runtime, the DMA driver identifies the caller and makes 
sure it is on the white list, before fulfilling the request.

•	 Restrictive memory range control: For a firmware application that 
is allowed DMA access, the logic for determining host memory 
ranges to be accessed must be a separate component that is 
logically isolated from the rest of the application. Just like the 
DMA driver, such components are subject to more stringent code 
review and testing to ensure they are free of bugs.

•	 Integrity protection on “borrowed” memory: The firmware reserves 
a portion of DRAM (dynamic random-access memory) and uses 
it as secondary memory at runtime.  The “borrowed” memory is 
protected for integrity and confidentiality against attacks from  
the host.

•	 Blocked access to certain system memory: The engine’s DMA 
devices are not allowed to read or write certain system 
memory; for example, the memory regions reserved for VT-d2 
(Virtualization Technology for Directed I/O) and SMM3 (System 
Management Mode).

Communication with the CPU
Some firmware applications running on the security and management engine coordinate 
with the CPU to perform certain functionalities that involve both the engine and the CPU.

On SoC (Systems-on-Chip) systems, the data between the embedded engine and 
the CPU is transmitted over the Intel on-chip system fabric (IOSF). The engine’s firmware 
was designed based on the presumption that IOSF is insecure; that is, third parties may 
eavesdrop the data travelled on IOSF. Therefore, no secrets or keys may be sent in the 
clear between the engine and the CPU. Secrets are always encrypted before transmission.

On big-core systems, the data between the engine and the CPU is transmitted over 
the DMI (Direct Media Interface) link.  Similar to the case of IOSF, the DMI link is not 
trusted.

Like the DMA driver, there is a privileged “IOSF driver” and “DMI driver” in the 
engine’s kernel that centrally manages access to the CPU. Applications that are allowed to 
access to the CPU are predefined, and such privilege is granted on a “need to have” basis.
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Triggering Power Flow
The engine’s power management unit is able to trigger power state transitions for the 
engine and the host. Some applications running on the engine perform power transitions 
at defined scenarios. For example, anti-theftii must unconditionally shut down the 
platform without notifying the host or asking for the user’s consent when it finds the 
system in a stolen state.

Another usage model of power transition is when an attack is detected. The engine 
may instantly shut down the platform to terminate the attack and prevent secrets leakage.

Security Requirements
Setting requirements is the first step for the product architecture and design. For an 
embedded system such as the security and management engine, security requirements 
are as important as, or even more important than, functional requirements.

At a high level, the engine is made up of a kernel and multiple applications running 
on top of the kernel. This section discusses general security requirements that must 
be followed by the kernel and all applications. In addition to these requirements, 
individual modules should define their own security requirements. For example, a basic 
requirement for the content protection application is never to expose its device private 
key or clear premium content to the host.

General security requirements used by the NIST’s Common Vulnerability Scoring 
System5 (CVSS) include:

Confidentiality•	

Integrity•	

Availability•	

In addition, there is a basic guideline for realizing security: Never rely on security 
through obscurity.

When designing security hardening features for the engine, it is always assumed 
that all firmware source code and internal architecture documentation may be obtained 
by attackers. The engine’s security design principle is to harden the product by applying 
proven cryptography and security primitives, rather than rely on hiding secrets in the 
code or documents.

Confidentiality
The security and management engine treats code segments and noncode segments 
differently when applying confidentiality protections. The code segment, also known as 
a text segment, is read-only and contains executable instructions. Noncode segments 
include data, heap, bss, stack, and so on. In this chapter, noncode segments are referred 
to as data segments for the sake of simplicity.

iiAnti-theft is an Intel technology for protecting data on mobile devices from being stolen. Intel has 
announced the termination of the service by the end of January 2015.
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The engine processes many different secrets of high value in its data segment. 
Examples include:

EPID (enhanced private identification) private key (see Chapter 5 •	
for details)

TPM (trusted platform module) endorsement key (see Chapter 7 •	
for details)

Secret data must be kept private, at runtime and at rest. The engine has dedicated 
internal memory (static random-access memory or SRAM) as level-2 cache for storing 
runtime data and processor instructions. The memory is not accessible from the outside 
world.

As the internal SRAM is expensive and limited, the engine also “borrows” the 
system DRAM as level-3 cache and uses it to temporarily store memory pages that are 
not recently accessed by the processor. The DRAM is considered insecure. All data pages 
swapped to the DRAM, whether they contain secrets or not, are encrypted with a 128-bit 
AES-CBC key.

To provide confidentiality protection for secrets at rest, during manufacturing, each 
instance of the embedded engine is installed with unique security fuses. The kernel 
derives a 128-bit AES key at every boot. The key is used to encrypt nonvolatile data before 
the data is stored on the SPI (Serial Peripheral Interface) flash.

For applications that interact with the outside world (software programs running 
on the host, CPU, network, and so on), the communication channels are treated as 
open channels that malware can read and alter. Therefore, secrets must be protected by 
appropriate encryption algorithms or protocols, such as TLS6 (Transport Layer Security). 
Individual applications are responsible for the protection.

What about the code segment? Due to major performance costs of encrypting code, 
the security and management engine does not protect confidentiality of its compiled 
binary image. By design, the firmware binary should not contain secrets, and hence it is 
not encrypted or obfuscated in any form. Note that lossless compression may be applied 
to the code.

The firmware binary, in its compression form, is stored on SPI flash in cleartext. At 
runtime, the code segment is not encrypted when it is paged out to DRAM.

Admittedly, advanced hackers have successfully reverse-engineered and 
disassembled the engine’s firmware binary. However, knowledge of source code is not 
deemed a harmful threat, because no secrets or keys are ever hardcoded in the code, and 
the architecture and robustness of the engine does not rely on security through obscurity.

Integrity
The integrity protection makes sure that the target being protected has not been altered 
unexpectedly due to corruptions or attacks. Several algorithms are common choices for 
integrity assurance.
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•	 Digital signature, such as RSA and ECDSA: The owner of the 
raw data signs the data with her private key. The signature 
is then appended to the raw data. Any entity that knows the 
corresponding public key can verify the owner’s signature on the 
data. Because operations of digital signature are relatively slow, it 
is usually used for signing small amounts of data.

•	 Keyed hash: The owner of the raw data calculates a digest with a 
secret key. The digest is then appended to the data. Any entity that 
knows the secret key can verify the digest of the data.

•	 Plain hash: The owner of the raw data calculates a digest without 
a key. The digest is then appended to the data. Any entity can 
verify the digest of the data.

•	 CRC (cyclic redundancy check): CRC is not a cryptography 
algorithm but an error-detecting scheme, which is intended 
to detect accidental changes to data, rather than intentional 
attacks. A short (for example, 32 bits) parity check value is 
calculated using the CRC algorithm and attached to the raw data. 
On retrieval, the same calculation is repeated and the result is 
compared with the appended parity.

The kernel of the security and management engine provides interfaces for all 
aforementioned algorithms for applications, to protect their data’s integrity.

For an embedded system, integrity of the code segment is also a critical 
consideration. It is a requirement that the security and management engine’s processor 
and hardware executes only unmodified instructions that were signed by Intel or a 
designated entity. The design flaw exploited by Alexander Tereshkin and Rafal Wojtczuk 
was lacking integrity protection for the code segment, allowing injection and execution of 
malicious code that is not endorsed by Intel.

More details about the approach for protecting the integrity of the engine’s code 
segment are discussed later in this chapter.

Availability
Availability refers to the accessibility of the services provided by the embedded engine 
and the platform. Note that the availability requirement of the engine applies to the entire 
system, including the host. In other words, the engine must not cause the host to crash or 
become unavailable.

The exact requirement of availability varies depending on the attacker’s privilege.

If the attacker has physical access to the platform, then availability •	
is not a consideration. With physical access, one can destroy the 
system with a hammer.
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Note■■  T he anti-theft application is an exception—it must be available to function even if 
the attacker has physical access to the platform. 

If the attacker has local access—that is, he can install malware on •	
the host operating system—then he shall not be able to disable, 
reset, or turn off the embedded engine.

If the attacker has network access, then similarly to local access, •	
he shall not be able to disable, reset, or turn off the embedded 
engine.

The general guideline regarding availability is that malware or virus on the host 
system or network shall not be able to mount denial of service (DoS) attacks against the 
engine. This requirement implies that the engine’s external (such as HECI and network) 
interfaces must be robust. They must reject malformed input gracefully and handle large 
amount of requests properly. Under any circumstances, an external input should not 
cause the engine to crash. Note that the engine supports multiple usages and features that 
are running over the kernel. Security protections of one feature must be protected from 
compromise by users of another service. For example, an AMT administrator shall not be 
able to influence EPID operations.

The anti-theft application has its unique functionality, and hence, special 
requirement about availability. The definition of availability for anti-theft is opposite to 
what availability normally means. By design, it must enforce unconditional shutdown of 
the platform when the system is detected to be in the stolen state.

In the stolen state, the thief (attacker) possesses the platform and has physical 
access. In this case, anti-theft must continue to be available and function normally by 
enforcing the platform shutdown per defined policies. The attacker may physically 
destroy the platform and render it unusable, which does not violate the availability 
requirement of anti-theft.

Another important requirement is the availability of the host. Because the embedded 
engine is able to trigger instant shutdown of the system, malware may exploit firmware 
vulnerability to shut down the computer locally or remotely, realizing an annoying DoS 
attack. This is an ungraceful shutdown, and all unsaved user data will be lost. The attack 
may launch repeatedly right after reboot and essentially turn the computer into a brick.

The Sasser worm of 2004 is a notable example of how costly DoS attacks can be. The 
author of the worm reverse-engineered a patch released by Microsoft that fixed a buffer 
overflow bug in Windows 2000 and XP, and discovered the bug.  The worm exploited 
the vulnerability on computers that had not installed the patch. The worm allowed 
remote execution of code on the host without the knowledge of the user. In the United 
States alone, the shutdown of computers due to the Sasser worm resulted in a damage of 
approximately 15 billion US dollars.7
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Threat Analysis and Mitigation
The threat analysis involves applying the general security requirements—confidentiality, 
integrity, and availability—to the architecture and design of the security and 
management engine.

This section reviews most critical threats that are considered during the 
development of the engine, and the corresponding security measures and mitigation 
plans implemented by the engine.

Load Integrity
There are two physical locations at which the firmware image of the security and 
management engine are stored:

The boot loader is stored in a ROM (read-only memory). Thanks •	
to the nature of ROM, this small portion of code is considered 
intact. Mitigation against altering or injecting to the code in ROM 
is out of scope. The ROM is the root of trust of the embedded 
engine. Note that physical tampering and fault injection attacks 
are out of scope.

The rest of the firmware image is stored in SPI flash together with •	
BIOS and other firmware ingredients of the system. Different 
products support different sets of features and applications. 
Depending on the product, the size of the engine’s firmware 
ranges from 1.5MB to 5MB.

Although the flash part is supposed to be locked down at manufacturing, in security 
modeling, it is assumed that the chip can be replaced and the lockdown mechanism can 
be circumvented by attackers. Therefore, when the boot loader in ROM is loading the 
image from the flash, it must be confident that the loaded code has not been modified.

The firmware image on flash is signed by Intel. The signing algorithm is 2048-bit RSA 
with an SHA-256 and a PKCS#1 padding scheme. The signature is not on the entire binary 
image of a few megabytes, but on a small manifest for the binary.

The manifest contains information for all firmware modules. A module can be the 
kernel or an application such as anti-theft, content protection, and so on. Among all  
the information of a module described in the manifest, the most critical, security-wise, is 
the SHA-256 digest of the module. The SHA-256 digests of all modules are digitally signed.

Here is the flow of building a firmware image:

	 1.	 Compile all modules.

	 2.	 Calculate SHA-256 digests for all compiled modules, 
respectively.

	 3.	 Fill in the manifest header. The header includes fields such as:

a.	 Firmware version number

b.	 Firmware security version number
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c.	 Size of the header

d.	 Number of modules

	 4.	 Apply compression algorithms to modules, if applicable. 
There are three options to choose from for a given module:

a.	 No compression

b.	 Huffman compression8

c.	 LZMA9 (Lempel-Ziv–Markov chain) compression

Decompression is performed by the boot loader in ROM during 
loading. The engine has dedicated hardware logic to support 
Huffman, so the Huffman decompression is relatively fast. For 
an LZMA-compressed module, the decompression is carried 
out by firmware logic located in ROM. As it is a firmware 
implementation, the decompression is slower than that of the 
Huffman decompression. However, the adaptive LZMA enjoys a 
higher compression ratio than Huffman, which uses a hardcoded 
static dictionary. There is a tradeoff between binary image size 
and decompression performance at load time. In general, kernel 
components that impact load time choose no compression or 
Huffman compression for performance reasons, and applications 
normally use LZMA. Note that the data after decompression is 
still not trusted, so an attack on corrupting the decompression 
results is equivalent to flash corruption.

	 5.	 Fill in all module entries in the manifest. A module entry has 
information such as:

a.	 Name

b.	 SHA-256 digest

c.	 Location of the compressed binary in the image

d.	 Compression algorithm

e.	 Compressed size

f.	 Uncompressed size

g.	 Entry point address

	 6.	 Fill in the RSA public key (values of the 2048-bit n and the  
32-bit e) that will be used by ROM to verify the signature 
during loading.
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	 7.	 Sign the manifest using the RSA private key and place the 
signature in the manifest. The 2048-bit signature is generated 
on the entire manifest data exception for the RSA public key 
and the signature itself.

	 8.	 Append all modules after the manifest at their proper 
locations specified in the module entries.

The firmware security version number in the manifest header is an important field 
for managing firmware update or downgrade for cases where vulnerability is found and 
patched. Figure 4-1 illustrates the structure of the manifest.

Figure 4-1.  Manifest floor plan
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During boot, the embedded engine’s ROM initializes internal memory and copies 
the firmware image from the flash. The first thing it loads from the flash is the manifest.

Here is the boot loader flow in ROM:

	 1.	 Read the RSA public key from the manifest.

	 2.	 Calculate the SHA-256 hash on the RSA public key and compare 
the resulting digest with the hardcoded digest in ROM. If they do 
not match, then the image is corrupted and will not be loaded.

When ROM is created, the SHA-256 digest of the RSA public 
key is hardcoded in the code. The reason for hardcoding the 
256-bit hash of the RSA public key, and not the complete 
2080-bit RSA public key itself, is to save space in ROM.

	 3.	 Verify the digital signature of the manifest using the public 
key. If the signature verification fails, then the image is 
corrupted and will not be loaded.

	 4.	 Check validity of the manifest header, such as the firmware 
version.

	 5.	 Load the first firmware module by copying its binary from the 
flash. The first module is usually named “Bringup” or “Kernel”. 
If the module is compressed, then perform decompression.

	 6.	 Calculate the SHA-256 digest on the decompressed module 
and compare with the corresponding hash value in the 
manifest. Note that at this point, the hash value in the 
manifest has already been verified by the RSA signature at 
step 3. If the digests do not match, then the image is corrupted 
and will not be loaded. 

	 7.	 Once the first module is loaded, ROM hands the control to 
the “load manager” component of the first module, which will 
continue to load other modules listed in the manifest. 

	 8.	 To load a module, the load manager copies the module’s 
binary from the flash and performs decompression, if 
required. Then the load manager calculates the SHA-256 
digest of the module and compares it with the digest in the 
manifest. If they do not match, then there are two options:

Stop loading this module and continue to load the next •	
module, or

Unload all modules that have been loaded and halt the •	
engine’s processor

The option taken depends on whether the module is fault-tolerant 
or non-fault-tolerant. Failure to load a fault-tolerant module does 
not break the engine’s functionality or impact other modules of 
the engine. On the other hand, all non-fault-tolerant modules are 
required for the engine to function properly.



Chapter 4 ■ The Engine: Safeguarding Itself before Safeguarding Others

100

The ROM flow for loading the engine’s firmware is depicted in Figure 4-2.
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Figure 4-2.  ROM flow for loading firmware
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Note that for a compressed module, its hash in the manifest is calculated on its 
decompressed binary instead of the compressed binary. This means that the boot loader 
first decompresses the module, places the decompressed module in the engine’s internal 
memory, and then verifies its integrity.

Does something seem suspicious? Yes. Unverified compressed binary is being 
placed in memory, at least temporarily. The binary is then decompressed to the internal 
memory. If the compressed fault-tolerant module is altered by an attacker, then it could 
overflow the buffer allocated for the decompressed module and overwrite other regions 
of the internal memory, making a code-inject attack possible. So hashing a decompressed 
module is arguably a poor security design practice and prone to vulnerabilities. To 
address the issue, the implementation must make sure that the buffer allocated for 
decompressed data is not overrun by the decompression algorithm.

A better design from the security perspective would be to hash the compressed form 
of the module. However, there is a major drawback of this option: memory consumption. 
The entire compressed module must be copied into internal memory before the 
decompression begins, and memory must be reserved for both the compressed module 
and the decompressed module.

On the other hand, if the hash is for the decompressed module, then there is no need 
to copy the compressed module into memory. The boot loader simply reads from the 
flash the compressed module in fixed-size chunks, and then performs decompression for 
the chunks as they come in. The decompressed module in the internal memory is then 
verified against the hash value specified in the manifest.

When architecting a computer system, there are two conflicting factors to consider, 
one being performance and resource consumption, and the other being security. There 
is almost always a tradeoff between the two sides. For systems where resources are not a 
major concern, it is usually better to be safe than sorry and give more weight on security. 
For embedded systems, however, due to the limited computing resources available, the 
decision is sometimes more difficult to make. It requires designers to dive deep into the 
threat analysis and risk assessment.

Memory Integrity
For the security and management engine, the level-1 cache is inside the processor. The 
engine has dedicated internal memory that serves as the level-2 cache. The capacity of 
the level-2 cache varies, depending on the product, and ranges from 256KB to 1MB. In 
the security modeling, the level-1 and level-2 cache memory is considered immune from 
external attacks. No encryption or integrity protection is applied.

But the embedded engine requires more runtime memory to run its applications. A small 
region of the system’s DRAM is “borrowed” by the engine and used for the purpose of paging. 
The size of the borrowed memory ranges from 4MB to 32MB, depending on the product.

The embedded engine uses the borrowed DRAM for temporary volatile storage only. 
The engine’s processor cannot directly reference addresses in DRAM, execute code from 
DRAM, or modify data in DRAM. When a page in DRAM needs to be accessed by the 
processor, the engine’s paging unit has to first bring it into the internal memory.

During boot, the BIOS reserves a small portion of DRAM and notifies the security and 
management engine of its address and size. The BIOS hides this portion of DRAM from the 
operating system running on the host. From then on, the engine has exclusive control and 
access to this region. The host is not supposed to address, reference, or access the region.
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However, hackers have shown that breaking into the reserved DRAM region is not 
impossible. The attack presented by Alexander Tereshkin and Rafal Wojtczuk successfully 
injects code into the reserved region. The injected code is later paged in by the engine 
and executed. This attack was possible because on Bearlake MCH (Memory Controller 
Hub), the management engine lacks integrity protection for the reserved region of DRAM.

How is the problem tackled in later generations of the security and management 
engine? Checksum is introduced for paging:

	 1.	 Before moving a page from the internal memory to the 
reserved DRAM region, calculate a checksum of the page and 
store the checksum in the internal memory.

	 2.	 The content of the page is not supposed to change while it is 
out in the DRAM.

	 3.	 After moving a page from the reserved DRAM region to the 
internal memory, calculate the checksum of the page again 
and compare with the stored value calculated before. If the 
two values do not match, then the page has been altered. 
Although this is possibly due to a memory corruption, for 
defensive security design, the security and management 
engine treats it as an attack and triggers an instant shutdown 
of the platform, which includes the engine itself and the host.

When looking for the right checksum algorithm, several conditions were considered:

The algorithm must be extremely simple and fast. Since paging •	
is a very frequent runtime operation, the speed of paging plays 
a significant role in the engine’s performance. Latency of paging 
must be minimized, as it negatively impacts the user’s experience.

The checksum must be small in size, because the internal •	
memory space is limited and expensive. The more internal space 
is assigned to checksum storage, the less space is available for 
running programs.

The algorithm must be able to detect alteration of pages in DRAM •	
with a high level of confidence. 

Digital signature is ruled out immediately, as it is too slow to meet the performance 
and storage requirements outlined.



Chapter 4 ■ The Engine: Safeguarding Itself before Safeguarding Others

103

Next candidates are hash and HMAC. Velocity-wise, they are much faster to calculate 
than digital signature schemes. Also, the security and management has a hardware 
cryptography engine for expediting hash and HMAC. Security-wise, they are NIST-
approved algorithms that offer proven strength of integrity assurance. But they are still 
not optimal because of two reasons:

The size of the digest is too large to fit in the internal memory.  •	
If the reserved region is 16MB and page size is 4KB, then there  
are 4096 entries. Using SHA-1, the size of internal memory 
required for storing all digests is as much as 80KB. Additionally, as 
will be discussed later in this section, there is other metadata that 
must be stored in the internal memory for a page entry.

The speed of calculation is not fast enough to support runtime •	
applications that require high throughput, such as AMT.

Now the only candidate is the CRC algorithm. It is simple and fast to calculate. The 
checksum is only 32 bits long. All that makes it a good choice from the performance 
perspective. What about security?

CRC is an error-detecting code. It does not use a key and it is not cryptographically 
strong. Imagine a naïve attack scenario: the hacker reads a page from the reserved DRAM 
region and calculates its CRC checksum. He then modifies the page content such that the 
checksum remains unchanged. For a 4KB page and 32-bit checksum, finding different 
pages with the same checksum is rather trivial.

So, it seems none of the standard integrity protection algorithms has characteristics to 
satisfy all requirements of the security and management engine. To address the problem, 
Intel’s cryptographers have designed a proprietary algorithm specifically for paging 
integrity. The algorithm is based on binary polynomial operations. The input includes:

4KB or 1KB of raw page data•	

256-byte secret key•	
The output is a 32-bit integrity check value (ICV), which must be kept secret.
During the first time the security and management engine boots and before paging is 

enabled, the engine generates a 256-byte random number and writes it to the registers of 
the ICV generation hardware logic. The engine also stores the random number on flash as 
a secret blob. This number is used as the secret key input to the ICV algorithm.

During the following boots, the key is retrieved from the flash and reused. 
Although regenerating a new key randomly at every boot is apparently more secure, it 
is experimentally shown that generating 256 bytes of random data from the engine’s 
hardware RNG is slower than reading a blob from the flash. For most computing systems, 
the boot time is a critical performance benchmark.

However, there is one case that the ICV key will be regenerated. Before moving a 
page out of the internal memory, the paging engine in the kernel calculates the page’s ICV 
value and saves the resultant ICV in a preallocated region of the internal memory. The 
ICV calculation is performed by dedicated hardware logic. Later, when bringing a page 
into the internal memory, the same calculation is repeated and the result compared with 
the saved value.
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What if the comparison fails? When the security and management engine feels 
that “something is wrong,” several different actions can be considered as response. The 
firmware designers must decide what actions to take when something is wrong. The 
questions to ask are as follows:

Is the error more likely a result of a firmware or hardware bug, or •	
is the error more likely due to an active attack?

Is it possible to recover from the error without leakage of secrets •	
and assets?

Because of its criticality, all firmware and hardware components involved in the 
paging operation are reviewed and validated thoroughly. Furthermore, DRAM failure 
is very rare thanks to improved error-correcting and other technologies deployed in 
modern DRAM devices. Given these facts, when an ICV check failure occurs, the engine 
has very high confidence that it is due to an attack that is attempting to change the page 
being brought in from the DRAM. The most effective response to terminate the attack and 
prevent loss of assets is to shut down the platform immediately and ungracefully.

Before shutting down the platform, the engine deletes the blob that stores the ICV 
key from the flash. At the next boot, the engine will generate and use a new key.

Admittedly, the algorithm is not as strong as a standard hash, but it is good enough 
to protect the engine. With this proprietary algorithm, page alternation or replacement 
attacks become very difficult to mount.

As the ICV is a 32-bit secret, and the key is also secret, an attempt at random page 
alternation has a success probability of only 1 in 232. A random attempt will fail almost 
definitely, and as a result, the platform is rebooted and a new ICV key is utilized. This 
means that the attacker cannot learn from failures, and his prior failed attempts do not 
increase the chance of future success. All attempts have a success probability of 1 in 232, 
no matter if it is the first or the one thousandth attempt.

Another important design to make the attack even harder is that the engine keeps 
the ICV secretly. Furthermore, a platform reboot following a failed attempt takes at least 
a few seconds to complete, which substantially slows down automation. As the ICV of a 
page is unknown, hackers cannot simply perform the page alternation attempts “offline” 
without actually running the engine.

As a result, altering a page and not being detected by the embedded engine is 
practically impossible.

Checksums must be kept secret. A straightforward design is to keep the checksums 
for all pages in the internal memory. This method consumes valuable memory space. To 
save memory space, the security and management engine also swaps pages that store 
checksums to reserved DRAM region. The checksums for such pages are always stored in 
the internal memory.

When a page fault happens, the paging engine looks for the checksum of the page in 
the internal memory. If the checksum is not found, that means the checksum is out in the 
DRAM also. In this case, the paging engine brings the checksum page into memory first, 
and then brings the actual page of the page fault into memory.

For this design, handling a page fault may require two pages being swapped into 
memory, which seemingly will degrade performance. But the fact is, the opposite occurs. 
Experiments show that with comprehensive victim (a page that is selected to be swapped out 
to DRAM) selection heuristics, this design actually improves performance because there are 
fewer checksums occupying memory, and hence more memory is available as cache.
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Memory Encryption
Besides integrity, confidentiality is also a requirement for data pages while they reside in 
the reserved DRAM region. A page is encrypted before being moved out to the DRAM. 
The ICV is calculated on the encrypted page. Pages that contain only code segments 
require protection for integrity but not confidentiality.

The algorithm used for encrypting data pages is 128-bit AES with CBC mode. During boot, 
the AES key for encrypting pages is derived from security fuses. The key is unique per part, as 
the fuses are unique. The key is stored in the internal memory and never paged out to DRAM.

Since the IV (initialization vector) for CBC mode must be unpredictable, the IV for 
encrypting a page is randomly generated every time the page is about to be moved to 
DRAM. The IV is stored together with the ICV.

Task Isolation
An embedded system is a computer system designed to realize dedicated and specific 
functions with computing constraints. The system includes hardware and firmware that 
runs on the hardware.

Embedded systems usually suffer from resource constraints (limited computing 
horsepower, memory, storage space, and so forth). An embedded system with a single-
threaded or a multithreaded real-time operating system (RTOS) can run multiple 
processes. On the security and management engine, process is also referred to as task.

In an embedded system that runs multiple processes (tasks) without isolation, 
successful attack or compromise against one or more applications may result in the 
attacker gaining execution privilege and secrets of the peer applications. This is a critical 
security problem for embedded systems.

Process isolation as a security measure is widely supported by modern operating systems 
such as Windows, Linux, and Android. Is the same concept applicable to embedded systems? 
Intel’s security and management engine resolves the problem by applying innovative task 
isolation techniques. The task isolation is the most involved and comprehensive security 
measure on the engine. This section covers the details of the technique.

Deploying task isolation on the engine has been an evolving effort. There was no task 
isolation for the first generation of the engine, as the size of the firmware was relatively small at 
that time, and all kernel and applications were developed in-house by Intel. As the number of 
applications running on the engine increased, isolation became a must-have security measure.

As the first step, the engine’s firmware was split into two tasks—privileged and 
nonprivileged:

The privileged task, also known as the •	 kernel, consists of modules 
that manage critical system resources and handle secrets. They 
include the boot loader, kernel, hardware drivers, power flow 
management, EPID manager (see Chapter 5 for details), and so on.

The nonprivileged task consists of the remainder of the firmware •	
modules; for example, applications like AMT and anti-theft.

The logical separation between privileged and nonprivileged tasks is enforced by 
the privileged task and hardware. The hardware backbone of the engine supports two 
modes of operation: privileged mode and nonprivileged mode. Different access rights to 
hardware devices and other system resources are granted based on the mode in which 
the firmware is actively running.
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In newer versions of the security and management engine, the number of embedded 
applications keeps growing. The number exceeds ten on the engine shipped with big 
core processor in 2013 (codename Haswell). With this many applications, the size of 
the engine’s nonprivileged modules becomes considerably large. Consequently, risk of 
security bugs and vulnerabilities rises.

How to realize task isolation for multiple tasks in a hardware environment that 
supports only privileged and nonprivileged tasks? The trick is to treat and protect all 
nonprivileged tasks that are not actively running as privileged tasks, so that the running 
nonprivileged task cannot compromise them.

Asset Protection
The task isolation technique implemented by the engine makes sure that bugs in one task 
are restricted to its own task and do not affect any other tasks. In other words, even if the 
bug is exploited by attackers, other tasks are immune and safe.

The assets of a task to be protected from other tasks include but are not limited to the 
following:

Memory•	

Nonvolatile storage•	

Hardware devices•	

Synchronization objects: thread, semaphore, mutex, queues, and •	
so forth

An asset belongs to one and only one task during its lifetime. The owner is normally 
the creator of the asset. The ownership cannot be transferred to another task.

The central governing component, kernel, manages all system resources. It is 
responsible for implementing and enforcing task isolation for nonprivileged modules. 
The kernel is a hybrid component of firmware and hardware. The interface of the kernel is 
minimized to reduce the attack surface.

The kernel provides critical and system level services to nonprivileged components. 
These services include: cryptography algorithms, memory management, nonvolatile 
storage, DMA, power management, and so on. For protected assets owned by individual 
tasks, the kernel exposes API for the tasks to call and manipulate.

For example, nonvolatile secrets stored on flash are assets of their owning tasks. The 
kernel has APIs for creating, writing, reading, and deleting the data. Another example: 
semaphore is an asset of its owning task. The kernel has APIs to create, get, put, and 
delete a semaphore.

Figure 4-3 demonstrates the kernel’s flow of handling a call from a nonprivileged task 
for asset manipulation. A few important facts to note:

The kernel is threadless and all kernel API functions run in the •	
caller’s thread.

A thread is always associated with one and only one task.•	

Metadata of threads and other assets for all tasks is stored in the •	
privileged memory and cannot be modified by nonprivileged 
tasks. The metadata of an asset includes the ID of the owning task 
of this asset.
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Figure 4-3.  Asset (nonvolatile data, synchronization objects, and so on) manipulation 
control flow

As you can see in Figure 4-3, the kernel makes sure that the asset being accessed 
belongs to the same task as the caller’s thread—that is, an application is not allowed to 
access another task’s assets through kernel APIs. Such a request is considered an attack 
and will trigger exception. If a task has legitimate reasons to access assets of another task, 
then it must do so through the inter-task call mechanism.
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Memory Manager
The memory manager, a component in the kernel, is responsible for the following:

Managing the embedded system’s memory space•	

Creating a dedicated memory pool for each task (a task can only •	
access its own memory region)

For •	 malloc() calls, allocating memory only from the calling task’s 
memory region

The embedded engine’s memory is divided into multiple regions as overlays. The 
kernel has read/write access to all memory regions. There is no memory region that 
can be accessed by more than one nonprivileged task. The size of a memory region is 
determined by the actual usage model of the owning task. A task can be assigned multiple 
memory regions with different properties—for example, one region that can be accessed 
by both the processor of the engine and the DMA devices, and another region that is only 
accessible by DMA.

Figure 4-4 shows a conceptual example of three tasks in 1MB memory space and 
their overlays.

Kernel memory
(no access by non-

kernel tasks)

Task 1 memory region
(DMA and processor)

Task 2 memory region
(DMA and processor)

Task 3 memory region
(DMA and processor)

Task 1 memory region
(DMA only)

Task 3 memory region
(processor only)

Kernel memory
(read only by non-

kernel tasks)

low

System
 m

em
ory

high

0x00000000

0x00010000

0x00022000

0x00030000

0x000A0000

0x000B0000

0x000C2000

0x000FFFFF

Figure 4-4.  Memory overlay
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Thread Manager
The single-threaded or multithreaded thread manager is also a component in the kernel. 
It manages threads and schedules threads to run.

One and only one thread is actively running at any moment. A thread is associated 
with one and only one task throughout the lifetime of the thread.

At runtime, the system determines whether requested assets/resources can be 
accessed based on the task of the currently running thread. At thread switch,iii  the RTOS 
examines the owner tasks of the current thread and the next thread, respectively. If the 
two threads are owned by different tasks, then the RTOS programs the MPR (memory 
protection range) control register accordingly to predefined values to reflect the 
restriction applied to the next thread. Figure 4-5 illustrates the flow.

iiiThe scheduler decides to preempt the currently running thread with another thread.

Kernel

Read task ID of next thread

Read task ID of current
thread

Scheduler runs next thread
(“next” becomes current)

Program MPR control
register for next thread

Same task?
Yes

N o

RTOS scheduler thread
preemption event

Figure 4-5.  Thread switch flow
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Memory Protection Control
The security and management engine’s hardware backbone supports a set of MPRs. 
The number of MPRs implemented in a specific product depends on the number of 
nonprivileged tasks. Each MPR consists of a set of three registers:

Start address•	

End address•	

Access restriction (assumes one of the following values)•	

No read/write by processor or DMA•	

Read only by processor and DMA•	

No read/write by processor but can be read/write by DMA•	

Can be read/write by processor but no read/write by DMA•	

Other access restrictions as needed•	

The MPRs enforce the access restrictions applied to the currently running 
nonprivileged task for the entire memory space. When the kernel is running, MPRs are 
not enforced because the kernel can access the entire firmware memory space.

On the security and management engine, an MPR control register is introduced 
for rapidly enabling and disabling an arbitrary set of MPRs. For example, if there are 64 
MPRs, then a 64-bit MPR control register is used, one bit for each MPR. If a bit of the 
MPR control register is 0, then the corresponding MPR is disabled and not enforced for 
memory access; if a bit is 1, then the corresponding MPR is enabled and enforced for 
memory access.

During boot, the kernel programs MPR registers for all possible combinations that 
may be encountered at runtime. The MPR control register will be programmed by the 
RTOS at runtime upon task switch to realize fast switch between MPR policies of two 
tasks. This trick eliminates the need for programming the three registers of each MPR for 
all MPRs at runtime, resulting in significant performance improvements.

For the example, in Table 4-1, nine MPRs are used. The three registers of each MPR 
are programmed by RTOS, at boot, as follows:

•	 MPR#1: {0x00000000, 0x0000FFFF, no read/write by processor/
DMA}

•	 MPR#2: {0x00010000, 0x00021FFF, read only by processor/DMA}

•	 MPR#3: {0x00022000, 0x0002FFFF, no read/write by processor/
DMA}

•	 MPR#4: {0x00030000, 0x0009FFFF, no read/write by processor/
DMA}

•	 MPR#5: {0x000A0000, 0x000AFFFF, no read/write by processor/
DMA}

•	 MPR#6: {0x000B0000, 0x000C1FFF, no read/write by processor/
DMA}
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•	 MPR#7: {0x000B0000, 0x000C1FFF, no read/write by processor; 
RW by DMA}

•	 MPR#8: {0x000C2000, 0x000FFFFF, no read/write by processor/
DMA}

•	 MPR#9: {0x000C2000, 0x000FFFFF, read/write by processor; no 
read/write by DMA}

Table 4-1.  Active Task and MPR Control Setting

Active task MPR control register

kernel task Don’t care

Task 1 110110110

Task 2 111011010

Task 3 111101001

At runtime, the MPR register values do not change; the MPR control register 
is programmed to reflect memory enforcements. The actively running task and the 
corresponding MPR control register value (the leftmost bit represents MPR#1, and the 
rightmost bit represents MPR#9) are shown in Table 4-1.

When the privileged kernel is running, MPRs are not enforced.
When task 1 is running, MPR#1: {0x00000000, 0x0000FFFF, no read/write by 

processor/DMA} is enabled. According to Figure 4-4, memory range from 0x00000000 
to 0x0000FFFF belongs to the kernel. Task 1 shall not access this range. This is why the 
memory access restrictions defined by MPR#1 are enabled and enforced when task 1  
is active.

Similarly, MPR#5: {0x000A0000, 0x000AFFFF, no read/write by processor/DMA} 
is also enabled when task 1 is running. This is because the range of {0x000A0000, 
0x000AFFFF} belongs to task 3, and task 1 shall not access it. Likewise, when task 1 is 
running, MPR#2, MPR#4, MPR#7, and MPR#8 are enforced.

However, memory access restrictions defined by MPR#3: {0x00022000, 0x0002FFFF, 
no read/write by processor/DMA} are disabled, because this range is owned by task 1, the 
running task.

Loader
The loader is responsible for loading a task to the memory region allocated by the 
memory manger.

Figure 4-6 shows the boot flow. The loader in the kernel loads the tasks one after 
another to their memory regions and initializes the tasks. The main operation that a task 
performs at start is to create its worker threads by calling the kernel’s thread creation 
function. All threads created are tagged with the owning application’s task ID, and it does 
not change for the lifetime of the thread.
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Inter-Task Call Management
On the security and management engine, a task can provide services to one or more other 
tasks through an indirect calling mechanism implemented by the kernel. For example, if 
a task needs to access assets (such as nonvolatile data) of another task, it can do so via the 
inter-task call mechanism.

Due to memory protection and isolation, direct calling between two tasks is a 
violation of task isolation and explicitly prohibited. When a task (say, task 1) needs to 
consume services offered by another task (say, task 2), task 1 invokes kernel’s inter-
task call API and specifies the function of task 2 to be called. The kernel performs the 
following steps for an inter-task call.

Kernel

Program all MPR and APR
registers

ROM (read only memory)

Load kernel

Load task 1 into its memory
regions

Task1

Create worker threads

Kernel initialization

Task initialization

System idle (waiting for
ready worker thread to run)

Load task 2 into its memory
regions

Task2

Create worker threads

Task initialization

Load task 3 into its memory
regions

Task3

Create worker threads

Task initialization

Figure 4-6.  Boot flow
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	 1.	 Copy input parameters from task 1’s memory to task 2’s 
memory.

	 2.	 Call task 2 on behalf of task 1. The kernel will notify task 2 that 
the caller is task 1. Task 2 can decide whether to serve task 1 or 
reject the call.

	 3.	 Copy the output from task 2’s memory back to task 1’s 
memory.

	 4.	 Conclude the call.

The inter-task call is a costly operation because the kernel has to copy input and 
output data between the caller task and the callee task. The design guideline is to minimize 
the use of inter-task calls and avoid calling other tasks in performance-critical flows.

In Figure 4-7, the dotted line shows that task 1 is calling task 2 through the kernel. 
Note that all tasks directly consume the kernel and only the kernel. Tasks cannot 
consume each other directly.

Task 1 Task 2 Task 3

Kernel (RTOS, memory manager, inter-task call manager, DMA, etc.)

Figure 4-7.  Inter-task call

Exception Handler
When the kernel firmware or hardware detects access violation, an attack is assumed to 
be actively undergoing. All threads belonging to the violating task shall be terminated 
immediately—that is, the task is stopped from running until the next power cycle.

Alternatively, a more aggressive reaction upon access violation is to reset the entire 
embedded system. This is the approach implemented by the security and management 
engine.

Nonprivileged Tasks
A nonprivileged task is an embedded application that realizes a specific set of 
functionalities—for example, playing back a movie.
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A nonprivileged task may consume services provided by the kernel and other 
nonprivileged tasks. A nonprivileged task may also invoke dedicated hardware 
components. Multiple tasks may exist on an embedded system.

A nonprivileged task is banned from directly accessing other tasks’ assets. Such 
access must be accomplished through the inter-task call mechanism. Access violation 
results in termination of the violating task or resetting the embedded system.

Firmware Update and Downgrade
The security and management engine supports firmware update and downgrade; that is, 
replacing the firmware that is currently installed on the platform with another version of 
the firmware. The firmware update replaces an older version of firmware with a newer 
version. It is used by Intel to deliver additional features or fix functional or security 
bugs to the end users. If a newer version of firmware fails to work on a platform, most 
commonly due to device compliance issues, then the firmware downgrade is used to 
rollback to an older version of firmware that works on the platform.

The firmware update is launched from a software program on the host. The new 
firmware can be downloaded from the manufacturer’s web site and installed by end 
users. The new firmware has the same integrity protection mechanism as the current 
firmware on the platform.

The firmware security number in the manifest header (see Figure 4-1) is used for 
preventing firmware update or downgrade from a “good” version to a version with known 
security vulnerabilities. For example, when security vulnerability is found in version A 
with security number 1, Intel will release version B that fixes the bug. As the new firmware 
fixes security bugs, the security number will be incremented and B will have a security 
number of 2.

When a firmware update from A to B is launched, A will check B’s security number 
as it loads the manifest of B. If B’s security number is the same or greater than A’s, then 
proceed with the update. If B’s security number is smaller than A’s, then it is considered a 
rollback attack (i.e., replacing a patched version with a vulnerable version). In this case, A 
immediately aborts the firmware update/downgrade flow.

Published Attacks
Ever since its birth in 2006, the management engine has been the target of many hackers 
and attackers in the computer security community. For white-hat hackers, trying to find 
and exploit bugs in the engine is an interesting academic research and challenge. For 
black-hat attackers, successful attacks could generate monetary profit.

To date, the most famous attack against the engine was the one mentioned at 
the beginning of this chapter: “Introducing Ring -3 Rootkits,” published by Alexander 
Tereshkin and Rafal Wojtczuk of the Invisible Things Labs, at the Black Hat conference  
in 2009.
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“Introducing Ring -3 Rootkits”
There are several components of the attack.

	 1.	 Perform literature research and find out the model of the 
processor used by the engine.

	 2.	 Circumvent the flash lock and dump the engine’s firmware 
binary from the flash.

	 3.	 Use IDA disassembler10 to disassemble and reverse-engineer 
the firmware code.

	 4.	 Rollback the BIOS to a version with a known bug that does 
not lock down memory remapping registers. This vulnerable 
release of BIOS allows the attack to redirect the engine’s 
reserved DRAM region to an arbitrary location in DRAM. 
(The BIOS vulnerability was also found by Rafal Wojtczuk 
and Alexander Tereshkin and published at the Black Hat 
conference in 2009.)

	 5.	 Exploit the BIOS bug and redirect the reserved region to a 
region that can be written by attack.

	 6.	 Debug the engine’s firmware and hook an application that 
writes data to the host memory via DMA.

	 7.	 Inject rootkit to the DRAM region. The rootkit writes to host 
memory through DMA.

It should be pointed out that the attack is only possible on Bearlake MCH, released 
in 2007. The management engine on Bearlake MCH lacks integrity protection on the 
reserved region of the DRAM. This is one of the vulnerabilities exploited by the attack. 
Intel implemented the ICV check mechanism for the reserved DRAM region in the 
management engine released in 2008.

The attack takes advantage of two vulnerabilities. The other one is a buffer overflow 
in an older version of BIOS. Although the BIOS was patched soon after the issue was 
reported, BIOS downgrade was not disallowed. The lesson shows how firmware rollback 
prevention and integrity protection are vital to computer security.

However, the attack has some limitations:

	 1.	 It must hook an application that uses DMA. The researchers 
did not find a way to have the rootkit program DMA directly.

	 2.	 There is no way to perform DMA without redirecting memory 
remapping for BIOS. The remapping clears upon reboot.

	 3.	 Not all host memory is open to the embedded engine. For 
example, as mentioned earlier in this chapter, the VT-d and 
SMM memory cannot be accessed through the embedded 
engine’s DMA.
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Chapter 5

Privacy at the Next Level: 
Intel’s Enhanced Privacy 
Identification (EPID) 
Technology

The fantastic advances in the field of electronic communication constitute 
a greater danger to the privacy of the individual.

—Earl Warren, 14th Chief Justice of the United States

You’ve probably clicked the “I agree” button hundreds of times on privacy policy 
statements of service providers’ web sites, from Gmail to Netflix, from Amazon to your 
favorite game apps. Most people simply want to enjoy the service or access contents 
as soon as possible, and thus do not bother to read through the privacy policy from 
beginning to end before giving consent. Many times, people are willing to share their 
private information with the service providing site/server, and they rely on the vendors’ 
good faith to protect their privacy and not share with third parties.

To build the infrastructure for protecting the privacy of Intel’s consumers, Intel 
invented the enhanced privacy identification (EPID) technology, which is implemented 
by the security and management engine on big core and systems-on-chip platforms for 
servers, desktops, laptops, tablets, and smartphones.

Redefining Privacy for the Mobile Age
Service providers normally promise some level of protection in their privacy policy 
agreements, such as not selling or renting out your personal information (name, gender, 
date of birth, mailing address, e-mail address, and so forth). At the same time, in 
exchange for the free or paid services, consumers likely have to allow service providers to 
archive your activities and push customized marketing correspondence to your mailbox. 
It may be useful information to you, or, most of the time, may be treated as spam. Notice 
that privacy policies and options provided to users are often subject to change. New 
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options that have defaults as not private may be introduced. This puts even the paranoid 
users at a loss by having to keep up with each new feature update. In addition, it is not 
surprising that the Google Ads on the websites you browse are promoting products you 
recently showed interest in. Service providers have good incentives to make the most out 
of your private information. Monetization of user data is big business and a significant 
revenue source for many providers, especially social networking websites and apps.

The mobile computing age brings with it increasing risks to users’ privacy. There 
are hundreds of thousands of mobile apps out there, and counting. If you are paying 
attention to the list of privileges that an app asks for before installation, you will find 
many require access to data stored on your device, such as personal information, your 
phone book, call history, text messages, and so forth. A paranoid user may wonder, 
“Hmm, why does this music app need to access my phone book?” and exit installation. 
But many do not bother to question. Hence, privacy is at risk.

What is the ultimate and true privacy? The nuanced answer depends on an 
individual’s expectation, which varies based on factors such as type of data, social 
context, culture, and so on.

A simple answer, however, is anonymity. In a perfect world of anonymity, there is no 
identification. Everyone appears identical. In terms of computer privacy, anonymity can 
be realized in two ways: passively and actively.

Passive Anonymity
Imagine that an online movie service does not save the list of the contents you have 
watched, because you do not want others to know what kinds of movies you favor; 
imagine that a prescription medicine reseller does not record the history of your 
purchases, because you don’t want to expose your health information. This is passive 
anonymity. The realization of such anonymity completely or partially relies on the 
attitude of the parties you are dealing with. If the movie service wants, it can save the 
list of titles you have streamed, and even details such as where in the titles you paused 
or fast-forwarded. Similarly, an online medicine vendor could derive, without much 
difficulty, what diseases you are suffering by examining the prescriptions you ordered.

One may argue that what types of movies a person likes is not something really 
secretive. However, no one knows whether such data, seemingly harmless today, could 
be used against you in the future. In information security, the principle of least privilege 
requires that an entity must be able to access only the information and resources that are 
necessary for its legitimate purpose. When talking about privacy, least privilege of the 
service provider is always the best interest to consumers.

An important point in the privacy discussion is the user’s expectation, which varies 
by context. For example, an end user may be okay with sharing the list of movies he has 
watched with his personal friends on social networks, but not with his work colleagues. 
Sometimes the user may want to watch some movies privately without anyone else knowing.

Practically, end users cannot rely on the service providers’ good faith to protect 
their privacy. The bottom line is that users’ privacy is not in the providers’ interest—and 
may even be against their interest. And even the definition of “privacy” is often up to the 
providers’ discretion. You may choose to believe that some big names are not evil, but 
you simply cannot trust everyone. The privacy commitment had better be enforced by 
technology, and not human beings. This is active anonymity.
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Note■■  P assive anonymity relies on human beings for enforcement.

Active Anonymity
In contrast to passive anonymity, active anonymity does not depend on human beings for 
enforcement. The anonymity is natively built in the technology.

Note■■  A ctive anonymity relies on technology for enforcement.

There are two fundamental and functional problems to resolve by an active 
anonymous authentication technology:

•	 Authentication: The user must prove to the service provider that 
the user is eligible to receive the service. Eligibility is established 
by showing that the user is a member of a group that is granted 
access to the specific service. There are various different criteria 
for becoming a member of the group—for example, possessing 
a specific hardware device or paying a service fee. The criteria of 
becoming a group member are defined by the service provider.

•	 Anonymity: The service provider must not be able to trace the 
user. The key words here are not be able to rather than do not. In 
other words, even if the service provider wants to identify a user, 
it should not be possible to. The user only has to show that he/she 
belongs to the group of eligible users, without revealing identity. 
Since all users in the group are allowed to receive the service, this 
user’s request should be fulfilled after being authenticated. The 
technology must be designed to disable the service provider from 
possibly distinguishing any individual users from any other users 
in the same group. Furthermore, the technology must provide an 
option to the user so that the service provider cannot tell whether 
or not two or more service requests were originated from the 
same user.

How to achieve these two goals of anonymous authentication? A straightforward 
approach is to have all users that belong to the same group share the same credential for 
authentication. It is a feasible solution, and is in fact being used by many mobile products 
in the market today. But is it good enough?

The problems of this credential-sharing design are as obvious as its simplicity. 
Once any device is successfully compromised by attackers, and credentials are leaked, 
the security of the entire authentication system of the service provider is broken, 
and all devices with the same credential are impacted. This is a typical break-once-
run-everywhere (BORE) scenario. Dealing with the aftermath is very expensive and 
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cumbersome. To mitigate BORE, besides the two basic goals of authentication and 
anonymity, there is a third desired characteristic:

•	 Revocation: The technology must provide the means to revoke a 
select member of a group or the entire group in order to terminate 
services for only the select user or group without impacting 
nonrevoked members and groups. The reasons for revocation are 
determined by the providers. It could be a user’s violation of the 
service agreement or loss or compromise of credential.

Processor Serial Number 
Flashing back to 1999, Intel’s Pentium III processor introduced a new feature, known as 
the processor serial number or PSN. The serial number is a 64-bit string programmed to 
processor hardware during the manufacturing process. The serial number of a processor 
is unique to the processor. It cannot be changed or erased during the lifetime of the 
processor. When the read permission is turned on, software can retrieve the PSN value 
by simply issuing a CPUID instruction. Note that the CPUID instruction returns other 
information, such as processor type and the presence of processor features, in addition to 
the PSN.

The read permission of the PSN can be enabled or disabled through one of two 
methods, as described next. The goal of restricting read permission is to make sure that the 
owner of the platform is aware when the PSN is available to be retrieved and by whom:

•	 BIOS: The manufacturer of the platform should provide users 
with an option in the BIOS configuration for disabling all software 
programs and websites to read PSN. Some BIOSes use enabled as 
the default value. This is a more advanced approach, because not 
all users know how to change BIOS configurations.

•	 Control utility: Intel released a Windows software program that 
lets end users configure the list of software programs and websites 
that are allowed to read PSN. The utility is a service that launches 
when Windows is booting. It is a convenient way for users of all 
skill levels to manage the exposure of the PSN.

Software or websites reading the PSN without the user’s consent pose privacy 
concerns. Opponents of the PSN expressed concerns about the design of the control 
mechanism. For example, some BIOSes may not offer an option for users to disable the 
PSN. Even if such an option is offered, if it is set to on by default, then some consumers 
may not know how to enter BIOS and change the configuration. Fortunately, besides 
using BIOS, a user can also turn off the PSN in Intel’s PSN control utility. However, 
the PSN may be read by software before the control utility is loaded and functional. 
Rogue software services that load before the control utility may read the PSN during 
the Windows boot process and save the value for later use, essentially bypassing the 
enforcement of the control utility. Furthermore, the control utility is software and may 
be hacked. Relying on software to protect hardware information that has implications on 
privacy is not a good security practice.
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So why was the PSN introduced in the first place? A number of applications may 
benefit from the PSN. Here are some examples:

•	 Secure authentication: Take website login, for example. 
Traditionally, a bank’s website only asks for the customer’s 
username and password as login credentials. This is called one-
factor authentication, where only one factor, namely, “something 
you know,” is required. If the password is acquired by an attacker, 
then he can successfully log in from his computer. To enhance 
the authentication security, the PSN can serve as another 
authentication factor, that is, “something you have.” To realize 
the two-factor authentication, the website checks the PSN of the 
computer in addition to the username and password. With the 
PSN enforcement, the attacker will not be able to log in from his 
computer even if he has stolen the victim’s password.

•	 Software piracy mitigation: During installation, software may save 
the PSN of the platform. At runtime, the software checks the PSN 
against the stored value and functions only if they match.

•	 Corporate computer management: The PSN makes the resource 
management tasks of corporates’ information technology (IT) 
departments easier. Replacing the processor on a computer is 
a much less frequent event than replacing other hardware and 
software components. Therefore, the constant PSN value allows 
the IT administrators to reliably identify individual platforms in 
the corporate network. The status of a platform can be monitored 
and tied to its processor PSN. Changes to the platform can be 
easily identified and managed.

Note that in the usages of secure authentication and software theft mitigation, the 
PSN protection may cause inconvenience to legitimate users. For example, if the user 
upgrades his processor, then he must re-register the new processor with all software 
vendors and websites that leverage the PSN, which could be cumbersome.

Admittedly, the PSN mechanism has its functional problems. For example, there is 
no infrastructure to support PSN revocation. If an attacker is able to steal the PSN of the 
victim’s processor and exploit other vulnerabilities in software or websites, then he can 
possibly circumvent the two-factor authentication and log in to the victim’s bank account.

However, the major concern of the PSN is privacy. Opponents argue that the 
mechanism for controlling the PSN access is not sufficiently robust to guarantee that the 
PSN is only available to software and websites that are explicitly allowed by the platform 
owner. In other words, unauthorized software or websites may be able to retrieve the PSN 
without the owner’s knowledge. Even for authorized entities, there is no governance or 
enforcement on how they use the PSN. For example, all Internet activities of a user may 
be traced by misbehaving software. Abusing the PSN would compromise privacy.

Intel cares about consumers’ privacy and has been dedicated to protecting it. 
In response to public’s concerns, Intel discontinued the PSN feature in its processor 
products after Pentium III.

But the general demand for hardware-protected authentication still exists. How to 
achieve it while safeguarding users’ privacy?
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EPID
One of the major achievements of Intel’s research effort in anonymous authentication is 
the enhanced privacy identification1 (EPID). The EPID is a novel technology that resolves 
all aspects of the active anonymity problem: authentication, anonymity, and revocation.

Mathematically, the EPID is built on finite field arithmetic and elliptic curve 
cryptography (ECC). Interested readers should refer to the publications listed in the 
“References” section at the end of this chapter for mathematical details of the EPID.

The EPID ecosystem defines three entities:

•	 EPID authority: Responsible for generating EPID groups and 
private keys; also responsible for revoking members and 
groups. It has a root ECC key for signing group public keys, EPID 
predefined parameters, and revocation lists.

•	 Platform: Usually an end-consumer device that receives services.

•	 Verifier: Usually a service provider that provides premium services 
for the specific device.

The relationships among the three entities are shown in Figure 5-1.
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Figure 5-1.  Relationships among the three EPID entities

During the setup phase, the EPID authority provides private keys for all platforms, 
respectively. Note that every platform has a different and unique private key. The delivery 
and storage of the private key must be protected (encrypted) to avoid leakage. The EPID 
authority also establishes and manages a server for all verifiers to retrieve EPID group 
public keys and EPID parameters. These materials are not secrets, are digitally signed 
by the EPID authority, and therefore can be delivered through open networks. Because 
platforms served by the verifier may belong to different groups, the verifier must obtain 
all group public keys used by the clients it is serving beforehand from the EPID authority.
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In addition to the private key, the platform also needs the corresponding group 
public key and predefined parameters to generate EPID signatures. The group public key 
and parameters can be acquired from the EPID authority together with the private key or 
from a verifier.

Once the verifier and the platform are both provisioned with required information, 
the platform can sign messages or challenges from the verifier, and the verifier can verify 
whether the platform’s signature is acceptable.

Like all authentication mechanisms, the prover—in this case a platform—must 
possess a credential and show the verifier that it knows, has, or is the credential. On 
the other hand, the verifier—in this case the service provider—must have sufficient 
knowledge beforehand to reliably verify the correctness of the credential presented by 
the platform.

For example, in the simple password authentication scheme, the credential is the 
password. The platform must know and present the password. For verification, the 
verifier must have the expected password or a hash fingerprint of the expected password 
for comparison.

In the public key authentication scheme, the credential is the private key. The 
verifier sends a challenge to the platform, and the platform presents a digital signature 
generated using its private key and the challenge. The verifier must have the platform’s 
public key to verify the validity of the signature.

In two-factor authentication, the second factor is usually “something you have”—for 
example, a token device with a randomized PIN that is synchronized with the verifier’s 
server. The PSN on a Pentium III processor is also a form of “something you have”.

The credential can also be biological or “something you are,” such as fingerprint 
or eyeball characteristics. For example, Apple’s iPhone 5s features fingerprint 
authentication.

None of these authentication schemes is anonymous. The verifier identifies the 
platform with the presented unique credential.

Similar to traditional public key cryptography, an EPID platform owns a unique 
private key and must keep it secret (protecting with confidentiality). Both the EPID 
platform and the EPID verifier know the group public key and must maintain its integrity.

Here’s what is not so similar to traditional public key cryptography:

An EPID private key is essentially derived from a random number. •	
The ECC private key is also a random number; but an RSA private 
key set is not random but a probable prime number. The key 
generation for EPID is thus faster than RSA.

An EPID private key has one corresponding EPID public key—the •	
group public key. However, a group public key corresponds to 
multiple EPID private keys. The number of private keys that map 
to the same group public key is configurable; it can be as few as 
several hundred or as many as tens of millions. Obviously, a group 
with more members, in theory, features better anonymity and 
offers more privacy. However, as described later in this chapter, 
under certain circumstances the computational cost will increase 
linearly with the increase of members in a group.
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Intel’s security and management engine is the first platform that implements EPID. 
Intel’s chipset series 5 (released in 2008) and newer natively support the EPID platform 
functionality. A unique private key, in its encrypted form, is burned into security fuses for 
every chipset part during manufacturing.

For this EPID ecosystem, Intel acts as the EPID authority. Using the private key, the 
security and management engine proves that it is a genuine Intel platform, and hence 
eligible for premium services that are only available for Intel platforms.

 Key Structures and Provisioning
The platform device must have built-in secure storage capability—at a minimum, 
encryption, for storing the EPID private key. Integrity and anti-reply protections for the 
private key storage are optional but recommended. If integrity or anti-reply is absent, 
attackers may be able to mount denial of service (DoS) attacks against the platform 
device, so services relying on EPID may not be available when requested.

For EPID version 1.1, a private key is 1312 bits in size. Its components include:

Group ID (32 bits)•	

•	 A: An element in a predefined 512-bit elliptic curve group G1  
(512 bits)

•	 x: An integer ranging from 0 to p – 1 inclusive, where p is the 
parameter of G1 (256 bits)

•	 y: An integer ranging from 0 to p – 1 inclusive (256 bits)

•	 f: An integer ranging from 0 to p – 1 inclusive (256 bits)

To save space, an EPID private key can also be expressed in the compressed form, 
which is 544 bits in size:

Group ID (32 bits)•	

•	 A.x: An integer ranging from 0 to q – 1 inclusive, where q is the 
parameter of G1 (256 bits)

•	 Seed: A 256-bit string

The compressed form of a private key must be decompressed before being used for 
signing. The complete private key can be derived from its compressed form, together with 
the group’s public key and values of all predefined elements such as G1.

On Intel’s security and management engine, the EPID key is treated as an asset of 
the highest value on the engine. On Intel’s manufacturing line, an EPID key, in its 544-bit 
compressed and encrypted form, is retrieved from Intel EPID authority’s secure server 
that generated all keys. The manufacturing process then burns the 544-bit key to secure 
fuses of the engine. For security and privacy reasons, the key is then immediately and 
permanently deleted from the secure server. In other words, from that point on, only the 
part itself knows the value of its EPID private key. As the key is deleted after being burned 
to fuses, there is no “key retrieval” mechanism. If the part loses its EPID private key, it has 
to be returned to the Intel factory, and a new EPID private key has to be provisioned to it.
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On Intel’s security and management engine, because what the fuses store is the 
compressed form of the private key, EPID is not immediately available for use out of box.  
To save expensive fuse space, the group public key is not burned to individual platforms.  
In order to function as a platform, a procedure called “provisioning” must be executed first. 
The provisioning is a one-time effort for the life of a platform. During provisioning, the group 
public key and predefined parameters of EPID are sent to the platform from a verifier. The 
platform uses this data together with its compressed private key to derive the complete private 
key and then stores the complete private key in secure storage for use in future EPID sessions.

The provisioning must be done before the first invocation of the EPID on a platform. 
Many platform manufacturers choose to provision in their manufacturing lines for better 
user experience. Others perform provisioning during system initialization on the first 
boot. The verifier can be software running on a host operating system or a remote server. 
Figure 5-2 depicts the provisioning protocol.

Platform Verifier

No

Are you provisioned yet?

What’s your group ID?

PriavteKey.GroupId

Group public key
EPID predefined parameters

1. Verify EPID authority’s ECC signature.
2. Decompress private key
3. Store decompressed private key in secure storage
4. Store group public key and predefined parameters

Provisioning completed

Figure 5-2.  EPID provisioning protocol

The EPID algorithm uses four mathematical groups: G1, G2, G3, and GT. The groups 
G1, G2, and G3 are elliptic curve groups. The group GT is a finite field group.

G1 is 512-bit in size. An element of G1 takes the format of (•	 x, y) 
where x and y are big integers ranging from 0 to q – 1 inclusive.

G2 is 1536-bit in size. An element of G2 takes the format of  •	
(x[0], x[1], x[2], y[0], y[1], y[2]), where x[i] and y[i] are big integers 
ranging from 0 to q – 1 inclusive.

G3 is 512-bit in size. An element of G3 takes the format of (•	 x, y) 
where x and y are big integers ranging from 0 to q – 1 inclusive.

GT is 1536-bit in size. An element of GT takes the format of  •	
(x[0], x[1], ..., x[5]), where x[i] is a big integer ranging from 0 to  
q – 1 inclusive.
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All EPID groups share the same predefined parameters for G1, G2, G3, and GT. These 
groups are defined by the following parameters:

Elliptic curve group G1. Parameters:•	

·· p (256-bit), a prime

·· q (256-bit), a prime

·· h (32-bit), a small integer, also denoted as cofactor

·· a (256-bit), an integer ranging from 0 to q – 1 inclusive

·· b (256-bit), an integer ranging from 0 to q – 1 inclusive

·· g1 (512-bit), a generator (an element) of G1

Elliptic curve group G2. Parameters:•	

·· p (256-bit), same as in G1

·· q (256-bit), same as in G1

·· a (256-bit), same as in G1

·· b (256-bit), same as in G1

coeff (768-bit), the coefficients of an irreducible polynomial··

coeff[0], coeff[1], coeff[2]: 256-bit integers ranging from 0 to ··
q – 1 inclusive

·· qnr (256-bit), a quadratic nonresidue (an integer ranging 
from 0 to q – 1 inclusive)

orderG2 (768-bit), the total number of points in G2 elliptic ··
curve

·· g2 (1536-bit), a generator (an element) of G2

Elliptic curve group G3. Parameters:•	

·· p´ (256-bit), a prime

·· q´ (256-bit), a prime

·· h´ (32-bit), a small integer, usually 1, also denoted as 
cofactor’

·· a´ (256-bit), an integer between ranging from 0 to q´ – 1 
inclusive

·· b´ (256-bit), an integer between ranging from 0 to q´ – 1 
inclusive

·· g3 (512-bit), a generator (an element) of G3
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Finite field group GT. Parameters:•	

·· q (256-bit), same as in G1

coeff (768-bit), same as in G2··

·· qnr (256-bit), same as in G2

The public key of an EPID group consists of the following elements:

Group ID (32 bits)•	

•	 h1 (512 bits): An element in G1

•	 h2 (512 bits): An element in G1

•	 w (1536 bits): An element in a predefined 1536-bit elliptic curve 
group G2

Although the group public key and predefined parameters are not secrets, the 
platform must verify that what is sent by the verifier is trustworthy. The EPID group 
pubic key and the predefined parameters are digitally signed by the EPID authority using 
ECDSA.2  The EPID authority’s ECC public key is hardcoded in all platform devices. The 
platform verifies the EPID authority’s ECDSA signature before using the data sent by the 
verifiers to perform the private key decompression.

If the platform device has enough fuse space, the manufacturing process can 
provision public key and predefined parameters together with private keys for the 
devices, in which case the provisioning protocol can be skipped. However, because the 
provisioning is a one-time procedure for the lifetime of the device, and the public key and 
predefined parameter are not secrets, it is generally preferable to burn only the private 
key during manufacturing and perform provisioning before the first use of EPID. This is 
the design used by Intel’s security and management engine to save secure fuse space.

Notice that even if a platform provisions the group public key, predefined 
parameters, and the private key during manufacturing, it must hardcode the ECDSA root 
public key of the EPID authority for verifying the verifier’s signature in a SIGMA session. 
See the “SIGMA” section of this chapter for details.

Revocation
The EPID protocol supports revocation of members or groups. How is a platform 
identified for revocation? In an EPID ecosystem, the EPID authority is the only entity that 
has the privilege to revoke a member or a group. Once a verifier identifies a platform or 
group that should be revoked, it notifies the EPID authority with reasons. The authority 
then examines the request and executes corresponding revocation operations if the 
request is deemed legitimate. In certain cases, the EPID authority may decide to revoke 
platforms or groups without requests from verifiers.

Depending on what information is known about the entity to be revoked, a 
revocation request may belong to any one of three categories: private key-based 
revocation, signature-based revocation, or group-based revocation. The EPID authority 
maintains a single group revocation list (GROUP-RL), and for each group that is not on 
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the group-based revocation list, it maintains a private key-based revocation (PRIV-RL) list 
and a signature-based revocation list (SIG-RL). The revocation lists are centrally managed 
and pushed to all verifiers of the ecosystem.

Private Key-Based Revocation
If a member’s private key is proved to be possessed by any party other than the platform 
device itself—for example, if a valid private key is published on the Internet—then the 
platform device is concluded as having been compromised, and it should not receive 
any more services as an EPID platform. In order to revoke a member by using its private 
key, the EPID authority must acquire the value of the private key (in either compressed 
or complete form). The private key-based revocation can be initiated by a verifier or the 
EPID authority. Figure 5-3 shows the flows exercised by the EPID authority for revoking a 
private key.

About to revoke
private key k of

group x

Is group x in
GROUP-RL?

No

Yes

Add k to PRIV-RL
of group x

End

Is k the generator of any
entries in the SIG-RL

of group x?

No

Yes
Delete such

entries from SIG-
RL of group x

Figure 5-3.  Placing a private key in the PRIV-RL
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Consider a real-world scenario: the owner of a platform breaks into the device by 
exploiting critical vulnerability of the hardware or firmware and manages to extract the 
EPID private key from the device. He then shares the private key with other people so 
they can all enjoy services without having to buy the platform device or pay the service 
provider. If the provider uses the “base name” option (described later in this chapter), 
then it can detect such abuse and revoke the private key.

It is possible that the platform to be revoked using private key-based revocation has 
already been revoked by the signature-based revocation. To minimize the sizes of SIG-RL, 
before adding a private key to the PRIV-RL, the EPID authority first goes through the  
SIG-RL and checks if any revoked signatures in the SIG-RL were generated by this key. 
Such signatures, if any, are removed from the SIG-RL.

Signature-Based Revocation 
If a member has reportedly been misbehaving, but its private key is not yet exposed 
or known by the EPID authority, then the EPID authority may revoke the member by 
identifying it using a signature the member had previously generated. Misbehaviors are 
defined by the verifiers and the EPID authority. For example, a platform continuously 
making excessive requests may be considered to be misbehaving; a platform that 
repeatedly generates a constant signature for the same challenge is likely compromised, 
because per the EPID algorithm, multiple signatures generated for the same challenge 
should be different.

The EPID signature allows the verifier to enforce an optional “based name” 
parameter so that all signatures generated by the same platform are linkable. The verifier 
can utilize this option to detect and identify malicious users that abuse anonymity and 
revoke them using the signature-based revocation mechanism.

The private key-based revocation has higher priority than the signature-based 
revocation. When the EPID authority receives a signature revocation request from a 
verifier, it first checks the signature against all entries in the private key-based revocation 
list. If the signature was generated by a revoked private key, then it will not be placed in 
the signature-based revocation list.

Note■■  A lthough a useful feature, the signature revocation is computationally expensive 
for both the signature generation of all platforms of this group (even if a platform is not the 
one that was revoked) and the verifier’s signature verification, and it increases protocol  
traffic between the two parties. Also notice that one revoked member may have more than 
one signature presented in the signature revocation list.

Figure 5-4 exhibits the flows exercised by the EPID authority for revoking a signature.
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Group-Based Revocation 
This is the mechanism to revoke all members of a group. The reason for revoking the 
entire group could include termination of the service contract for a group of members, or 
performance—when too many members of a group have been revoked using signature 
revocation, the signing and verifying operations can take a very long time. At a certain 
point, the EPID authority can decide to revoke the group and create a new group.

Another scenario that applies to the group-based revocation is when critical 
vulnerability in platform implementation is found by the device manufacturer, but the 
vulnerability has not been exposed or exploited publicly. The vulnerability is critical 
because it may lead to compromise of the EPID private key. In this case, the platform 
manufacturer should not only push a patch that fixes the critical vulnerability to all 
impacted devices, but also revoke these devices using the group-based revocation.

If the group-based revocation is due to performance or platform vulnerability, then 
the EPID authority will create a new group and reprovision nonrevoked members of the 
old group. Of course, a member of the old group must show that it has not been revoked 
by private key and signature, in order to receive a new private key of the new group.

The group-based revocation has highest priority among the three revocation 
methods. Once a group is revoked, its SIG-RL and PRIV-RL will not be used by verifiers. 
The EPID authority does not maintain SIG-RL or PRIV-RL for revoked groups.

Figure 5-5 exhibits the flows exercised by the EPID authority for revoking a group.

About to revoke
signature s of

group x

Is group x in
GROUP-RL?

No

Yes

End

Is s generated by any entry
in the PRIV-RL of group x?

Yes

No Add s to SIG-RL of
group x

Figure 5-4.  Placing a signature in the SIG-RL
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Signature Generation and Verification
The EPID signature generation is the algorithm implemented by a platform. The EPID 
signature verification is the algorithm implemented by a verifier. This section gives an 
interface overview of the two algorithms but does not discuss mathematical details. Readers 
interested in the detailed steps of the signature generation and verification algorithms 
should refer to publications listed on the “Reference” section at the end of this chapter.

Figure 5-6 exhibits the communications between EPID entities during an 
authentication session.

About to revoke
group x

Is group x already in
GROUP-RL?

No

Yes

Add group x to
GROUP-RL

End

Is there a PRIV-RL for
group x?

No

Yes

Is there a SIG-RL for
group x?

Delete PRIV-RL of
group x

No

Yes Delete SIG-RL of
group x

Figure 5-5.  Placing a group in the GROUP-RL
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Signature Generation
Input:

EPID private key•	

Corresponding EPID group public key•	

Message to be signed•	

Verifier’s base name (optional)•	

Signature revocation list of this group•	

Output:

Basic EPID signature•	

Non-revocation proofs, one for each entry in the signature •	
revocation list

The basic signature generation is a very intensive operation—it takes as long as 
two seconds on the security and management engine, which negatively impacts the 
user’s experience. Fortunately, most of the steps of the basic signature generation can be 
performed without the knowledge of the message to be signed.

The “pregenerating and caching” optimization is utilized widely in the security 
and management engine by many applications to expedite real-time operation. For the 
EPID, the engine creates and caches a certain number of “presignatures” without using 
the message to be signed. The presignatures are stored securely in the engine’s internal 
memory. The presignature generation is performed right after every time the engine 
is powered on. Alternatively, the unused presignatures in the cache can be stored in 
nonvolatile memory before power-off, and loaded and reused at the next power-on. Due 
to the very limited storage space and large size of the presignatures, the first option is 
deemed more efficient for the engine.

When a signing request is received, the engine fetches a presignature from the cache 
and completes the final signature using the message from the verifier. The engine then 
kicks off generation of a new presignature in a low-priority thread, to fill the used slot of 

Platform Verifier

Basic signature
Non-revocation proofs

message to sign
Signature revocation list

EPID authority

Private key revocation lists

Signature revocation lists

Group revocation lists

Signature verification

Signature generation

(only when there is update to lists)

Figure 5-6.  EPID signature generation and verification
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the presignature cache. Experiments show that the presignature generation contributes 
to about 95% of total basic signature generation time. In other words, the caching 
optimization reduces the EPID signing time by about 95%.

In addition to the basic EPID signature, the platform has to generate a non-
revocation proof for every signature in the SIG-RL. The data transmission and 
computation time become noticeably long as the number of entries in the SIG-RL 
increases. Unfortunately, the non-revocation proof cannot be precomputed because the 
calculation uses the basic EPID signature as input.

If the platform’s private key was used to generate at least one signature on the 
SOG-RL, then the non-revocation proof calculation will fail, and the platform, if not 
compromised, should abort and notify the verifier of the revocation of itself. Even if 
the platform is malicious and returns an invalid non-revocation proof for the revoked 
signature, the verifier will be able to detect it because the signature verification will fail.

Base Name
The base name is an optional input to the signature generation and verification 
algorithms. It is the verifier that decides whether to require it or not. The platform has 
the right to deny using a base name. If used, all signatures generated by a platform with 
the verifier’s base name are linkable to the verifier. That is, the verifier is able to identity 
which signatures come from the same platform. The verifier cannot tell which platform it 
is, though.

Apparently, this option degrades the privacy protection for the platform. Therefore, 
the design guideline for the platform is to reject signature requests with base name by 
default and only use a base name with trusted verifiers. The platform should hardcode 
a list of trusted verifiers. The SIGMA protocol, introduced in the next section, provides a 
way to identify the verifier.

But why does a verifier want to use the base name option? The main reason is to 
prevent rogue platform users from abusing the anonymity of EPID. Consider a scenario 
where an online movie subscription service sets a limit of 100 movies per month. The 
base name signature can help the service provider keep track of usage for all platform 
subscribers, identify excessive usages, and revoke rogue platforms if necessary.

Signature Verification
Input:

EPID group public key•	

Private key revocation list•	

Signature revocation list•	

Group revocation list•	

Message that was signed•	
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Verifier’s base name (optional)•	

Basic EPID signature•	

Non-revocation proofs•	

Output:

Signature valid or invalid•	

As shown in the input and output parameter lists, the amount of data transmitted 
between the platform and the verifier for signature revocation is proportional to the 
number of entries in the signature revocation list. This is because the verifier must send 
all signatures in the SIG-RL to the platform, and the platform must prove that it is not the 
generator of any signature in the list.

A lengthy SIG-RL is not only affecting the volume of data transmission, but also 
increasing the computational cost. The platform must calculate a non-revocation proof 
for each revoked signature; the verifier must verify the validity of each non-revocation 
proof sent by the platform.

For Intel’s EPID ecosystem, the threshold for the number of entries in the signature 
revocation list of a group is set to 50 and enforced by Intel’s EPID authority. The number 
was chosen based on performance measurement of the security and management 
engine, and the capacity and bandwidth of the communication channel between the 
engine and the verifier host software or the remote verifier server. When the number 
of revoked signatures exceeds 50, the group will be revoked, and a new group will be 
assigned to replace the old group.

The verifier must validate the platform against all three revocation lists, in the 
following order:

Is the platform’s group ID in the group-based revocation list? If •	
so, abort.

Is the platform’s basic signature generated by any private key in •	
the private key-based revocation list? If so, abort.

Are the platform’s non-revocation proofs valid against all entries •	
in the signature-based revocation list? If not, abort. The signature 
revocation is checked last because its operation is much slower 
than the other two revocations.

The signature verification is also a mathematically intensive operation. 
Because the verifier usually is equipped with strong computational capability 
(faster CPU and more memory), though, it does not introduce significant latency 
from an end user’s perspective.

SIGMA
The EPID provides a solution for a platform to authenticate itself anonymously to a 
verifier. The EPID is a one-way authentication protocol, because the verifier is not 
authenticating to the platform. However, for many use cases, the platform has to identify 
and trust the verifier.
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One application of the security and management engine was the Intel Upgrade 
Servicei that allowed customers to enable advanced CPU features by purchasing a $50 
upgrade card. In this usage model, the engine is the EPID platform, and a remote server 
set up by Intel is the verifier.

On the one hand, the remote server must be assured that the target platform is 
indeed an eligible Intel security and management engine. On the other hand, the engine 
must verify that the upgrade request indeed came from a legitimate Intel server after 
payment was cleared, and not from a hacker’s forgery. Notice that in this case there is no 
privacy requirement on the verifier. So the authentication method of this direction can be 
realized by traditional public key cryptography.

In addition to mutual authentication for each other, the platform and the verifier 
have to perform further secure message exchanges for application-specific protocols.  
The EPID algorithm per se does not establish session keys for encryption or integrity.

On top of EPID, ECDSA, and the Diffie-Hellman3 key exchange scheme, Intel 
designed a protocol called SIGMA (SIGn and Message Authentication) that enables  
two-way authentication, one direction anonymously and the other distinctively, as well as 
session key agreement. The security and management engine implements the platform 
side of the SIGMA protocol.

Verifier’s Certificate 
The SIGMA protocol is built on a public key infrastructure (PKI). In this PKI, the EPID 
authority also serves as the root CA (certification authority) of verifiers and issues X.509 
certificates to qualified verifier applications. For example, a DAL (dynamic application loader; 
see Chapter 9) applet that invokes EPID on the security and management engine should 
obtain its verifier certificate chain rooted to the Intel EPID authority CA. The server for the 
Intel Upgrade Service obtained its X.509 verifier certificate from the EPID authority as well.

As the root CA, the EPID authority may issue a leaf certificate for a verifier program 
or issue intermediate CA certificates, which then sign and issue other intermediate CA 
certificates or verifier certificates. Nevertheless, the verifier’s certificate chain must be 
rooted to the self-signed certificate of the EPID authority. Recall that the platform device 
with compressed private key must hardcode the EPID authority’s root ECDSA public 
key for verifying the EPID group public key and predefined EPID parameters sent from 
the verifier. The same ECDSA public key is also used by the platforms to validate the 
certificate chain of the verifier.

The SIGMA PKI supports revocation of the verifier. When a verifier is no longer 
qualified as an EPID verifier, and its X.509 certificate has not yet expired, then its 
certificate can be revoked by the EPID authority. The criteria of a qualified verifier are 
defined by and at the discretion of the EPID authority. For example, upon end of life, the 
certificate of Intel Upgrade Service was revoked.

One or more online certificate status protocol (OCSP) servers are employed to 
enforce the revocation. The EPID authority issues X.509 certificates to OCSP servers. 
The EPID authority pushes the revocation lists of intermediate CAs and/or verifiers to all 
OCSP servers whenever new certificates are revoked.

iIntel Upgrade Service was end-of-life in 2011 and no longer available to customers.
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Upon request, the authorized OCSP servers issue signed non-revocation proofs for 
all intermediate CA certificates and verifier certificates to the requesting verifiers. The 
non-revocation proofs include timestamps that will be used by the platform. The verifier 
can then present the non-revocation proofs together with its certificate chain to the 
EPID platform.

As an embedded system, the security and management engine does not have convenient 
network access. Therefore, the SIGMA protocol is designed such that the platform does not 
communicate with the OCSP server directly but only connects with the verifier.

Let’s summarize all materials signed by the EPID authority’s root ECDSA key:

EPID group certificates that contain group public keys•	

EPID predefined parameters•	

Verifier’s certificates and intermediate CAs’ certificates•	

OCSP servers’ certificates•	

Messages Breakdown
A high-level overview of the SIGMA protocol is given in Figure 5-7. Detailed 
descriptions follow.

Platform Verifier OCSP

GroupId, OCSP challenge, aG

OCSP challenge

OCSP response

X.509 cert chain, OCSP response, SIG-RL, bG
HMAC, ECC sig(aG || bG )

aG, EPID sig(bG || aG )

Application-specific messages

M1

M2

M3

M4

M5

Figure 5-7.  SIGMA protocol

To begin a SIGMA session, the platform randomly generates an elliptic curve  
Diffie-Hellman private key a and calculates public key a·G. The base point G is predefined 
by the EPID authority. The verifier similarly generates b and calculates b·G.

In M1, the platform sends its EPID group ID and Diffie-Hellman pubic key a·G to the 
verifier. The group ID is for the verifier to look up and send back corresponding SIG-RL 
for that group in M4.

Under certain cases, the platform can also send a random OCSP challenge in M1,  
if it wants to receive a real-time “noncached” OCSP response (non-revocation proof).  
If an OCSP challenge is not sent, then the verifier is allowed to provide a “cached” OCSP 
response that was previously generated by the OCSP server. It is up to the platform 
implementation to decide the maximum age of a cached OCSP response that is 
considered acceptable. The security and management engine accepts an OCSP response 
that was generated within the last 24 hours. In other words, the verifier program may 
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vulnerably retrieve a non-revocation proof from the OCSP server every 24 hours, for 
example at midnight. In the case of a cached OCSP response, the challenge is not material 
and will not be checked by the platform.

Obviously, if the platform decides to request for a noncached OCSP response, the 
SIGMA session will take significantly longer because the platform has to communicate 
with the OCSP server via the verifier during the SIGMA session (messages M2 and M3). 
If the platform accepts cached OCSP response, then M2 and M3 can be skipped. Another 
more problematic scenario with noncached OCSP response is when the OCSP server is 
temporally unavailable or unreachable by the verifier, in which case the SIGMA session 
has to be aborted, resulting in a poor user experience.

So under what conditions should a platform request a noncached OCSP response? 
The answer is application specific. Intel’s security and management engine requests for 
noncached OCSP responses only when

•	 The engine has not been provisioned date/time yet. As a platform, 
the engine must have the current date/time to confirm validity 
periods of verifiers’ X.509 certificates and other PKI elements. If 
the engine has no date/time information, then it has to ask for a 
noncached OCSP response and use the timestamp in the OCSP 
response as the current date/time. The engine’s kernel has a 
secure clocking capability (refer to Chapter 3 for details) and will 
maintain the trusted date/time, even if the device is powered off.

•	 The date/time was provisioned more than 30 days ago. Every 30 
days, the engine requests for a noncached OCSP response to 
calibrate its date/time. This eliminates the influences of possible 
glitches of the internal clock.

M4 is a heavily loaded message that deserves more attention. M4 contains the following:

•	 M4.1: Verifier’s Diffie-Hellman public key b·G

•	 M4.2: SIG-RL

•	 M4.3: Verifier’s X.509 certificate chain

•	 M4.4: OCSP response

•	 M4.5: HMAC on M4.1 to M4.4

•	 M4.6: Verifier’s ECDSA signature on a·G || b·G

Before sending M4, the verifier uses its ECC private key to sign “a·G concatenated 
with b·G.” It also derives the Diffie-Hellman shared secret s from b and a·G. The HMAC on 
M4.1 to M4.4 are calculated using s.

The platform verifies validity of the certificate chain and the OCSP response, 
including checking the nonce if it is noncached, and then verifies the ECC signature. The 
platform then calculates the Diffie-Hellman shared secret s from a and b·G and verifies 
the HMAC. Once everything checks out, the platform proceeds with EPID signature 
generation on message b·G || a·G, and sends to the verifier in M5 with a·G. a·G is sent 
again in M5, so the verifier is able to match the a·G values in M1 and M5 and confirm they 
belong to the same SIGMA session, when there are multiple concurrent SIGMA sessions.



Chapter 5 ■ Privacy at the Next Level: Intel’s Enhanced Privacy Identification (EPID) Technology

138

After the verifier verifies the platform’s EPID signature (including non-revocation 
proofs) that has been sent in M5, the two parties have completed mutual authentication 
and session key agreement. The subsequent messages between the platform and the 
verifier are application specific. Derived values from the shared secret s are used as an 
encryption key and an HMAC key, respectively, to safeguard the application-specific 
communication.

The lifetime of a SIGMA session is determined by the platform and the verifier. 
Though a maximum lifetime does not have to be enforced, it is recommended that 
a new SIGMA session be established periodically. For performance considerations, 
a SIGMA session should not be renewed too frequently, because EPID is a relatively 
slow algorithm.

Implementation of EPID 
This section discusses the best-known methods for implementing EPID infrastructure.

Key Recovery
Due to its nature of anonymity, the EPID must be a native built-in functionality of 
the device. The EPID private keys should be provisioned to platform devices during 
manufacturing, instead of in the field. This is because as soon as a consumer purchases 
the device, the device is associated to the consumer and is no longer anonymous. Any key 
provisioning in the field would have to involve the device owner’s identity and actions; for 
example, using a credit card to purchase an EPID-based service.

Reprovisioning an EPID private key requires a “super verifier” that has access to 
the EPID key generation server; hence the super verifier must be set up by the EPID 
authority. During a SIGMA session, if a verifier finds that the platform’s group is revoked, 
then it should direct the platform to the super verifier and the platform should check 
whether EPID reprovisioning is available for this platform.

As briefly discussed earlier, Intel’s security and management engine supports 
reprovision of EPID private key in the field for one of the following two reasons:

Performance due to too many signatures revoked by the •	
signature-based revocation

Critical vulnerability in firmware•	

In the first case, the platform presents a signature generated using its current 
EPID private key in a SIGMA session with the super verifier. Once the SIGMA session 
is established, the super verifier will send the new group ID and a complete private key 
to the platform. The platform then replaces the old key with the new key in its secure 
nonvolatile storage.

The second case is more complicated. If vulnerability is found in firmware that may 
leak the EPID private key, and there is no known exploit against the vulnerability yet, 
then the manufacturer should release a firmware hotfix and push the firmware update 
to all platforms that have the vulnerability. In the SIGMA session (established using the 
old private key from the platform’s perspective), the super verifier must first confirm 
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the platform has the latest firmware installed, and then send a new private key to the 
platform. From then on, the old private key is obsoleted, and the platform must use the 
new EPID key in all future SIGMA sessions.

Note■■  T he firmware hotfix must also replace the secret keys that are used to protect 
nonvolatile files.

It is always tricky and costly to deal with consequences of critical bugs found in 
released products. For some cases, a recovery may not be an ideal solution. For example, 
if there were already published exploits against the vulnerability, then those rogue end 
users that had exercised the exploit and retrieved the private keys would be eligible for 
reprovision with a new private key and continue to enjoy premium services that they were 
not supposed to receive.

If the vulnerability also allowed compromised firmware to cheat the super verifier 
by sending an arbitrary firmware version number in the SIGMA session, then the super 
verifier would happily send the new private key to the vulnerable firmware.

Attack Mitigation
Like all cryptography protocols, attackers target two aspects: algorithm and 
implementation. To date, there are no known attacks against the EPID algorithm.

To protect an asset, the requirement of the implementation is to make the cost of 
successful attacks higher than the value of the asset. If an asset can be compromised 
on one device and used on all devices (BORE attack), then it is a high-value asset and 
must be afforded the strongest protection. For example, global keys that are stored in 
all devices fall into this category. On the other hand, device-specific secrets are of less 
value than global secrets. The attack must be repeated on an individual device to retrieve 
the secret from the device. This is impractical, especially if the attack requires special 
hardware, setup, and expertise to mount.

The EPID private key is a highly valuable asset because it grants access to premium 
services offered exclusively to the platform. The implementation of the security and 
management engine attempts to ensure that the EPID key cannot be revealed from a 
device without special and expensive equipment and advanced expertise in hacking. The 
following mechanisms to protect EPID private keys are applied:

The EPID keys in fuses are in encrypted form.•	

Anti-cloning: The decompressed private key is stored in secure •	
nonvolatile storage and protected with AES for encryption and 
HMAC-SHA-256 for integrity. The AES and HMAC keys are 
unique per part. Therefore, copying the EPID key file on the flash 
from one part to another will not work.

At runtime, the EPID key is handled in the engine’s internal •	
memory and is never exposed in the clear to the host.
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Applications of EPID 
The services and applications that are built on the EPID always have dependency on 
certain features of the device. Intel’s security and management engine features premium 
applications that are only available on the engine and should not be executed by other 
products. These features require specific hardware and/or environment support to 
function. The EPID is used to prove it is a genuine Intel platform with such support and is 
eligible to enjoy the premium services, but not which individual Intel platform.

Examples of such premium services include:

•	 Intel upgrade service: Consumers could purchase an upgrade 
code from Intel and unlock advanced CPU features. This was the 
first application of EPID, which was dropped in 2011.

•	 Anti-theft technology: Shut down a mobile device when the owner 
reports it as stolen.

•	 Premium content playback: Intel platforms feature proprietary 
PAVP (protected audio video path) technology that offers robust 
hardware protection for contents (see Chapter 8 for details). 
Once a platform is authenticated via EPID to be a genuine 
Intel platform, the user can enjoy premium contents (such as 
high-definition movies) that are only allowed, as required by 
the content creators, on platforms with hardware-level content 
protection.

•	 Identity protection technology: Intel’s identity protection 
technology4 provides a simple and tamper-resistant method for 
protecting access to customer and business data from threats and 
fraud. EPID is used to authenticate the Intel platform.

Next Generation of EPID
Intel continues working on improving the EPID scheme and exploring new deployments 
for the EPID.

Two-way EPID
The two ways in SIGMA’s two-way authentication are not equal—one direction is 
anonymous, and the other is not. As more applications deploy EPID, it is likely that for 
some applications, both sides of the protocol must remain anonymous. In that case, both 
parties will implement platform and verifier functionalities, and two EPID sessions must 
be established to realize mutual anonymous authentication.
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Optimization
Intel’s chipset series 5, 6, 7, and 8 and Bay Trail systems-on-chip products feature the 
second version of EPID: EPID 1.1. The sizes of its elements (keys, parameters, signature, 
revocation lists, and so forth) are not small. The algorithms require a relatively large 
amount of computational resources.

Performance, memory consumption, storage space, and power consumption are 
all critical measures for mobile devices. The new EPID 2.0 standard strives to reduce 
computational cost by choosing more efficient curves and reducing key sizes while 
maintaining the same security level. The EPID 2.0 is published as ISO/IEC standard 20008.5
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Chapter 6

Boot with Integrity, or  
Don’t Boot

You can’t build a great building on a weak foundation. You must have  
a solid foundation if you’re going to have a strong superstructure.

—Gordon B. Hinckley

You are on a business trip and staying in a nice hotel. You leave your laptop in the room 
while going out for a dinner appointment. The laptop has its full disk-encryption feature 
enabled. Being reasonably paranoid, you even turned off the laptop. You believe that 
the laptop and your confidential files stored in it are safe and secure. However, that 
may not be true. An “evil maid” who can physically access the laptop on the sly for 
just two minutes may be able to steal your drive encryption password without a trace. 
Consequently, the confidentiality of all encrypted data on the laptop is in danger.

How does the evil maid do it? The trick is the boot process. End-to-end security is 
essential. The boot security is as critical as, if not more critical than, runtime security.

For the past decade, the effort of securing computers has been focused largely on 
mitigating runtime threats. Numerous solutions have been developed to safeguard the 
integrity of computer systems and protect users’ assets. These solutions include but 
are not limited to antivirus, network firewalls, and password managers. Some of these 
solutions are software-based; others are either dedicated hardware devices or hybrid 
designs made up of software and hardware. Most of these solutions mean to thwart 
certain types of security threats at runtime of the system. Drive encryption programs 
including TrueCrypt, PGP, and BitLocker) adopt a preboot authentication that is 
launched during the boot process as an extension of the BIOS before the operating system 
(such as Windows, Linux, Android, iOS, and so forth) is loaded.

The problem is the lack of end-to-end protection. Most software solutions are 
available only after being loaded by the operating system. In other words, during the boot 
process—that is, from the moment a user presses the power button to when the operating 
system takes control and finishes loading the security solutions—the computer is not 
benefiting from the services offered by the security measures and is hence vulnerable. 
Drive encryption schemes that start during the boot do not depend on the operating 
system to function, but they do rely on the integrity of the boot loader that loads them.
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Admittedly, runtime protection is pivotal. The amount of time a computer typically 
spends on boot today is fairly small compared to how long the operating system is 
running. Operating systems have extensive interfaces and connectivity that make the 
attack surface wide and open. In contrast, the boot is a relatively short and contained 
process. As a result, attacks against the boot are more difficult to mount and succeed.

But a building is only as strong as its foundation. Hacking a computer’s boot loader  
is similar to replacing a mansion’s concrete foundation with sand. The components  
that are involved in the boot process comprise the root of trust for the entire system.  
A compromised boot loader renders the operating system—and all programs running on 
it—untrustworthy, including the antivirus, firewalls, and even drive encryption utilities.

Boot Attack
The boot process and components participating in the process vary, depending on the 
architecture of the system. How a computer boots today is significantly different and 
more complex than it was a decade ago. At a high level, most computers follow the boot 
sequence shown in Figure 6-1.

Figure 6-1.  Boot flow

The BIOS (basic input/output system) is a firmware component stored in nonvolatile 
memory, usually a flash chip. The BIOS loads the boot loader, which is the first software 
component loaded during the boot process. The boot loader is stored in the hard drive, 
together with the operating system and applications.

For attackers, it is preferable to compromise a component that is loaded earlier 
than one loaded later, because taking control at an early stage enables control over all 
subsequent components. Successful attacks against user-mode software programs may 
not be glorious accomplishments in the security community nowadays. Instead, the BIOS 
and boot loader are becoming more interesting targets. A number of such attacks were 
published in the recent years. Here are two examples:

•	 Attacking BIOS: This type of attack replaces an authentic BIOS 
with an attacker’s BIOS that contains malicious code. There have 
been attacks against the UEFI (Unified Extensible Firmware 
Interface) secure boot.

•	 Attacking boot loader: This type of attack usually installs a boot 
kit (a variant of root kits that runs in the kernel mode) under an 
attacker’s control that infects the boot loader. The boot kit can be 
used to steal secrets during the boot path; for example, logging 
the user’s drive encryption password.

If an adversary manages to modify the BIOS or boot loader code without 
authorization, then a straightforward damage he can realize is to corrupt the BIOS or boot 
loader and render the computer unbootable and inoperable (this category of attack is 
called bricking). The most famous example of this kind is the CIH virus, which resulted 
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in reportedly millions of computers failing to boot in the late 1990s. The CIH virus, 
named after its author Chen Ing-Hau, a student at Taiwan’s Tatung University, flashes 
and rewrites the BIOS region with junk so the infected computers can no longer start. 
Generally speaking, bricking the attacker’s own device yields no benefits to the attacker. 
But if such bricking attacks can be mounted remotely and widely spread with viruses like 
CIH, it will cause substantial monetary loss.

In today’s operating system, writing to flash or a boot loader without physical access 
is an incredibly privileged operation and hence more difficult to implement than 20 years 
ago. The bricking attacks against the boot path cause little or no harm on newer computers 
that are shipped with backup BIOS images on the flash and recoverable boot loaders on 
a special region of the hard drive or from the manufacturer-provided recovery disc. Most 
reputable antivirus utilities are capable of monitoring the integrity of the boot loader and 
of killing viruses that infect the boot loader. Pure bricking attacks against the boot path are 
considered out of scope in the remainder of this chapter.

Evil Maid
Joanna Rutkowska of the Invisible Things Lab was the first to describe the “Evil Maid” 
attack1 in October 2009. In the Evil Maid attack, the maid attacker boots the victim’s 
unattended laptop with her USB stick, which contains a bootable and stripped Linux 
operating system. The USB stick then uses the POSIX command dd to install a malicious 
boot kit, which changes the legitimate boot loader with a hook for recognizing and 
recording the full drive encryption passphrase later when the victim turns on his laptop 
and types in the passphrase on the keyboard. The malicious boot kit also recalculates 
certain fields of the MBR (master boot record), including the boot loader hash and size, 
in order to make it look like a legitimate MBR. The recorded passphrase is stored on the 
hard drive and it can be sent over the network to the attacker, or simply be retrieved by 
the evil maid the next day, when she can access the laptop and boot to her USB stick 
again. Once the encryption passphrase is acquired, the maid can just clone the victim’s 
encrypted drive so she can steal all data on it.

Notice that the Evil Maid attack works only on a laptop that is turned off, because the 
attack takes advantage of the lack of boot integrity protection, and the drive encryption 
passphrase is entered by the user only during boot. If the maid deliberately turned off a 
sleeping or hibernating computer in order to mount her attack, then the victim would 
notice that something was wrong and suspect that someone had done something to his 
laptop. However, why would the victim power off his laptop in the first place, while he is 
going out for just an hour for dinner? The average user may not do so.

As a matter of fact, a paranoid professional user who has heard of the “cold boot” 
attack2 may actually turn off his laptop even if he will be away for a short time. The 
researchers that presented the cold boot attack reports found that, based on experiments, 
the DRAM (dynamic random-access memory) still retains its content within a certain 
amount of time after the power is removed, even at the room temperature. Colder 
environments prolong the duration of the memory remanence. This observation is 
contrary to the popular assumption that DRAM would lose its data almost instantly when 
not being refreshed. The time period for which data resides in DRAM after power removal 
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is generally long enough for an experienced attacker to figure out the drive encryption key 
from the DRAM. To counter such attacks, it is advisable to power down a laptop before 
leaving it unattended.

As you can see from the scenarios of the Evil Maid attack, without boot integrity 
protection, drive encryption techniques are able to safeguard your data only for cases 
where a thief steals and possesses your computer for good and attempts to retrieve 
plaintext data from it. If an attacker can secretly and physically access your computer for 
some period of time without you knowing, and then return it back to you, then the drive 
encryption cannot protect your data. This is not the fault of any specific drive encryption 
solution, but the limitation of the technology defined by its security model. The Evil 
Maid attack is simply out of scope if the user temporarily gives up the physical control of 
his laptop, that is, this scenario is not something that the encryption itself is intended or 
capable to mitigate.

To address this loophole, the security protection must start from the very beginning 
and cover the entire boot process. If the boot path is secured on the platform, then an evil 
maid will not be able to easily alter the MBR, so full drive encryption schemes can survive 
the attack.

BIOS and UEFI
The BIOS is the first piece of firmware that executes upon computer power-on. It is stored 
in nonvolatile memory, such as a flash chip on the motherboard. The fundamental 
functionality of the BIOS firmware is to initialize and self-test low-level hardware 
components of the computer, such as the CPU, keyboard, display, DRAM, and so forth, as 
well as to load the boot loader for the operating system from the hard drive. For a system 
with the security and management engine enabled, the BIOS is also responsible for 
communicating with the engine for basic configuration and reserving a predefined size of 
DRAM for the engine’s dedicated access.

In fact, the BIOS is a standard that defines the platform firmware interface to 
the operating system. The term BIOS also refers to the firmware that implements the 
standard. In recent years, the UEFI standard3 has been replacing the conventional 
BIOS standard, which has several limitations (such as a 16-bit real mode and a 1MB 
addressable memory) that are posing difficulty in meeting the needs of modern 
computers. Like the BIOS, the UEFI specification defines an interface between 
the operating system and the platform firmware, and the interface is designed to 
communicate only necessary information in order for the operating system to start. 
Besides supporting larger memory and a disk boot, the UEFI also introduces useful add-on  
features such as secure boot. Notice that the UEFI is backward-compatible with the BIOS 
standard. In this chapter, the term BIOS refers to the platform firmware that runs at boot, 
which may be either a conventional BIOS or a UEFI-compatible one.

Everything starts with BIOS on a computer, including security. If the BIOS is 
compromised, then all security countermeasures deployed after BIOS are essentially at 
risk. The era of the CIH virus—when a Windows application could program the flash and 
corrupt the BIOS—is long gone. Nevertheless, security researchers have reported BIOS 
alteration attacks using advanced techniques in recent years.
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BIOS Alteration
At the Black Hat Europe conference in 2006, John Heasman presented a rootkit made 
possible by altering BIOS’s ACPI (advanced configuration and power interface) table4 
The rootkit can infect Windows during Windows installation. This attack requires the 
capability of reflashing the flash chip where the BIOS is stored. At the 2009 CanSecWest 
Security conference, Anibal Sacco and Alfredo Ortega demonstrated patching malicious 
code into the decompression routines of the BIOS.5 Similar to Heasman’s finding, 
physical access and reflashing capability is required to mount the attack.

Requiring physical access and reflashing BIOS firmware with an attacker’s 
code significantly limits the value of the proposed attacks, because nowadays, most 
manufacturers do not allow arbitrary programming of the BIOS. When manufacturers 
issue BIOS updates for adding hardware support and fixing bugs, the new BIOS images are 
usually digitally signed with the manufacturer’s private key. Only if the signature checks 
out by the operating system will the BIOS update be scheduled to launch after reboot.

At the Black Hat USA conference in 2009, Rafal Wojtczuk and Alexander Tereshkin 
presented an attack against certain vulnerable BIOS.6 The attack exploits a buffer overflow 
bug in these BIOSes to subvert the integrity protection (digital signature) on the BIOS 
update. The attack is more sophisticated than the ones introduced by Heasman, Sacco, 
and Ortega, because it does not require physical access, making remote and wide 
deployment possible.

Software Replacement
Attacks can be classified into various models according to the intension. With the 
exception of the CIH virus, the attacks discussed so far in this chapter target taking control 
of victims’ computers and stealing secrets or performing other harmful operations.

In other models, however, attackers are playing with and hacking their owner 
devices, in the attempt to achieve certain goals:

•	 Install adversary’s software system on a low-end device: The 
software shipped with low-end hardware by its OEM (original 
equipment manufacturer) may come with limited functionalities. 
It is to the user’s interest to replace the original software stack 
with unauthorized software, where more powerful functionalities 
are available; for example, installing Android on a GPS (Global 
Positioning System) or media player device. Notice that the low-end  
device may not be equipped with premium hardware features, 
which limits what the adversary’s software is able to accomplish.

•	 Install adversary’s software system on a high-end device: The high-end  
device features hardware capabilities to support premium 
functionalities, such as enhanced high-definition movie playback, 
near field communication (NFC), and so forth. The adversary’s 
software can bypass certain restrictions. For example, content 
protection may be deployed by an OEM’s software to enforce a 
movie rental period. The adversary’s software may remove such 
policy so that the user can own the movie permanently.
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Jailbreaking
Jailbreaking or rooting refers to the action of overcoming certain restrictions of the 
firmware and software stack that are installed on the device by the device OEM or carrier 
(in the case of a smartphone). Essentially, jailbreaking is a form of privilege escalation 
that allows the user to gain the root privilege and full control of his device.

It is common practice for OEMs and wireless carriers to implement restrictions in the 
firmware and software that is shipped with the hardware. There are a number of reasons 
for this practice. For example, here are a few:

Selling applications and additional services to users after they •	
purchase the device

Protecting the device from malware and viruses•	

Promoting the OEM’s software products by preinstalling and •	
locking them down in the operating system

Preventing the wireless device under service contract from being •	
used with other carriers

Collecting usage data from wireless subscribers•	

Jailbreaking would invalidate all aforementioned purposes; hence it is against the 
OEM and carrier’s interest. For example, a jailbroken iPhone or iPad may be able to run 
third-party applications that are not authorized by or purchased from the official Apple 
App Store. It is also possible to jailbreak a smartphone, unlock premium services, and 
enjoy them for free, while the carrier intended to collect extra charges for these services. 
For example, tethering or Hotspot is usually a paid function charged by the amount of 
4G data shared between the smartphone and other non-4G platforms, such as a laptop. 
Software of a jailbroken phone may cheat the carrier by reporting tethering or Hotspot 
traffic as regular 4G data, hence avoiding extra charges.

Besides circumventing restrictions in the existing firmware and software stack, a 
more sophisticated form of jailbreaking is to install a completely different software system 
and possibly repurpose the device. This is especially interesting for devices that are 
equipped with powerful hardware capabilities but limited software functionalities. HP’s 
TouchPad is such an example.

Launched in July 2011, the TouchPad was discontinued less than two months 
later. Remaining inventories were sold at extremely low prices to clear the stock. The 
TouchPad was made of state-of-the-art hardware specifications for that time, including 
a 1024×768–pixel touch screen, 16GB or 32GB of storage, and 1GB of memory. The 
operating system preinstalled on the TouchPad was the webOS, which suffers several 
limitations, such as very small number of available apps, compared to its competitors, 
iOS and Android. Obviously, it is to the users’ interest if a “better” operating system can 
be installed to run on the TouchPad hardware. In October 2011, the first Android-based 
jailbreak was released by CyanogenMod.i The CyanogenMod converts the TouchPad to a 
dual-boot system that supports both webOS and Android.

iCyanogenMod is a free open source operating system for smartphones and tablets, based on the 
Android mobile platform.
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In most cases, jailbreaking is made possible by exploiting design flaws or 
vulnerabilities in the firmware or software. For example, if a manufacturer’s firmware is 
not digitally signed, then it is convenient to replace it with an adversary’s firmware. Even 
if the architecture and design are sound, bugs in implementation may be exploited to 
allow jailbreaking.

Now, when the device owner is the hacker, how does the device protect itself from 
being broken? Clearly, a meaningful integrity protection scheme would have to depend 
on a root of trust that is in hardware and intact from alteration. How do Intel’s CPU and 
security and management engine help with this matter?

Trusted Platform Module (TPM) 
Discussions regarding the integrity of firmware and software on a platform always involve 
trusted platform module7 (TPM). The TPM is a public standard that defines the interfaces 
of a security coprocessor. A TPM implementation is a hardware device that provides 
cryptographic functionalities for the software to invoke.

Because the TPM is hardware, it is more difficult for attackers to break its security 
and protections. Attacks against hardware are usually attempted through side channel 
analysis; for example, timing information, power consumption, and electromagnetic 
emissions. These attacks require not only physical access, but also special equipment and 
advanced skills. These requirements limit the scope of the damage of successful attacks, 
because the hardware attacks cannot be reproduced widely and easily by spreading 
viruses or malware.

Beside its hardware nature, another important feature of the TPM is its 
independence. The TPM is a module isolated from the main operating system. Its 
operations do not rely on and is not impacted by the operating system or the software 
running on it. This makes the TPM a trustworthy “third-party” for examining the integrity 
of the software stack.

TPM may be implemented as a physically discrete device or as a logical component 
inside a security coprocessor. Recent generations of Intel’s secure and management 
engine features a firmware TPM, which is used to support secure boot designs as well as 
other purposes defined in the TPM standard. For more information about the TPM on the 
embedded engine, refer to Chapter 7 of this book. Despite the existence of the firmware 
TPM, it is also possible to include a discrete TPM in the platform. Intel’s secure boot 
architecture, Intel Boot Guard, can work with either the firmware TPM or a discrete TPM.

Platform Configuration Register 
The primary goal of the TPM is to protect the integrity of the platform. As such, it is 
equipped with implementations of hash algorithms and one or more banks of platform 
configuration registers (PCRs). During the boot process, the PCRs can be used to store 
and report the hash results for every firmware and software component. The operation of 
hashing a boot component is often referred to as a measure. The operation of measuring 
the next component is often referred to as an extend, because the measurement of the 
next component is against not only the next component, but also all components that 
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have been measured before it. In other words, the measurement is always incremental. 
This is defined in the following formula:

digestnew hashA old ew: lg n= ( )H digest data

In this formula, || means concatenation and data
new

 refers to the binary data of the 
component being measured. H

hashAlg
 is the chosen hash algorithm, like SHA-256. From 

the formula, it is easy to understand that an altered component that is loaded during the 
boot process will result in incorrect or unexpected measurements for not only itself, but 
also all components loaded after it, even though those components are intact. Typically, 
the measurements are checked later locally or reported to remote servers for attestation. 
The TPM serves as secure storage only and does not perform the comparison for 
measurements.

Notice the PCR is not specific for the boot time measurement. Rather, supporting the 
integrity of boot components is just one of many usage models of the PCR. Per the TPM 
specification, the PCRs are designed for generalized representation of a platform state, 
and platform-specific specifications may define additional PCR behaviors. In general, 
a platform specification may define a PCR to represent any value that is authoritatively 
known by the TPM or has been securely communicated to the TPM.

Many secure boot architectures take advantage of the TPM’s measurement 
capability. However, the TPM has other useful ingredients in addition to the PCR, and 
the TPM is not just about protecting boot integrity. The TPM has a range of cryptographic 
capabilities, such as sealing and binding data, to help secure the platform not only during 
boot but also at runtime.

Field Programmable Fuses
Newer security and management engines shipped with select Intel platforms in and after 
2013 support a feature called field programmable fuses. As its name indicates, it allows 
fuses to be burned after leaving Intel’s manufacturing facility, in the OEM’s factory or 
in the field. The field programmable fuses are essentially another nonvolatile storage 
medium. However, it is not the only nonvolatile storage in the engine.

Field Programmable Fuses vs. Flash Storage
The security and management engine’s kernel contains a storage manager that manages 
nonvolatile data that must persist across power cycles. Nonsensitive data can be stored 
in plaintext; secrets can be protected with confidentiality, integrity, and anti-replay. The 
embedded applications that invoke the storage manager are free to apply one or more of 
these protection options for their data. The data is stored on the flash device in a special 
partition. The same flash also stores the BIOS, the embedded engine’s binary image, as 
well as other system firmware.

Now that nonvolatile data can be stored on the flash, why the field programmable 
fuses? When comparing the field programmable fuses with the flash storage, anti-replay 
becomes an interesting aspect. Two anti-replay mechanisms are supported by the 
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storage manager: native monotonic counter and RPMC (replay-protected monotonic 
counter) flash:

•	 Native monotonic counter: The monotonic counter resides in the 
chipset’s RTC (runtime clock) power well. Upon RTC power loss, 
for example, due to coin battery removal, all anti-replay blobs 
managed by the engine are invalidated by the storage manager. 
Because of this limitation, the applications must be able to  
re-create the blobs in case they are lost.

•	 RPMC flash: The flash device natively mitigates anti-replay 
attacks. The advantage is the independence of the RTC power 
well. The disadvantage is the cost of the RPMC flash. Not all OEMs 
use RPMC flash parts for all products.

The field programmable fuse scheme provides anti-replay protection that completely 
eliminates the dependency on RTC well or RPMC flash. Thanks to its nature, writing a 
fuse is a one-time operation. That is, once a fuse has been burned (its value changing 
from 0 to 1), the operation cannot be reversed, and the fuse will assume the value of 1 
from then on. This characteristic makes field programmable fuses especially suitable for 
holding data that requires certain properties:

The data must survive flash wipe or corruption. Such data includes •	
platform state information, OEM programmable confidential 
information, and so forth. The security and management engine’s 
verified boot architecture uses the field programmable fuses for 
OEMs to program digests of their public keys.

The data is used to support security claims; loss of the data may •	
result in security vulnerabilities. For example, the fuses can be 
used to permanently record the fact that a security enhancement 
feature, such as anti-theft or TPM, has been enabled for this 
platform. If an attacker (owner of the device) intends to bypass 
specific restrictions by reflashing the firmware image with 
another version that does not support the security enhancement, 
then the image replacement will be caught by the fuses.

The storage manager is not able to provide this level of protection with its anti-replay 
mechanisms.

In addition to anti-replay, the fuse block is hidden inside the security and 
management engine and invisible to the outside of the engine. In other words, 
confidentiality and integrity are native characteristics of the field programmable fuses, 
without having to apply encryption and hashing algorithms.

The main drawback of field programmable fuses is the relatively small number 
of fuses available on die. For a typical configuration of the engine, there are 1024 
programmable fuses in a 32×32 array layout. About one in every four fuses is reserved 
for locking, repairing, and redundancy check purposes, leaving only a few hundred fuses 
for applications to program. As such, the uses of the field programmable fuses are not a 
runtime matter, and must be predefined and allocated carefully on a case-by-case basis.
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Field Programmable Fuse Task
From the firmware architecture perspective, the field programmable fuse manager is 
implemented in its own task (container). See Chapter 4 of this book for more information 
about the security and management engine’s task isolation infrastructure. Being a 
dedicated task, other tasks are not able to penetrate the field programmable fuses. 
Firmware modules that own fuses can program or sense the fuses by calling the field 
programmable fuse task via the intertask calling mechanism supported by the kernel.

The flow for programming a fuse is depicted in Figure 6-2. The figure does not detail 
steps for the fuse manager to burn a fuse; for example, a valid bit check, a redundancy check, 
and so forth. The flow for sensing the value of a fuse is similar and is not shown in this figure.

Application A calls kernel for inter-
task function program_fuse(x) to

program fuse x

Kernel checks if application A
is allowed to consume the
field programmable fuses

manager

Access allowed? No
Kernel returns

error to application
A

Kernel notifies field
programmable fuse manager
of the call from application A

Field programmable fuses
manager checks if application
A is allowed to program fuse x

Programming allowed? No
Field programmable

fuses manager returns
error to kernel

Kernel returns
error to application

A

Field programmable fuses
manager programs fuse x

Yes

Yes

Field programmable fuses
manager senses fuse x

fuse x = 1? N o
Field programmable

fuses manager returns
error to kernel

Kernel returns error
to application A

Field programmable fuses
manager returns success to

kernel

Yes

Kernel returns success
to application A

Figure 6-2.  Flow for application A to programming fuse x
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Depending on the nature of the data, there are five usage models of the 
programmable fuses:

•	 Single-bit one-time programming: The data is of Boolean 
type. Once programmed, the change becomes permanent 
and it can no longer be reverted. This usage requires only one 
fuse. For example, once the OEM finishes the manufacturing 
process, it programs a single-bit one-time fuse to show that 
manufacturing is completed. Certain configurations of the 
security and management engine are intended for only OEMs to 
use; it is not supposed to be touched by end users. The firmware 
logic for handling such configurations consults this “end of 
manufacturing” indicator fuse, before proceeding with the 
configuration manipulation.

•	 Single-bit multiple-time programming: The data is of Boolean 
type. It may change a limited number of times, say n, during the 
lifetime of the platform. In this case, n fuses are necessary for 
storing the data, and one of the n fuses is programmed every 
time the value of the data flips. Take the anti-theft technology for 
example. Once enrolled, the anti-theft technology automatically 
shuts down the platform per the user-configured policy if 
it detects that the system is in a stolen state. The shutdown 
is performed only if the platform is enrolled, therefore the 
enrollment status is critical for enforcing the shutdown. Users are 
free to opt out after enrollment or enroll again (that is, changing 
the enrollment status) for a limited number of times. For a single-bit  
multiple-time programming fuse, the field programmable 
fuse manager counts the number of the n fuses that have been 
burned. If the number is odd, then the data is assumed to be true, 
implying, for example, the anti-theft is currently enrolled; if the 
number of is even or zero, then the data bit is assumed a value of 
false.

•	 Multiple-bit one-time programming: The data consists of multiple 
bits. It cannot be changed once programmed. For this usage, the 
number of fuses required is equal to the bit size of the data. For 
example, in Intel’s verified boot architecture, the OEM programs 
its 256-bit hash of OEM’s RSA public key to field programmable 
fuses during the manufacturing process. The OEM also programs 
its secure boot policies to designated fuses. Once done, the value 
cannot be erased or updated during the lifetime of the platform.

•	 Multiple-bit multiple-time programming: The data consists of 
multiple bits. It may change for a limited number of times. For 
this usage, the number of fuses required is equal to the data’s 
bit size multiplied by the number of times the data is allowed to 
change during the lifetime of the platform.
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•	 Incremental integer: The data is a non-negative integer that 
assumes values from 0 to m, inclusive. The data assumes an 
initial value of 0 and can only be updated from smaller to greater; 
for example, from 1 to 3, but not from 3 to 2. A set of m fuses 
are required for this usage model. The number of burned fuses 
represents the value of the data. A typical usage is the version 
number of a firmware component. When vulnerabilities are fixed 
in a firmware patch, the version number of the new release will 
be incremented by one from the previous vulnerable version. 
The latest version number is recorded in the fuses. When the 
embedded engine loads the firmware, it checks the firmware’s 
version number and compares with what is shown by the fuses. If 
the former is greater, the fuses are updated with the new version 
number; if the former is smaller, then the system concludes that it 
is under a rollback attack and proceeds accordingly.

Intel Boot Guard
Intel Boot Guard technology provides hardware-based boot integrity protection that 
prevents malicious firmware and software from taking over boot blocks. It does so by 
detecting an unauthorized boot block and disallowing it to execute. The Boot Guard is a 
hardware and firmware solution that does not depend on any software.

Intel released the authenticated code module, or ACM, for OEMs to enable the Intel 
Trusted Execution Technology8 (TXT) and the Boot Guard feature. As will be described 
later in detail, the ACM plays a pivotal role and carries critical tasks in the Boot Guard 
solution. Digitally signed by Intel, the ACM component is stored on the flash together 
with BIOS and other firmware components. The public key for verifying the signature on 
the ACM is hard-coded in Intel’s CPU. There is a security version number associated with 
the ACM module, which is used to identify and revoke vulnerable ACM releases and stop 
the system from booting.

To take advantage of the Boot Guard technology, the OEM must implement a new 
firmware component to the boot flow, called the initial boot block, which is loaded 
before the BIOS. The initial boot block is responsible for checking the integrity of BIOS, 
initializing memory, and loading BIOS into the system memory. Just like the ACM, the 
initial boot block is stored on the flash chip. The boot flow is shown in Figure 6-1, and the 
additions of the ACM and the initial boot block are shown in Figure 6-3.

Figure 6-3.  Boot flow with ACM and initial boot block
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Note that this is a simplified boot flow. The boot flow with the TXT is more 
complicated. Intel Boot Guard technology defines three boot configurations:

•	 Measured boot: Measures the initial boot block into the platform’s 
secure storage device, such as a TPM.

•	 Verified boot: Cryptographically verifies the integrity of the initial 
boot block using a digital signature scheme. The verified boot 
reduces material cost because it offers boot protection without a 
TPM device.

•	 Measured boot + verified boot: Measures and verifies the initial 
boot block.

But, why is it necessary to introduce the initial boot block? Why can’t the Boot Guard 
directly verify the BIOS? Here are a couple reasons.

•	 Size: The size of today’s BIOS image is in the scale of megabytes 
and increasing. However, the initial boot block is desired to be 
small enough to fit in the on-die memory of Intel silicon in all 
compatible platforms. In other words, the architecture must work 
with fixed and limited memory size. This is not scalable for a BIOS 
whose size may increase.

•	 Flexibility: Modularity in design provides flexibility and the ease 
of changing only parts of the product. Also, an OEM can use one 
private key to sign the initial boot block and another key to sign the 
BIOS. Even in the event the private key for signing the BIOS image 
is leaked or compromised, there is no need to recall hardware.

Operating System Requirements for Boot Integrity
Microsoft’s Windows Certification Program9 specifies a requirement for boot integrity. 
Intel’s Boot Guard technology helps OEMs meet this requirement for their Windows-
based systems:

Boot Integrity: Platform uses on-die ROMii or One-Time Programmable 
(OTP) memory for storing initial boot code and initial public key (or hash 
of initial public key) used to provide boot integrity, and provides power-
on reset logic to execute from on-die ROM or secure on-die SRAM.iii

Google does not pose requirements for boot integrity for Android-based systems. 
In fact, most Android device manufacturers do not implement a secure boot, and 
intentionally allow a custom operating system to be loaded.10 CyanogenMod is one of the 
most famous customized mobile operating systems derived from Android. Tutorials and 
materials for rooting Android devices are publicly available.

iiRead-only memory
iiiStatic random-access memory
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OEM Configuration
The Boot Guard configurations set by the OEM slightly vary among different products. In 
general and at a minimum, the OEM is responsible for configuring its public key hash for 
a verified boot, and the boot policies via the security and management engine.

The security of a verified boot is rooted to the OEM’s asymmetric keypair. The OEM 
generates a 2048-bit RSA keypair as its root key for signing manifests for the initial boot 
blocks. The private portion of the root keypair must be kept securely, and signing manifests 
for initial boot blocks shall be its sole usage. On the other hand, the SHA-256 hash of the 
public key is programmed to the field programmable fuses during the manufacturing 
process. The public key hash consumes 256 fuses that belong to the multiple-bit one-time 
programming category, which cannot be updated once written. Because of the one-time 
programming limitation, the OEM will not be able to renew the root key or update the 
hash, even if the private key is compromised. Therefore, the OEM must protect its root 
private key in a signing server with strong protection from attacks or leakage.

In addition to programming its public key hash, the OEM is also responsible for 
defining its boot policies and saving them in the field programmable fuses. The boot 
policies are also a one-time configuration that cannot be revised. The policies instruct the 
Intel hardware with regard to the following:

What boot protections are enabled—that is, measured boot only, •	
verified boot only, neither, or both

What actions to take upon ACM failure•	

What action to take upon initial boot block failure•	

In the scenario that the CPU is unable to load the ACM from the flash or the digital 
signature of the ACM fails to verify, the CPU may either (based on the OEM’s setting for 
the second bullet in the preceding list) enter the shutdown state or proceed with booting 
from the legacy vector. Although the instant shutdown option offers the highest level of 
integrity protection, it is generally not recommended because it may potentially lead to a 
large number of customer support calls. And problems are extremely difficult to debug if 
the system powers itself off at a very early stage of the boot process.

After the ACM is checked out successfully, the initial boot block becomes the 
next subject of interest. Recall that the security and management engine is capable 
of triggering instant shutdown of the platform (see Chapter 4 for details). When a 
boot integrity-check fails, it is the engine’s responsibility—according to the OEM’s set 
policies—to shut down the platform and terminate the boot process. The OEM can 
determine when the shutdown should happen upon failure. A few options are available:

•	 Unrestricted: Do not shut down the system; let it boot and run 
normally as if the failure did not occur.

•	 Remediation: Let the system continue to boot but shutdown 
ungracefully after a certain amount of time. The amount of 
time (for example, 30 minutes) should be enough for a repair 
technician to perform basic remediation work, such as updating 
the initial boot block or BIOS from the operating system. Yet, the 
time before shutdown should not be too long; otherwise, the boot 
policy becomes meaningless.
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•	 Diagnostics: This is similar to the remediation option, but the 
timer is set to a much smaller value, such as one minute. This 
option allows the manufacturer’s support engineers to retrieve 
debug information from the system.

•	 Zero-tolerance: Shut down the platform immediately upon a boot 
integrity failure. Similar to the case of ACM failure, this option is 
generally not recommended.

The security and management engine offers two methods for the OEM to program its 
public key hash and the boot policies to the designated field programmable fuses. In both 
cases, the configuration is allowed only before the end of the manufacturing process:

	 1.	 Through HECIiv commands sent from the host operating 
system. The commands are honored by the engine only before 
the “end of manufacturing” HECI message is received and 
recorded. This method is not available for production parts.

	 2.	 Through image building. Intel provides OEMs with a software 
program called firmware image tool to build a flash image from 
various components, such as binaries of BIOS, the security and 
management engine, and so on. The tool allows an OEM to 
configure the engine for Boot Guard support, including setting 
its public key hash and boot polices. These values will be 
automatically programmed to the field programmable fuses by 
the engine’s firmware as soon as the “end of manufacturing” 
HECI message is received and recorded.

The boot policy configuration applies to both the measured boot and verified boot.

Measured Boot
The measured boot mechanism is made possible by the Intel TXT. The Intel TXT is 
designed to harden platforms at the hardware level, from hypervisor, firmware (BIOS, root 
kit, and so forth), and other software-based attacks.

The Windows Certification Program requires measuring all boot components using 
a TPM. Intel’s measured boot meets this requirement because the initial boot block is 
measured as the first boot component:

During the boot sequence, the boot firmware/software shall measure all 
firmware and all software components it loads after the core root of trust 
for measurement is established. The measurements shall be logged as well 
as extended to platform configuration registers in a manner compliant 
with the following requirements.

ivHECI, or host-embedded communication interface, is the two-way communication channel 
between the security and management engine and the host operating system. Refer to Chapter 3 for 
more information about the HECI.
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The Intel TXT works by creating a measured launched environment (MLE), which 
enables precise comparisons between the current state of the platform and known-good  
references for all components of the boot process. The measurements (extended hashes 
of components) are stored in the platform’s secure storage device, usually a TPM, and 
are available for local or remote attestation. If measurements match known-good 
configurations, then the TXT marks the system trusted; otherwise, the TXT marks the 
system untrusted and follows defined fallback policies. It can either abort the boot 
process or let the platform continue to operate—but with degraded functionality, such as 
forbidding it from running sensitive tasks, for example.

For the measured boot, the CPU loads the ACM after verifying the signature associated 
with it. The ACM calculates the hash of the initial boot block and stores the measurement  
in a PCR slot of the platform’s discrete or firmware TPM device. The measurement is 
available for attestation later.

Verified Boot
The measured boot mechanism relies on a dedicated storage device, typically PCR slots 
of a TPM, to securely store measurements of the initial boot block and other components 
involved in the boot process. Unfortunately, a TPM may not be available on all form 
factors. This is especially the case for low-cost mobile devices. Specifically, for systems 
in which TPM is not required for other functionalities, adding a TPM merely for the 
purpose of safeguarding the boot integrity increases not only the BOM (bill of materials) 
cost but also development and integration effort, which may not yield a good return-
on-investment. However, the boot integrity can still be a critical requirement for those 
devices. The verified boot mechanism provides an alternate approach without relying 
on a TPM or other devices. Notice that the verified boot mechanism by itself does not 
measure all boot components. Therefore, without a measured boot, it may not satisfy the 
Windows Certification Program requirements.

Cryptographically, data integrity is achieved by employing either a hash (including 
a keyed hash and a plain hash) or a digital signature as a “measurement.” Without an 
independent and trusted reference, the “known good” measurement must be kept 
within the platform and intact from unauthorized alteration. The verified boot features 
a hardware-based root of trust for verifying the integrity of the initial boot block. Next, 
the initial boot block verifies the integrity of the BIOS, the BIOS verifies the integrity of 
the boot loader, and the boot loader verifies the integrity of the operating system, and so 
forth. The integrity of successive components loaded following the initial boot block is 
guaranteed by a chain of trust.

Manifests
The initial boot block binary is associated with a manifest, called the initial boot block 
manifest, or IBBM for short. The IBBM contains the following fields:

	 1.	 The security version number of the IBBM

	 2.	 The SHA-256 hash of the initial boot block
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	 3.	 The RSA signature on (1) and (2)

	 4.	 The RSA public key that is used to verify (3), referred to as the 
IBBM public key onward

The IBBM 2048-bit RSA keypair is also generated by the OEM, but it is different 
from the OEM root RSA keypair introduced earlier; although an OEM is free (but not 
encouraged) to utilize the same keypair for both. The only usage of the IBBM RSA keypair 
is to sign IBBMs. The IBBM RSA private key must be kept securely by the OEM. The OEM 
root public key hash is stored in the security and management engine’s programmable 
fuses. In contrast, the IBBM public key appears only in the IBBM.

The IBBM is not the only manifest in the picture. The OEM uses its root keypair to 
sign another manifest, namely the key manifest, which contains the following fields:

	 5.	 The security version number of the key manifest

	 6.	 The SHA-256 hash of the IBBM public key

	 7.	 The RSA signature on the (5) and (6)

	 8.	 The OEM root public key, used to verify (7)

The hash of the OEM root public key (8) is stored in the programmable fuses. Both 
the IBBM and the key manifest are stored on the flash. The relationships among the root 
key hash, two manifests, and the initial boot block are better explained graphically in 
Figure 6-4.
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Figure 6-4.  Using the OEM public key hash to verify the initial boot block via the key 
manifest and IBBM

As Figure 6-4 depicts, the root of trust is the OEM root public key hash located in 
the fuse hardware and handled by the security and management engine. This makes the 
verified boot a hardware-based scheme that is significantly more difficult to compromise 
than software solutions.

The key manifest seems an unnecessary middleman sitting between the OEM root 
public key hash and the IBBM. Why not just use the OEM root key to sign the IBBM 
directly? The indirection introduced by the key manifest is desirable for OEMs that 
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manufacture multiple product lines. With the key manifest, the OEM can use a single root 
key for all its products, but different IBBM keys for different product lines.

For the sake of revocation, both manifests are versioned.

The security version number of the key manifest enables the •	
OEM to revoke the IBBM keypair should it be compromised. If 
the IBBM keypair must be replaced, then the OEM will generate 
a new IBBM keypair and place its public key hash in a new key 
manifest, and at the same time increment the security version 
number of the key manifest.

The security version number of the IBBM covers the initial boot •	
block, and it allows the OEM to revoke and patch a vulnerable initial 
boot block. When a new initial boot block is released, the security 
version number of the IBBM must be incremented accordingly.

The two version numbers are examined by the security and management engine 
during the verified boot process. If the engine finds that the version number of a manifest 
being loaded is greater than the corresponding value recorded in the field programmable 
fuses, then it programs a certain number of fuses to reflect the greater version number. 
The fuses reserved for the security version numbers belong to the category of incremental 
integer. The version number of a manifest being loaded being smaller than the 
corresponding value recorded in the fuses is an indicator of a rollback attack, where 
an attacker unlocks the flash part and replaces a good and later version of the manifest 
with a vulnerable and older version. In this situation, the embedded engine will react 
accordingly per the boot policies in the fuses configured by the OEM.

Admittedly, revocation relying on security version numbers has its limitations. The 
mechanism works only if the platform has already run, at least once, a later manifest or 
an initial boot block with a greater version number, and then the manifest or initial boot 
block is rolled back to an earlier and vulnerable version. If the attacker blocks manifest 
or initial boot block updates (this is rather trivial to do) in the first place, so the platform 
has no chance to ever see the patched manifest or initial boot block, then the revocation 
design backed by security versioning will not be able to protect the platform. To make the 
situation worse, an advanced attacker may reverse-engineer the new initial boot block 
release and figure out the security bugs that were fixed, and attempt to exploit the bugs in 
the old initial boot block.

Verification Flow
The verification of the initial boot block is a collaborative effort by the security and 
management engine and the ACM running on the CPU. The ACM is responsible for the 
following:

Loading the initial boot block firmware and the two manifests •	
from the flash

Retrieving the OEM’s public key hash, boot policy, its own •	
security version number, and the security version numbers of the 
two manifests from the engine
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Verifying the integrity of the initial boot block using the manifests •	
and OEM’s public key hash

Notifying the engine of updating the security version numbers if •	
necessary

Enforcing boot policy in the event of a communication error or a •	
time-out with the engine

The security and management engine is responsible for the following:

Reading OEM’s public key hash, boot policy, ACM security •	
version number, and the security version numbers of the two 
manifests from field programmable fuses, and sends to the ACM

Incrementing security version numbers of the ACM and the two •	
manifests in the fuses upon requests from the ACM

Enforcing boot policies in the event of a communication error or •	
time-out with the ACM

Performing appropriate actions upon failure of verification, per •	
the boot policies

Figure 6-5 presents the high-level sequence diagram. In the figure, the security 
version number check performed by the ACM is against three elements: the ACM, the 
key manifest, and the IBBM. For the boot process to succeed, all three values seen by the 
ACM must be equal to or greater than the respectively referenced values reported by the 
security and management engine. If one or more of the security version numbers need 
updating, then the ACM notifies the engine after all checks have passed.
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Figure 6-5.  The initial boot block verification flow for the verified boot
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Chapter 7

Trust Computing, Backed 
by the Intel Platform Trust 
Technology

Love all, trust a few, do wrong to none.

—William Shakespeare

In recent years, computing devices such as laptops, smartphones, tablets, and so forth, 
have become very functionally powerful. These devices have deeply penetrated into 
people’s daily lives in many ways. To take advantage of all the convenience that the 
advanced technologies have to offer, it is almost impossible for a regular user to avoid 
giving personal data and confidential information to these intelligent machines.  
A computer probably knows more secrets of its owner than the owner’s best friend.  
A user, implicitly, trusts his computers just like he trusts his family and friends.

For financial applications, shoppers input their credit or debit card numbers to 
purchase from online retailers; bank customers deposit checks using mobile devices by 
taking pictures of the checks and uploading to the bank’s server; financial institutions 
often require a social security number for the purpose of authentication; investors 
buy and sell stocks through electronic brokers. For personal applications, most people 
store all their photos, videos, and documents in local storage or upload to the cloud; in 
addition, users’ private information exposed in e-mails and social networking sites is 
handled completely by computers.

As you enjoy the convenience, a trust relationship is established. You are willing to 
give out the secrets because you trust the computers, not only your personal devices, but 
also the remote web sites and servers they interact with. You believe they are reliable and 
accountable and they will protect your sensitive information and use it legitimately.

Consumers need to trust the devices, and so do the service providers. The owner of 
a platform is not always the one to protect. For example, one of the biggest concerns of 
any content provider is its for-profit contents being transmitted to a rogue device that has 
been hacked by the owner. If the provider was not able to identify compromised devices, 
hackers could happily consume the received contents for free or even share with more 
people, resulting in direct profit loss for the provider.
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The reliance on computers in the sectors of governments and large businesses is 
even more vital. Computer security for those highly sensitive domains is not merely about 
preventing loss of revenue or privacy, but also safeguarding national secrets and security. 
When the specification for the Trusted Platform Module1 (TPM) was introduced more 
than a decade ago, it was found especially useful for defense and intelligence agencies and 
other organizations where critical data must be stored and safeguarded from compromise.

For any new technology to be valuable, the benefit of applying the technology must 
exceed the expenses of initial deployment and continuous management. Ten years ago, 
the cost of TPM deployment was relatively high; consumer usages were not depending 
on computer security as heavily as today. In other words, the expenses incurred to users 
outweighed the benefit of utilizing hardware-based security, making TPM not a popular 
consumer feature. In contrast, TPM was financially meaningful for governments and 
large enterprises and organizations.

But the situation has gradually changed over time. On one hand, today’s personal 
computing devices are managing and processing critical assets for individuals, and 
compromise of security and the loss of such assets can result in a tremendous impact. 
Considering the ever-increasing threats from advanced attacks, protecting personal 
devices with a more robust technology is now inevitable. On the other hand, the cost of 
deployment and administration for TPM has reduced significantly and become more 
affordable, thanks to the improved manufacturing processes and cutting-edge embedded 
designs for TPM. Given these considerations, it makes sense, economically, to install TPM 
in consumer devices. For example, select tablets and desktops built with Intel’s Bay Trail 
SoC (System-on-Chip) are shipped with integrated TPM capability; Google’s Chromebook 
that sells for $250 also has TPM built in. These are lower-cost consumer-grade products.

TPM Overview
What does “trusted” mean in the context of computing? A trusted or trustworthy platform 
is a platform that behaves in a manner that is expected for its designated purposes.  
A platform is trusted if and only if the integrity of its hardware, firmware, and software 
components is proven to be intact. That is, the platform is operating in a state that is 
identical to what is configured by its manufacturer and other authorized entities.

For a consumer device, there are three angles of trust, depending on the identities of 
the trusting entity and the adversary, respectively:

•	 The owner of the platform needs to trust the platform in order to 
let it perform sensitive operations. In this case, the adversary is a 
remote or local attacker, for example, an evil maid2 (see Chapter 6 
of this book for a description of the Evil Maid attack).

•	 A remote server needs to trust the platform in order to grant it 
access to premium services. In this case, the adversary is the 
owner of the platform. For example, wireless carriers may refuse 
to deliver feature updates or honor a warranty for rooted phones; 
many companies do not permit employees’ rooted devices to 
be used for Bring Your Own Device (BYOD) purposes; content 
providers may ban transmissions of paid contents to devices for 
which integrity cannot be verified.
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•	 In a distributed system, a node computer needs to be trusted by its 
peers. Sensitive operations should not be assigned to a node for 
which integrity cannot be verified.

The TPM covers these scenarios by employing a dedicated security processor that 
is isolated from the host firmware and operating system. The TPM device acts as the 
root of trust for the platform. A trust that is rooted in separate and shielded hardware is 
generally believed to provide more robust protection and expose a minimal attack surface 
compared to a software-based root of trust. Notice that the TPM itself is just a library and 
does not provide security per se; the host firmware and software must invoke the TPM to 
benefit from its functionalities and establish the trust.

The TPM specification is created and maintained by the Trusted Computing Group 
(TCG), a not-for-profit organization formed to develop, define, and promote open, 
vendor-neutral, global industry standards, supportive of a hardware-based root of trust, 
for interoperable trusted computing platforms. Its members include major hardware  
and software vendors, such as Intel, IBM, Microsoft, HP, Lenovo, and so on. The first 
version of the TPM specification was released in 2003. The latest published version is 1.2.  
The TPM version 1.2 is also published as ISO/IEC standard 11889. The next version is 2.0,  
which is under public review as of April 2014. The TPM specification is intended to 
define a standardized interface for hardware-based root of trust for all form factors 
of computing systems, so that users and remote servers can trust the integrity of the 
systems with a high level of confidence. In addition to attestation, a TPM also provides 
fundamental cryptography functionalities, such as random number generation, hashing, 
key management, and so forth. Since its release, over two billion end-point devices have 
been shipped with TPM.

It is worth pointing out that there is no such thing as 100% trustworthy computing. 
Given sufficient time and resources, even hardware such as TPM may be broken by 
skilled hackers with special tools and applying, for example, side channel attacks and 
cold boot attacks. However, it is commonly accepted that hardware-based security 
mechanisms are much harder to defeat than software solutions. The difficulty is due 
to equipment and skills required for finding and exploiting hardware vulnerabilities. 
One other important consideration is that it almost always requires a physical presence 
to compromise hardware. This means that it is rarely possible for remote attackers to 
infect a large number of devices through widespread viruses. This also means that it is 
unlikely that an average user can hack his own device by simply following step-by-step 
instructions or installing malware that is published on the Internet. This limits the scope 
of impact, even if vulnerability in hardware is found and exploited.

After all, the robustness of the trust protection only has to be such that the expense 
associated with the effort exceeds the benefit that the attacker may gain from successful 
exploitations. For most cases, especially consumer applications, a well-designed TPM 
implementation would satisfy this requirement.

Cryptography Subsystem
The TPM 1.2 specification involves a limited set of cryptography algorithms:

•	 Hash and HMAC family: SHA-1 and HMAC-SHA-1.

•	 Symmetric encryption family: Vernam one-time-pad3 or AES.
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•	 Asymmetric encryption and digital signature family: RSA.

Random number generator.•	

The draft of the TPM 2.0 specification published in March 2014 defines a much larger 
set of cryptography capabilities for its cryptography subsystem:

•	 Hash and HMAC family: SHA-1, SHA-256, SHA-384, SHA-512, 
SM3,4  and their HMAC. The SM3 is the cryptographic hash 
standard published by the State Encryption Management Bureau 
of China.

•	 Symmetric encryption family: AES and SM4.5  The SM4 is the block 
encryption standard of China. The Cipher Feedback (CFB) mode 
is required by the TPM specification, whereas other modes are 
optional. Note that the CFB mode does not require the size of the 
plaintext or ciphertext be a multiple of the block size.

•	 Asymmetric encryption family: RSA and ECC.

•	 Digital signature family: RSA, ECC, and SM2.6  The SM2 is the 
elliptic curve cryptography standard of China.

•	 Key derivation family: NIST (National Institute of Standard and 
Technology) SP800-56A7 and the counter mode of SP800-108.8

Random number generator.•	

Readers who are not familiar with these algorithms may refer to Chapter 3 of 
this book for detailed information. A TPM can choose to implement only necessary 
cryptography algorithms that are applicable to the platform’s use cases. Most 
cryptography algorithms used by the TPM specification follow existing government 
and industry standards, such as AES, HMAC, RSA PKCS, and so forth. However, besides 
leveraging existing cryptography standards, the TPM specification also defines additional 
cryptography schemes, for example, the modified Schnorr digital signature based on ECC.

For certain standardized cryptography algorithms, the TPM specification may 
specify additional restrictions and requirements. This deserves special attention from 
implementers who intend to deliver compliant TPM products. Here are two examples:

TPM’s ECC key pair generation should follow NIST’s FIPS •	
(Federal Information Processing Standard) 186-3: Digital 
Signature Standard, with a small modification. Per FIPS 186-3, 
the value of resulting private key d should be between 1 and n 
inclusively, where n is the order of the base point of the selected 
curve. However, the TPM specification mandates that the lower 
bound of d be 2nLen/2 instead of 1, where nLen denotes the order of 
n. This is equivalent to saying that the most significant nLen/2 bits 
of d cannot be all zeroes.
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When generating a •	 k-bit RSA key pair, the TPM is required to set 
the most significant two bits of the two k/2-bit prime candidates p 
and q to 1, respectively. This is to assure that the bit length of the 
resulting modulo n = p × q is not shorter than k. Although this is 
in fact common practice exercised by many implementations, it is 
not explicitly required by the RSA PKCS standard.

Note■■  F or cryptography algorithms, pay attention to specific requirements mandated by 
the TPM specification on top of the corresponding cryptography standards.

Storage
In addition to the cryptography subsystem, the TPM is also equipped with volatile and 
nonvolatile memory. The most critical volatile data on the TPM is the PCR (platform 
configuration register), which stores the platform measurements and is read only to the 
host. The PCR should not be persistent. Furthermore, secure internal memory is used for 
runtime operation and must not be visible to the host.

The nonvolatile memory is used for storing TPM secrets, such as primary seeds, 
endorsement key pairs, and persistent objects created by TPM callers. It must be 
protected against external access.

Endorsement Key 
Unique to the TPM device, an endorsement key is an identity for the Root of Trust for 
Reporting. The private portion of the endorsement key is stored securely in the TPM’s 
nonvolatile memory and is never exposed externally. The TPM 1.2 specification requires 
the endorsement key be used only in two operations—namely, establishing the TPM 
Owner and establishing Attestation Identity Key (AIK) values and credentials, and it 
prohibits using the endorsement key for other purposes. Per the TPM 2.0 draft, it is 
the privacy administrator’s responsibility to control the uses of the endorsement key. 
The specification still recommends restricting the use of the endorsement key, due to 
potential privacy concerns. Generally, if a public key is not vouched for by a certification 
authority, then the privacy concerns are not material. A TPM implementation may create 
multiple asymmetric key pairs descended from the endorsement key.

The TPM 1.2 specification requires a preinstalled 2048-bit RSA key pair as the 
endorsement key. The 2.0 version allows multiple endorsement keys to be derived from the 
endorsement primary seed. For TPM 2.0, the endorsement key can be either RSA or ECC.

Attestation
The TCG defines attestation as “the process of vouching for the accuracy of information. 
External entities can attest to shielded locations, protected capabilities, and Roots of 
Trust. A platform can attest to its description of platform characteristics that affect 
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the integrity (trustworthiness) of a platform. Both forms of attestation require reliable 
evidence of the attesting entity.” The TPM provides a way to establish the “reliable 
evidence.”

As briefly discussed in Chapter 6, the PCR carries a critical role in platform integrity 
measurements, especially during the boot process. A PCR stores the accumulative 
cryptographic hash of platform components, using the “extend” operation defined as 
follows, where || means concatenation:

digest :=H (digest data )new hashAlg old new

Starting from the Core Root of Trust for Measurement (CRTM), the boot process 
traverses a series of platform firmware and software. Each component measures the 
successive component and extends the results to the designated PCR. The control is 
transferred to the next component after the measurement.

There are two types of measurements using PCR: static and dynamic, as defined by 
individual platform specifications. PCRs that are configured to hold static measurements 
are cleared upon only platform power-up and hard reset, whereas PCRs for dynamic 
measurements may be cleared by the TPM2_PCR_Reset command.

For example, in the server environment, Intel Trusted Execution Technology 
(TXT) securely measures the following components during boot in seven static PCRs.9  
The operating system may use the remaining PCRs of the TPM to perform software 
measurements specific to the operating system.

•	 PCR0: BIOS (basic input/output system) code

•	 PCR1: BIOS settings

•	 PCR2: Option ROM (read-only memory) code

•	 PCR3: Option ROM settings

•	 PCR4: Boot sector—master boot record (MBR)

•	 PCR5: Boot configuration

•	 PCR6: Platform state changes

The entity that requests the attestation may choose to examine any of the defined 
PCRs according to its usage model and trust policies, but PCR0, which proves the BIOS 
integrity, is usually examined.

The TPM reports the platform state by quoting PCR values. The platform state 
report is available to local and remote entities. To assure that the PCR values in a 
report actually reflect the state of the platform, it is necessary to bind the report to the 
platform. A common approach is to have the TPM digitally sign the report with one of its 
asymmetric keys, for example the AIK, for which the associated public key is present in its 
corresponding certificate signed by a trusted attestation authority. The requesting entity 
can then use the subject public key in the certificate to verify the TPM’s signature on the 
state report. The TPM specification encourages the use of domain-specific signing keys 
for the purpose of signing reports.
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Binding and Sealing
Binding refers to the operation of encrypting a caller’s data using a TPM trusted key, 
which is descended from the endorsement key. Because the TPM that encrypts the data 
is the only entity that possesses the trusted key, only the same TPM is able to decrypt and 
retrieve the data, and the data is essentially bound to the platform.

Sealing is similar to binding but poses an additional condition for decryption. 
The “unseal” (decrypt) operation is allowed only if the platform is in a specified state 
identified by values in PCRs. The specific state is usually the state when the “sealing” of 
the data was performed.

A famous example of sealing is full disk encryption. The symmetric key for 
encrypting the disks can be sealed in the TPM, and unsealed during the boot process 
only if the integrity of the boot path is verified by measurements in the PCRs. If malware 
such as a boot kit is detected, then the platform state will be incorrect and the TPM will 
refuse to decrypt the disk encryption key. The encrypted data on the disk is safe from, for 
example, the Evil Maid attack.

Intel Platform Trust Technology
The security and management engine shipped with recent Intel platforms, such as Haswell 
ULT multichip packaging and Bay Trail SoC, features the Intel Platform Trust Technology 
(PTT). The PTT implements a firmware-based TPM that is compliant to version 1.2.

From an architecture perspective, the TPM is an application running on the 
embedded engine’s core and communicates with the external world, for example the 
Windows 8 operating system, through an I/O driver in the embedded kernel. As part of 
the security and management engine, the firmware-based TPM is inherently isolated 
from the host. The TPM also benefits from all the security hardening countermeasures 
implemented on the security and management engine. These hardening features are 
discussed in Chapter 4. The engine serves as the Shielded Location, as defined in the TPM 
specification, for the firmware-based TPM.

As described in earlier chapters of this book, the security and management engine 
runs a collection of firmware applications. Although the actual set of applications 
installed on the engine varies from product to product, so far, there is no product 
that hosts only TPM. As a result, to minimize the trusted computing base of the TPM, 
it is necessary to protect the TPM from being attacked by other internal firmware 
applications, such as AMT (Advanced Management Technology), in case they are 
compromised. To achieve this goal, the TPM is placed in an isolated process or task, and 
covered by the task isolation mechanism. Figure 7-1 illustrates the high-level architecture. 
Note that the TPM uses internal memory and does not rely on the embedded engine’s 
capabilities of using the system DRAM (dynamic random-access memory).
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As depicted in the figure, the TPM application consumes and relies on other 
elements of the security and management engine:

•	 Kernel: For nonvolatile secure storage, cryptography algorithms, 
I/O driver, and security fuse access for endorsement key 
derivation. The kernel also handles intertask calls from the TPM 
to the field programmable fuses task.

•	 Field programmable fuses task: For programming and sensing a 
fuse allocated for recording whether the endorsement key in the 
fuse has been revoked or not. This programmable fuse is a single-
bit one-time programming fuse. See Chapter 6 for details.

The TPM is not consumed by other processes or tasks, although this may be 
supported in the future.

To establish the communication channel between the host and the firmware-based 
TPM, the BIOS reserves a dedicated I/O buffer during boot. Command calls to the TPM 
are signaled through system interrupts. The I/O buffer is not protected for confidentiality 
or integrity.

The design of BIOS setting up the I/O buffer for TPM input and output does not 
sacrifice security. This is because the I/O buffer is not considered part of the shielded 
location, and information handled by the TPM is not disclosed to the I/O buffer unless 
the disclosure is the intent of a Protected Capability. The worst damage that a rogue BIOS 
can achieve is denial of service, rendering the TPM unusable. However, this does not 
benefit the host in any way.

Embedded system

TPM task
Field

Programmable
Fuses task

Inter-task
call manager

Storage
manager

Crypto
driver

Host

I/O buffer

TPM driver

Kernel

I/O driver

Figure 7-1.  Block diagram of the firmware-based TPM architecture and its communication 
with the host
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Cryptography Algorithms
All algorithms of the TPM’s cryptography subsystem are implemented by the embedded 
kernel’s cryptography driver. For algorithms on which the TPM specification has special 
requirements, the TPM module is responsible for satisfying the requirements. For 
example, when invoking the cryptography driver for generating an ECC key pair, the TPM 
must test the significant half of the resulting private key d. If the most significant nLen/2 
bits of d are all zeroes, a new key pair will be generated and tested.

The RSA key pair generation is a time-consuming operation on the embedded 
engine. For a 2048-bit RSA, a generation takes an average of 30 seconds. To avoid 
timing out key generation commands, the TPM implements a cache in volatile memory 
that holds up to five pregenerated key pairs. When a key pair is consumed, a new key 
generation will be kicked off in a low-priority thread and the resulting key will fill the 
empty slot.

Endorsement Key Storage
The TPM on the security and management engine features a preinstalled endorsement 
key (2048-bit RSA). The endorsement key is required to be unique per hardware part. 
Because of its uniqueness, the endorsement key cannot simply be hard-coded in the 
firmware, which is the same on all parts. Instead, hundreds of millions of endorsement 
keys are pregenerated. During Intel’s manufacturing process, different key materials are 
burned to the platform’s security fuses for all parts, respectively. Note that key materials 
are not the key value.

The security fuses are the highest-valued assets of the engine and they can be 
accessed only from the kernel of the engine. Consequently, the TPM task has to call the 
kernel’s cryptography driver to retrieve fuse values for the endorsement key materials. 
The kernel, upon receiving the call, verifies the caller is indeed the TPM task, before 
fulfilling the request.

Without applying lossless data compression, it takes at least 2080 bits of space 
to express a 2048-bit RSA key pair—32 bits for public exponent e, 1024 bits for private 
component p, and 1024 bits for private component q. The value of e can be a constant, say 
65537, for all keys and hence hard-coded in the firmware, reducing the number of bits to 
2048. Other key components, including the 2048-bit modulus n and the 2048-bit private 
exponent d, can be calculated from e, p, and q. 2048 is a really large number for the fuse 
array, which is a constrained resource. Unfortunately, lossless compression can hardly yield 
satisfying results due to the semi-randomn nature of cryptographic keys. Is there a more 
efficient approach to store the unique endorsement key in fuses? Intel’s firmware-based 
TPM uses a patented technique10 to lower the required fuse space.

As described in Chapter 3, the RSA key generation works by generating two large 
pseudo-random numbers and testing their primality, until two probably primes, p and 
q, are found. A pseudo-random number generator (PRNG) works by taking a seed and 
running deterministic heuristics in a loop, until the requested number of bits has been 
output. The seed is usually much smaller in size than p or q. Therefore, p or q can be 
represented by the seed and the number of iterations (an integer) that has been run to 
yield p or q.
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Algorithm 7-1 shows the pseudo code for generating a probable prime of 1024 bits 
using the PRNG proposed in ANSI X9.31 Appendix A.2.4.11  This PRNG is recommended 
by NIST. This algorithm is implemented by the key generation facility and not the TPM 
firmware.

Algorithm 7-1.  Generation of 1024-bit Probable Prime

Input: None
Output: Key (128 bits), Seed (128 bits), DT (DT < 65536)
 
Begin:
Key := rand(128);
Seed := rand(128);
DT := 0
ANSI_PRNG_INIT(Seed, Key)
 
Block_0 := ANSI_PRNG(DT++)
Block_1 := ANSI_PRNG(DT++)
Block_2 := ANSI_PRNG(DT++)
Block_3 := ANSI_PRNG(DT++)
Block_4 := ANSI_PRNG(DT++)
Block_5 := ANSI_PRNG(DT++)
Block_6 := ANSI_PRNG(DT++)
Block_7 := ANSI_PRNG(DT++)
Block_0_fixup := Block_0 | C0000000000000000000000000000000h
Block_7_fixup := Block_7 | 00000000000000000000000000000001h

While DT < 65536
  If (isPrime(Block_0_fixup || Block_1 || Block_2 || ... || Block_6 || 
Block_7_fixup))
    Break
  Else
    Block_0 := Block_1
    Block_1 := Block_2
    Block_2 := Block_3
    Block_3 := Block_4
    Block_4 := Block_5
    Block_5 := Block_6
    Block_6 := Block_7
    Block_7 := ANSI_PRNG(DT++)
    Block_0_fixup := Block_0 | C0000000000000000000000000000000h
    Block_7_fixup := Block_7 | 00000000000000000000000000000001h
 
If (DT == 65536)
  Goto Begin
Else
  Output Seed, Key, and DT
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The purpose of Block_0_fixup is to set the most significant two bits of the candidate. 
The purpose of Block_7_fixup is to make sure the candidate is odd. isPrime(candidate) 
denotes the Miller-Rabin primality test. isPrime() returns true if candidate is a prime 
number with high probability, and false otherwise. Function rand(size) returns a 
random number of size bits. Function ANSI_PRNG_INIT(Seed, Key) initializes an 
instance of the ANSI X9.31 PRNG in the AES mode with 128-bit Key as *K and Seed as V. 
Function ANSI_PRNG(DT) runs the PRNG for one iteration and returns a 128-bit random 
value. After iterating the PRNG once, the value of DT is incremented by one. Essentially, 
the algorithm attempts to find consecutive 1024-bit number output by the PRNG that is a 
probable prime after fix-ups.

Note that the preliminary primality test introduced in Chapter 3 for expediting 
the prime search is not applied to Algorithm 7-1. To take advantage of the preliminary 
primality test, an extra value, delta, must also be output from the algorithm and stored 
in fuses for the firmware to recover the generated prime. Because the endorsement key 
generation is not an online operation, its velocity is not a concern.

The size of integer DT is limited to 16 bits in order to conserve fuse space. 
Experiments for a large amount of prime generation show that the value of DT output by 
Algorithm 7-1 rarely exceeds 2000h. The Seed, Key, and DT together can be used to derive 
the probable prime. The three values are burned to security fuses during manufacturing. 
The total storage is only 128+128+16 = 272 bits, realizing a saving of as many as 752 bits 
compared to storing the 1024-bit prime itself. To generate an RSA key pair, the algorithm 
is executed twice to generate p and q, respectively.

Algorithm 7-2 gives the pseudo code for recovering the probable prime from Seed, 
Key, and DT. The algorithm is implemented by the TPM firmware. The values of Seed, Key, 
and DT are read from security fuses by the kernel and provided to the TPM.

Algorithm 7-2.  Retrieval of 1024-bit Probable Prime

Input: Key (128 bits), Seed (128 bits), DT
Output: Prime (1024 bits)
 
i := 0
ANSI_PRNG_INIT(Seed, Key)
 
Block_0 := ANSI_PRNG(i++)
Block_1 := ANSI_PRNG(i++)
Block_2 := ANSI_PRNG(i++)
Block_3 := ANSI_PRNG(i++)
Block_4 := ANSI_PRNG(i++)
Block_5 := ANSI_PRNG(i++)
Block_6 := ANSI_PRNG(i++)
Block_7 := ANSI_PRNG(i++)
 
While i < DT
  Block_0 := Block_1
  Block_1 := Block_2
  Block_2 := Block_3
  Block_3 := Block_4
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  Block_4 := Block_5
  Block_5 := Block_6
  Block_6 := Block_7
  Block_7 := ANSI_PRNG(i++)
 
Block_0_fixup = Block_0 | C0000000000000000000000000000000h
Block_7_fixup = Block_7 | 00000000000000000000000000000001h
 
Output Prime = Block_0_fixup || Block_1 || Block_2 || ... || Block_6 || 
Block_7_fixup

Endorsement Key Revocation
The endorsement key initially placed in security fuses may be revoked by the TPM2_ChangeEPS  
command introduced in TPM 2.0. In this case, the TPM must generate a new endorsement 
key pair, store it in nonvolatile memory, and remember not to use the one in the security 
fuses in the future. The TPM task uses a field programmable fuse for the purpose of saving 
the revocation status of the endorsement key in fuses.

Endorsement Certificate
The public portion of an endorsement key can be published in an endorsement certificate 
that is vouched for by a trusted certification authority. The certificate may be shipped 
together with the endorsement key. Size-wise, a typical X.509 certificate with a 2048-bit 
RSA subject key and a 2048-bit signature can be as big as approximately 1KB. An ECC 
certificate is smaller but its size is still in the scale of a few hundred bytes. Some TPM 
implementations do not have the luxury of storing the endorsement certificate on  
the device.

Fortunately, the TPM specification does not mandate the endorsement certificate 
be installed on the device. An alternative design is to have the external requesting entity 
(for example, operating system, service provider, and so forth) obtain the endorsement 
certificate from an online server. The server is linked to a database where all TPM 
endorsement certificates are stored. When an endorsement key is revoked, its certificate 
will no longer be available from the server. Notice that this flow is between the requesting 
entity and a server, and does not involve the TPM device at all.

Note■■  F or a pregenerated and preinstalled endorsement key, the corresponding  
endorsement certificate does not have to be stored on the TPM device.
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Supporting Security Firmware Applications
For TPM, locality is defined to be the privilege level of a command. When a TPM session 
is established, the locality associated with the session is specified. Future access to the 
object must be made at the specified locality. The TPM version 1.2 defines five localities 
0–4. The TPM 2.0 draft introduces extended localities 32–255. The TPM interface is 
responsible for determining the locality each time the TPM is accessed.

For the security and management engine, the extended localities are useful for 
identifying communications between the TPM task and other firmware applications that 
may benefit from the TPM capability. The communication is through the kernel’s intertask 
manager and the call can be placed at locality 32 from the TPM’s perspective, for example.

Figure 7-2 illustrates the conceptual idea of using extended localities to support 
internal firmware applications. Let us see a hypothesis example. A secure server encrypts 
a secret with one of the firmware-based TPM’s asymmetric public keys and sends the 
encrypted secret (a data object) to the TPM at a basic locality. The data object will be 
accessed from locality 32. The TPM imports the object, performs decryption, and now 
possesses the clear secret. The firmware task designed to process the secret can then 
retrieve the secret from the TPM task at locality 32. The TPM interface for extended 
localities is guarded by the kernel’s intertask call manager. Intertask calls are internal to 
the security and management engine, and the host has no way to peek. Also, only TPM, 
the consuming task, and the kernel are involved in the process. Other firmware tasks are 
not able to steal the key, thanks to the task isolation mechanism.

TPM task
Security

Application Task

Inter-task
call manager

Kernel

Locality 32

Embedded system

I/O driver

Localities 0-4

Figure 7-2.  Using extended localities for internal security applications
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Integrated vs. Discrete TPM
Traditionally, the TPM is implemented as a physically discrete hardware component 
and connected to the platform via a hardware bus; for example, the LPC (low pin count) 
bus or SPI (serial peripheral interface). Many personal computers and laptops feature 
discrete TPMs. The following are two benefits of using a discrete TPM:

•	 Easy integration and maintenance: A discrete TPM can be 
physically disconnected from the platform for debugging and 
testing.  A malfunctioning TPM device can be replaced without 
impacting the rest of the platform.

•	 Better security: The isolation between the TPM and the host is 
physical, and the TPM device is not co-located with any other 
devices or functionalities. Compared to an integrated TPM, a 
well-designed discrete TPM can be certified at a higher FIPS  
140-212 level and the Common Criteria’s evaluation assurance 
level13 (EAL).

Contrary to popular belief that discrete TPM provides better security, older versions 
of discrete TPM are vulnerable due to dependencies on the physical bus. For example, 
the LPC bus reset attack14 against TPM version 1.1 demonstrated by researchers of 
Dartmouth College works by resetting the LPC bus and clearing the PCRs of the TPM 
on the LPC bus, without resetting the platform. This flaw that allows a simple hardware 
attack was addressed in TPM 1.2, for which a similar attack would require expertise and 
special hardware.

In addition, discrete TPMs also have drawbacks with regard to deployment—for 
example, development effort, BOM (bill of materials) cost, and onboard space required 
for installation, just to name a few. For small form factors such as a smartphone, these 
shortcomings are critical considerations.

In recent years, the integrated TPM has come into play. In contrast to the discrete 
TPM, an integrated TPM is implemented inside an existing platform component. For 
example, Intel’s firmware-based TPM is a module of the security and management 
engine, and logically isolated from the other modules of the engine. ARM’s TrustZone 
may also realize TPM functionalities in its secure mode. The obvious advantage of an 
integrated TPM is the virtually zero BOM cost. Security-wise, it is generally believed that 
the robustness of an integrated TPM is not as good as a discrete one. That said, for price-
sensitive markets, such as consumer electronics, an integrated TPM provides a balanced 
solution between affordability and security.
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Chapter 8

Unleashing Premium 
Entertainment with 
Hardware-Based Content 
Protection Technology

If there’s content that can only be there if it’s rights protected, we want 
to be able to have that content available to you… So in no sense are we 
hurting you, because if they’re willing to make the content available 
openly, believe me, that’s always the most wonderful thing. It’s the 
simplest.

—Bill Gates

Fast-developing technologies have gradually changed many aspects of people’s lifestyle, 
including the way we enjoy video and audio entertainment. Computers, from stationary 
workstations to mobile handhelds, are used increasingly as multimedia players. Readers 
have switched from paper books to e-books and audio books; CD, DVD, and Blu-ray 
rental and sales numbers have been declining in the last ten years because more and 
more people rent and purchase titles from the Internet.

Compared to traditional media, user experience for the new digital entertainment is 
not by any means worse: a lot of premium content is available at online stores at the same 
time or before the CD/DVD/Blu-ray releases; the picture quality of downloaded and 
streaming content is equal or higher than that of the disc; video and sound can be echoed 
from computers to big-screen TVs. What’s more, the digitization of content further 
benefits consumers in several ways:

•	 Convenience: It is a human-oriented design for the users to sit 
comfortably on a couch in his living room, browse catalogs of 
thousands of titles, and watch interesting ones immediately. It 
saves the room that is needed for storing physical discs; digital 
contents can be stored on the cloud rather than local hard drives; 
sharing content with friends and family takes just a few clicks.
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•	 Lower cost: Data transmission eliminates the material, 
manufacturing, and logistics expenses of discs, and eventually 
reduces the costs of content and benefits consumers. More 
flexible purchase options are now available. For example, instead 
of having to buy an entire music CD at a higher price, a music 
lover can pay for the individual songs of her choice.

•	 Easy management: Searching for specific content in a large 
collection is fast and accurate. No more worries about physical 
damages to a disc due to, for example, temperature and relative 
humidity.

Rights Protection
Alongside the widespread deployment of the entertainment feature on all forms of 
computers is the problem of copyright protection from diverse types of piracy, such  
as sharing, downloading, and counterfeiting. In the case of content protection,  
the device user is untrusted, and the content provider wants assurance from the device 
manufacturer that a user cannot bypass protections. This increases the scope of threats 
and attacks that have to be defended against, primarily physical and side-channel attacks.

It is commonly accepted that general-purpose computers with an open operating 
system and using software to handle content are not as robust as closed systems (for 
example, a dedicated Blu-ray player) because of inexpensive approaches that have been 
developed by researchers and hackers to defeat software protection schemes without 
involving advanced expertise or special equipment.

Obviously, profit loss because of piracy on computers is one of the biggest concerns 
of content providers (such as writers and film studios). Therefore, the content owners 
have to decide whether to demand rights protection for their content, and if so, what 
assets of the content shall be protected and at which level.

For example, most 4K ultra and 1080p high-definition movies sold at online stores 
today require the purchaser’s device to feature appropriate hardware-based protection 
for rights management and playback of the content. Software-based protection measures 
may be deemed insufficient for such content. In other words, if the hardware of the user’s 
computer does not meet minimum requirements, then the content owner and the service 
provider that distributes the content will not sell the title to the platform. On the other 
hand, the content of standard-definition formats usually requires only software-based 
protection or does not require protection at all. There also exists content that is free of any 
rights management, allowing consumers to make unlimited copies and share with others.

In any case, the choice and decision is solely the content owner’s. Before buying or 
renting content, the customer should be well aware of all restrictions posed by the content.

Note■■  T he content provider decides the types and levels of rights protection that are 
required for its content.
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Regarding what assets to protect for content, there are several considerations.  
Here are just a few examples:

How many times can the content be played back?•	

Can the consumer keep the content for good, or for only a limited •	
period?

Is the content permitted to be played back on the user’s other •	
devices in the same domain? If so, what is the maximum number 
of devices allowed?

Is the user allowed to share the content with others? If so, what •	
is the limitation? Is there a limitation on the number of times it 
can be copied and shared? What is the rights policy for the copied 
version of the content?

Can the content be displayed on an external monitor or TV? If •	
so, what type of protection is required on the link between the 
computer and the monitor or TV?

Such policy restrictions are recorded in a license (or rights object) file that is 
transmitted together with the content to the end user during a transaction.

It appears that the rights policy tightens what the user can do with the content.  
Why would software and hardware vendors spend resources to enforce them?

As a matter of fact, content right protection mechanisms implemented on a 
computer is for, and not against, users’ interest, because they are necessary to satisfy 
people’s raising demand for entertainment. It should be emphasized that, on Intel 
platforms, for example, the protection mechanisms

Do not touch users’ personal files•	

Do not introduce constraints to content that does not come with •	
rights protection mandated by the provider

Do not enforce policies that have not been accepted by the user•	

Do not impact or change anything the user would normally do •	
with his computer

The protection mechanisms do one thing and only one thing: increase the difficulty 
and cost of unauthorized activities that violate the terms and conditions associated with 
the content to a level that meets the robustness requirements determined by the content 
provider, so that the content can be made available to end users. If a user is not happy 
with the content’s terms and conditions, then he should not obtain the content, and the 
protection schemes simply will not be functioning at all. 

It would be an annoying experience for a user to encounter an error window saying 
that the computer cannot play the movie because it lacks necessary hardware. Therefore, 
most modern computers today support the types and levels of protection mandated by 
the content providers. A platform without such capability will significantly limit what 
users can do for entertainment and degrade the user experience. To this end, Intel 
platforms shipped with the embedded management engine and select core processors 
feature a hardware-based content protection infrastructure that is able to satisfy the most 
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stringent protection requirements. This technology enables consumers to enjoy their 
favorite content seamlessly on Intel products and do not need to worry about compliance 
problems that prevent the content providers from delivering the content.

DRM Schemes
Digital rights management (DRM) controls the use of digital content. Discussions in this 
chapter will focus on video and audio content, but the protection mechanisms largely 
apply to rights management for textual publications and still images as well.

A number of DRM schemes exist in the market today. Content owners and 
distributors choose the desired schemes used for protecting their content. Many vendors 
support more than one scheme, so their content can be distributed on various types  
of systems and platforms. The following is a list of most popular DRMs used for  
online media:

•	 Widevine: The Widevine DRM was designed by a company of the 
same name, which was acquired by Google in 2010. Widevine is 
supported by Google TV, Google Chromecast, Google Play, and 
other media players on Android and other Google products.

•	 PlayReady: Microsoft first introduced PlayReady in 2007. It is 
widely used by Windows applications. In May 2010, Microsoft 
announced that Netflix had chosen PlayReady as its primary DRM 
technology.1

•	 FairPlay: Created by Apple, FairPlay is a built-in component of 
the QuickTime software, which is installed on all lines of Apple 
devices, such as iPhone, iPod, iPad, Apple TV, and iTunes.

•	 Marlin: The Marlin DRM is developed and maintained by the 
Marlin Developer Community, with founding members including 
Intertrust, Panasonic, Philips, Samsung, and Sony. Marlin is 
mainly deployed in the smart TV market. Especially popular in 
Europe and Asia, it is used by the national IPTV standard of Japan, 
as well as major online video streaming web sites in China, such 
as Baidu and PPTV.

•	 OMA DRM: OMA is an acronym for Open Mobile Alliance, 
created by major mobile phone manufacturers and carriers for 
developing open DRM standards to enhance interoperability 
among mobile devices.

This is not a complete list and there are other smaller DRMs too. These competing 
schemes realize, to a certain extent, similar rights management capabilities with distinct 
design details. In general, the three main elements of a DRM scheme is device key 
management, rights management, and content encryption.

The main building blocks of a platform’s DRM implementation are graphically 
presented in Figure 8-1, where TRS is short for tamper-resistant software. The 
cryptography block includes a pseudorandom number generator (PRNG).  
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Not all components in the figure are applicable to all DRMs, and a DRM may support 
additional value-add features. The DRM client is responsible for performing device key 
provisioning and storage, enforcing rights management, and securing playback flows, 
per the defined policies.

Key management

Device key

Title keys

Rights management

Title key lifetime

Output link protection

Utilities

Metering

Domain keys

Cryptography Timer

Domain

Storage Graphics

Copy control

Server public keys

DRM client

Secure Playback

Secure video path

Secure audio path

Audio TRS

Figure 8-1.  The building blocks of a typical DRM client

Owners of some DRM schemes release specifications with corresponding software 
development kits (SDKs) that contain reference code. Usually, SDKs implement  
DRM-specific functionalities, such as key management and rights management, and 
leave the utility implementations to adopters. An SDK not only remarkably simplifies 
the adopters’ efforts for integration, but also unifies behaviors of different products on 
different systems, and hence reduces the chance of incompatibility.

Device Key Management
The device secret key is a critical asset for a content protection scheme. It can be a 
random AES2 (advanced encryption standard) key or an asymmetric key pair. The device 
secret key is provisioned to each individual device during the manufacturing process, or 
remotely with a server before the DRM is invoked for the first time in the field. For most 
DRM schemes, the secret key on a specific device is unique, although a small number of 
DRMs still use global keys. Using unique keys makes it easier to implement revocation for 
compromised devices.

Once provisioned, the device secret key must be stored with confidentiality in 
nonvolatile memory of the device and never exposed in the clear or shared with other 
devices. A compromised device secret key could be used to decrypt content keys in 
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licenses, retrieve the decrypted content, and distribute or playback freely. Therefore, the 
key is more valuable than any single title. Compromising the key may result in the device 
being revoked and no longer eligible for content playback.

Besides the device secret key, a device is also provisioned with a content provider’s 
public key, which is used in, for example, verifying digital signature of licenses. A content 
provider’s public keys are not secrets and may be hardcoded in the device or provisioned 
in tandem with the device secret key. Integrity protection should be applied to public 
key storage.

Rights Management
The content license contains customized rights for the content for a specific transaction. 
The license must be integrity protected during transmission and storage. A DRM scheme 
that is designed for online content services generally features the following characteristics 
to enforce rights of content:

•	 Protection levels: This attribute specifies what level of protection 
is required for audio and video, respectively. For example, one 
level can be defined to requiring software-based protection 
such that clear content can be viewed by software, and another 
level requiring hardware-based protection where software is not 
allowed to see the clear content. Notice that if the audio and video 
of a title assume unequal protection levels, then the encryption 
keys for audio and video should be different. This attribute also 
indicates whether the stream is allowed to be played on external 
displays, and if so, which version of HDCP3 (high-bandwidth 
digital content protection) is required.

•	 Domain: A user can create a domain on the server and enroll 
all his devices in the domain. Content may be copied from one 
device to another of the same domain. The domain members 
then share the content and a domain key, which is used to, for 
instance, securely transport title keys between two devices in the 
same domain.

•	 Secure timer: A DRM may leverage the system’s trusted clock and 
secure timer to enforce playback duration. For example, a movie 
rental may expire after 24 hours after the first playback begins.

•	 Playback metering: A DRM may measure durations of the user’s 
playback of content and report to the server. For example, a user 
earns free credits toward the purchase of premium movies after he 
has watched a certain amount of commercials, metered by the DRM.

•	 Transaction tracer: After downloading the content, the transaction 
tracer allows the user to start playback even if the computer 
is offline. The platform will record and report offline playback 
events to the rights server once network connection is resumed.
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Notice that the rights policies are generated for each transaction, depending on the 
options selected by the customer.

Playback
The main goal of securing content playback is to protect clear content keys, as well as 
the video and audio paths. The content keys are sent to the platform encrypted with the 
device key or its derivative. The algorithm for encrypting the content key is DRM specific. 
The other attributes of the license should be at least integrity protected.

The entire flow of the content, especially after it is decrypted on the platform, must 
be safeguarded according to requirements specified in the license. A license should 
define the following policies:

Whether the content keys (for video and audio, respectively) may •	
be handled by software

Whether clear compressed and uncompressed video data may be •	
processed by software, respectively

Whether clear compressed and uncompressed audio data may be •	
processed by software, respectively

What protection mechanism should be applied to the connection •	
between the platform and an external display

Apparently, these playback requirements are specific to the title rather than 
individual transactions—they are the same for all issued licenses of the content.

UltraViolet
In early 2011, Intel announced the new digital media services4 with the second-generation 
core processor family (code name “Sandy Bridge”). The services feature innovative 
hardware-based content protection mechanisms that enable consumers to enjoy 
UltraViolet5 content “anytime and anywhere.” Intel has partnered with content providers 
such as Best Buy CinemaNow and Walmart VUDU for UltraViolet content distribution. 
The security and management engine is one of the main elements of the solution.

UltraViolet is developed and maintained by the Digital Entertainment Content 
Ecosystem (DECE), an alliance of companies that include film studios, consumer 
electronics manufacturers, and vendors that form the ecosystem. In contrast to common 
misunderstandings, UltraViolet is, in fact, not a DRM. Instead, it is a free cloud-based 
content rights library that encompasses several existing DRMs, such as OMA. The 
ultimate goal of UltraViolet is allowing users to “buy once, play everywhere,” regardless of 
the DRM scheme of the title and the device on which the purchase was made.

The coexistence of multiple DRM schemes in the market today is good for 
competition, but in the meanwhile results in inconvenience for consumers. Say, 
someone who owns an Android smartphone, an iPad tablet, and a Windows 8 laptop is 
not able to watch the TV programming he purchased from Google Play on his iPad or 
Windows laptop because Apple’s FairPlay and Microsoft’s PlayReady are not compatible 
with Google’s Widevine. UltraViolet aims at resolving this problem by unifying content 
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encoding and format used by various DRMs and storing the proof-of-purchase on a 
centralized location—the UltraViolet cloud. Besides online content, new releases of DVD 
and Blu-ray discs from participating film studios are also UltraViolet-enabled. Once a 
user buys an UltraViolet-enabled disc, he can register with the cloud server and stream 
the same title on all of his UltraViolet-capable devices.

End-to-End Content Protection
The journey of protected content begins at the server that creates the encrypted content 
and finishes at a screen that displays the content. A number of steps and components are 
involved in the flow, as shown in Figure 8-2. They work together to realize complete  
end-to-end protection.

Internet

Player

Content server License server
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GPU (graphics processing unit)
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Figure 8-2.  End-to-end flow of content with software-based protection
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In a nutshell, the encrypted media and its license are delivered to the platform 
through open networks. The player receives them, installs the license, and performs 
operations per the license’s permissions. For playback, the player produces the decrypted 
content and passes it to the graphics driver (user mode and kernel mode) for displaying 
on either the internal screen or an external device.

To guard the content from end to end, every link and every component must apply 
proper protections. This is because an attacker only needs to circumvent the weakest 
point in the path to acquire the protected content. The entire ecosystem is broken if one 
link or component is compromised, no matter how robust the others are. Let us first take 
a look at a few components, and then identify the weakest.

Content Server
A content server is responsible for encrypting clear encoded titles with the defined 
cryptographic algorithm and delivering encrypted content to users’ platforms. Different 
schemes may deploy different algorithms. The most popular choices nowadays are AES 
in counter mode, CBC (cipher block chaining) mode, and CBC-CTS (ciphertext stealing) 
mode with 128-bit keys. Few DRM schemes also support 256-bit keys. Refer to Chapter 3 
for an introduction on AES and these modes.

Notice that a long title (such as a 120-minute movie) may be divided into multiple 
sessions that are encrypted with different keys, respectively, with a key rotation algorithm. 
Also, different resolutions of a title should be encrypted with separate keys, because their 
desired rights managements may vary. In most cases, the title encryption is performed only 
once and the encrypted content will be consumed by all customer platforms. Re-encryption 
of a title is required under certain scenarios, such as compromise of the key.

The transmission from the content server to the platform’s software is through an 
open Internet connection. Essentially, encrypted content alone is not a secret because it 
is useless without the decryption key. The content delivery may be real-time streaming 
as the consumer is watching, or the user can download the entire title and save it in local 
storage beforehand. Some distributors let clients proactively download content before 
viewing. Such options allow users to enjoy the entertainment even without high-speed 
network, such as when traveling on a plane.

License Server
A license server maintains databases for encryption keys of all titles and issues rights for 
content transactions. A license defines the use policies associated with the underlying 
content. Attributes regarding secure playback are the same for all users, for example, 
requiring HDCP when the content is sent to an external device for display; whereas other 
restrictions described in the license vary depending on the consumer’s preference at the 
time of purchase. Naturally, if a user is willing to pay more, then the policy will generally 
enable more rights, such as sharing. The license server generates customized licenses for 
different transactions on the fly and transmits to end users’ platforms.

Licenses must be integrity protected during the transmission for obvious reasons. 
The license server owns an asymmetric key pair, where the private key is used for signing 
licenses and the public key is for DRM clients to verify the signature.
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The license server and the content server must be always in sync about the keys 
and initialization vectors used in title encryption. Although they are logically separate 
modules, in reality the two servers can be implemented on the same machine.

Software Stack
Besides implementing fundamental playback functionalities (such as start, stop, pause, 
fast-forward, slow motion, scene selection, and so forth) with the graphics driver, the 
player software also downloads content from the content server and, for rights-protected 
content, interacts with the license server to receive the license.

For content that does not mandate hardware-based protection, the player is also 
responsible for handling the device key, installing licenses, managing secure playback, 
and enforcing rights. This was the common practice before hardware-based content 
protection architectures were born, and it is still used today for nonpremium content. 
For example, Windows Media Player is able to enforce rights for Microsoft’s PlayReady 
scheme. This includes unwrapping the content key in the license and decrypting the 
encrypted media file with the content key. In other words, the player has access to the 
entire clear compressed content. Additionally, a user’s operation requests on the content 
are examined by the software and allowed only if permitted by the installed license.

To achieve meaningful protection, most software-based solutions utilize 
antitampering techniques, such as TRS, which make reverse-engineering and code 
modification harder. However, TRS is a type of security through obscurity and obfuscation 
with no provable robustness. What’s worse, TRS not only enlarges the size of the software 
but also raises power consumption. Notice that both nonvolatile storage and battery life 
are critical performance vectors for mobile systems.

For hardware-based content protection, the player does not handle the processing 
of the license or decrypting of the content. Instead, it acts as a proxy and relies on the 
hardware infrastructure for enforcing the rights and decrypting the media for playback. 
As a result, there is no longer a necessity to apply TRS to the player because it has  
no secrets to hide.

External Display
Most rights management schemes require protection of the data transfer from the display 
controller to external display devices with the HDCP protocol, proposed by Intel in 2000. 
The protocol applies encryption on the link between the source (transmitter) and the sink 
(receiver or repeater). The link can be wired, for example, with an HDMI (high-definition 
multimedia interface) cable, or it can be wireless, such as through Intel’s Wireless Display.6
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Weak Points
From Figure 8-2 and the accompanying analysis, one may conclude that, for software-based 
content protection, the weakest points are on the client. For example, the player and the 
graphics driver on the platform’s open operating system both possess plaintext content 
without provable security.

To harden the weak points to some extent, many DRM schemes require integrity 
assurance for the operating system by securing the boot process, so the platform is 
running in a known trusted state when it is playing premium content. Intel’s Boot Guard 
technology introduced in Chapter 6 is used to satisfy such requirements.

Intel’s Hardware-Based Content Protection
To robustly harden the weak points, the content protection mechanisms on the client side 
must be implemented in hardware, for all three aspects of the problem:

Playback protection•	

Device key management•	

Rights management per policy•	

Figure 8-3 illustrates the high-level block diagram for Intel’s hardware-based 
solution. The player software communicates with the embedded engine through 
the HECI (host embedded communication interface; see Chapter 3 for details) driver 
and offloads sensitive operations to the engine. Note that the engine does not use a 
network stack and it does not interact with remote servers directly. The graphics driver 
collaborates with the engine and GPU (graphics processing unit) for PAVP (protected 
audio and video path) session establishment and management.
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The embedded engine’s firmware implements content protection functionalities in a 
dedicated task, logically isolated from other applications running on the engine. Refer to 
Chapter 4 for the task isolation mechanism of the firmware.

Intel’s digital media services and the UltraViolet feature are backed by the  
hardware-based protection. However, notice that the solution is not specific to UltraViolet. 
It provides a generic foundation that is able to support any content protection schemes 
on any operating systems.

Protected Audio and Video Path (PAVP)
For a secure playback session, the player should not be in charge of content processing. 
The software stack on the host operating system, including ring-0 drivers, must not be 
able to access clear content or the content encryption key, and the clear content shall not 
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Figure 8-3.  End-to-end flow of content with Intel’s hardware-based protection
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be present in memory that is visible to the host. The PAVP technology is designed to meet 
these requirements with native hardware blocks, so the capability can be invoked with 
minimum software development and integration effort.

The PAVP is an Intel proprietary technology that protects the audio and video flows 
in the GPU. The main idea is to have the GPU take encrypted content and the content key 
as input, perform decryption of the content in the hardware, and then display the content 
on screen. The security and management engine and graphics driver also participate 
in the flow. The embedded engine is responsible for finding out the content key and 
injecting it through an internal bus to the GPU; the graphics driver is responsible for 
programming frame metadata and initializing playback.

Figure 8-4 depicts the building blocks of PAVP and their connections. MMIO 
stands for memory-mapped input and output. For SoC (system-on-chip) platforms, the 
embedded engine, and the GPU communicate through the IOSF (Intel on-chip system 
fabric) sideband. For non-SoC, the channel is the DMI (direct media interface).

Graphics driver

Embedded
engine

GPU

H
E
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I

M
M

IO

IOSF or DMI

Figure 8-4.  The building blocks of PAVP

The protection of the link between the platform and the external monitors is also 
managed by the embedded engine and the GPU using HDCP protocols. With this 
architecture, the entire content path, from the content server to the display, is protected 
with provable security.

Device Key Provisioning
For protection with a hardware root of trust, the device secret key must be secured by 
hardware and never exposed to the software stack. The security and management engine 
offers several approaches for device key installation. The computer manufacturers, after 
obtaining device keys from the DRM authority, can choose an appropriate installation 
process based on the requirements of the DRM scheme.

If the factory environment is trustworthy, then a device key may be provisioned in 
cleartext to devices and locked down before the conclusion of the manufacturing. The 
embedded engine’s kernel provides a method for manufacturers to store nonvolatile data 
to the engine during manufacturing. The engine’s firmware will convert secret nonvolatile 
data to secure blobs. It is also possible to send the clear device key to the engine through 
HECI and have the engine store in a secure blob.
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Alternatively, if secure provisioning of the device key is required after the product 
leaves the factory, then the EPID (enhanced privacy identification; refer to Chapter 5 for 
technical details) algorithm can be leveraged. In this scenario, the platform and a remote 
provisioning server mutually authenticate each other and establish session keys that are 
then used to protect the device key when it is transmitted from the server to the platform. 
Note that the platform remains anonymous during the procedure. Also, recall that the 
EPID involves heavy mathematical calculations and may be slow on some platforms. The 
EPID-based provisioning can also be deployed in the factory environments, if necessary, 
so end users do not experience extra delays caused by device key initialization when they 
launch playback for the first time on new computers.

The EPID method is also advantageous in that the device does not have to 
be returned to the factory for refurbishment when its device key is lost (but not 
compromised). Reprovisioning of a new device key can be done remotely and 
conveniently by invoking EPID again.

The embedded engine saves device secret keys in its assigned partition of the 
system’s flash memory, with protections for confidentiality, integrity, and optionally, 
anti-replay. The keys for protecting the device key blobs are device-specific, so copied 
blobs do not work on other platforms. See Chapter 3 for more information on the secure 
nonvolatile storage mechanism implemented by the engine’s kernel.

Rights Management
The security and management engine is an ideal place for conducting rights 
enforcements for several reasons: first, it is equipped with necessary utilities, such as 
hardware-based PRNG, a cryptography driver, protected nonvolatile storage, a secure 
timer, and so forth; second, as discussed in previous chapters, its unique isolation nature 
makes it immune from attacks and threats from the host.

Intel Wireless Display
The HDCP is a specification developed by Intel to protect audio and video entertainment 
over digital interfaces. Today, HDCP protocol has become a popular choice across 
the industry for guarding the content transmission from a computer to a repeater or 
a receiver (a display device such as monitor or TV). A repeater functions as both a 
receiver and a transmitter for downstream HDCP repeaters and receivers. The latest 
HDCP version, 2.2, is an interface-independent specification that can be applied to any 
interface.

The Intel Wireless Display (WiDi) is a proprietary interface that adopts HDCP 2.2.  
It allows streaming movies or anything on the computer’s screen from a WiDi-capable 
Intel platform to a TV or projector that supports WiDi or Miracast (requires WiDi 3.5 or 
newer). When the transmitted content requires link protection, HDCP 2.2 is the core on 
which the security of WiDi is built.

In the WiDi setup, the Intel platform is the HDCP transmitter. The transmitter side 
of the protocol is implemented jointly by WiDi software, the graphics driver, the GPU, 
and the security and management engine. The WiDi software running on the host talks 
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with the receiver through the operating system’s Wi-Fi stack. The embedded engine sits 
behind the software and communicates with the software via HECI.

A transmitter does not receive content; hence it does not hold a device private key 
or certificate. A receiver (or repeater) owns a 1024-bit RSA (Rivest, Shamir, and Adleman) 
key pair. The receiver’s unique device ID and RSA public key kpub

rx
 are digitally signed 

by the HDCP governing authority, Digital Content Protection (DCP) LLC, in a certificate 
hardcoded in the device together with the device’s RSA private key. Notice that the 
certificate is a binary format defined by the standard and not a generic X.509 certificate, 
and no intermediate certification authorities are involved.

Revocation for compromised receivers is realized by a system renewability  
message (SRM), which is a structure that comprises an SRM version number, the list of 
IDs of repeater and receiver devices that have been revoked, and the authority’s signature. 
Because HDCP is designed to be an offline protocol that does not depend on Internet 
connectivity to function, the SRM is delivered to transmitters together with the content, 
if and only if the content mandates HDCP protection. A transmitter is required to reserve 
at least 5KB of nonvolatile memory for SRM storage, and the transmitter must keep the 
latest version of the SRM that it has ever encountered in its secure storage.

The HDCP 2.2 protocol is comprised of four stages:

1.	 Authentication and key exchange (AKE): The transmitter 
verifies that the receiver has a valid RSA key pair endorsed 
by the DCP LLC, and it is not one of the devices revoked in 
the SRM. A master key Km is also exchanged in this phase 
if one does not exist on the transmitter for this receiver. The 
master key is specific for this pair of transmitter and receiver 
and it is used in lieu of the RSA key to expedite future HDCP 
handshakes between these two devices.

2.	 Locality check: The transmitter enforces the locality of the 
receiver by making sure that the time elapsed between 
sending a message to and receiving the response from the 
receiver is no longer than the specified duration.

3.	 Session key exchange: The transmitter generates a session 
key and initialization vector (IV) and sends securely to the 
receiver. The content is encrypted using a salted version of the 
session key and the IV with a 128-bit AES counter mode.

4.	 Authenticating repeater: If the receiver is a repeater, then the 
repeater assembles downstream device topology information 
and forwards it to the upstream transmitter for authentication.

As the root of trust, the security and management engine is responsible for performing 
all sensitive operations in the HDCP protocol, including but not limited to the following:

Validating the receiver’s certificate and checking its device ID •	
against the revocation list.

Managing SRM.•	
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Maintaining a database of master keys and corresponding •	
repeater IDs. The database supports up to ten receivers. The 
oldest entry will be removed when an eleventh receiver is paired 
with the transmitter.

Randomly generating the IV and the session key.•	

Securely storing the HDCP global secret constant •	 lc
128

.

Injecting the salted session key (session key exclusive-OR’ed  •	
with lc

128
) to the GPU’s PAVP block.

Facilitating locality checks, with or without precomputed •	 L  
and L´.

The GPU of the transmitter uses the salted session key and IV to encrypt the content 
before the encrypted content is transmitted to the receiver. On the receiver side, the same 
key is derived to decrypt and play the content.

Authentication and Key Exchange 
To showcase the embedded engine’s roles in the transmitter side of the protocol, Figure 8-5 
replicates the AKE protocol flow chat (without stored Km) of the HDCP 2.2 specification 
and describes the operations that are offloaded to the firmware for processing. The 
firmware must hardcode DCP LLC’s root public key and lc

128
. The symbol (data)key 

denotes the ciphertext of data encrypted with key. Refer to the HDCP 2.2 specification for 
meanings of variables such as r

tx
, r

rx
, H, H´, Kh, and so forth. 
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The HDCP 2.2 protocol is made up of a few flows, and Figure 8-5 exhibits just one of 
them. Besides AKE without Km, the embedded engine participates in all other flows as 
well, to assure that HDCP’s security objectives are satisfied at the hardware level.

Content Protection on TrustZone
The ARM processor architectures with TrustZone support DRM and hardware-based 
content protection. The TrustZone security framework allows software to execute 
sensitive DRM operations to the secure mode. The sensitive operations include content 
key processing and rights management. Conceptually, the separation for nonsecure and 
secure modes is similar to Intel’s solution where the security and management engine 
handles sensitive operations.
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Figure 8-5.  Authentication and key exchange without stored Km; transmitter implemented 
in firmware
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However, there are two notable limitations of the TrustZone when it is used for 
content protection:

•	 Persistent nonvolatile storage for device keys and installed licenses: 
The TrustZone does not come with native secure nonvolatile 
storage. Integrators must deploy third-party extensions to realize 
this capability.

•	 Secure audio and video path: The Trust does not provide a native 
protection mechanism for decrypted content. The secure audio 
and video path has to be implemented by third-party extensions.

For example, the content protection architecture that is built in the Samsung’s  
ARM-based Galaxy S III smartphone utilizes Discretix’s hardware-assistant DRM 
solution, integrated with TrustZone and its trusted execution environments.7

On the other hand, Intel’s hardware-based content protection is a self-contained 
and native solution that is equipped with all the necessary infrastructures. Platform 
manufacturers can simply invoke the defined hardware interface to take advantage of 
the technology. This significantly reduces system complexity and saves the resources 
required for deploying and maintaining additional extensions.
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Chapter 9

Breaking the Boundaries 
with Dynamically Loaded 
Applications

Sometimes we stare so long at a door that is closing that we see too late 
the one that is open.

—Alexander Graham Bell

In previous chapters, we have studied the firmware architectures and security hardening 
features of the security and management engine. Let’s recap the main design points:

The security and management engine’s firmware starts from •	
boot ROM (read-only memory), which is not erasable and not 
modifiable.

The boot ROM is the root of trust of the engine.•	

The majority of the engine’s firmware, including all applications, •	
are stored in a flash device, together with other system firmware 
such as BIOS (basic input/output system).

Firmware modules may be compressed with Huffman•	 1 or LZMA2 
to conserve the flash space. Firmware modules are not encrypted.

Metadata of all firmware modules (including the kernel and •	
various applications) is put together in a structure called manifest, 
also stored on the flash.

The manifest contains SHA-256•	 3 digests for every firmware 
module. SHA-256 is one of the most frequently used Secure Hash 
Algorithms.

The manifest is digitally signed by Intel with 2048-bit RSA•	 4 (Rivest, 
Shamir, and Adleman). The signature and the public key are both 
appended to the manifest.
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During the boot process:

The ROM verifies the RSA signature of the manifest. The SHA-256 •	
fingerprint of Intel’s public key is hard-coded in the ROM.

The boot ROM verifies the SHA-256 digest of the first firmware •	
module that is loaded from the flash.

The integrity of subsequent modules is verified by one of the •	
modules that have been verified and loaded previously in the 
boot process.

When being loaded, a module performs the necessary •	
initializations, and then creates a “worker” thread that waits for 
events. Most common events are system interrupts, HECI (host-
embedded communication interface) messages initiated from the 
host, and service requests of other modules. Upon receiving an 
event, the module serves the event and waits for the next event.

By design, a module that runs on the engine must be compiled as part of the engine’s 
firmware system, registered in the manifest, and preinstalled on the flash. The set of 
firmware applications and modules for a given product is determined at the time of 
compilation and cannot be changed after it leaves Intel’s facility. From this perspective, 
the engine is a self-contained system, and doors are closed against loading new 
applications.

That being said, the engine is technically not a closed system, because it is capable 
of exchanging data with the external world at runtime. Notice that what is input to 
and output from the engine is only data, and may not be executable code. Running 
unauthorized code is a major violation of the security objectives of the engine.

Closed-Door Model
With the closed-door model, everything that can be executed on the engine is strictly 
controlled. Thanks to the integrity check mechanisms that are enforced during the boot 
process and runtime, the boundary of the engine is well guarded. It is very difficult for 
attackers to inject root kits and other malware to the system. The security architecture 
does not need to worry about possible vulnerabilities and potential flaws brought into the 
system by external applications. Therefore, the closed-door model is advantageous for 
security management.

Product quality-wise, the closed-door model makes validation simpler, because the 
functional testing is performed on predefined and constant configurations. Some of the 
common software and system problems, such as integration complexity and component 
compatibility, are not applicable.
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Despite its security and stability, this design has its drawbacks:

•	 Expansion of the engine’s functionality is restricted by the flash 
space. There are multiple products of the firmware, and their 
sizes vary between approximately 1.5MB and 5MB, which is fairly 
small considering the ever-growing number of features carried 
by the engine. Increasing the size limit is not free. In today’s fierce 
competition environment, the BOM (bill of materials) cost is a 
pivotal consideration for all computer manufacturers. Raising the 
flash space consumed by the security and management engine 
requires flash chips of greater capacity, and hence adds the BOM 
costs for deploying manufacturers. When the size of the firmware 
binary reaches the maximum, new features can’t be rolled out 
without taking current features out of the firmware.

•	 Firmware update can be cumbersome. Adding new applications to 
the engine or fixing bugs in existing modules requires more than 
Intel’s development and validation effort. Rewriting firmware on 
the flash is a very privileged operation, and if done improperly, 
may render the system unbootable and result in a large number 
of support calls. Therefore, computer manufacturers have to test 
new firmware releases with all lines of products respectively and 
make sure there are no security or compatibility issues.

•	 Intel is the sole development owner for the security and 
management engine. Independent software vendors cannot build 
applications that run on the engine.

To address these drawbacks to some extent, newer versions of the security and 
management engine firmware include a module called the Dynamic Application Loader, 
or DAL for short. As indicated by the name, the DAL allows the engine to dynamically 
load and execute Java applets at runtime. The applets are not stored on the flash, but on 
the host’s hard drive. With the DAL, the embedded engine is no longer a closed-door 
realm. The engine is now open to more flexibility and possibilities to be explored.

Meanwhile, more importantly, the security objectives of the engine remain the same 
and the security protection strength is not degraded because of the DAL.

DAL Overview
The DAL is implemented as an application in its isolated task in the firmware 
architecture. See Chapter 4 for details on the engine’s task isolation design. Because the 
DAL loads an application from the host, it is active only when the host is awake. The DAL 
is not available if the host is in the sleep state. The relationships between the DAL task 
and other firmware components are depicted in Figure 9-1.
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Figure 9-1.  The DAL task and its relationships with other firmware components

To support functionality requirements of the loaded applets, the DAL task consumes 
several kernel services and other peer tasks:

•	 Cryptography driver: Provides implementations of popular 
cryptography algorithms, including AES5 (advanced encryption 
standard), SHA, HMAC6 (keyed-hash message authentication 
code), RSA, random number generator, and so forth.

•	 Storage manager: Secure nonvolatile storage for DAL 
management data and applet specific secrets.

•	 Protected runtime clock: Provides secure timer services for 
applets.

•	 Image verifier: The DAL replies on the kernel to verify the digital 
signatures on the dynamically loaded applications.

•	 PAVP (protected audio and video path) task: Some applets—for 
example, the applet that is part of the Intel IPT7 (identity 
protection technology) solution—require secure display path 
that is not visible to software running on the host operating 
system. See Chapters 8 and 10 for more details on PAVP and IPT, 
respectively.

•	 EPID (enhanced privacy identification) task: Some applets realize 
functionalities that require Intel platform’s hardware support. The 
EPID algorithm and SIGMA protocol are utilized to authenticate 
the platform and establish secure sessions between the host/
server application and the loaded applet. Refer to Chapter 5.

•	 TLS (transport layer security) task: Provides applets with secure 
PKI (public key infrastructure) support.
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•	 Utility task: This task implements a number of interesting 
services, for example, CPU and chipset information, firmware 
status report, power states, HECI, and so forth. The HECI is the 
channel for the host to transmit the application’s binary image to 
the DAL firmware task for execution.

Due to these dependencies, the firmware product that features the DAL must also 
support these tasks. The DAL task is not consumed by any other firmware modules. Note 
that the DMA (direct memory access) is not used for transmitting applets from the host to 
the engine. To further minimize security risks, the DMA driver is not available to applets 
to invoke.

DAL Architecture
The DAL is essentially a Java virtual machine that enables the operation of Java applets 
in the security and management engine’s firmware environment. The Java applets in 
bytecode implement their designed functionalities that can be executed in the firmware. 
The components that make up the DAL feature are shown in Figure 9-2.

Loadable Java applets and classes

Java Virtual Machine (JVM) interpreter
and memory manager

Pre-installed classes:
Cryptography

EPID
Secure storage

etc.

Native API

DAL task

Figure 9-2.  Components of the DAL

A service layer (classes) can also be loaded from the host together with the applets. 
The service layer may realize utilities such as HECI. In addition, the DAL task preinstalls 
select services, such as cryptography and EPID, without needing to load from the host. 
Those services are specific to the firmware engine and they are expected to be used by 
most applets.
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The native API (application programming interface) component receives the Java 
API calls, performs conversion, and in turn calls appropriate kernel API or other tasks. 
It serves as a proxy so the Java classes do not need to be aware of the engine’s specific 
interfaces.

Loaded Java applets are free to take advantage of various services offered by the 
engine, but there is no guarantee regarding performance, due to a few facts. Firstly, to 
save resources, when multiple applets are loaded to the system, the DAL and the installer 
application may decide to temporarily unload an applet and reinstall it later as needed. 
This procedure may delay the applet’s responses to requests from the host. Secondly, 
the DAL task shares hardware resources with other firmware capabilities running in the 
security and management engine. The engine is a multithreaded environment, and the 
amount of clock cycles allocated to a specific thread is not guaranteed.

With these considerations, the DAL is not intended for loading major features to the 
engine. Rather, it is designed for offloading critical security components of a consumer 
solution, for example, the Intel IPT. In contrast, loading the entire or a large part of the 
AMT (advanced management technology) firmware application from the host at runtime 
is not an appropriate usage of the DAL.

Loading an Applet
A Java applet package can be obtained from various resources, such as software vendors’ 
distributions and web sites. On Windows, a host software program loads applets to the 
security and management engine through the Intel dynamic application loader host 
interface service. Because the engine does not persistently store applets in its nonvolatile 
memory, an applet must be reloaded when the host power cycle is reset. However, it is 
worth emphasizing that the DAL firmware treats the first time that an applet is loaded to 
the engine differently from consequent loads of the same applet in the future.

In the engine’s secure nonvolatile storage, the DAL maintains a database of all 
applets that it has loaded at least once and their metadata. An entry of the database 
records, among other attributes, the unique identification of the applet, its version 
number, and its security version number. When an applet is loaded for the first time, 
a new entry is created in the database for the new applet. The entry is examined and 
updated as necessary.

Upon receiving a request from the host to load an applet, the DAL first checks 
whether an instance of the applet with the same identification has been loaded 
previously in this power cycle. If so, the host must first ask the DAL to unload the applet 
before loading it to the DAL again. The DAL does not voluntarily unload an applet unless 
the host requests so. The reason for reloading an applet may be to update the applet to a 
newer version. This is shown in Figure 9-3.
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A loadable Java applet is always packaged with its corresponding manifest.  
The structure of the manifest is similar to what is shown in Figure 4-1 in Chapter 4. 
Specifically for security, the following fields are critical in the loading process:

Applet identification.•	

DAL flag, indicating this is a DAL manifest.•	

Version number.•	

Security version number. A security version is assigned to every •	
applet release. If vulnerabilities are found in an applet, then the 
new applet release that fixes the vulnerabilities will be assigned 
an incremented security version.

RSA signature of the manifest.•	

RSA public key.•	

SHA-256 digest of the applet.•	

The applet to be loaded also specifies the minimum version of the engine’s firmware 
that is required to run this applet. Earlier firmware releases may not be equipped with 
the necessary infrastructures to support the applet. The process of loading an applet is 
illustrated in Figure 9-4.

Host requests DAL to
load applet A

Is applet A
already loaded?

Yes

No

Receive applet A from
HECI buffer

Ask host to unload
applet A first

Abort

Figure 9-3.  Handling an applet load request
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Receive applet from
HECI buffer

No

Firmware version
is compatible?

Yes

YesWas the same applet
loaded before?

Is security version
smaller than stored value?

Is security version
greater than stored value

in database?

Abort

No

Yes

Yes

No

Update the security
version in database

No

Manifest is verfied?

Load applet to memory

Add an entry to
database for this applet

Was the same applet
loaded before?

Yes

Yes

No

Figure 9-4.  Process of loading an applet
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The loading process starts from the DAL task receiving the complete applet package, 
including the manifest, from the host in the HECI buffer. As introduced in Chapter 3, a 
HECI message has limited capacity, depending on the engine’s configuration. If the size 
of the applet package is greater than the capacity of a HECI message, then the package 
will be split and come in multiple messages.

After possessing the applet, the DAL first verifies that the firmware currently 
operating on the engine is capable of executing the applet. The DAL aborts the loading if 
the firmware is too old to support the applet. A firmware update will not be automatically 
launched in this case. The user must manually update the engine’s firmware in order to 
run the applet.

If the applet has been loaded before, then the DAL makes sure that its security 
version is not smaller than the one stored in the database. If this is not the case, then it 
may be a rollback attack that exploits the vulnerability in an older applet release and the 
DAL shall reject to load the applet. If the security version is greater than what is shown 
in the database, then the DAL updates the database with the newer value. If the DAL 
has never seen this applet before, then it creates an entry for it in the database after the 
integrity check passes.

The manifest validation is performed by invoking the kernel API. The manifest must 
be signed with the same RSA key that signs the manifest for the engine’s firmware image 
loaded from the flash.

Secure Timer
The DAL provides applets with secure timer services that measure the time elapsed 
between a Set timer call and a Get current timer value call. When multiple applets are 
running simultaneously, each applet may create one or more independent timers. The 
timer is useful for applications that must enforce durations—for example, a one-time 
password that expires every 30 seconds.

Host Storage Protection
The engine is allocated with only limited flash space for its data partition. Therefore, to 
reduce the flash footprint, it is recommended that the Java applets do not store data on 
the flash. Instead, applets’ nonvolatile data, especially if its size is large, should be placed 
on the host’s hard drive.

To facilitate and protect the host storage mechanism, the DAL provides an 
encryption key and an integrity key for every applet. A typical usage would be to encrypt 
data using the encryption key, append an HMAC-SHA-256 signature (generated using 
the integrity key) to the encrypted data, and then send the blob of encrypted data and the 
signature to the host for storage. To retrieve the data, the applet simply fetches the blob 
from the host, verifies the HMAC signature using the integrity key, and then decrypts 
using the encryption key. Optionally, anti-replay protection can also be applied to data 
blobs if necessary, to mitigate rollback attacks (replacing a blob with an older version).

The encryption key and the integrity key are persistent for the same applet even if 
the engine has gone through power cycles. Derived from a bit string that is randomly 
generated when the DAL is initialized for the first time on a platform and the applet’s 
unique identification, the keys are unique for the applet that runs on the specific 
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platform. In other words, an applet is not able to make use of a data blob that was created 
by another applet; cloning a data blob from one platform to another would not pass the 
integrity check. It is up to individual applets to decide the proper reaction to take upon 
blob failures.

Security Considerations
Naturally, alongside the openness of the DAL come new security concerns. Specific 
security requirements are set for safeguarding the engine with the existence of the DAL:

Applets can be executed only after being loaded by the DAL •	
firmware application. Modules in a manifest that is intended for 
the DAL shall not be executed directly on the engine’s embedded 
processor.

The DAL shall not load manifests that are intended to be loaded •	
by the engine’s regular boot process.

The DAL shall enforce context separation among distinct applets.•	

The DAL shall record the greatest security version numbers for •	
each applet respectively, for rollback attack detection.

An applet shall follow security design guidelines for regular •	
firmware applications, such as using minimum privileges, 
minimizing attack interfaces, and so on.

The first two bullets are the most critical requirements. Because the applets’ 
manifests are signed with the same RSA key that signs the firmware image, the 
architecture must mitigate image replacement attacks where an attacker replaces the 
firmware image on the flash device with an applet image, which will pass the signature 
verification conducted by the boot ROM.

The countermeasure employed by the architecture is to introduce a “DAL” flag in 
the manifest. The firmware’s boot process will not load a manifest with a DAL flag set. 
Conversely, the DAL will not load a manifest if its DAL flag is not set.

Reviewing and Signing Process
Applets may be developed by Intel or third-party software vendors. The process for 
reviewing and signing an applet is the same regardless of whether Intel or a third-party is 
the applet developer. The high-level process is described in Table 9-1.
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Table 9-1.  Applet Reviewing and Signing Process

Stage Name Activity

1 Applet creation Vendor creates the applet.

2 Applet review Intel reviews the applet for functionality, security, 
and privacy.

3 Manifest creation Intel creates preproduction manifest and provides 
to the vendor.

4 Preproduction testing Vendor tests and debugs the applet on a 
preproduction security and management engine. 
Sometimes a simulator is used instead. Go back to 
stage 1 if any change is made to the applet.

5 Presigning Intel makes sure the content of the applet is 
identical to what is in the final preproduction 
manifest.

6 Signing approval Approvers review and sign the manifest. Critical 
manifest parameters (such as security version 
number and DAL flag value) are displayed to 
approvers for a final review.

7 Signing The signing tool replaces the RSA public key and 
the signature in the preproduction manifest with a 
production RSA public key and signature.

8 Production testing Vendor tests the applet on a production security 
and management engine.

9 Ready for distribution Vendor is ready to distribute the applet.
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Chapter 10

Intel Identity Protection 
Technology: the Robust, 
Convenient, and  
Cost-Effective Way to  
Deter Identity Theft

People need to be more aware and educated about identity theft. You 
need to be a little bit wiser, a little bit smarter and there’s nothing wrong 
with being skeptical. We live in a time when if you make it easy for 
someone to steal from you, someone will.

—Frank Abagnale

Most people have received scam e-mails that prompt them to visit fake web sites that 
resemble actual bank web sites. If the user is fooled into believing in the “phishing” 
web site and enters his username and password, then the credentials will be saved by 
attackers that will later log in to the victim’s bank account and drain the account. Besides 
phishing, an advanced attacker may also infect the victim’s computer with key logger 
malware to capture and record the keystrokes when the victim is typing his username and 
password for login.

With the rapidly increasing threats of identity theft in today’s mobile era, multifactor 
authentication is deployed more widely than ever. Naïve single-factor username and 
password combination is likely not secure enough for authenticating access to high-value 
assets, even though the password is long and complicated.

Multifactor schemes would mitigate phishing and key logging attacks by requiring 
additional credentials during the authentication process. The username and password 
compromise the first factor—“something you know.” Two other types of credentials  
are the following:
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•	 “Something you are” refers to something that is part of you, 
commonly your biological characteristics, such as fingerprints. 
For example, the iPhone 5s is equipped with a fingerprint identity 
sensor. A user can unlock the phone by scanning his fingerprint.

•	 “Something you have” refers to a physical object that belongs to 
you. It can be as simple as a “key-card matrix” on which a fairly 
large number of index-key pairs are printed. During authentication, 
the web site challenges the user with a randomly selected index, 
and the user looks up the matrix and enters the corresponding key 
to sign in. This solution is not ideal, because the same set of keys  
is repeatedly reused, and may be monitored and replayed by 
thieves. A more robust “something you have” is a hardware digital 
token or key fob that displays a one-time password.

The security and management engine is a critical functional component of Intel 
Identity Protection Technology1 (IPT). The Intel IPT provides a strong, convenient, and 
cost-effective solution for multifactor authentication, as well as other features, such as 
the protected transaction display (PTD). This chapter is dedicated to revealing how the 
engine takes advantage of its built-in infrastructure to make the IPT possible.

One-Time Password
In contrast to a regular password that is valid for an unlimited number of authentication 
sessions until it is reset, a one-time password (OTP) is a credential that is used only 
once. Although the value of an OTP may seem random, it is not randomly generated, but 
cryptographically derived. A good OTP algorithm shall render it practically infeasible to 
predict future OTP values based on previous observations. The OTP is usually updated 
at fixed internals, for example every 30 or 60 seconds, depending on security models of 
specific applications.

The token (client) possessed by the user and the back-end authentication server are 
always in sync—they refresh the OTP by performing the same calculation at the same 
time with the same “derivation materials.” In other words, after initialization, the token 
and the server will both assume the same OTP at any given moment in the future. To 
prove his ownership of the token to the server, the user types in the OTP value displayed 
on the token at the time of authentication to satisfy the requirement of second-factor 
authentication, supplementing other factors (for example, the username and password).

The utilization of OTP significantly increases the difficulty of phishing attacks. The 
attacker’s fake web site has to also collect the OTP entered by the user. Because the OTP is 
valid for only a small duration, the attacker cannot save the OTP and make use of it later. 
Instead, the phishing server has to be set up as a real-time man-in-the-middle, where it 
simultaneously establishes two connections, one with the victim’s client platform and 
the other with the real authentication server. This makes the attack more complex and 
expensive. Figure 10-1 shows a real-time man-in-the-middle attack scenario.
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An OTP system has two aspects to consider:

•	 Secrecy: With reasonable resources, adversaries shall not be able 
to calculate or guess OTP values. Theoretically, any collision-free 
one-way cryptography function with a secret seed as input is 
qualified. The HMAC2 (hash-based message authentication code) 
algorithm is the most popular choice.

•	 Synchronization: The same OTP value must be known by the 
server and the client at any given moment, without requiring 
synchronizations after initialization.

The security strength of an OTP system solely depends on the seed, so the seed 
must be reliably protected by both the server and the client from leakage. Traditionally, 
more attention has been paid to designing physically strong and tamper-resistant tokens. 
However, the server’s security hardenings are even more critical because if it is hacked, 
then likely seeds for all tokens are at risk.

RSA Security, the Security Division of EMC, designs and manufactures a well-known 
OTP token, SecurID. In March 2011, the company issued an open letter3 stating that its 
corporate security systems had identified an “extremely sophisticated cyber-attack” being 
mounted against it. The letter did not disclose technical details, probably due to the 
concern of benefiting potential attackers, but it revealed that the attack had resulted in 
certain information specifically related to SecurID being extracted from RSA’s systems. In 
the aftermath, RSA offered token replacements or free security monitoring services to its 
more than 30,000 SecurID customers. The breach cost EMC $66.3 million, according to 
the company’s earnings.

The most famous OTP standards are the HMAC-based one-time password (HOTP4) 
and the time-based one-time password (TOTP5).

HOTP
The derivation algorithm chosen by the HOTP method is HMAC-SHA-1. The HMAC key, 
also referred to as seed, is a shared secret agreed by the server and the client at the time of 
initialization. The key may be randomly generated or calculated from a master secret of 
the server. The key is static for the life cycle of the client and it must be kept secret by both 
parties against tampering.

Client Phishing server

Disconnected

Username, password, OTP

Authentication succeeded

Real server

Username, password, OTP

Figure 10-1.  Man-in-the-middle attack
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An HOTP is calculated as follows:
 
HOTP(key, counter) := Truncate(HMAC-SHA-1(key, counter))
 

In the HMAC-SHA-1() function, counter is the data to be hashed. The Truncate() 
function reduces the 160-bit keyed-hash result to a smaller size so the user can 
conveniently enter the HOTP on a keyboard.

The two input parameters, key and counter, are the derivation materials. They 
are used for providing secrecy and synchronization, respectively. After a successful 
authentication, both the server and the client increment the counter by one, hence the 
counter should always be in sync. The server automatically increments the counter once 
it verifies the HOTP. On the client side, for a connected token (such as via a USB port), the 
connected computer can programmatically increment the counter.

However, many token products are not equipped with connection capability. The 
advantage of a connection-less token is obviously its simple hardware and low BOM (bill 
of materials) cost—it needs only small tamper-resistant storage for the key and counter 
and an HMAC-SHA-1 logic; it does not require circuits for USB or clocking. The tradeoff is 
that the user has to, after a successful authentication, manually notify the token and have 
it increment the counter and generate the next HOTP. The notification is usually realized 
by the user pushing a button on the device. This manual step introduces uncertainty and 
potential problems for synchronization. For example, the user may accidentally push 
the button twice, resulting in the token’s counter value being more advanced than the 
server’s. To take care of such issues, the HOTP protocol defines a “look-ahead window,” 
where the server calculates the next s HOTPs. The authentication is accepted as long as 
any of the s HOTP matches the HOTP received from the client. The window size s cannot 
be too large, otherwise security may be compromised.

But this mechanism does not completely resolve all potential synchronization 
issues. Imagine the user’s three-year-old child plays with the token and pushes the button 
countless times. The server’s look-head window will not cover this case, and the token 
must be returned to factory for reinitialization.

TOTP
The TOTP scheme is a variant of HOTP that replaces the counter in the HOTP with a time 
value, time:
 
TOTP(key, time) := Truncate(HMAC(key, time))
 

The HMAC function may be HMAC-SHA-1, HMAC-SHA-256, or HMAC-SHA-512. The 
time is equal to the Unix time or Epoch time (number of seconds that have elapsed since 
midnight UTC (coordinated universal time) of January 1, 1970) divided by a predefined 
interval, with the default floor function. The floor(x) function represents the greatest 
integer that is not greater than fraction x. The recommended interval is 30 seconds:
 
time := floor(Unix_time/interval)
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Compared to the HOTP, the TOTP scheme uses time as the counter for 
synchronization, which eliminates the problems of incrementing the counter for 
connection-less tokens. The TOTP scheme requires a token to have clocking capability by 
embedding an oscillator in the device. A token’s clock drift needs to be considered and 
accommodated accordingly by the server. The protocol also recommends the server to 
implement “look-ahead” and “look-behind” windows to for resynchronization when a 
tolerable amount of clock drifts have occurred on the token.

The TOTP scheme is the cornerstone of the reference architecture of OATH6 
(Initiative for Open Authentication), an industry-wide collaboration to promote the 
adoption of strong authentication.

Transaction Signing
The OCRA7 (OATH Challenge-Response Algorithm) is an authentication and signing 
mechanism created by the OATH. The OCRA algorithm is based upon HOTP with 
extension to including various types of information in the calculation of the OCRA.

In a nutshell, the calculation of OCRA uses the following formula:
 
OCRA := CryptoFunction(Key, DataInput)
 

The same formula is applicable to both the server and the client. The 
CryptoFunction defines the HMAC algorithm (HMAC-SHA-1, HMAC-SHA-256, or 
HMAC-SHA-512) and the result size after truncation. Key is a preshared secret, like in the 
HOTP scheme. The value DataInput is a concatenation (denoted by symbol “||”) of the 
byte arrays of a number of variables:
 
DataInput := OCRASuite || Counter || Q || P || S || T
 

Here’s what these variables mean:

•	 OCRASuite: Represents the suite of operations to calculate 
the OCRA. The OCRASuite string describes the selection of 
CryptoFunction and the list parameters that are included in the 
DataInput following OCRASuite.

•	 Counter: A 64-bit unsigned integer that is initialized to 0. It 
is incremented by both the server and the client after every 
successful authentication session.

•	 Q: The 128-byte challenge sent from the other party.

•	 P: Digest of a password preagreed by the server and the client. 
The hash algorithm can be SHA-1, SHA-256, or SHA-512.

•	 S: Contains application-specific information of the current 
session, up to 512 bytes.

•	 T: Current timestamp.
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The Counter is optional. Some other parameters (P, S, and T) may also be absent as 
defined by the OCRASuite. A typical OCRA authentication session in which the server 
verifies the client’s identity is a three-way handshake, as shown in Figure 10-2.

Client Server

OCRA

Challenge Q

Authentication result

Figure 10-2.  Three-way handshake for one-way OCRA authentication

Client Server

OCRA-client

Authentication result

Client challenge Qc

OCRA-server, server challenge Qs

If OCRA-server fails
verification, abort

Figure 10-3.  Four-way handshake for mutual OCRA authentication

Four modes are defined for OCRA:

•	 One-way authentication: The server verifiers the client’s identity 
by sending a challenge Q to the client and verifies the OCRA value 
received from the client. This is the usage depicted in Figure 10-2.

•	 Mutual authentication: The server and the client verify each 
other’s identity by exercising the one-way authentication in both 
directions. The client verifies the server’s identity first.  
See Figure 10-3 for the four-way handshake flow.

•	 One-way signature: Similar to one-way authentication, but session 
information S is not used in calculating the OCRA.

•	 Mutual signature: Similar to mutual authentication, but session 
information S is not used in calculating the OCRA.

Besides OCRA, it is also possible to employ asymmetric-key cryptography and public 
key infrastructure (PKI) to achieve the same authentication and transmission integrity. 
The advantage of OCRA is its simper cryptography logic (HMAC) and faster computation. 
Public key algorithms require more gates to implement and more clock cycles to 
compute, which poses challenges for BOM cost and performance for small form-factor 
client devices. Now that the server and the client already have a shared secret, the OCRA 
makes use of it to avoid the higher-cost and inefficiency of PKI.
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Using OCRA, the man-in-the-middle attack presented in Figure 10-1 is no longer a 
threat, because the transaction, including the session-specific information (for example, 
the recipient of a money transfer), is signed with a key that is known by only the server and 
the client. Consequently, the attacker is not able to alter a legitimate user’s transactions 
or initiate his own transactions, because he cannot forge signatures without knowing the 
correct key.

OTP Tokens
Numerous two-factor authentication solutions that deploy OTP as the second factor are 
on the market today. An OTP token can be implemented in software or hardware.

Functioning as an OTP client, a software or virtual OTP token is a program installed 
and executed on a desktop computer or a mobile device. The software OTP has a number 
of pros:

•	 Low cost: No hardware purchase required.

•	 Convenience: No hassle of carrying physical tokens. No worries 
about replacing the token when its battery runs out.

•	 Transparency: In most cases, the user does not need to type in the 
OTP. The software automatically calculates and transmits it to  
the server.

•	 Reliable synchronization with server: Clock drifting on a computer 
is much less of a concern than clock drifting on a small token 
device, because the computer’s clock always synchronizes with 
the time server over the network.

•	 Easy reinitialization: When reinitialization is necessary for 
any reason, there is no need to return the token to the vendor. 
Reinitialization with the server can be done remotely.

While enjoying these advantages, the software solution has a key drawback—it is 
more vulnerable. Generally speaking, because software OTP may be compromised by 
malware installed by viruses or remote attackers, the robustness of software OTP cannot 
match that of well-implemented hardware OTP systems. Physical access and special 
equipment are required to tamper a hardware OPT device, making the attack more 
difficult and costly to mount. For enhanced security, hardware OTP clients are deployed 
by many large enterprises and government agencies. The pros of the software tokens are 
exactly the cons of hardware tokens.

Is it possible to feature the pros of both software and hardware OTPs? The security 
and management engine provides such a solution for the Intel IPT.
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Embedded OTP and OCRA
The second factor in multifactor authentication—“something you have”—does not have 
to be a separate object. It can be the computer that the user is operating on. In Intel’s 
IPT solution, the security and management engine that is built in an Intel platform is 
the second factor. Security-wise, the engine is physically a hardware device that the user 
carries with his computer; therefore, its protection strength is comparable to hardware 
OTP tokens. On the other hand, thanks to its embedded nature, it has all the desirable 
properties of software OTP as well.

The OTP scheme supported by the engine implements the TOTP algorithm and the 
OCRA protocol. The solution is compliant with the OATH standard. This standard-based 
model that Intel IPT uses simplifies interoperability with other third-party components.

Token Installation
The installation (also referred to as provisioning) of a token on the embedded engine is 
equivalent to a hardware token’s manufacturing process. As required by the TOTP, two pieces 
of information are delivered to the client from the server during the installation process:

•	 Key: As defined in the TOTP calculation formula.

•	 Time baseline: The Unix time at the moment of installation.

Obviously, the transmission of key must be encrypted because it is the root of 
security for all upcoming authentication sessions. The transmission of time baseline 
and encrypted key should be integrity protected to prevent unauthorized alternation by 
denial-of-service attacks.

As discussed in Chapter 3, the engine’s kernel lacks the knowledge of wall-clock  
time, but it is capable of securely tracking time that has elapsed for individual 
applications. Therefore, the server has to send time baseline to the engine during 
provisioning. The OTP application calls the set time kernel function immediately upon 
receiving the baseline from the server. When an authentication is requested, the OTP calls 
the kernel’s get current time function and uses the returned value to calculate the TOTP.

Recall the EPID (enhanced privacy identification) algorithm and the SIGMA (SIGn 
and Message Authentication) protocol introduced in Chapter 5. They are the backbone 
of the OTP provisioning process. In the SIGMA session, the authentication server is the 
verifier and the OTP client is the prover. The service provider must be issued a verifier 
certificate beforehand. The server’s certificate chain is verified by the embedded engine 
during the SIGMA session. The conceptual provisioning flow is illustrated in Figure 10-4.

Client Server

Token metadata, protected by SK

SIGMA, resulting in session keys SK

Figure 10-4.  Conceptual OTP provisioning flow
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Refer to Figure 5-7 in Chapter 5 for details on the SIGMA messages. At the end of a 
successful SIGMA session, the server has assured that the client is an IPT-capable Intel 
platform and the client has confirmed that the server is a valid authentication server that 
supports Intel IPT. Both parties also have derived the shared session keys (SK), including 
an encryption key and an integrity key. The token metadata, including OTP key or seed, 
choice of the HMAC algorithm, current time, and so forth, is delivered from the server 
to the client securely with the protection of SK. The client saves the metadata in secure 
nonvolatile storage. It can either store the data on the flash chip by invoking the kernel’s 
secure storage capability, or it rewraps the data using DAL (dynamic application loader; 
see Chapter 9 for details) application-specific keys and sends to the host for storage.  
In the latter case, the data is transmitted back to the engine when an OTP is requested.

Although the provisioning can ideally be a once-in-a-lifetime event, it is necessary 
to reprovision the token under certain circumstances. For example, if the platform’s RTC 
(real-time clock) well is reset due to reasons such as a drained coin-cell battery, then 
the secure timer installed by the OTP application will be lost. The OTP firmware has to 
request the server to install the token again. On the other side, the server may also request 
reprovisioning; for example, in case the seed is compromised. The easy provisioning process 
is a major advantage of the Intel OTP solution, compared to physical token systems.

TOTP and OCRA Generation
The TOTP and OCRA generation flow is straightforward. After receiving a generation 
request from the host via HECI (host-embedded communication interface), the firmware 
reads the current time from the kernel and performs the calculation using time and key. 
For OCRA, data input parameters such as the server’s challenge and session information 
are provided by the host to the firmware together with the generation request.

The resulting TOTP or OCRA is sent to the host in the clear for authentication with 
the server. Note that if the token metadata is stored on the host, then it must be loaded to 
the embedded engine first. The firmware has no direct connection with the server, and all 
communication is proxied by the host application.

Highlights and Lowlights
Let’s summarize the attractions of Intel’s embedded OTP solution:

•	 Strong protection: As a module of the security and management 
engine, the OTP inherently benefits from the comprehensive 
hardening measures (refer to Chapter 4) implemented on the engine. 
The protection is rooted in tamper-resistant hardware, meeting or 
exceeding the security of consumer-grade hardware tokens.

•	 Low cost: To benefit from the technology, the user does not 
need to purchase new hardware or software. Almost all service 
providers support the feature at no cost to customers. Compared 
to using hardware tokens, the cost of initial setup and continuous 
management for Intel’s OTP is considerably less, which is an 
incentive for deployment.
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•	 Multiple tokens in one device: No more physical tokens. No 
worrying about damaging or losing your tokens. Token theft is 
also a much lesser risk now because stealing a computer is more 
difficult than stealing a small token device. Furthermore, more 
than one token can be built in a single device—your computer. It 
is unimaginable to carry many tokens with you all the time.

•	 Transparency: After the initial setup, the second-factor authentication  
happens in the background without human interaction. The user 
signs in to web sites or networks by entering merely a username 
and password combination, just as he did before.

•	 Revocable server: The EPID infrastructure, backed by the 
engine and Intel’s back-end server, ensures that a compromised 
authentication server can be revoked. Besides compromise, the 
authentication server may be revoked due to other predefined 
reasons.

In the meantime, because the tokens, once provisioned, are tied to the hardware 
of a specific platform, it is impossible to invoke the same token on different devices. 
As a result, if the user needs to log in to his bank account from more than one device 
(for example, from both his laptop and tablet), then all devices must register with the 
bank’s web site and install a token, respectively. Fortunately, the inconvenience is trivial, 
because the provisioning is supposedly a one-time procedure for a device.

However, when the user occasionally has to log in from a public or someone else’s 
computer, an alternate second factor must be utilized in lieu of the Intel OTP token. 
Service providers must offer feasible backup approaches for the second factor; for 
example, sending a verification code to the user’s cellphone or e-mail address and having 
the user enter it for authentication.

Protected Transaction Display
The PTD is another critical ingredient of Intel IPT. It is introduced for a different usage 
model from the OTP and can be incorporated with the OTP. The PTD is designed to 
enable reliable collection of the user’s confirmation or PIN (personal identification 
number) entry, and detection of malware’s falsification of the user’s input. The PTD 
can also ensure that a PIN entry is securely transmitted from the Intel platform to the 
authentication server, shielded from illegal eavesdropping.

The uniqueness and core innovation of the PTD that distinguishes it from other 
solutions is that it leverages the PAVP (protected audio and video path; see Chapter 
8 of this book for details) technology of Intel platforms to display the authentication 
sprite, such as the PIN pad, on the user’s monitor. Because the PAVP isolates the sprite 
and protects it from being accessed by the host, malware running on the host operating 
system is not able to see the sensitive overlay area. As a result, software cannot fake a 
user’s mouse clicks or scrape the screen. Figure 10-5 shows what a user sees during a  
PTD session.



Chapter 10 ■ Intel Identity Protection Technology

221

The user uses his mouse to click the secure PIN pad to enter the PIN. An entry is 
represented by an asterisk. To further enhance security, the location of the dialog box 
overlay is randomized for an authentication session; the positions of the ten digits of 
the PIN pad are also randomized every time. The PIN pad area is not visible to the host. 
Figure 10-6 shows what an attacker’s screen scraper would capture.

Figure 10-5.  PAVP-protected PIN pad on the end user’s screen

Figure 10-6.  PIN pad captured by a screen scraper
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Drawing a Sprite
Several flows and designs can be utilized when drawing a sprite. Figure 10-7 presents a 
sample in which a remote authentication server draws the sprite with the assistance of 
PAVP. In the diagram, the IPT proxy is the IPT’s software component running on the host 
operating system. GPU stands for graphics processing unit. Symbol (data)k denotes the 
ciphertext of cleartext data encrypted with an AES8 (advanced encryption standard) key k.

Server IPT proxy
Embedded

engine

(SEK)SK

GPU

Calculate (SEK)SK

SIGMA, resulting in session keys SK

Generate sprite
Generate SEK

Calculate (sprite)SEK

PTD initialization
Create session

PAVP initialization

(SEK)SK

Decrypt (SEK)SK, get SEK

SEK injection

(sprite)SEK

(sprite)SEK

Decrypt (sprite)SEK, get sprite
Display sprite

client

Figure 10-7.  Authentication server drawing a secure sprite

Similar to OTP, the authentication server must be an endorsed verifier of the SIGMA 
protocol. To draw a secure sprite on the screen, the server starts with requesting the 
IPT to initialize a PAVP session. The server then creates the sprite and encrypts it with a 
randomly generated sprite encryption key or SEK. Next, a SIGMA session is established 
between the server (verifier) and the client (prover). The SIGMA yields the session key SK 
shared between the server and the firmware. The server wraps SEK with SK. The resulting 
(SEK)SK is delivered to the embedded engine, which in turn decrypts and recovers SEK. 
Next, the engine injects SEK to the GPU. On the host side, the IPT proxy receives the 
encrypted sprite from the server and passes it to the GPU for rendering and display.
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The sequence assures that the clear sprite is never exposed during the entire 
transmission path from the server to the GPU. Attackers hidden on the Internet or the 
host can see only the encrypted version of the sprite; they cannot access the encryption 
key, thanks to the security provided by the SIGMA protocol. The graphics kernel code, 
like shaders, loaded by the host driver, cannot access sprite frames either. The security is 
safeguarded at the hardware level.

Gathering the User’s PIN Input
The IPT proxy is responsible for collecting the user’s clicks on the secure PIN pad. Notice 
that, as software, the IPT proxy has no knowledge of the position of the PIN pad or its 
digit button layout, hence it is not capable of calculating the user’s PIN input. The proxy 
records the coordinates of the clicks and reports to the authentication server. The server 
is the only entity that is able to interpret the user’s input. It does so by comparing the click 
coordinates with the sprite it created.

Optionally, the coordinates may be encrypted using a SIGMA session key before 
transmission. Figure 10-8 shows a sequential diagram of this flow.

Server IPT proxy Embedded engine

Collect mouse click coordinates

coordinates

client

Calculate (coordinates)SK

(coordinates)SK
(coordinates)SK

Decrypt (coordinates)SK and
get coordinates;

Compare coordinates with
sprite and derive user input

Figure 10-8.  Authentication server gathering coordinates of mouse clicks and deriving  
user input

Firmware Architecture 
Depending on product, the IPT may be implemented as an applet for the engine’s DAL 
feature, or a native firmware module on the engine. If the firmware supports DAL, 
for example, on most Intel Ultrabook models, then the IPT implementation will be 
distributed in a Java applet. On certain smartphones and other products where the DAL 
is not built into the engine’s firmware, the IPT will be a native firmware ingredient that is 
loaded from the system’s flash chip. The firmware design and functionalities of the IPT 
component are identical for both variants.



Chapter 10 ■ Intel �Identity Protection Technology

224

Figure 10-9 illustrates the high-level firmware architecture. Internal to the security 
and management engine, the IPT, together with the DAL that loads it, reside in a 
dedicated task. The IPT/DAL task is not consumed by any other components of the 
firmware. The IPT/DAL task consumes the following components of the engine to realize 
its IPT functionality:

IPT/DAL
task

Inter-task
call manager

Kernel

Embedded system

Cryptodriver

Utility task
(HECI, etc.)

Secure timer

Host

EPID task

Secure
storage

IPT proxy

Internet

Authentication server

Client platform

PAV Ptask

Figure 10-9.  Architecture of the embedded IPT
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•	 Storage manager: The metadata of installed tokens can be stored 
on the flash device in the engine’s data partition. If the metadata 
is stored on the host, then the application-specific encryption and 
integrity keys for protecting the metadata are stored on the flash.

•	 Cryptography driver: The TOTP and OCRA calculations use 
HMAC; the PTD uses AES and HMAC. Additional IPT features 
may use other cryptography algorithms, such as RSA9 (Rivest, 
Shamir, and Adleman) digital signing.

•	 Protected runtime clock: The TOTP calculation requires a 
timestamp.

•	 PAVP task: The PAVP is used by PTD for displaying secure sprites.

•	 EPID task: The provisioning of a token and the session 
initialization for PTD require EPID and SIGMA’s prover 
functionality.

•	 Utility task: For the HECI communication with the IPT proxy 
running on the host. Note that HECI is the only interface of the 
IPT firmware. The IPT does not consume DMA (direct memory 
access) or network interfaces.

Embedded PKI and NFC
Intel continues to develop innovative technologies to safeguard users’ identity. Recently, 
to further enrich IPT, two new members, PKI and NFC (near-field communication), have 
joined the IPT family.

The PKI feature supports secure nonvolatile storage for users’ asymmetric private 
keys, such as an RSA key, in the security and management engine. Equipped with this 
solution, computers can be seamlessly integrated with existing usages, such as VPN 
(virtual private network) authentication, e-mail and document signing, and so on. Once a 
private key is imported to the engine or generated by the engine, it will never be exposed 
in the clear to the external world and all cryptography operations with the private key are 
performed inside the engine.

The NFC feature enables a user to pay for his online purchases by simply tapping 
an NFC-capable credit card against the NFC sensor and the secure element chip in 
the computer, and completing the transaction with positive identity authentication. 
Thanks to NFC, the customer no longer has to manually type in the long 16 digits of the 
credit card number. The solution is not only more convenient and user-friendly but also 
more secure. Key logger malware is not able to steal the card number because it is not 
entered through a keyboard. The credit card information is processed by the security and 
management engine and securely transmitted to the server, with robust hardware-level 
protection.

For more technical details of Intel IPT’s PKI and NFC features, refer to the white paper10 
“Deeper Levels of Security with Intel Identity Protection Technology.” More information 
about Intel IPT can be found on the official web site (http://ipt.intel.com/).

http://ipt.intel.com/
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Chapter 11

Looking Ahead: Tomorrow’s 
Innovations Built on Today’s 
Foundation 

Creativity is not the finding of a thing, but the making of something out 
of it after it is found.

—James Russell Lowell

Up to this point, this book has revealed the technical details of Intel’s security and 
management engine, with the focus on the architecture and design of its firmware 
infrastructure. For the past several years, the engine has been serving as the trusted 
computing base of many state-of-the-art security technologies delivered by Intel 
platforms. Looking ahead, more innovative creations are to be done on the engine to 
make the most out of it. What are the next big things to come?

This chapter wraps up the book by first reviewing the critical building blocks of the 
engine and then briefly brainstorming next-generation technologies that can be built on 
the engine to further improve the security computing experience for people.

Isolated Computing Environment
The embedded engine was initially introduced by Intel in the south bridge as a 
management engine to resolve the hard problem of enterprise network administration. 
Managing, maintaining, and supporting network computers in organizations used to 
be stressful and expensive. For example, when an end-point computer has crashed, the 
information technology technician often has to make an onsite visit and debug the issue. 
Furthermore, monitoring statuses of all computers on a network is a difficult task.

Various software and hardware management solutions come with their advantages 
and disadvantages. To summarize, the cost of software tools is relatively low; however, 
software suffers constraints that cannot be easily overcome, such as security and 
dependency on the operating system. On the other hand, hardware methods are 
stable, more robust against attacks, and independent of the system under debug, but 
unfortunately, their higher price tags have prevented them from widespread deployment. 
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Intel’s AMT1 (advanced management technology)—built on the management 
engine and a key feature of Intel vPro—is both hardware and software. The AMT is 
hardware because it is natively embedded as part of the computer’s chipset; it operates 
independently of the host operating system; and more importantly, its security is rooted 
in the hardware. The AMT is also software because the majority of its functionalities are 
realized by specific software programs that are compiled into the platform’s flash device. 
Thanks to its dual identity, the AMT enjoys both the stability, security, and independency 
of hardware solutions, and the flexibility and affordability of software solutions at the 
same time.

The security and management engine features a dedicated processor, backbone 
hardware, fuse blocks, memory, and nonvolatile storage. It is designed to run normally, 
regardless of the state of the host. It can communicate with the host operating system 
and access the host’s physical memory (with certain exceptions). The engine’s isolation 
nature makes it significantly less vulnerable to threats and attacks from the host. 
Therefore, it is an ideal location for not only platform-level management and security 
solutions, but also those security applications that require the root of trust to be protected 
in hardware. 

Nothing is perfect, and the engine has its disadvantages and limitations. For 
instance, to save power and prolong battery life, its clock frequency is set to hundreds 
of megahertz, much lower than that of processor cores on the main host system. The 
slower speed disallows the engine to meet performance targets of certain operations 
(for example, video gaming) that require extremely high throughput. Also, the engine 
has been designed to execute Intel-signed programs only. In the current architecture, it 
cannot yet be utilized as a generic trusted execution environment.

Security-Hardening Measures
The engine’s capability of safeguarding itself and the sensitive data it handles is critical 
because of its assigned tasks and deep privileges, especially the right to read and write the 
host memory and its responsibility in processing high-value assets for many applications. 

In order to safeguard it from being compromised, comprehensive hardening 
measures are applied during boot-time and runtime. The following describes a few 
examples at a high level:

•	 Hardware root of trust: Binary code and the data of firmware 
components are stored in the flash memory in the clear. 
Encryption is not used because the security architecture does 
not rely on security through obscurity. The concept of hardware 
root of trust contains two folds: first, the root of trust for integrity 
is a hardware ROM (read-only memory). Unlike the firmware in 
the flash memory, the binary of ROM by design is not available 
externally. Although, even if the code of ROM is leaked, the 
security of the engine should not be impacted; second, the EPID 
(enhanced privacy identification; see Chapter 5 for details) private 
key and other chipset keys are burned into the engine’s security 
fuse block in Intel’s factory. These keys comprise the root of trust 
for confidentiality and privacy for the engine.
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•	 Signed firmware: Intel digitally signs the firmware image that 
is loaded by the ROM from the flash. The ROM verifies Intel’s 
signature during the boot process. The hash of the public key for 
signature verification is hardcoded in the ROM. Applets loaded by 
the dynamic application loader (DAL; see Chapter 9 for details) 
are also signed by Intel with the same key and verified when being 
loaded to the engine.

•	 Intact internal memory: The engine’s internal memory is intact 
from probing from the external world.

•	 Protected external memory: Due to the limited capacity of the 
internal memory, some versions of the engine require a reserved 
region of the host DRAM (dynamic random-access memory) to 
function. Because the DRAM is not in the engine’s trust boundary, 
before being swapped to the DRAM, data pages are encrypted; 
both data and code pages are integrity protected. There is no 
point in encrypting code pages because they are available in the 
clear from the flash memory at rest.

•	 Protected nonvolatile storage: The engine’s firmware may store 
secrets in the flash memory with protection for confidentiality, 
integrity, and/or anti-replay. The cryptographic keys utilized in 
these protections are derived from unique security fuses that 
differ from part to part.

•	 Restrictive DMA (direct memory access) control: The engine can 
access the host operating system’s memory via its DMA devices. 
This powerful ability may be leveraged by malicious firmware 
applications to bypass memory protection mechanisms of the 
host. To reduce the possibility of abuse, DMA operations with 
the host memory are stringently controlled by a small privileged 
component in the engine’s kernel.

•	 Task isolation: The number of the engine’s firmware modules 
has been growing over the years. To preclude one compromised 
module from attacking other innocent modules, an embedded 
task isolation mechanism is applied. Essentially, the isolation 
architecture places a module in its own container and restricts its 
penetration into peer containers. Assets that are protected against 
being accessed by other containers include hardware devices, 
runtime memory, nonvolatile data, synchronization objects, and 
so forth.

•	 Page attributes: All pages of the engine’s logical memory are 
tagged with attributes that are configured by the kernel during 
the boot process. The attribute entries are whether a page is code 
(executable) or data (nonexecutable), read-only, read-and-write, 
or no-access, the task it belongs to, and so on.
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•	 Return address scrambling: For a function call, the return address 
that is stored in the stack is “scrambled” (exclusive-OR’ed) 
with a secret value that is randomly generated during the boot 
process and stored in a protected register. The prologue function 
calculates the scrambled return address and places it in the stack. 
Accordingly, the epilogue function first performs unscrambling 
and then jumps to the unscrambled address, if and only if 
the unscrambled address looks valid. With the return address 
scrambling in place, malware cannot easily take advantage 
of stack overflow bugs and instruct the processor to execute 
attacker’s code that is located at a specific address.

•	 Stack DMZ (demilitarized zone): Stack overflowing is commonly 
used by attackers. When creating the stack for a thread, the 
engine’s kernel reserves extra pages (analogous to a DMZ) that 
are marked as “no-access” in the page attribute table. The attack 
of overflowing a stack will trigger an access violation exception if 
it lands on the DMZ.

The engine’s reaction upon detection of a security violation varies depending on 
the presumed nature of the event. Minor violations may be logged and then ignored 
quietly. Some violations that can be a result of firmware bugs would trigger a self-reset 
of the engine. If a certain number of resets happen within a certain number of seconds, 
then the engine will enter a recovery mode and stop functioning. The engine responds to 
security violations that are very likely due to active attacks with ungraceful global reset in 
order to terminate the attack immediately. Figure 11-1 summarizes the aforementioned 
countermeasures into categories.

Boot integrity

Hardware root of trust

Signed firmware

Run-time execution integrity
and confidentiality

Page attributes

Intact internal memory

Protected external
memory

Non-volatile data
confidentiality, integrity, and

anti-replay

Protected non-volatile
stoage
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Call integrity

Stack DMZ

Return address
scrambing

Host memory protection

Restrictive DMA control
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Figure 11-1.  The engine’s security-hardening features
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As you can see from the list and Figure 11-1, the philosophy of defense in depth is 
exercised when designing the protection profile of the security and management engine. 
This means that the security of the engine tries not to rely on any single hardening 
measure. Consequently, a successful invasion must manage to turn down multiple 
fortifications, which considerably raises the difficulty of attack attempts. 

For example, to install a rootkit that intends to access the host’s system memory 
from the engine, an attack has to circumvent integrity protection, inject malicious code 
to one of the firmware modules, avoid being caught by runtime integrity checks, and then 
bypass the kernel’s DMA permission filter. It is definitely a tremendous task to go through 
all of these defenses without triggering the alarm of the engine’s security infrastructure.

Note■■  T ry to avoid relying on single hardening measures; always exercise defense in 
depth when architecting security solutions.

Another example of exercising the philosophy of defense in depth is reflected in the 
well-known FIPS (Federal Information Processing Standard) 140-2 standard2 published 
by the NIST (National Institute of Standards and Technology). For a software or firmware 
module, the standard requires, among other things, a series of self-tests during the boot 
process:

•	 An integrity test using, for example, a digital signature to make 
sure that the module’s binary image has not been altered.

•	 Known-answer tests for all cryptography algorithms supported 
by the module, minus the algorithm that was just checked in 
the integrity test. A known-answer test calls the underlying 
cryptography method with hardcoded input vectors and verifies 
that the output from the method matches the hardcoded expected 
result.

One can argue that the known-answer tests are redundant because, in theory, once 
the integrity test passes, the sequential known-answer tests that follow are impossible 
to fail. However, from a different angle, this double-insurance requirement can also be 
interpreted as a defense-in-depth strategy. For example, buffer overflow vulnerability 
or the like may exist in the integrity self-test implementation. An attacker that has 
intentionally modified the module to his benefit can possibly exploit such a bug and 
bypass the integrity self-test. The known-answer self-tests offer secondary defense to 
defeat the attack.
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Basic Utilities
The following lists the majority of the engine’s fundamental and generic functions 
that are widely needed by many applications. These have been discussed in previous 
chapters:

Most standard cryptography algorithms•	

Big-number arithmetic•	

Secure timer•	

Monotonic counter (increments by one when instructed, never •	
decrements)

Secure nonvolatile storage•	

DMA with the host (limited to select modules only) and within •	
the firmware memory

HECI (host-embedded communication interface)•	

Network interface, limited to select modules only•	

Field programmable fuses (FPF)•	

Secure firmware update•	

In addition, the infrastructure supports runtime debug for applications on both 
preproduction and production configurations. On production parts, variables that hold 
secret data or keys are replaced with zeroes or test values by the kernel as soon as the 
debug port is enabled.

Besides these basic methods, the security and management engine is equipped with 
several useful utilities in its extended infrastructure that are exclusively available on the 
engine for supporting platform-specific functions of upper-layer applications. 

Anonymous Authentication and Secure Session 
Establishment
The EPID is an anonymous attestation and authentication scheme. It allows a verifier, 
which may be a local software program or a remote server, to use a group public key to 
verify a platform’s membership of the group by examining the signature generated by 
the platform using its unique EPID private key. The authentication does not disclose 
the identity of the platform. The membership of an individual platform may be revoked 
under predefined circumstances, such as a detected compromise. 

The SIGMA (SIGn and Message Authentication) is a protocol for mutual 
authentication and session key establishment. In the authentication phase, one direction 
(from the platform to the verifier) uses EPID, which is anonymous; whereas the other 
direction uses the traditional public key infrastructure (PKI) where a chain of certificates 
signed by certification authorities and rooted to the EPID authority prove the verifier’s 
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identity. For the session key agreement stage, the ECDH (elliptic curve Diffie-Hellman) 
protocol is employed. To further raise the security bar, the SIGMA protocol can be 
configured to involve OCSP (online certificate status protocol) for the platform to be 
confident that the verifier’s PKI certificate has not been revoked. 

All recent releases of the security and management engine ship with an EPID 
private key in security fuses. The EPID and SIGMA are building blocks of many attractive 
features, for example, the Intel Identity Protection Technology3 (IPT). For authentication, 
verifying the engine’s authenticity is important to applications that take advantage of the 
engine’s built-in functionalities. For session key agreement, the SIGMA protocol provides 
a convenient and secure approach to protect application-specific communications 
between a trusted entity and the platform, while maintaining the anonymity and 
confidentiality of the latter.

One of the potential problems of EPID is the heavy mathematical operations that 
must be conducted by the verifier and the platform. They slow down the SIGMA protocol 
execution and arguably worsen the user’s experience. One feasible solution without 
introducing more computing resources is to have both the verifier and the platform save 
the encryption and integrity keys derived from a successful SIGMA session in their secure 
nonvolatile storage, respectively. This process is called pairing. The session keys resulted 
from pairing are used in future sessions, even across power cycles. The session keys may 
be renewed by either side requesting a new SIGMA session once a month, for example, 
to mitigate attacks against persistent keys and, at the same time, minimize the negative 
impact of SIGMA to the user’s experience.

Protected Input and Output
Input (keyboard, mouse, fingerprint sensor, microphone, and so on) and output (for 
example, monitor and speaker) devices (I/O devices) constitute the interfaces that 
connect the human being and the machine. With a user-oriented mindset, safeguarding 
I/O devices is vital for solutions to any security problems. To realize secure input and 
output, the I/O devices may be connected with the security and management engine 
without involvement or interference of the host software. The host cannot access the clear 
I/O data because it is encrypted, and the decryption key is known to only the processing 
device and the engine. 

Intel’s PAVP (protected audio and video path) initially invented for supporting 
Blu-ray playback is a prototype for protected audio and video output. To display a secret 
frame, the creator encrypts the frame and transmits the encrypted frame to the graphics 
processor, which then decrypts and displays it on the screen. The key or the clear frame 
is not visible to the host. The link between the video output port and the monitor is 
protected by the wired or wireless HDCP4 (high-bandwidth digital content protection) 
protocol. Bypassing the entire software stack is the ultimate mitigation against all types of 
I/O snooping attacks and it renders all malware on the host that aims at stealing the user’s 
sensitive data through I/O ports inoperable. 
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Dynamic Application Loader
The security and management engine comes with a number of features stored on the 
flash chip. But they are not nearly enough to make the most out of the engine’s rich set of 
capabilities. The DAL offers desirable flexibility and extends the boundary of the engine 
by loading Java applets to the engine from the host at runtime. As software, it is easier 
to create an applet, change its functionalities, and patch bugs. No firmware update is 
necessary for building new consumer features to the engine.

But some usages are not suitable for loading by the DAL. Generally, if a feature falls 
into one or more of the following categories, then it should be natively implemented in 
the firmware: 

Related to platform security, for example, Boot Guard and •	
firmware-based TPM5 (Trusted Platform Module). The defined 
objectives of the platform security features include measuring 
the integrity of the host, thus they must be running before the 
operating system is loaded.

Related to system manageability, for example, AMT.•	

Must be available even if the host is not running, for example, •	
AMT and Remote Wake.6

Require high data throughput.•	

Code size is large.•	

Despite these limitations, consumer security features that launch on the operating 
system can still make good use of the engine through the DAL. Intel IPT sets a great 
example. Running new applets through the DAL, or other similar and better interfaces to 
be explored, will be one of the main domains for functional expansion of the engine in 
the future.

Summary of Firmware Ingredients 
Figure 11-2 shows a summary of the security and management engine’s firmware 
components. Notice that it is not an exhaustive list. Also notice that the engine may 
feature different sets of components for different products. As an example, the Bay Trail 
series tablets do not support AMT.
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Most of the firmware ingredients shown in the figure have been discussed in 
previous chapters. The following have not been mentioned or described in detail. 

•	 Big-number arithmetic: Implements signed and unsigned addition, 
subtraction, multiplication, division, modulo, Montgomery 
reduction, greatest common divisor, least common multiple, and 
so forth. These arithmetic operations are extensively invoked by 
asymmetric-key cryptography, for example, the EPID.

•	 Capability licensing service (CLS): Allows a remote trusted server 
to provision platform-specific permits and credentials to the 
engine. A sample usage of CLS is the Intel Upgrade Service (end of 
life in 2011) that unlocks advanced CPU (central processing unit) 
capabilities such as hyperthreading.

•	 Integrated clock control: Supports enablement and configuration 
of CPU overclocking.

•	 Remote wake: Supports waking up a computer from the sleep or 
off state from a remote location, so the user can access files on the 
computer. Network administrators can also use this technology to 
perform off-hour maintenance.

Basic infrastructure

Cryptography
Big-number
arithmetic

Security and management engine

Timer
Monotonic

counter
Non-volatile

storage

HECI Network DMA

Extended infrastructure

DALEPID/SIGMA PAVP

Platform security features

TPM

Boot Guard

Native applications

Remote wake

CLS

AMT

Dynamically loading
applications

IPT

Firmware
update

Integrated clock control

Content protection

FPF

HDCP

Figure 11-2.  The engine’s firmware components
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To realize its functionality, a firmware module may consume peers of the same box 
and modules in boxes below it. For example, IPT relies on DAL, and DAL depends on 
EPID/SIGMA and PAVP in the extended infrastructure, as well as cryptography, HECI, 
and other drivers in the basic infrastructure. However, a module does not consume a 
module in the boxes that are above it. For example, the drivers in the basic infrastructure 
box do not rely on upper-layer modules to function. 

At this point, we have covered the basics of today’s security and management engine. 
The framework is mature. The building blocks are well-established and ready to work for 
newer and better things. Next, let us explore future opportunities to make something out 
of the engine in more applications. 

Software Guard Extensions
At the 2013 Workshop on Hardware and Architectural Support for Security and Privacy, 
researchers from Intel presented three papers describing an upcoming technology, Intel 
Software Guard Extensions (SGX), for securing software secrets and executions. 

•	 “Innovative instructions and software model for isolated 
execution.”7 This article introduces the SGX’s central concept 
of “enclave” and gives an overview of the SGX architecture and 
protection model. It also describes new CPU instructions for 
SGX, new hardware for handling the enclave page cache, and the 
processes for enclave creation and operation, including how an 
application transitions in and out of its enclave.

•	 “Innovative technology for CPU-based attestation and sealing.” 8 
This presentation explains the technical details of provisioning 
secrets to an enclave, including how to generate hardware-based 
attestation for software inside an enclave and how software in an 
enclave seals and unseals secret data.

•	 “Using innovative instructions to create trustworthy software 
solutions.”9 This paper focuses on the software programming 
model of SGX. Interestingly, for proof of concept, the authors 
had built on prototype hardware of SGX three trustworthy 
applications, namely, one-time password, enterprise rights 
management, and secure video conferencing. These three are 
perfect examples for demonstration, because they are highly-
demanded real-world applications that exercise many of the 
SGX’s infrastructural capabilities.

In a nutshell, the SGX technology enables software developers to protect sensitive 
code and data in enclaves that are secured at the hardware level. The protection includes 
encryption, integrity, and anti-replay. No software on the host, regardless of its ring and 
privilege, is allowed to touch others’ enclaves. Moreover, the hardware can measure 
the trusted code in an enclave and generate attestation, so that a trusted entity, such 
as a service provider, is able to confirm the integrity of the code and provide premium 
services.
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Notice the word “innovation” appearing in the titles of all three papers. Running 
sensitive portions of a software program in the trusted world is not a new idea. However, 
compared to existing solutions, the SGX’s innovation is its capability of managing 
multiple secure enclaves, mutually untrusted, concurrently in the untrusted world. The 
CPU-based attestation and sealing are also innovative creations, which function like a 
dedicated TPM for each individual enclave.

In September 2013, Intel officially announced the SGX feature and published a 
programming reference manual.10 The SGX is seemingly a very promising technology 
that is tasked with resolving long-lasting security problems for the software vendors and 
consumers. Its design is not trivial. Behind the scene are a number of hardware, firmware, 
and software components working together to make the SGX a reality. The security and 
management engine also plays a pivotal role in the solution. 

The SGX architecture makes use of the engine through the generic DAL interface. 
Individual enclaves can invoke the engine’s wide range of capabilities, including the 
cryptography driver, monotonic counter, secure timer, PAVP, and so forth. As the 
development of SGX continues, other services available from the engine may also be 
leveraged. 

More Excitement to Come
The future development of the security and management engine can move forward in 
two directions. The first is to expand the family of platform-level features. By their nature, 
these features cannot be implemented on the host operating system because either 
the software stack is not trusted or the function must be available even though the host 
is not active. The engine’s unique characteristics of isolation environment should be 
further utilized to realize security enforcements for the platform, as well as nonsecurity 
applications that require operations in the sleep state. 

Second, the DAL is a milestone development that opens the door of the security and 
management engine to the external world. It has been used for Intel IPT and will be used 
for SGX. With the increasing openness of the engine, software vendors and computer 
manufacturers should be able to develop proprietary and innovative features that make 
use of the engine’s infrastructure. 
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