
87

Chapter 5

Addressing Application
Bottlenecks: Distributed
Memory

The first application optimization level accessible to the ever-busy performance analyst
is the distributed memory one, normally expressed in terms of the Message Passing
Interface (MPI).1 By its very nature, the distributed memory paradigm is concerned
with communication. Some people consider all communication as overhead—that
is, something intrinsically harmful that needs to be eliminated. We tend to call it
“investment.” Indeed, by moving data around in the right manner, you hope to get more
computational power in return. The main point, then, is to optimize this investment so
that your returns are maximized.

The time spent on the problem analysis and solution is an integral part of the
overall investment. Hence, it is important to detect quickly what direction may be
successful and what is going to be a waste of time, and to focus on the most promising
leads. Following this pragmatic approach, in this chapter we will show how to detect
and exploit optimization opportunities in the realm of communication patterns. Further
chapters will step deeper into the increasingly local optimization levels. “And where
are the algorithms?” you may ask. Well, we will deal with them as we go along, because
algorithms will cross our path at every possible level. If you have ever tried to optimize
bubble sort and then compared the result with the quick sort, you will easily appreciate
the importance of algorithmic optimization.

Algorithm for Optimizing MPI Performance
Here is the algorithm we will use to optimize MPI performance, inspired in part by the
work done by our friends and colleagues:2

1.	 Comprehend the underlying MPI performance.

2.	 Do an initial performance investigation of the application.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

88

3.	 If the initial investigation indicates that performance may
be improved, do an in-depth MPI analysis and optimization
using the closed-loop approach, as follows:

a.	 Get an overview of the application scalability and
performance.

b.	 If a load imbalance exceeds the cost of communication,
address the load imbalance first or else perform MPI
optimization.

c.	 Repeat while performance improves and you still have
time left.

4.	 Proceed to the node-level MPI optimization.

Let’s go through these steps in detail.

Comprehending the Underlying MPI Performance
About the only sure way to grasp what is happening with application performance is to
do benchmarking. Occasionally, you can deduce a performance estimate by plugging
numbers into an analytical model that links, say, the estimated execution time to certain
factors like the number of processes and their layout. However, this is more often the
exception than the rule.

Recalling Some Benchmarking Basics
The first rule in benchmarking is to have a clean system setup. You have learned how to
achieve that in Chapter 4. It may not always be possible to get to the ideal, no-interference
situation, especially if you are doing your measurements on a system that is being utilized
by many users at the same time, as they normally are. In this case, you will have to do
several runs per parameter combination, possibly at different times of the day and week,
and then apply statistical methods—or at least common sense—to estimate how reliable
your data is.

To estimate the system variability, as well as to learn more about the underlying
MPI performance, you may want to run Intel MPI Benchmarks (IMB).3 Once started on
a number of processes, this handy MPI benchmark will output timings, bandwidths,
and other relevant information for several popular point-to-point and collective
exchange patterns. You can also use any other benchmark you trust, but for now we will
concentrate on the IMB, which was developed with the specific goal of representing
typical application-level MPI use cases.

Gauging Default Intranode Communication Performance
Let us look first into the intranode communication—that is, data transfers done within
one node. It is fairly easy to get started on IMB. The binary executable file IMB-MPI1
is provided as part of the Intel MPI library distribution. Having set up the Intel MPI

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

89

environment as described in Chapter 4, you can run this MPI program now in the way
you probably know better than we do. On a typical system with the Intel MPI library
installed, this would look as follows:
 
$ mpirun -np 2 ./IMB-MPI1 PingPong
 

By default, the Intel MPI library will try to select the fastest possible communication
path for any particular runtime configuration. Here, the most likely candidate is
the shared memory channel. On our workstation, this leads to the output (skipping
unessential parts) shown in Listing 5-1:

Listing 5-1.  Example IMB-MPI1 Output (Workstation, Intranode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 1.16 0.00
 1 1000 0.78 1.22
 2 1000 0.75 2.53
 4 1000 0.78 4.89
 8 1000 0.78 9.77
 16 1000 0.78 19.55
 32 1000 0.88 34.50
 64 1000 0.89 68.65
 128 1000 0.99 123.30
 256 1000 1.04 234.54
 512 1000 1.16 420.02
 1024 1000 1.38 706.15
 2048 1000 1.63 1199.68
 4096 1000 2.48 1574.10
 8192 1000 3.74 2090.00
 16384 1000 7.05 2214.91
 32768 1000 12.95 2412.56
 65536 640 14.93 4184.94
 131072 320 25.40 4921.88
 262144 160 44.55 5611.30
 524288 80 91.16 5485.08
 1048576 40 208.15 4804.20
 2097152 20 444.45 4499.96
 4194304 10 916.46 4364.63
 

The PingPong test is an elementary point-to-point exchange pattern, in which one
MPI process sends a message to another and expects a matching response in return. Half
of the turnaround time measured is dubbed “latency” in this case, and the message size
divided by latency is called “bandwidth.” These two numbers constitute the two most
important characteristics of a message-passing communication path for a particular

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

90

message size. If you want to reduce this to just two numbers for the whole message
range, take the zero-byte message latency and the peak bandwidth at whatever message
size it is achieved. Note, however, that IMB performance may differ from what you see in
a real application.

From the output shown here we can deduce that zero-byte message latency is
equal to 1.16 microseconds, while the maximum bandwidth of 5.6 GB/s is achieved
on messages of 256 KiB. This is what the shared memory communication channel,
possibly with some extra help from the networking card and other MPI implementor
tricks, is capable of achieving in the default Intel MPI configuration. Note that the
default intranode MPI latency in particular is 7 to 20 times the memory access latency,
depending on the exact communication path taken (compare Listing 5-4). This is the
price you pay for the MPI flexibility, and this is why people call all communication
“overhead.” This overhead is what may make threading a viable option in some cases.

Note■■   The Intel MPI Library is tuned by default for better bandwidth rather than for
lower latency, so that the latency can easily be improved by playing a bit with the process
pinning. We will look into this in due time.

The general picture of the bandwidth values (the last column in Listing 5-1) is almost
normal: they start small, grow to the L2 cache peak, and then go down stepwise, basically
reaching the main memory bandwidth on very long messages (most likely, well beyond
the 4 MiB cutoff selected by default).

However, looking a little closer at the latency numbers (third column), we notice
an interesting anomaly: zero-byte latency is substantially larger than that for 1-byte
messages. Something is fishy here. After a couple of extra runs we can be sure of this
(anomalous values are highlighted in italic; see Table 5-1):

Table 5-1.  Small Message Latency Anomaly (Microseconds, Workstation)

#bytes Run 1 Run 2 Run 3 Min

0 1.16 1.31 1.28 1.16

1 0.78 1.03 1.27 0.78

2 0.75 0.77 1.04 0.75

4 0.78 0.79 0.71 0.71

This may be a measurement artifact, but it may as well be something worth keeping
in mind if your application is strongly latency bound. Note that doing at least three runs is
a good idea, even though your Statistics 101 course told you that this is not enough to get
anywhere close to certainty. Practically speaking, if you indeed have to deal with outliers,
you will be extremely unlucky to get two or all three of them in a row. And if just one
outlier is there, you will easily detect its presence and eliminate it by comparison to other
two results. If you still feel unsafe after this rather unscientific passage, do the necessary
calculations and increase the number of trials accordingly.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

91

Let us try to eliminate the artifact as a factor by increasing tenfold the number of
iterations done per message size from its default value of 1000:
 
$ mpirun -np 2 ./IMB-MPI1 -iter 10000 PingPong
 

The option -iter 10000 requests 10,000 iterations to be done for each message size.
This is what we get this time (again, skipping unessential output); see Listing 5-2.

Listing 5-2.  Modified IMB-MPI1 Output (Workstation, Intranode, with 10,000 Iterations)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 10000 0.97 0.00
 1 10000 0.80 1.20
 2 10000 0.80 2.39
 4 10000 0.78 4.87
 8 10000 0.79 9.69
 16 10000 0.79 19.33
 32 10000 0.93 32.99
 64 10000 0.95 64.06
 128 10000 1.06 115.61
 256 10000 1.05 232.74
 512 10000 1.19 412.04
 1024 10000 1.40 697.15
 2048 10000 1.55 1261.09
 4096 10000 1.98 1967.93
 8192 5120 3.21 2437.08
 16384 2560 6.27 2493.14
 32768 1280 11.38 2747.05
 65536 640 13.35 4680.56
 131072 320 24.89 5021.92
 262144 160 44.77 5584.68
 524288 80 91.44 5467.92
 1048576 40 208.23 4802.48
 2097152 20 445.75 4486.85
 4194304 10 917.90 4357.78
 

From this, it does look like we get a measurement artifact at the lower message sizes,
just because the machine is lightning fast. We can increase the iteration count even more
and check that out.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

92

EXERCISE 5-1

Verify the existence of the IMB short message anomaly on your favorite platform. If it
is observable, file an issue report via Intel Premier Support.4

As before, the peak intranode bandwidth of 5.6 GiB/s at 256 KiB is confirmed, and we
can deduce that the intranode bandwidth stabilizes at about 4.4 GB/s for large messages.
These are quite reasonable numbers, and now we can proceed to investigate other
aspects of the baseline MPI performance.

Before we do this, just to be sure, we will do two extra runs (oh, how important it is to
be diligent during benchmarking!) and drive the new data into a new table (anomalous
values are highlighted in italic again); see Table 5-2:

Table 5-2.  Small Message Latency Anomaly Almost Disappears (Microseconds,
Workstation, with 10,000 Iterations)

#bytes Run 1 Run 2 Run 3 Min

0 0.90 0.86 0.85 0.85

1 0.69 0.72 0.72 0.69

2 0.70 0.71 0.73 0.70

4 0.70 0.71 0.72 0.70

Alternatively, if the observed anomaly can be attributed to the warm-up effects
(say, connection establishment on the fly, buffer allocation, and so on), running
another benchmark before the PingPong in the same invocation may eliminate this. The
command would look as follows:
 
$ mpirun -np 2 ./IMB-MPI1 -iter 10000 PingPing PingPong
 

Listing 5-3 shows the effect we see on our workstation:

Listing 5-3.  Modified IMB-MPI1 Output: PingPong after PingPing (Workstation,
Intranode, with 10,000 Iterations)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 10000 0.56 0.00
 1 10000 0.56 1.69
 2 10000 0.57 3.37
 4 10000 0.57 6.73

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

93

 8 10000 0.58 13.27
 16 10000 0.58 26.49
 32 10000 0.69 44.49
 64 10000 0.69 88.48
 128 10000 0.78 155.68
 256 10000 0.81 300.65
 512 10000 0.93 527.47
 1024 10000 1.13 861.66
 2048 10000 1.50 1305.38
 4096 10000 2.14 1824.66
 8192 5120 3.73 2094.46
 16384 2560 6.48 2412.18
 32768 1280 11.83 2642.52
 65536 640 11.72 5334.40
 131072 320 22.33 5598.75
 262144 160 39.44 6338.08
 524288 80 76.32 6551.55
 1048576 40 183.25 5456.98
 2097152 20 402.50 4968.89
 4194304 10 783.05 5108.23
 8388608 5 1588.30 5036.84
 16777216 2 3417.25 4682.12
 

You can see not only that now the anomaly is gone but also that the numbers have
changed quite substantially. This is in part why an application may behave differently
from the most carefully designed benchmark. It is arguable whether doing special
preconditioning of the benchmark like the one described earlier is valid all the time,
so we will refrain from this approach further on.

Of course, we will keep all the log files, clearly named, safe and sound for future
reference. The names like IMB-MPI1-n1p2-PingPong.logN, where N stands for the run
number, will do just fine in this case. The notation n1p2 tells us that the results have been
obtained on one node using two MPI processes.

Gauging Default Internode Communication Performance
If you are addressing a cluster rather than a single node or a workstation, you will want
to perform a comparable investigation of the internode performance. The principle is
similar to the one explained in the previous section. Let’s start again with the two-process
IMB PingPong benchmark.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

94

Since in this case we are going to use more than one node, MPI startup will of
necessity be a bit more complicated, because the MPI library should be made aware of
the identity of the nodes we intend to run on. By far the easiest way that also leaves a
clear log trace of what exactly was done is to specify those nodes explicitly in the IMB
invocation command. For instance, on our example system:
 
$ mpirun -host esg054 -np 1 ./IMB-MPI1 PingPong : -host esg055 -np
1 ./IMB-MPI1 PingPong
 

Here, esg054 and esg055 stand for the respective node hostnames. They are very
likely to be rather different in your installation. If you’re in doubt, ask your friendly
systems administrator.

Note■■   There are certainly more elegant and powerful ways of selecting the target nodes
for an Intel MPI run. Do not worry; we will learn them one by one in due time. This precise
inline method is just what we need right now.

Of course, your cluster may be controlled by a job-management system like PBS Pro,
LSF, Torque, or one of half a dozen other alternative products. The chances are that
mpirun will recognize any of them and allow a job to be started anyway, but this is a topic
we would need to devote a whole chapter to. Just ask one of the local experts you know,
and he or she will tell you what is needed to submit multiple node jobs.

Another conceptual complication that we will deal with is the way in which both
nodes will communicate with each other. Normally, as in the intranode case, Intel MPI
library will automatically try to select the fastest available communication path. Most
likely, this will be InfiniBand on a dedicated HPC cluster and some Gigabit Ethernet on a
general purpose cluster. In the case of InfiniBand, we get the following output on our test
cluster introduced in Chapter 4; see Listings 5-4 and 5-5:

Listing 5-4.  IMB-MPI1 Output (Cluster, Intranode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.67 0.00
 1 1000 0.67 1.42
 2 1000 0.68 2.82
 4 1000 0.68 5.62
 8 1000 0.70 10.85
 16 1000 0.71 21.54
 32 1000 0.86 35.63
 64 1000 0.88 69.40
 128 1000 0.98 124.95

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

95

 256 1000 0.99 246.72
 512 1000 1.15 426.27
 1024 1000 1.42 685.35
 2048 1000 1.78 1095.41
 4096 1000 2.79 1400.88
 8192 1000 4.64 1685.16
 16384 1000 8.20 1904.89
 32768 1000 15.10 2069.54
 65536 640 16.79 3721.45
 131072 320 31.61 3954.93
 262144 160 57.92 4316.18
 524288 80 107.18 4665.26
 1048576 40 238.57 4191.58
 2097152 20 503.15 3974.94
 4194304 10 1036.91 3857.63 

Listing 5-5.  IMB-MPI1 Output (Cluster, Internode)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 1.09 0.00
 1 1000 1.09 0.88
 2 1000 1.09 1.75
 4 1000 1.10 3.47
 8 1000 1.10 6.91
 16 1000 1.11 13.74
 32 1000 1.15 26.44
 64 1000 1.16 52.71
 128 1000 1.23 98.97
 256 1000 1.87 130.55
 512 1000 1.98 246.30
 1024 1000 2.30 425.25
 2048 1000 2.85 685.90
 4096 1000 3.42 1140.67
 8192 1000 4.77 1639.06
 16384 1000 7.28 2145.56
 32768 1000 10.34 3021.38
 65536 1000 16.76 3728.35
 131072 1000 28.36 4407.30
 262144 800 45.51 5493.00
 524288 400 89.05 5614.98
 1048576 200 171.75 5822.49
 2097152 100 338.53 5907.97
 4194304 50 671.06 5960.72
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

96

Several interesting differences between the shared memory and the InfiniBand paths
are worth contemplating. Let’s compare these results graphically; see Figures 5-1 and 5-2.

Figure 5-2.  IMB-MPI1 PingPong bandwidth comparison: cluster, intranode vs internode
(higher is better)

Figure 5-1.  IMB-MPI1 PingPong latency comparison: cluster, intranode vs internode
(lower is better)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

97

Now, let’s enumerate the differences that may be important when we later start
optimizing our application on the target cluster:

1.	 Intranode latency is substantially better than internode
latency on smaller message sizes, with the crossover occurring
at around 8 KiB. Hence, we should try to put onto the same
node as many processes that send smaller messages to each
other as possible.

2.	 Internode bandwidth is considerably higher than intranode
bandwidth on larger messages above 8 KiB, with the
exception of roughly 64 KiB, where the curves touch again.
Hence, we may want to put onto different nodes those MPI
ranks that send messages larger than 8 KiB, and surely larger
than 64 KiB, to each other.

3.	 It is just possible that InfiniBand might be beating the shared
memory path on the intranode bandwidth, as well. Since Intel
MPI is capable of exploiting this after a minor adjustment,
another small investigation is warranted to ascertain whether
there is any potential for performance improvement in using
InfiniBand for larger message intranode transfers.

Discovering Default Process Layout and Pinning Details
Is there an opportunity to further improve the underlying MPI performance? Certainly
there are quite a few, starting with improving process pinning. Let’s look at the output of
the cpuinfo utility that is provided with the Intel MPI library; see Listing 5-6:

Listing 5-6.  Cpuinfo Utility Output (Workstation)

Intel(R) processor family information utility, Version 5.0 Update 1 Build
20140709
Copyright (C) 2005-2014 Intel Corporation. All rights reserved.
 
===== Processor composition =====
Processor name : Genuine Intel(R) E2697V
Packages(sockets) : 2
Cores : 24
Processors(CPUs) : 48
Cores per package : 12
Threads per core : 2
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

98

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 0 8 0
7 0 9 0
8 0 10 0
9 0 11 0
10 0 12 0
11 0 13 0
12 0 0 1
13 0 1 1
14 0 2 1
15 0 3 1
16 0 4 1
17 0 5 1
18 0 8 1
19 0 9 1
20 0 10 1
21 0 11 1
22 0 12 1
23 0 13 1
24 1 0 0
25 1 1 0
26 1 2 0
27 1 3 0
28 1 4 0
29 1 5 0
30 1 8 0
31 1 9 0
32 1 10 0
33 1 11 0
34 1 12 0
35 1 13 0
36 1 0 1
37 1 1 1
38 1 2 1
39 1 3 1
40 1 4 1
41 1 5 1
42 1 8 1
43 1 9 1
44 1 10 1

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

99

45 1 11 1
46 1 12 1
47 1 13 1
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3,4,5,8,9,10,11,12,13
 �(0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)

(7,31)(8,32)(9,33)(10,34)(11,35)
1 0,1,2,3,4,5,8,9,10,11,12,13
 �(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)

(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)
 
===== Cache sharing =====
Cache Size Processors
L1 32 KB �(0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)

(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)
(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)
(22,46)(23,47)

L2 256 KB �(0,24)(1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)
(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)
(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)
(22,46)(23,47)

L3 30 MB �(0,1,2,3,4,5,6,7,8,9,10,11,24,25,26,27,28,29,30,31,
32,33,34,35)(12,13,14,15,16,17,18,19,20,21,22,23,
36,37,38,39,40,41,42,43,44,45,46,47)

 
This utility outputs detailed information about the Intel processors involved. On

our example workstation we have two processor packages (sockets) of 12 physical cores
apiece, each of them in turn running two hardware threads, for the total of 48 hardware
threads for the whole machine. Disregarding gaps in the core numbering, they look well
organized. It is important to notice that both sockets share the 30 MB L3 cache, while
the much smaller L1 and L2 caches are shared only by the virtual cores (OS processors)
that are closest to each other in the processor hierarchy. This may have interesting
performance implications.

Now, let’s see how Intel MPI puts processes onto the cores by default. Recalling
Chapter 1, for this we can use any MPI program, setting the environment variable
I_MPI_DEBUG to 4 in order to get the process mapping output. If you use a simple
start/stop program containing only calls to the MPI_Init and MPI_Finalize, you will get
output comparable to Listing 5-7, once unnecessary data is culled from it:

Listing 5-7.  Default Process Pinning (Workstation, 16 MPI Processes)

[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): 0 210515 book {0,1,24}
[0] MPI startup(): 1 210516 book {2,25,26}
[0] MPI startup(): 2 210517 book {3,4,27}
[0] MPI startup(): 3 210518 book {5,28,29}
[0] MPI startup(): 4 210519 book {6,7,30}

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

100

[0] MPI startup(): 5 210520 book {8,31,32}
[0] MPI startup(): 6 210521 book {9,10,33}
[0] MPI startup(): 7 210522 book {11,34,35}
[0] MPI startup(): 8 210523 book {12,13,36}
[0] MPI startup(): 9 210524 book {14,37,38}
[0] MPI startup(): 10 210525 book {15,16,39}
[0] MPI startup(): 11 210526 book {17,40,41}
[0] MPI startup(): 12 210527 book {18,19,42}
[0] MPI startup(): 13 210528 book {20,43,44}
[0] MPI startup(): 14 210529 book {21,22,45}
[0] MPI startup(): 15 210530 book {23,46,47}
 

Comparing Listings 5-6 and 5-7, we can see that the first eight MPI processes
occupy the first processor package, while the remaining eight MPI processes occupy
the other package. This is good if we require as much bandwidth as we can get, for
two parts of the job will be using separate memory paths. This may be bad, however,
if the relatively slower intersocket link is crossed by very short messages that clamor
for the lowest possibly latency. That situation would normally favor co-location of the
intensively interacting processes on the cores that share the highest possible cache level,
up to and including L1.

Gauging Physical Core Performance
What remains to be investigated is how much the virtual cores we have been using so far
influence pure MPI performance. To look into this, we have to make Intel MPI use only
the physical cores. The easiest way to do this is as follows:
 
$ export I_MPI_PIN_PROCESSOR_LIST=allcores
 

If you wonder what effect this will have upon performance, compare Listing 5-1 with
Listing 5-8:

Listing 5-8.  Example IMB-MPI1 Output (Workstation, Intranode, Physical Cores Only)

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.58 0.00
 1 1000 0.61 1.56
 2 1000 0.62 3.08
 4 1000 0.27 14.21
 8 1000 0.28 27.65
 16 1000 0.32 48.05
 32 1000 0.37 81.48
 64 1000 0.38 161.67

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

101

 128 1000 0.42 293.83
 256 1000 0.44 556.07
 512 1000 0.50 975.70
 1024 1000 0.59 1659.31
 2048 1000 0.79 2470.82
 4096 1000 1.21 3229.65
 8192 1000 2.06 3799.85
 16384 1000 3.77 4145.09
 32768 1000 6.79 4605.72
 65536 640 10.30 6066.17
 131072 320 18.66 6699.50
 262144 160 35.94 6956.02
 524288 80 65.84 7593.73
 1048576 40 125.46 7970.55
 2097152 20 245.08 8160.72
 4194304 10 482.80 8285.04
 

Note that we can still observe the small message latency anomaly in some form.
This becomes outright intriguing. For the rest of it, latency is down by up to three times
and bandwidth is up by 40 to 50 percent, with bandwidth in particular still going up,
whereas it would sharply drop in prior tests. This is natural: in the absence of necessity
to share both the core internals and the off-core resources typical of the virtual cores,
MPI performance will normally go up. This is why pure MPI programs may experience a
substantial performance hike when run on the physical cores.

Note also that the performance hike observed here has to do as well with the
change in the process layout with respect to the processor sockets. If you investigate the
process layout and pinning in both cases (not shown), you will see that in the default
configuration, MPI ranks 0 and 1 occupy different processor sockets, while in the
configuration illustrated by Listing 5-8, these ranks sit on adjacent physical cores of the
same processor socket. That is, the observed difference is also the difference between the
intersocket and intrasocket performance, respectively.

At this point we have discovered about 90 percent of what needs to be known about
the underlying MPI performance. You might want to run more complicated IMB sessions
and see how particular collective operations behave on more than two processes and
so on. Resist this temptation. Before we go there, we need to learn a bit more about the
target application.

EXERCISE 5-2

Compare the virtual and physical core performance of your favorite platform using
the procedure described here. Try the -cache_off option of the IMB to assess the
influence of the cache vs. memory performance at the MPI level. Consider how
relevant these results may be to your favorite application.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

102

Doing Initial Performance Analysis
Let us proceed to the next step of the performance investigation algorithm. When you
optimize an application at the MPI level, it is not so interesting at first what is happening
inside any particular process. What is more pertinent is how these processes interact,
how much time is spent doing this, and whether this interaction can be improved to a
noticeable degree. Thus, performance investigation of an MPI application starts with the
initial benchmarking and a couple of estimates.

Is It Worth the Trouble?
This is the first question to answer, and this is not a trivial matter. One measurement is
not likely to give the final answer here, since application behavior may depend on the run
configuration (number of nodes, kind of the fabrics selected, MPI settings), as well as on
the workload used and other, sometimes outright mysterious, factors.

Following the typical engineering practice of estimating upfront the problem by the
order of magnitude, we recommend you do the following first:

1.	 Select one or two representative workloads.

2.	 Use the default Intel MPI settings and activate the built-in
statistics gathering to collect vital profile information (export
I_MPI_STATS=ipm).

3.	 Do several benchmarking runs at a low, medium, and high
(but still practicable) number of processes, for any curve can
connect two points, as they say.5

4.	 Analyze the statistics output files to find out whether it is
worth bothering about the application’s distributed memory
performance, in particular.

By following this routine, you will not only understand whether there is a noticeable
optimization potential at the distributed memory level but also learn how your
application scales with the number of nodes and what MPI operations it uses most
extensively. Moreover, you will establish a performance baseline that you will compare
your results against every time you introduce a purported improvement into the
application or the platform. All this information will flow directly into the further
optimization process, and none of your time will be wasted.

Example 1: Initial HPL Performance Investigation
Let us revisit the High Performance Linpack Benchmark that we mentioned in Chapter 1,
and practice a little on it.6 To save time in configuring and building an executable with all
the necessary optimizations and libraries inside, we will fetch Intel’s pre-cooked HPL that
we quietly used in Chapter 4.7

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

103

We do not have to select the workload because HPL generates it automatically during
startup. What we need to change are a few workload parameters; see Listing 5-9:

Listing 5-9.  HPL Input File (HPL.dat) with the Most Important Parameters Highlighted

HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
235520 Ns
1 # of NBs
256 NBs
1 PMAP process mapping (0=Row-,1=Column-major)
1 # of process grids (P x Q)
4 Ps
4 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
4 NBMINs (>=1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left, 1=Crout, 2=Right)
1 # of broadcast
0 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
0 SWAP (0=bin-exch,1=long,2=mix)
1 swapping threshold
1 L1 in (0=transposed,1=no-transposed) form
1 U in (0=transposed,1=no-transposed) form
0 Equilibration (0=no,1=yes)
8 memory alignment in double (>0)
 

Some of the points to note from the script in Listing 5-8 are:

•	 Problem size (N) is normally chosen to take about 80 percent of
the available physical memory by the formula memory = 8N 2 for
double precision calculations.

•	 Number of blocks (NB) usually ranges between 32 and 256, with
the higher numbers promoting higher computational efficiency
while creating more communication.

•	 Process grid dimensions (P and Q), where both P and Q are
typically greater than 1, P is equal to or slightly smaller than
Q, and the product of P and Q is the total number of processes
involved in the computation.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

104

This and further details are well explained in the HPL FAQ.8 As can be seen,
Listing 5-9 was generated when the matrix size was set to 235,520, yielding total occupied
memory of about 413 GiB. We used 256 blocks and the process grid dimensions 4 x 4.
A quick look into the built-in statistics output given in Listing 1-1 that was obtained for
this input data shows that MPI communication occupied between 5.3 and 11.3 percent of
the total run time, and that the MPI_Send, MPI_Recv, and MPI_Wait operations took about
81, 12, and 7 percent of the total MPI time, respectively. The truncated HPL output file
(see Listing 5-10) reveals that the run completed correctly, took about 40 minutes, and
achieved about 3.7 TFLOPS.

Listing 5-10.  HPL Report with the Most Important Data Highlighted (Cluster, 16 MPI
Processes)

==
HPLinpack 2.1 -- High-Performance Linpack benchmark -- October 26, 2012
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
==
 
An explanation of the input/output parameters follows:

T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.
 
The following parameter values will be used:
 
N : 235520
NB : 256
PMAP : Column-major process mapping
P : 4
Q : 4
PFACT : Right
NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : 1ring
DEPTH : 1
SWAP : Binary-exchange
L1 : no-transposed form
U : no-transposed form
EQUIL : no
ALIGN : 8 double precision words
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

105

--
 - The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
 ||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0
Column=001280 Fraction=0.005 Mflops=4809238.67
Column=002560 Fraction=0.010 Mflops=4314045.98
...
Column=210944 Fraction=0.895 Mflops=3710381.21
Column=234496 Fraction=0.995 Mflops=3706630.12
==
T/V N NB P Q Time Gflops
--
WC10C2R4 235520 256 4 4 2350.76 3.70500e+03
HPL_pdgesv() start time Fri Feb 14 05:44:48 2014
 
HPL_pdgesv() end time Fri Feb 14 06:23:59 2014

||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0028696 PASSED
==
 Finished 1 tests with the following results:
 1 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.
--
 End of Tests.
==
 

Now, let’s document what we have found. The input and output files form the basis
of this dataset that needs to be securely stored. In addition to this, we should note that
this run was done on eight nodes with two Ivy Bridge processors, with 12 physical cores in
turbo mode per processor and 64 GiB of memory per node.

The following tools were used for this run:

Intel MPI 5.0.1•	

Intel MKL 11.2.0 (including MP_LINPACK binary precompiled by •	
Intel Corporation)

Intel Composer XE 2015•	

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

106

The environment variables for this test were as follows:
 
export I_MPI_DAPL_PROVIDER=ofa-v2-mlx4_0-1
export I_MPI_PIN=enable
export I_MPI_PIN_DOMAIN=socket
export OMP_NUM_THREADS=12
export KMP_AFFINITY=verbose,granularity=fine,physical
export I_MPI_STATS=ipm
 

Some of these variables are set by default. However, setting them explicitly increases
the chances that we truly know what is being done by the library. The first line indicates
a particular communication fabric to be used by Intel MPI. The next four lines control
the Intel MPI and OpenMP process and thread pinning. (We will look into why and how
here, and in Chapter 6.) The last line requests the built-in, IPM-style statistics output to be
produced by the Intel MPI Library.

This dataset complements the lower-level data about the platform involved that we
collected and documented in Chapter 4. Taken together, they allow us to reproduce this
result if necessary, or to root-cause any deviation that may be observed in the future
(or in the past).

Since this program has not been designed to run on small problem sizes or small
numbers of processes, it does not make much sense to continue the runs before we come
to the preliminary conclusion. One data point will be sufficient, and we can decide what
to do next. If we compute the efficiency achieved during this run, we see it comes to about
90 percent. This is not far from the expected top efficiency of about 95 percent. From this
observation, as well as the MPI communication percentages shown here and Amdahl’s
Law explained earlier, we can deduce that there is possibly 2—at most 3—percent overall
performance upside in tuning MPI. In other words, it makes sense to spend more time
tuning MPI for this particular application only if you are after those last few extra drops of
efficiency. This may very well be the case if you want to break a record, by the way.

Just for comparison, we took the stock HPL off the netlib.org and compared it to
the optimized version presented here. The only tool in common was the Intel MPI library.
We used the GNU compiler, BLAS library off the netlib.org, and whatever default
settings were included in the provided Makefile.9 First, we were not able to run the
full-size problem owing to a segmentation fault. Second, the matrix size of 100,000 was
taking so much time it was impractical to wait for its completion. Third, on the very
modest matrix size of 10,000, with the rest of the aforementioned HPL.dat file unchanged
(see Listing 5-9), we got 35.66 GFLOPS for the stock HPL vs. 152.07 GFLOPS for the
optimized HPL, or a factor of more than 4.5 times in favor of the optimized HPL. As we
know from the estimates given, and a comparison of the communication statistics (not
shown), most of this improvement does not seem to be coming from the MPI side of the
equation. We will revisit this example in the coming chapters dedicated to other levels of
optimization to find out how to get this fabulous acceleration.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

107

All this may look to you like a very costly exercise in finding out the painfully obvious.
Of course, we know that Intel teams involved in the development of the respective tools
have done a good job optimizing them for one of the most influential HPC benchmarks.
We also know what parameters to set and how, both for the application and for the Intel
MPI Library. However, all this misses the point. Even if you had a different application at
hand, you would be well advised to follow this simple and efficient routine before going
any further. By the way, if you miss beautiful graphs here, you will do well to get used to
this right away. Normally you will have no time to produce any pictures, unless you want
to unduly impress your clients or managers. Well-organized textual information will
often be required if you take part in the formal benchmarking efforts. If you would rather
analyze data visually, you will have to find something better than the plain text tables and
Excel graphing capabilities we have gotten used to.

EXERCISE 5-3

Do an initial performance investigation of the HPCG benchmark,10 and determine
whether it is desirable and indeed feasible to improve its distributed memory
performance. Repeat this exercise with your favorite application.

Getting an Overview of Scalability and
Performance
If an initial investigation suggests that there may be some improvement potential in the
area of distributed memory performance, and if a couple of the simple tricks described in
Chapter 1 do not yield a quick relief, it is time to start an orderly siege. The primary goal
at this point is to understand whether the application is memory-bound or compute-bound,
whether it scales as expected (if scaling is indeed a goal), and how the observed
performance relates to the expected peak performance of the underlying platform.

Learning Application Behavior
Now, you are in for a lot of benchmarking. Proper selection of the representative
workloads, application parameters, MPI process and OpenMP thread counts, and other
relevant settings are paramount. Also desirable are scripting skills or a special tool that
will help you run benchmarks and organize the pile of resulting data.

There is also a distinct temptation at this stage to follow the white rabbit down the
hole. Try hard to resist this temptation because the first performance issue you observe
may or may not be the primary one, both in its causal importance and in its relative
magnitude. Only when you have a complete overview of the application behavior and its
quirks will you be able to chart the most effective way of addressing the real performance
issues, if indeed there are any. Let us look at a very good example of this view that we will
keep revisiting as we go.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

108

Example 2: MiniFE Performance Investigation
The miniFE application from the Mantevo suite represents a typical finite element method
of solving implicit unstructured partial differential equations.11 It includes all important
solution stages, like the sparse matrix assembly and the solution of the resulting system of
linear equations. Thus, whatever we learn here may be directly transferrable to the more
involved packages that provide general finite element capabilities.

It is relatively easy to set up and run this application. Upon downloading the
application archive and unpacking it recursively, you will end up with a number of
directories, one of which is named miniFE-2.0_mkl. Note that we quite intentionally go
for the Intel MPI and Intel MKL-based executable here, for we have learned earlier in the
example of HPL that this gives us a head start on performance. In other words, by now we
are almost past the recommendations of Chapter 1 and into the realm of the unknown.

First, you need to fetch and build the program. Upon unpacking, go to the directory
miniFE-2.0-mkl/src, copy the Makefile.intel.mpi into the Makefile, change the
-fopenmp flag there to -qopenmp so that the multithreaded Intel MPI Library is picked up
by default, then type make and enjoy.

Next you need to find a proper workload. After a couple of attempts, with the system
sizes of 10 and 100 being apparently too small, and the system size of 1000 leading to
the operating system killing the job (results not shown), the following launch string
looks adequate:
 
$ mpirun -np 16 ./miniFE.x nx=500
 

This command produces the output seen in Listing 5-11:

Listing 5-11.  MiniFE Output (Workstation, Size 500, 16 MPI Processes)

 creating/filling mesh...0.377832s, total time: 0.377833
generating matrix structure...17.6959s, total time: 18.0737
 assembling FE data...13.5461s, total time: 31.6199
 imposing Dirichlet BC...11.9997s, total time: 43.6195
 imposing Dirichlet BC...0.47753s, total time: 44.0971
making matrix indices local...14.6372s, total time: 58.7342
Starting CG solver ...
Initial Residual = 501.001
Iteration = 20 Residual = 0.0599256
Iteration = 40 Residual = 0.0287661
Iteration = 60 Residual = 0.0185888
Iteration = 80 Residual = 0.121056
Iteration = 100 Residual = 0.0440518
Iteration = 120 Residual = 0.00938303
Iteration = 140 Residual = 0.00666799
Iteration = 160 Residual = 0.00556699
Iteration = 180 Residual = 0.00472206
Iteration = 200 Residual = 0.00404725
Final Resid Norm: 0.00404725
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

109

There is also a corresponding report file with the file extension .yaml, shown in
Listing 5-12:

Listing 5-12.  MiniFE Report (Workstation, Size 500, 16 MPI Processes)

Mini-Application Name: miniFE
Mini-Application Version: 2.0
Global Run Parameters:
 dimensions:
 nx: 500
 ny: 500
 nz: 500
 load_imbalance: 0
 mv_overlap_comm_comp: 0 (no)
 number of processors: 16
 ScalarType: double
 GlobalOrdinalType: int
 LocalOrdinalType: int
Platform:
 hostname: book
 kernel name: 'Linux'
 kernel release: '2.6.32-431.17.1.el6.x86_64'
 processor: 'x86_64'
Build:
 CXX: '/opt/intel/impi_latest/intel64/bin/mpiicpc'
 compiler version: 'icpc (ICC) 15.0.0 20140723'
 CXXFLAGS: '-O3 -mkl -DMINIFE_MKL_DOUBLE -qopenmp -DUSE_MKL_DAXPBY -mavx'
 using MPI: yes
Run Date/Time: 2014-05-27, 19-21-30
Rows-per-proc Load Imbalance:
 Largest (from avg, %): 0
 Std Dev (%): 0
Matrix structure generation:
 Mat-struc-gen Time: 17.6959
FE assembly:
 FE assembly Time: 13.5461
Matrix attributes:
 Global Nrows: 125751501
 Global NNZ: 3381754501
 Global Memory (GB): 38.731
 Pll Memory Overhead (MB): 28.8872
 Rows per proc MIN: 7812500
 Rows per proc MAX: 7938126
 Rows per proc AVG: 7.85947e+06
 NNZ per proc MIN: 209814374
 NNZ per proc MAX: 213195008
 NNZ per proc AVG: 2.1136e+08

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

110

CG solve:
 Iterations: 200
 Final Resid Norm: 0.00404725
 WAXPY Time: 21.2859
 WAXPY Flops: 2.2575e+11
 WAXPY Mflops: 10605.6
 DOT Time: 6.72744
 DOT Flops: 1e+11
 DOT Mflops: 14864.5
 MATVEC Time: 98.8167
 MATVEC Flops: 1.35947e+12
 MATVEC Mflops: 13757.4
 Total:
 Total CG Time: 126.929
 Total CG Flops: 1.68522e+12
 Total CG Mflops: 13276.9
 Time per iteration: 0.634643
Total Program Time: 185.796
 

From the last few lines of Listing 5-12, you can see that we achieve about
13.3 GFLOPS during the conjugate gradient (CG) solution stage, taking 185.8 seconds for
the whole job. Now we will look into whether this is the optimum we are after with respect
to the problem size, the number of the MPI processes, and the number of OpenMP
threads that are used implicitly by the Intel MKL. For comparison, we achieved only
10.72 MFLOPS for the problem size of 10 and 12.72 GFLOPS for the problem size of 100,
so that there is some dependency here.

For now, let’s do a quick investigation of the MPI usage along the lines mentioned.
If we collect the Intel MPI built-in statistics, we get the output seen in Listing 5-13:

Listing 5-13.  MiniFE Statistics (Workstation, Size 500, 16 MPI Processes)

##
#
command : ./miniFE.x (completed)
host : book/x86_64_Linux mpi_tasks : 16 on 1 nodes
start : 05/27/14/17:21:30 wallclock : 185.912397 sec
stop : 05/27/14/17:24:35 %comm : 7.34
gbytes : 0.00000e+00 total gflop/sec : NA
#

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

111

##
region : * [ntasks] = 16
#
[total] <avg> min max
entries 16 1 1 1
wallclock 2974.58 185.911 185.91 185.912
user 3402.7 212.668 211.283 213.969
system 20.6389 1.28993 0.977852 1.56376
mpi 218.361 13.6475 4.97802 20.179
%comm 7.3409 2.67765 10.8541
gflop/sec NA NA NA NA
gbytes 0 0 0 0
#
#
[time] [calls] <%mpi>
<%wall>
MPI_Allreduce 212.649 6512 97.38 7.15
MPI_Send 2.89075 29376 1.32 0.10
MPI_Init 1.81538 16 0.83 0.06
MPI_Wait 0.686448 29376 0.31 0.02
MPI_Allgather 0.269436 48 0.12 0.01
MPI_Irecv 0.0444376 29376 0.02 0.00
MPI_Comm_size 0.00278258 3360 0.00 0.00
MPI_Bcast 0.00242162 32 0.00 0.00
MPI_Comm_rank 1.62125e-05 176 0.00 0.00
MPI_Finalize 5.24521e-06 16 0.00 0.00
MPI_TOTAL 218.361 98288 100.00 7.34
##
 

This is positively interesting. One MPI operation—MPI_Allreduce—is taking almost
97.5 percent of the total MPI time that in turn accounts for from 2.67 to 10.85 percent of
the overall application time. Do you feel the almost irresistible temptation to start playing
with the MPI_Allreduce tuning settings right away? Be cool. We will show soon enough
how wrong it would be to succumb to the tempation (to be continued).

Choosing Representative Workload(s)
Workload size—or more generally, the computational and memory load created by the
workload—may dramatically affect application characteristics. To understand this, you
have only to recall the memory hierarchy and the attending latencies mentioned at the
beginning of Chapter 3.

You can imagine that at the very beginning, at a very low memory load, the
application will be basically starving for data; the computations will consume all the
data in the highest level of cache where it fits, and they will stop before it can achieve full
computational performance. Moreover, interprocess and interthread synchronization

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

112

will probably play a more noticeable role here than at higher memory loads. Finally, the
program may even break if each of its computational units, be they processes or threads,
receives less than the minimum amount of data that it can sensibly handle.

As the memory load continues to grow, the workload will start occupying the
LLC pretty regularly. This is where you are likely to observe the maximum possible
computational performance of a particular computational node. This point in the
performance curve is very important because it may show to what degree the overall
problem needs to be split into smaller parts, so that those parts can be computed with
maximum efficiency by separate cluster nodes.

Further growth of the memory load will lead to part of the data spilling over into the
main system memory. At this point the application may become memory bound, unless
clever techniques or the built-in facilities of the platform, like prefetching, are able to
alleviate the detrimental effects of the spilling.

Eventually, when the size of the workload exceeds the size of the physical memory
available to the current process’s working set, the virtual memory mechanism of the
operating system will kick in and, depending on its quality and the speed of the offline
storage (like hard disk drives [HDD] or solid state disks [SSD]), this may depress
performance further.

Finally, the growing memory load will cause a job to exceed the limits of the virtual
memory subsystem, and the job will start extensively swapping data in and out of the
main memory. This effect is called thrashing. The program will effectively become
strongly I/O bound. At this point, unless the program was designed to handle offload data
gracefully (like so many off-core solvers of yore), all bets are off.

Another, no less important aspect of the workload selection is the choice of the
typical target problem class that the benchmarking will address. For example, if the target
application is intended for computing—as in car-to-car collisions—it may not make
much sense to benchmark it on a test case that leads to no contact and deformation of the
objects involved.

Benchmarking and a bit of back-of-the-envelope calculations can help in choosing
the right workload size. Only your experience and knowledge of the standards, traditions,
and expectations of the target area are going to help you to choose the right workload
class. Fortunately, both selections are more often than not resolved by the clients, who tell
you upfront what they are interested in.

Example 2 (cont.): MiniFE Performance Investigation
We ruffled through the selection of the workload in this example earlier and settled on the
workload size of 500 after very few simple runs. Let’s revisit this choice now that we know
the program may have noticeable MPI optimization potential.

We know from the earlier attempts that the size of 10 is so low as to lead to some
10 MFLOPS. This is a clear indication of the problem size leading to the data starvation
mentioned earlier. The size of 100 achieves some 12 GFLOPS, which is not so far from
the 13 GFLOPS we can observe on the size of 500. Unfortunately, the size of 1000 is
apparently too high, and the system protects itself by killing off the offending job.

What we should try to gauge now is how low we can go before we see data starvation,
and how high we can go before we exhaust the system memory to the point of activating
its self-protection instincts. Given the points of 100 and 500, as well as the desire to do as

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

113

few experiments as possible, we find that four extra data points appear warranted, namely
50, 250, 375, and 750. If we do these extra measurements in the 16 MPI processes, three
thread configurations used so far, we can add the new data to the data already obtained,
and thus save a bit of time.

Table 5-3 shows what we get once we drive all the data together:

Table 5-3.  MiniFE Dependency on Problem Size (Workstation, 16 MPI Processes)

Size CG (GLOPFS) Total Time (seconds) Memory (GB)

10 36.052 0.145 0.00034

50 6578.06 0.35 0.039

100 12738.8 1.5 0.31

250 13213.7 22.9 4.9

375 13225.6 78.1 16.4

500 13335.9 187.6 38.7

Figure 5-3.  MiniFE stage cummulative timing dependency on the problem size
(16 MPI processes)

Recalling the characteristics of the workstation at hand, we can deduce that the
problem size of 250 is probably the last one to fit into the physical memory, although the
virtual memory mechanism will kick in anyway long before that. It does not look as if the
size of 500 was overloading the system unduly, so we can safely keep using it.

Being a proper benchmark, this program outputs a lot of useful data that can be
analyzed graphically with relative ease. For example, Figure 5-3 illustrates the absolute
contribution of various stages of the computation to the total execution time.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

114

Table 5-4.  MiniFE CG Performance Dependency on the Process to Thread Ratio (GFLOPS,
Size 500, Workstation)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

12 4 13.24 13.24 13.21 13.23 0.13

16 3 13.27 13.26 13.26 13.26 0.02

24 2 13.26 13.25 13.26 13.26 0.04

These curves look like some power dependency to the trained eye, and this is what
they should look like, given that the total number of mesh nodes grows as a cube of the
problem size, while the number of the nonzero matrix elements grows as a quadrat of the
problem size owing to the two-dimensional nature of the finite element interaction. This,
however, is only a speculation until you can prove it (to be continued).

Balancing Process and Thread Parallelism
We started with the process/thread combination that looked reasonable for the earlier
benchmarks, namely 16 MPI processes, each of them running three OpenMP threads if
the application so desires. It is not clear, however, whether this is the optimum we are
after. Threads have a lower context switch overhead and can use shared memory and
synchronization primitives over it directly. It is not impossible that they may enjoy a slight
performance advantage over the MPI processes owing to these features, at least as long
as the number of threads per process is relatively low. On the other hand, the complexity
of a hybrid program may actually lead to the threading adding extra overhead that
detrimentally affects the overall program performance. About the only way to find out
what is happening to a particular application is—you have guessed it—benchmarking.

Example 2 (cont.): MiniFE Performance Investigation
Let’s do a couple of experiments to make sure that we strike the right balance between the
processes and the threads. Given the total of 48 virtual cores per node, we can reasonably
start not only 16 MPI processes of three OpenMP threads each but also 24 MPI processes
with two OpenMP threads, and 12 MPI processes with four OpenMP threads each, and
so on, up to the extreme combinations of 48 MPI processes or 48 threads that will still
occupy all available computational units. Here is the required run string that needs to be
changed according to the derivation for other process/thread ratios:
 
$ mpirun -genv OMP_NUM_THREADS 3 -np 16 ./miniFE.x nx=500
 

This method of inline definition of the environment variables is normally preferable
because you cannot accidentally leave any of them behind, which, if that happened,
could inadvertently spoil the future measurement series.

Doing our usual three attempts each time, we get the results shown in
Tables 5-4 and 5-5:

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

115

Although computational performance of the main CG block is equal for 16 and
24 processes, the overall time for 24 processes is lower. This is significant because the
benchmark tries to approximate the behavior of a complete finite element application,
and the total execution time is a more pertinent metrics here. We will focus on this
wall-clock metric while keeping in mind that we do want to use the processor as
efficiently as possible during the main computational step (to be continued).

Doing a Scalability Review
If you recall the treatise in Chapter 2, there are two major types of scalability: weak
and strong. Weak scalability series increases the load proportionally to the number of
processes involved. In other words, it keeps the per-node load constant and seeks to
investigate the effect of the growing number of connections between the nodes. Strong
scalability keeps the problem size constant while increasing the number of processes
involved. This is what we are interested in primarily now. Just as in the case of intranode
communication, here we want to see where the problem starts loading the machine so
much as to make further increase in the computational resources allocated pointless or
even counterproductive.

Example 2 (cont.): MiniFE Performance Investigation
First, let’s look into strong scalability of the miniFE. We will put up to 48 MPI processes
on one node and let the runtime decide how many threads to start. Further, we will try to
load the nodes so that we get into the memory-bound state from the very beginning, and
gradually move toward the compute-bound situation, looking for the knee of the graph.
We will also incidentally check whether explicit setting of the OpenMP thread number is
indeed helping instead of hurting performance. After a series of respective runs without
the OMP_NUM_THREADS variable set, we get the data shown in Tables 5-6 and 5-7:

Table 5-5.  MiniFE Total Time Dependency on the Process to Thread Ratio (Seconds, Size 500,
Workstation)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

12 4 210.39 210.93 210.58 210.64 0.13

16 3 187.77 186.39 185.94 186.70 0.51

24 2 174.82 175.19 174.55 174.85 0.18

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

116

Table 5-6.  MiniFE CG Performance Dependency on the Process Number (GFLOPS,
Size 500, Workstation, No OpenMP Threads)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

8 undefined 11.95 11.83 12.04 11.94 0.90

12 undefined 13.02 13.00 13.00 13.00 0.11

16 undefined 13.32 13.32 13.32 13.32 0.01

24 undefined 13.36 13.36 13.36 13.36 0.03

48 undefined 13.19 13.20 13.20 13.19 0.04

Table 5-7.  MiniFE CG Total Time Dependency on the Process Number (Seconds, Size 500,
Workstation, No OpenMP Threads)

MPI proc. OpenMP thr. Run 1 Run 2 Run 3 Mean Std. dev, %

8 undefined 257.41 254.92 257.63 256.65 0.59

12 undefined 212.77 212.80 212.28 212.61 0.14

16 undefined 185.80 185.72 185.43 185.76 0.03

24 undefined 173.37 173.71 173.65 173.58 0.11

48 undefined 160.92 160.91 160.69 160.84 0.08

By setting the environment variable KMF_AFFINITY to verbose, you can verify that
more than one OpenMP thread is started even if its number is not specified.
It is interesting that we get about 100 MFLOPS extra by not setting the OpenMP thread
number explicitly, and that the total time drops still further if all 48 cores are each
running MPI process Moreover, it drops between the process counts by as much as
16 and 24. This indicates that the application has substantial scaling potential in this
strong scaling scenario.

The tendency toward performance growth with the number of MPI processes
suggests that it might be interesting to see what happens if we use only the physical cores.
Employing the recipe described earlier, we get 13.38 GFLOPS on 24 MPI processes put
on the physical cores, taking 176.47 seconds for the whole job versus 173.58 for 24 MPI
processes placed by default. So, there is no big and apparent benefit in using the physical
cores explicitly.

Thus, we are faced with the question of what configuration is most appropriate for
the following investigation. From Tables 5-4 through 5-7, it looks like 16 MPI processes
running three threads each combine reasonable overall runtime, high CG block
performance, and potential for further tweaks at the OpenMP level. One possible issue
in the 16 MPI process, three OpenMP thread configuration is that every second core will
contain parts of two different MPI processes, which may detrimentally affect the caching.
Keeping this in mind, we will focus on this configuration from now on, and count on the
24 process, two thread configuration as plan B.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

117

We could continue the scalability review by proceeding from the workstation to
the cluster. In particular, the speedup S(p) and efficiency E(p) graphs can be used to
track the expected and observed performance at different MPI process and OpenMP
thread counts. For an ideal scaling program, S(p) = p and E(p) = 1, so it will be easy to
detect any deviation visually. This investigation can be done for the overall program
execution time, which can be measured directly. It can also be done for the time used up
by its components, be that computation versus communication, or particular function
calls, or even code fragments. This more detailed information can be discovered by
directly embedding the timing calls, like MPI_Wtime, into the program code; looking
into the statistics output we have seen before; or using one of the advanced analysis
tools described later in this book. However, the limited scope of this example does not
make this investigation necessary. In any case, we have settled both the representative
workload and the most promising run configurations, and this is good enough for now.

Note that there may be a certain interaction between the process: thread ratio,
on one hand, and the workload size, on the other hand. So far, we have been basically
ignoring this effect, hoping that we can change the respective coordinates independently
or that at least this effect will be of the second order. This may or may not be true in the
general case: it is conceivable that smaller workloads will lend themselves better to the
higher thread counts. However, to gauge this effect, we would have to perform a full
series of the measurements over all the MPI process and thread counts, as well as the
problem sizes. That is, instead of probing this three-dimensional Cartesian space along
two lines (the process:thread ratio at problem size of 500, and then the problem size at
the process:thread ratio of 16:3), we would have to do a full search. The time required for
this, as well as the amount of data produced, would probably be prohibitive for the scope
of this book (to be continued).

EXERCISE 5-4

Perform a focused sampling around the point that we consider as the optimum for
miniFE, to verify it is indeed at least the local maximum of performance we are after.
Replace miniFE by your favorite application and repeat the investigation. If intranode
scalability results warrant this, go beyond one node.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

118

Analyzing the Details of the Application Behavior
There are many ways to analyze the behavior of parallel applications. That is, they differ
in the way in which the data is collected. Three of them are most frequently used:

•	 Printing uses timestamp collection and output statements built
into the program during its development or added specifically for
debugging. Surprisingly enough, this is probably still the best way
to understand the overall program behavior unless you are after
an issue that disappears when observed (so-called Heisenbug).

•	 Sampling takes snapshots of the system, either at fixed time
intervals or at certain points of the program or system lifecycle.
Information collected this way comes in the form of hardware
and software counters, register values, and so on, and it normally
requires a tool to make sense of it.

•	 Tracing follows program execution and tracks all important
events as they occur by creating a so-called application trace.
Again, tools are nearly unavoidable if a nontrivial program is to be
analyzed.

People will also just go through the application in an interactive debugger, but this
mode is more suitable for debugging than for performance analysis per se. In any case,
there are arguments in favor of each of these methods, as well as interesting cases when
they may usefully complement each other. We will see some of them later.

The Intel Trace Analyzer and Collector (ITAC) we are going to use for the distributed
memory performance analysis in this book is a tracing tool, one of many that can produce
and visualize application trace files in various forms. Instead of trying to describe this very
powerful program in general terms, we propose to simply use it for the example at hand.

Example 2 (cont.): MiniFE Performance Investigation
You can use ITAC to generate an application trace file and to inspect it visually. You enter
the following commands to get the trace file miniFE.x.stf:
 
$ source /opt/intel/itac_latest/bin/itacvars.sh
$ mpirun -trace -np 16 ./miniFE.x -nx=500
 

The first command establishes the necessary environment. As usual, we added this
command to the script 0env.sh included in the respective example archive, so if you
have sourced that file already, you do not need to source the specific ITAC environment
script. The -trace option in the mpirun invocation instructs the Intel MPI library link
the executable at runtime against the ITAC dynamic library, which in turn creates the
requested trace file. Application rebuilding is not required.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

119

If you work on a cluster or another remote computer, you will have to ship all the
files associated with the main trace file miniFE.x.stf (most of them are covered by the
file mask miniFE.x.stf*) to a computer where you have the ITAC installed. To make
this process a little easier, you can ask ITAC to produce a single trace file if you use the
following command instead of the earlier mpirun invocation:
 
$ mpirun -trace -np 16 ./miniFE.x -nx=500 --itc-args --logfile-format
SINGLESTF --itc-args-end
 

You can learn more about the ways to control ITAC runtime configuration in the
product online documentation.12

Now you can run the ITAC:
 
$ traceanalyzer miniFE.x.stf
 

This way or another, after a few splash screens, the ITAC summary chart shows up
(see Figure 5-4; note that we maximized the respective view inside the ITAC window).

Figure 5-4.  MiniFE trace file in ITAC summary chart (Workstation, 16 MPI processes)

This view basically confirms what we already know from the built-in statistics output.
Press the Continue button at the upper right corner, and you will see the default ITAC
screen that includes the function profile (left) and the performance assistant (right), with
the rest of the screen occupied by the main program and view menus (very top), as well as
the handy icons and the schematic timeline (below the top); see Figure 5-5, and note that
we maximized the respective window once again.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

120

The function profile is basically a reiteration of the statistics output at the moment,
while the performance assistant is pointing out an issue we may want to deal with when
we have performed the initial trace file review. To that end, let us restore the historical
ITAC trace file view. Go to the Charts item in the main chart menu and select the Event
Timeline item there. This chart will occupy the top of the screen. Again in the main view
menu, deselect the Performance Assistant item, then select the Message Profile item. Also,
hide the schematic timeline by right-clicking it and selecting the Hide item in the popup
menu. This will display the historical ITAC analysis view; see Figure 5-6.

Figure 5-5.  MiniFE trace file in ITAC default view (Workstation, 16 MPI processes)

Figure 5-6.  MiniFE trace file in ITAC historical view (Workstation, 16 MPI processes)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

121

Nothing can beat this view in the eyes of an experienced analyst. The event timeline
shows pretty clearly that the program is busy computing and communicating most of the
time after setup. However, during setup there are substantial issues concerning one of the
MPI_Allreduce calls that may need to be addressed. The message profile illustrates the
neighbor exchanges between the adjacent processes that possess the respective adjacent
slabs of the overall computation domain. These relatively short exchanges still differ in
duration by approximately four times. To make sure this is indeed the case, you can scroll
this view up and down using the scrollbar on the right. If you right-click on the Group MPI
in the function profile, and select Ungroup MPI in the popup menu, this will show how
MPI time is split between the calls. Again, this information is known to you from the
built-in statistics. Some scrolling may be required here as well, depending on the size of
your display. Alternatively, click on any column header (like TSelf) to sort the list.

Now, zoom in on a piece of the event timeline around the offending MPI_Allreduce;
move the mouse cursor where you see fit, hold and drag to highlight the selected
rectangle, and release to see the result. All charts will automatically adjust themselves to
the selected time range (see Figure 5-7).

Figure 5-7.  MiniFE trace file in ITAC zoomed in upon the offending MPI_Allreduce operation
(Workstation, 16 MPI processes)

Well, this is exactly what we need to see if we want to understand the ostensibly main
MPI-related performance issue in this program. The updated Functional Profile chart
confirms that it is indeed this MPI_Allreduce operation that takes the lion’s share of MPI
communication time. On the other hand, the time spent for the actual data exchange is
very low, as can be seen in the Message Profile chart, so the volume of communication
cannot be the reason for the huge overhead observed. Therefore, we must assume this is
load imbalance. Let us take this as a working hypothesis (to be continued).

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

122

EXERCISE 5-5

Analyze the behavior of your favorite application using the process described here.
What operations consume most of the MPI communication time? Is this really
communication time or load imbalance?

Choosing the Optimization Objective
If you recall, at the very beginning of this chapter we faced the decision as to what to
address: load imbalance or MPI performance. The criteria for selecting one over the
other are relatively soft, for the situation in real-life programs is rarely black and white.
Normally there is some degree of load imbalance and some degree of MPI sloppiness.
If one of them clearly dominates the other, the choice may seem obvious. However, you
need to keep in mind that even a relatively small load imbalance may jog some collective
operations off tune; alternatively, suboptimal performance of an MPI operation may lead
to something that looks like load imbalance. How does one lighten this gray area?

Detecting Load Imbalance
Fortunately, there is a sure way to detect load imbalance in a distributed memory program.
Imagine that you take out all the communication costs, essentially presuming that you run
over an ideal communication fabric that has zero latency and infinite bandwidth. It is clear
that, in this case, you cannot blame the network for any undue delays left in the program.
Whatever is left behind is, then, the program’s own fault rather than the network’s or MPI’s.
This is why an advanced analysis tool like ITAC offers both an Ideal Interconnect Simulator
(IIS) and a Load Imbalance Diagram that are broadly based on this idea and therefore help
to pinpoint the load imbalance and its main victims.

Example 2 (cont.): MiniFE Performance Investigation
Let us get back to the miniFE application example, in which we came to the preliminary
suspicion that load imbalance might be to blame for the extraordinarily bad observed
behavior of one particular MPI_Allreduce operation.

There is a very good way to check out our working hypothesis. Go to the Advanced
tab in the main menu, select the Idealize command and click OK in the respective popup
to generate the ideal trace file. Now, open the ideal trace file using the File control in the
main ITAC window, click on the Advanced tab, and select the Imbalance Diagram item.
Then click OK in the resulting popup. Upon some meditation reflected by a progress bar,
the program will visually confirm the initial suspicion: all of the MPI communication
seems to be covered by load imbalance. Figure 5-8 shows that (note that we changed the
default colors to make the difference more visible).

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

123

Of course, this may be an artifact of the model used to compute the load imbalance.
However, this certainly indicates we should look into the load imbalance first, and only
then look into further MPI communication details. Depending on this, we will decide
where to go.

Referring back to the Performance Assistant chart (see Figure 5-5), we can conclude
that the MPI_Wait issue most likely related to the internal workings of the MPI_Allreduce
operation that might issue a call to the MPI_Wait behind the curtain. However, taken at
face value, this indication itself is somewhat misleading until we understand what stands
behind the reported issue. Indeed, if you switch to the Breakdown Mode in the view of
Figure 5-8 (not shown), you will see that small message performance of the MPI_Wait call
is the sole major contributor of the load imbalance observed (to be continued).

EXERCISE 5-6

Choose the primary optimization objective for your favorite application using the
method described in this section. Is this load imbalance or MPI tuning? How can you
justify your choice?

Dealing with Load Imbalance
Once the decision is made to address the load imbalance, it is necessary to understand
what causes it and then devise an appropriate cure.

Figure 5-8.  MiniFE trace file in ITAC imbalance diagram (C version, Workstation, 16 MPI
processes, 3 OpenMP threads)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

124

Classifying Load Imbalance
Load imbalance can come from different quarters. The first is from the application itself:
its data layout, algorithms, and implementation quality. If the application developer did
not think hard about dividing the data among the job components—be they processes
or threads or tasks—fairly and according to their capabilities, there will be no other
way to attack load imbalance than to fix the respective data layout, algorithmic, and
implementation issues of the application.

This is where the second major source of load imbalance pops up: platform
heterogeneity, especially heterogeneity that was not taken into account when the
application was conceived. A typical example is the use of different processors across
the machine, be they different CPUs or various accelerators. Another example of
heterogeneity is the difference in communication characteristics of the underlying
platform. Even the difference between shared memory, on the one hand, and fast
network, on the other hand, unless properly accounted for, may lead to part of the job’s
lagging behind, waiting for the necessary data to come over the slower link.

These dependencies may or may not be explicit. It is relatively clear what is
happening when two MPI processes send data to each other in the point-to-point fashion.
As soon as any collective operation is involved, the choice of communication pattern is
delegated to the MPI library, and ultimately, to the MPI implementor who created this
library. In that case, it may be necessary to understand exactly what algorithm is being
used, especially if there are more than two processes involved.

However, the situation may be substantially less transparent. Many libraries
and language extensions (like offload) try to hide the actual data movement from the
application programmer. In that case, it may be necessary to understand what exactly
is happening beneath the hood, up to and including monitoring the activities of the
underlying software and hardware components, or at least talking to someone in the know.

Addressing Load Imbalance
The treatment for load imbalances is basically determined by their source of the issue
and the amount of time available.

Data partitioning and algorithmic issues may be the hardest to address, unless the
program already possesses mechanisms that provide relatively easy control over these
parameters. In some cases, the amount of data apportioned to each computational unit
can be defined by the program input file. In other cases, the amount of work (rather than
only data) apportioned to a program component may depend on its role. For example,
if boundary conditions are involved, corner segments will have only two neighbors in
the two-dimensional case, while internal segments will have four, and so on. If data or
work partitioning is implicated in the load imbalance, a deep dive into the program may
be required, up to and including reformulation of the data layout or work-partitioning
strategy; replacement of the data-partitioning algorithm or component; selection of a
more advanced, easier to parallelize algorithm; and so on. There is little by the way of
general advice that can be given here.

Platform heterogeneity may pop up everywhere. In a modern heterogeneous
cluster that uses Intel Xeon CPUs and Intel Xeon Phi coprocessors connected to the
main processors by the PCI Express bus, with a fast network like InfiniBand connecting

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

125

the nodes, there are so many way to get things wrong that, most likely, only proper
application design upfront can “guarantee” success of the undertaking. Indeed, in such a
cluster, you will have several effects uniting their forces to cause trouble:

1.	 Differences in the clock rate and functionality of the
processors involved. These differences may go up to several
times, especially as far as the clock rate is concerned. You
will have to allocate proportionally less data to the weaker
components.

2.	 Differences between the intranode communication over the
shared memory and over the PCI Express bus. Again, the
latency and bandwidth will vary greatly, and sometimes
the relationship will not be linear. For example, PCI Express
will normally lose to the shared memory on latency but may
overtake it on bandwidth on certain message sizes, depending
on the way in which the bus is programmed.

3.	 Differences between the intranode communication of any
kind, on one hand, and internode communication over
the fast network, on the other. In addition to this normal
situation typical of any cluster, in a heterogeneous cluster with
accelerated nodes, there may be the need to tunnel data from
accelerator to accelerator via the PCI Express bus, over the
network, and then over the PCI Express bus on the other side.

Of course, a properly implemented MPI library will handle all of this transfer
transparently to your benefit, but you may still see big differences in the performance of
the various communication links involved, and you will have to take this into account
when partitioning the data.

On top of this, there is an interesting interaction between the component’s
computing capacity and its ability to push data to other components. Because of this
interaction, in an ideal situation, it is possible that a relatively slower component sitting
on a relatively slower interface may be loaded 100 percent of the time and cause no
trouble across the job, provided the relatively faster components get larger pieces of data
to deal with and direct the bulk data exchanges to the fastest available communication
paths. However, it may be difficult to arrive at this ideal situation. This consideration
applies, of course, to both explicit and implicit data-movement mechanisms.

Example 2 (cont.): MiniFE Performance Investigation
To complete the miniFE investigation at the MPI level, we need to understand what is
causing the load imbalance detected earlier. Once again, ITAC is going to be of great help
in finding that out.

First, rebuild your application so that the compiler adds debugging information
to the files it produces. Adding the -g flag to the CFLAGS variable in the miniFE src/
Makefile, doing make clean there, and then make does the trick.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

126

Now, set the environment variable VT_PCTRACE to 5 and rerun the miniFE, asking
for the trace file to be produced. (You know how to do this.) Note, however, that call
stack tracing requested this time is a relatively expensive procedure that will slow the
execution, so it may make sense to take a rather low problem size, hoping that the
program execution path does not depend on it. We used the size of 50.

Open the resulting file miniFE.x.stf in the ITAC, go to the offending MPI_Allreduce
operation in the event timeline, right-click on it, and ask for details. When you click on the
View Source Code item in the resulting popup window, you will see where the offending
MPI_Allreduce was called from (see Figure 5-9).

Figure 5-9.  Finding MPI_Allreduce source code location in miniFE (Workstation)

If you browse the source code in this window, you will see that immediately prior to
this MPI_Allreduce call, the program imposes Dirichlet boundary conditions. Very likely,
the imbalance is coming from that piece of code. This is only a guess for now, so you will
have to do more work before you can be sure of having found the culprit. However, if this
guess is correct, and given that the program itself reports very low data imbalance as far
as the distribution of nonzero matrix elements across the processes is concerned, it looks
like an algorithmic issue. If you want to address it now, you know where to start. Later on,
we will cover advanced techniques that will allow you to pinpoint the exact problematic
code location in any situation, not only in presence of the conveniently placed and easily
identifiable MPI operational brackets (to be continued in Chapter 6).

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

127

EXERCISE 5-7

Narrow down the search area by recalling from Figure 5-6 that, prior to the
problematic MPI_Allreduce operation, there was another MPI_Allreduce operation
that also synchronized the processes that were almost perfectly aligned at that
moment. What remains to be done is to repeat this procedure and find out the other
code location. Did you find the culprit?

Example 3: MiniMD Performance Investigation
Having looked into an algorithmically induced load imbalance in the case of miniFE,
we can now take time to investigate another application from the same Mantevo suite,
namely miniMD. This application is reported as representing, in a very lightweight form,
the core of the typical molecular dynamics application LAMMPS.13 Another useful feature
is that this application (at least in its miniMD-Intel reincarnation) has been ported to the
Intel Xeon Phi coprocessor, which may allow us to investigate heterogeneity-induced load
imbalance issues without investing any time in the porting effort.

If you repeat all the steps mentioned here with the miniMD application, you will
learn that this application shows admirable scalability intranode (see Table 5-8).

Table 5-8.  MiniMD Execution Time Dependency on the Process Number
(Seconds, Workstation)

MPI proc. Run 1 Run 2 Run 3 Mean Std. dev, %

1 6.402392 6.412376 6.401814 6.405527 0.075692

2 4.146758 3.884414 3.623191 3.884788 5.502115

4 1.739194 1.839692 1.683867 1.754251 3.676788

8 0.944237 0.951552 0.91314 0.93631 1.778618

16 0.518546 0.523697 0.504854 0.515699 1.541922

24 0.367219 0.365578 0.365644 0.366147 0.207156

32 0.409625 0.407031 0.397341 0.404666 1.306382

48 0.287009 0.28772 0.277317 0.284015 1.670798

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

128

The only hitch happens around 32 processes. It is probably caused by half of the
MPI processes running on eight physical cores, with the other half occupying the other
16 cores for themselves. This is effectively a heterogeneous situation. Indeed, Listing 5-14
shows what the process pinning looks like:

Listing 5-14.  Default Pinning for 32 MPI Processes (Workstation)

[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): 0 225142 book 0
[0] MPI startup(): 1 225143 book 24
[0] MPI startup(): 2 225144 book 1
[0] MPI startup(): 3 225145 book 25
[0] MPI startup(): 4 225146 book 2
[0] MPI startup(): 5 225147 book 26
[0] MPI startup(): 6 225148 book 3
[0] MPI startup(): 7 225149 book 27
[0] MPI startup(): 8 225150 book 4
[0] MPI startup(): 9 225151 book 5
[0] MPI startup(): 10 225152 book 6
[0] MPI startup(): 11 225153 book 7
[0] MPI startup(): 12 225154 book 8
[0] MPI startup(): 13 225155 book 9
[0] MPI startup(): 14 225156 book 10
[0] MPI startup(): 15 225157 book 11
[0] MPI startup(): 16 225158 book 12
[0] MPI startup(): 17 225159 book 36
[0] MPI startup(): 18 225160 book 13
[0] MPI startup(): 19 225161 book 37
[0] MPI startup(): 20 225162 book 14
[0] MPI startup(): 21 225163 book 38
[0] MPI startup(): 22 225164 book 15
[0] MPI startup(): 23 225165 book 39
[0] MPI startup(): 24 225166 book 16
[0] MPI startup(): 25 225167 book 17
[0] MPI startup(): 26 225168 book 18
[0] MPI startup(): 27 225169 book 19
[0] MPI startup(): 28 225170 book 20
[0] MPI startup(): 29 225171 book 21
[0] MPI startup(): 30 225172 book 22
[0] MPI startup(): 31 225173 book 23
 

Comparing this to Listing 5-5, we get the distribution of the MPI processes among
the virtual processors, as shown in Figure 5-10.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

129

Figure 5-10.  Default process pinning (workstation, 32 MPI processes): MPI ranks
(gray upper numbers) mapped upon processor identifiers (black lower numbers)

You could argue that this may not be the fairest mapping of all, but whatever you do,
you will end up with some MPI processes out of 32 running two apiece on some physical
cores. This probably explains the hitch we observed in Table 5-9.

Table 5-9.  Intel MPI Library Communication Fabric Selection

I_MPI_DEVICE I_MPI_FABRICS Description

sock tcp TCP/IP-capable network fabrics, such as Ethernet
and InfiniBand (the latter through IP over IB).
Normally the slowest available fabric.

shm shm Shared memory only. Normally the fastest available
fabric, but for very large messages where fast
interconnects may win intranode.

ssm shm:tcp Shared memory + TCP/IP. Good for multicore
clusters built on Ethernet.

rdma dapl Direct Access Programming Library (DAPL).
Good for DAPL-capable network fabrics, such as
InfiniBand or iWarp.

rdssm shm:dapl Shared-memory + DAPL. The default and fastest
choice in most cases. See above for details.

N/A ofa Open Fabric Association (OFA)-capable network
fabric including InfiniBand.* Comparable to DAPL
but with some advantages, like multirail and
checkpoint/restart support.

(continued)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

130

I_MPI_DEVICE I_MPI_FABRICS Description

N/A shm:ofa Shared memory + OFA-capable network fabric. See
above for details.

N/A tmi Tag Matching Interface (TMI)-capable network
fabric including Intel True Scalue Fabric. Includes
shared memory support internally, so there is no
point in using the shm:tmi combination.

Table 5-9.  (continued)

Next, you will observe that this application suffers from noticeable load imbalance
and MPI overhead (called “interconnect” in the imbalance diagram; see Figure 5-11).

Figure 5-11.  MiniMD trace file in ITAC imbalance diagram (Workstation, 16 MPI processes)

There is something to haul on the MPI side of the equation, at least on the default
workload in.lj.miniMD. We can find out what exactly is contributing to this by
comparing the real and ideal traces, ungrouping the Group MPI and sorting the list by
TSelf  (see Figure 5-12).

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

131

Compare the ideal trace in the upper left corner with the real trace in the lower right
corner. The biggest part of the improvement comes from halving the time spent in the
MPI_Wait. Most of the remaining improvement can be attributed to the reduction of
the MPI_Send and MPI_Irecv durations to zero in the ideal trace, not to mention the
MPI_Finalize. Contrary to this, the time spent in the MPI_Allreduce changes only slightly.

By the looks of it, MPI issues might be induced by the load imbalance rather than
intrinsic communication overhead, but we cannot see this right now, for sure. Hence, we
should look into the communication pattern first. This is even more the case because the
relative portion of the MPI time is noticeable on this workload, and the increase of the
time step parameter in the input file to the more representative value of 1000 drives this
portion from 7 percent down to only 5.5 percent, on average (to be continued).

EXERCISE 5-8

Analyze and address the load imbalance in miniMD. What causes it? Replace
miniMD with your favorite application and address the load imbalance there,
provided this is necessary. What causes the imbalance?

Optimizing MPI Performance
If MPI overhead clearly dominates the overhead caused by the load imbalance, or if you
simply do not see a practical way of addressing the load imbalance within the constraints
of the target application and available time, you can still do well by addressing MPI
performance issues.

Figure 5-12.  MiniMD ideal and real traces compared (Workstation, 16 MPI processes)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

132

Classifying the MPI Performance Issues
Several causes may lead to the MPI performance being lower than expected. They can be
attributed roughly to the interaction of the main components of the system that include
the platform, the MPI library, and the application involved.

The MPI library itself may not be optimally tuned for the platform at hand. Even
though great care is taken to tune, for example, the Intel MPI library out of the box for the
most modern Intel architectures, your system may be a bit different or a bit older than
that covered by the default tuning process. In this case, the Intel MPI library can and
should be tuned for the platform as a whole.

Also, the MPI library may not be optimally tuned for the application involved. The
easiest example to show this is an application that is more latency than bandwidth
bound, and thus not the one for which the Intel MPI library was tuned by default.
Another example is an application that uses a specific number of MPI processes and
several collective operations or point-to-point communication patterns that are not well
represented by the Intel MPI Benchmarks used predominantly to tune Intel MPI. These
would include the OSU benchmarks that focus on the network saturation exchanges.14
If your application behaves like this, you may need to re-tune Intel MPI for it.

This relationship can be reversed, as well. Indeed, just as the Intel MPI library may
be considered suboptimally tuned for a particular application, the application itself
may be doing things that are bad for Intel MPI in particular and any MPI in general.
Sometimes this involves interaction with the platform, sometimes it does not. For
example, the MPI library usage of the cache may be competing with the application usage
of it. Your methods will change depending on what you have to address.

If a MPI/platform interaction is involved, an application may be using intrinsically
higher latency (e.g., internode) links for short messages. A high-quality MPI
implementation like Intel MPI may sometimes be able to work around this by, say,
rearranging collective operations so that the local part of the communication is done first.
However, sometimes you will have to help it out.

If, however, the application is doing something intrinsically bad for any MPI, the
main goal is to change the application to do the right thing. One fairly common example
is a well-intentioned desire of some application developers to replace the collective
operations that may not have been optimally tuned in the past by manual, point-to-point
implementations thereof included into the application itself, sometimes in a pretty
implicit form. This may indeed bring some performance improvement, but more often
than not it does quite the opposite. Another example is the much beloved packing
of noncontiguous data types into dense arrays and sending of them across and then
unpacking them at the other end. Again, sometimes this makes sense, but more often it
does not.

Addressing MPI Performance Issues
There is a bit of a chicken-and-egg problem once you turn toward optimizing MPI
communication: what comes under scrutiny first—the platform, the MPI, or the
application? The number of components and complexity of their direct and implicit

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

133

interactions make it relatively difficult to give fast and ready advice for all possible
situations. As a rule of thumb, keep in mind the following priorities:

1.	 Map the application upon the target platform. This includes,
in particular, selection of the fastest communication fabrics,
proper process layout and pinning, and other settings that affect
the way application and platform interact via MPI mediation.

2.	 Tune the Intel MPI library for the platform and/or the
application involved. If your application is bandwidth bound,
you are likely to do well with the platform-specific tuning. If your
application differs, you may need to cater to its particular needs.

3.	 Optimize the application for Intel MPI library. This includes
typical MPI optimizations valid for any MPI implementation
and specific Intel MPI tricks for varying levels of complexity
and expected return on investment.

As usual, you will have to iterate until convergence or timeout. We will go through
these steps one by one in the following sections. However, if in a particular case you
perceive the need for bypassing some steps in favor of others, feel free to do so, but
beware of spending a lot of time addressing the wrong problem first.

You will notice that we differentiate between optimization and tuning. Optimization
is a wider term that may include tuning. Tuning normally concerns changing certain
environment settings that affect performance of the target application. In other words,
optimization may be more intrusive than tuning because deep optimization may
necessitate source code modifications.

Mapping Application onto the Platform
Before you start the process of MPI optimization in earnest, you have to make sure that you
are actually trying to optimize the application configuration that is suitable for the platform
involved. The biggest potential problem here is improper process layout and pinning that
may exercise slow communication paths where fast paths are needed and indeed possible.

Understanding Communication Paths
Intranode communication paths are typically the fastest the closer to the processor
you get, with the shared memory ruling the realm, intranode busses like PCI Express
coming next, and networking equipment bringing up the rear. However, in some cases
the situation may be different, and the seemingly slower paths, like InfiniBand, may
offer better bandwidth (see Figures 5-1 and 5-2), even intranode. You should definitely
make yourself familiar with the quirks of the platform involved via extensive low-level
benchmarking described earlier in this chapter.

A very important aspect of tuning is the selection of a proper communication fabrics
combination for a particular job. Even though Intel MPI will try to choose the fastest
possible fabrics automatically, in certain situations you will have to help it out. This is
particularly true of the heterogeneous installations with the Intel Xeon Phi coprocessor
involved, where there are so many paths to explore.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

134

Beyond that, you have already seen several examples of one simple pinning setting’s
dramatically changing the behavior of certain benchmarks and applications. Generally
speaking, if your application is latency bound, you will want its processes to share as
much of the memory and I/O subsystem paths as possible. This means, in part, that
you will try to put your processes onto adjacent cores, possibly even virtual ones. If
your application is bandwidth bound, you will do better sharing as little of the memory
subsystem paths as possible. This means, in part, putting your MPI processes on different
processor sockets, and possibly even different nodes, if you use a cluster.

Selecting Proper Communication Fabrics
The Intel MPI Library selects reasonable communication fabric(s) by default. You can
always find out what has been selected by setting the environment variable I_MPI_DEBUG
to 2. If the default selection does not look right, you can change this by using one of
the two environment variables, the older I_MPI_DEVICE and the newer I_MPI_FABRICS
environment variables, and their respective relations. Table 5-9 gives a brief overview of
what you can do.

Using Scalable Datagrams

Note that when you use a DAPL-capable fabric, with or without shared memory
involvement, you can select a scalable connectionless DAPL UD transport by setting the
environment variable I_MPI_DAPL_UD to enable. This may make sense if your job runs on
thousands of processes. Pure connection-oriented DAPL will normally be faster below
this threshold.

Specifying a Network Provider

In certain situations, you will have to specify further details of the lower-level networking
configuration. This is most often the case when you have more than one version of the
DAPL stack installed on the system. You will probably have to ask around to determine
whether or not you need to set the I_MPI_DAPL_PROVIDER and I_MPI_DAPL_UD_PROVIDER
variables, and if so, what values to use when.

Using IP over IB

Another trick is to switch over to IP over IB (IPoIB) when using the TCP transport over
InfiniBand. Here is how you can do this:
 
$ export I_MPI_TCP_NETMASK=ib0 # for IP over IB or
$ export I_MPI_TCP_NETMASK=192.169.0.0 # for a particular subnet

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

135

Controlling the Fabric Fallback Mechanism

A word of caution for benchmarking: Intel MPI library will normally fall back upon the
TCP communication if the primary fabric refuses to work, for some reason. This is a
useful feature out in the field, where running a program reliably may be more important
than running it fast. If you want to control the fallback path, enter this:
 
$ mpirun –genv I_MPI_FABRICS_LIST dapl,tcp -np <number of processes> ./your_app
 

However, this feature may be outright misleading during benchmarking. To make
sure you are indeed using the fabric you selected, you may want to disable the Intel MPI
built-in fallback mechanism by setting the environment variable I_MPI_FALLBACK to
disable.

Using Multirail Capabilities

If your installation supports multirail capability, which modern InfiniBand hardware
normally does by providing more than one port and possibly even InfiniBand adapter
per node, you can exploit this over the OFA fabric. Just enter these magic commands
depending on the number of adapters and ports you have:
 
$ export I_MPI_FABRICS=shm:ofa
$ export I_MPI_OFA_NUM_ADAPTERS=<n> # e.g. 2 (1 by default)
$ export I_MPI_OFA_NUM_PORTS=<n> # e.g. 2 (1 by default)

Detecting and Classifying Improper Process Layout and
Pinning Issues
It is relatively easy to detect signs of improper process layout. Once you fire up ITAC on
a trace file, you may either see exchange volumes spread very unevenly between the
processes in the Message Profile chart (which by itself might be a sign of load imbalance
that we have addressed), or you may notice overly long message lines crisscrossing
substantial portions of the application event timeline. Normally, these latter messages
will also lead to exorbitant wait times that may be picked up by the Performance Assistant
and shown in the respective chart. This kind of problem can be observed both intra- and
internode, as well as in the mixed configurations.

Now, any of these nice pictures will not tell you what is actually causing the observed
issues. You will have to find that out yourself. In general, there are several ways of
attacking this problem once you understand the root cause:

1.	 Rearrange the MPI processes and/or change their pinning at
job startup to make offending messages go along the fastest
possible communication path. This is the least intrusive
method, which we will concentrate on below.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

136

2.	 Use virtual process topologies to make MPI rearrange the
process ranks according to the expected intensity of the
interprocess communication. This implies that the MPI
implementation does rearrange processes when asked to
do so. Intel MPI does not do this at the moment, so we will
basically gloss over this approach.

3.	 Rewrite the application to use a different communication
pattern, or choose an alternative algorithm for the offending
MPI collective operation. This is a more intrusive approach
that we will consider when dealing with the MPI tuning and
application modification later in this chapter.

Process pinning acts one level below the process layout. When you choose the
process layout, you basically tell Intel MPI what node to put any particular MPI process
on. Where exactly it lands on this node is decided by the process pinning. The ways to
detect issues arising from improper process pinning are basically comparable to those
recommended for the process layout investigation.

In the presence of NUMA, you will also have to mind the relationship between
the processes and their memory. If the memory is located “close” to the process (in the
NUMA sense), performance may be substantially better compared to when the process
memory sits a few processor interconnect hops away. In the latter case, you will notice
the platform latency and bandwidth limitations biting in much sooner than expected
from the theoretical estimates and the low-level MPI benchmarking.

Finally, and less obviously, NUMA considerations may apply not only to the memory
but also to the peripherals, like networking cards or interconnect busses. Again, if a card
used for communication by a given process sits next to it in the node hierarchy, respective
communication will most likely be noticeably faster compared to when the card sits
several hops away. Add to this the unavoidable relationship between the memory and the
networking cards, and you will get a pretty mess to clean up.

The overall picture gets even more complicated once you add dynamic processes
to the mix. This includes process spawning and process attachment, especially in the
heterogeneous environments. As it’s still a relatively rarely used set of features, we will
only touch upon them in this book.

Controlling Process Layout
The default process layout induced by the Intel MPI library is the so-called group round
robin. This means that, by default, consecutive MPI ranks are placed on one node until
all the available virtual cores are occupied. Once one node is fully loaded, the next node
is dealt with in the same manner if it is available. Otherwise, the processes wraps around
back to the very first node used, and so on.

There are several ways to control the process layout. The first of them acts a priori,
at the job startup. The other method kicks in when the processes have been started.
It uses the so-called virtual topologies defined by the MPI standard—the communicators
created by using the MPI_Cart_create, MPI_Graph_create, and friends. This latter
method presumes that the underlying MPI implementation indeed rearranges the MPI
process ranks when asked to do so by the application programmer.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

137

Controlling the Global Process Layout

Several methods exist to specify the process layout at startup, with varying degrees of
brevity and precision. The easiest of them is use of the -ppn option and friends, including
the environment variable I_MPI_PERHOST. You set the I_MPI_PERHOST environment
variable to control process layout in the following manner:
 
$ export I_MPI_PERHOST=1 # makes round-robin distribution
$ export I_MPI_PERHOST=all # �maps processes to all virtualCPUs

on a node (default)
$ export I_MPI_PERHOST=allcores # �maps processes to all physicalCPUs

on a node
 

Alternatively, you can use one of the following mpirun options:
 
-perhost <number> # �group round-robin distribution with number of

processes per node
-ppn <number> # "group round-robin", same as '-perhost <number>'
-grr <number> # "group round-robin", same as '-perhost <number>'
-rr # round-robin distribution, same as '-perhost 1'
 

For example, this will put only two processes on each node:
 
$ mpirun –ppn 2 -np <number of processes> ./your_app
 

You will normally want to use the default process layout for pure MPI applications.
For hybrid programs, you may want to decrease the number of processes per node
accordingly, so as to leave enough cores for the OpenMP or another threading library
to use. Finally, and especially in benchmarking the internode rather than the intranode
communication, you will need to go down to one process per node.

Controlling the Detailed Process Layout

More detailed process layout control methods include the so-called long mpirun notation
and the -hostfile, -machinefile, and, in the case of the scalable Hydra process manager
only, the hosts options. Each of them essentially prescribes what processes to put where.
The long notation is probably the most illustrative of all, so we will briefly review it here.
You can look up the rest of the control possibilities in the Intel MPI Library Reference
Manual.15 Note that use of specific process placement is very common in benchmarking
when you really want to make sure rank 0 sits here, rank 1 sits there, and so on. This may
contribute substantially to the reproducibility of the results.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

138

In normal operational mode, you will probably use the long notation more often
when dealing with Intel Xeon Phi co-processor than otherwise, so let’s demonstrate it
in that case (here and elsewhere we split the overly long run strings into several lines by
using the shell backslash/new line notation):
 
$ mpirun -genv I_MPI_MIC enable \
 -host `hostname` -np 2 ./your_app : \
 -host `hostname`-mic0 -np 16 ./your_app.mic
 

You can see that the run string is separated into two parts by the colon (:). The first
half prescribes two MPI processes to be started on the host CPU. The second half puts
16 MPI processes upon the Intel Xeon Phi coprocessor connected to this CPU. This
coprocessor conventionally bears the name of the host node plus the extension -mic0.

Setting the Environment Variables at All Levels

Note that you can set environment variables, such as those controlling the process
pinning, either generally for all parts using the -genv option before the first -host option
or individually in each part using the -env option, preferably after the respective -host
option. Here is a good mixed example:
 
$ mpirun -genv I_MPI_MIC enable \
 -host `hostname` -env I_MPI_PIN_DOMAIN 4 -np 2 ./your_app : \
 -host `hostname`-mic0 -env I_MPI_PIN_DOMAIN 16 -np 4 ./your_app.mic
 

This particular command will turn on the Intel Xeon Phi coprocessor support, and then
create OpenMP domains of four cores on the host processes and 16 cores on the Intel Xeon
Phi coprocessor.

Controlling the Process Pinning
The Intel MPI library ships in several variants. The main ones are the sequential
optimized library and the multithreaded optimized library. In the former library,
the maximum supported thread level is MPI_THREAD_SINGLE. In the latter library, the
maximum supported thread level is MPI_THREAD_MULTIPLE, with the default being
MPI_THREAD_FUNNELED. More than one library is shipped so as to achieve maximum
possible performance in each use case. Owing to Intel MPI development’s constant work
on optimization, it is not impossible that only the multithreaded library will be included
in the delivery in the future, so we will concentrate on that right away.

The default process pinning imposed by the Intel MPI library is geared toward hybrid
applications. It is roughly described by the following settings:
 
I_MPI_PIN=on
I_MPI_PIN_MODE=pm
I_MPI_PIN_DOMAIN=auto,compact
I_MPI_PIN_RESPECT_CPUSET=on
I_MPI_PIN_RESPECT_HCA=on
I_MPI_PIN_CELL=unit
I_MPI_PIN_ORDER=compact
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

139

There are several important aspects to keep in mind:

1.	 Process pinning is turned on by default. You may want to
control this by setting the environment variable I_MPI_PIN
to the values of disable or enable (likewise, off and on, or
false and true, or just 0 and 1, respectively).

2.	 The default process pinning is imposed by the process
management infrastructure rather than the library itself.
This has some far-reaching ramifications with respect to the
memory and peripherals affinity we are going to consider in
the next section. You probably do not want to interfere with
this unless your job manager starts making trouble here.

3.	 There are two major methods of controlling the pinning, one
of which focuses on hybrid ones (via the I_MPI_PIN_DOMAIN
and friends) while the other is better suited for pure MPI
programs (via the I_MPI_PIN_PROCESSOR_LIST and friends).
If the former method is used, it normally overrides the latter
if that is used as well.

4.	 The default I_MPI_PIN_DOMAIN value auto means that the
domain size is defined by the formula size=#cpu/#proc,
where #cpu is the number of virtual processors on the node
and #proc is the number of the MPI processes started on the
node. It is this domain into which all the threads belonging to
the respective MPI process are placed. The qualifier compact
above leads to the domains’ being put as close to each other
as possible in the sense of sharing the processor resources like
caches. If you do not want this, you can try values of scatter
and platform to go for the least possible resource sharing and
the platform-specific thread ordering, respectively.

5.	 The default pinning takes into account the platform affinity
setting (cf. cpuset command) and the locality of the InfiniBand
networking cards (called host channel adapter, or HCA). It
also prescribes targeting the virtual cores (unit) and compact
domain ordering (compact) in the absence of respective
qualifiers in the values of the I_MPI_PIN_PROCESSOR_LIST and
I_MPI_PIN_DOMAIN environment variables.

There may be small deviations between the description given and the realities of the
default pinning, so you should look into the aforementioned Intel MPI Library Reference
Manual to learn all the details.

If you want to use OpenMP in your program, you better change the value auto to omp,
in which case the size of the domain will be defined by the OpenMP specific means, like
the value of the environment variable OMP_NUM_THREADS or KMP_NUM_THREADS. Likewise,
the pinning inside the domain will be determined according to the OpenMP specific
settings like KMP_AFFINITY, which we will consider in detail in Chapter 6.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

140

Like the I_MPI_PIN_DOMAIN, the I_MPI_PIN_PROCESSOR_LIST has many possible
values. The most practical values are as follows:
 
$ export I_MPI_PIN_PROCESSOR_LIST=all # all virtual cores
$ export I_MPI_PIN_PROCESSOR_LIST=allcores # all physical cores
$ export I_MPI_PIN_PROCESSOR_LIST=allsocks # all processor sockets
 

When you start playing with exact process placement upon specific cores, both
I_MPI_PIN_DOMAIN and I_MPI_PIN_PROCESSOR_LIST will help you by providing the
list-oriented, bit mask–based, and symbolic capabilities to cut the cake exactly the way
you want, and if you wish, by using more than one method. You will find them all fully
described in the Intel MPI Library Reference Manual.

Controlling Memory and Network Affinity
There are no special means of controlling memory affinity in the Intel MPI library per
se. However, as mentioned in the previous section, the library facilitates the operating
system doing the right thing by setting the process pinning before the process launch.
Under normal conditions, this means that the processor running a particular process will
be located closely to the memory this process uses. At the same time, it is possible to use
the system and third-party tools to affect the memory affinity (cf. numactl command),
which will be reviewed in Chapter 6.

Contrary to this, networking affinity enjoys some level of support in Intel MPI
Library, as represented by the I_MPI_PIN_RESPECT_HCA setting mentioned here. There
are other settings available, but they are considered experimental at the moment and are
reserved for the MPI implementors until better times.

Example 4: MiniMD Performance Investigation on Xeon Phi
Let’s see what happens to the miniMD application and its mapping on the platform
if we add Intel Xeon Phi coprocessors to the mix. First, you will need to get access to
a machine that has them. In our case, we used the same cluster that happens to have
several Intel Xeon Phi equipped nodes. Running the application on Intel Xeon Phi is
only a bit more complicated than on the normal Xeon. You need to build the executable
program separately for Intel Xeon and for Intel Xeon Phi. In the case of the miniMD, this
is accomplished by the following commands (see also 1build.sh):
 
$ make intel # for Intel Xeon
$ mv ./miniMD_intel ./miniMD_intel.host
$ make clean
$ make intel KNC=yes # for Intel Xeon Phi
$ mv ./miniMD_intel ./miniMD_intel.mic
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

141

Here, we renamed both executables to keep them separate and distinguishable from
each other and from the plain Xeon executable we may need to rebuild later on. This way
we cannot spoil our executable programs by accident.

Running the program is similar to the workstation:
 
$ export I_MPI_MIC=enable
$ mpiexec.hydra \
 -env LD_LIBRARY_PATH /opt/intel/impi_latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 16 ./miniMD_intel.mic
 

These environment settings make sure that the Intel Xeon Phi coprocessor is found
and that the path settings there are correct. If we compare performance of the programs
on Intel Xeon and Intel Xeon Phi at different process counts, we get the results shown
in Table 5-10:

Table 5-10.  MiniMD Execution Time on Intel Xeon or Intel Xeon Phi (Seconds, Cluster)

MPI proc. Xeon Xeon Phi Ratio, times

1 8.13 52.72 6.48

2 4.08 26.90 6.60

4 2.08 14.22 6.85

8 1.06 7.02 6.62

16 0.56 3.85 6.92

24 0.38 2.65 6.90

32 0.43 2.04 4.77

48 0.30 1.47 4.82

64 1.38

96 1.12

128 1.18

As usual, we performed three runs at each process count and analyzed the results
for variability, which was all below 1 percent in this case. You have certainly gotten used
to this procedure by now, so that we can skip the details. From this table we can derive
that a Xeon is roughly 6.5 to 6.9 times faster than Xeon Phi for the same number of MPI
processes, as long as Xeon cores are not saturated. Note that this relationship holds for
the core-to-core comparison (one MPI process results) and for MPI-to-MPI comparison
(two through 24 MPI processes). So, you will need between 6.5 and 12 times more Xeon
Phi processes to beat Xeon. Note that although Xeon Phi saturates later, at around
64 to 96 MPI processes, it never reaches Xeon execution times on 48 MPI processes.
The difference is again around six times.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

142

It may be interesting to see how speedup and efficiency compare to each other in the
case of Xeon and Xeon Phi platforms; see Figure 5-13.

Figure 5-13.  MimiMD speedup and efficiency on Xeon and Xeon Phi platforms (cluster)

Here, speedup is measured by the left-hand vertical axis, while efficiency goes by the
right-hand one. Looking at this graph, we can draw a number of conclusions:

1.	 We can see that Xeon efficiency surpasses Xeon Phi’s and goes
very much along the ideal speedup curve until Xeon efficiency
drops dramatically when we go beyond 24 MPI processes and
start using virtual rather than physical cores. It then recovers
somewhat by sheer weight of the resources applied.

2.	 Since this Xeon Phi unit has 61 physical cores, we observe a
comparable effect at around 61 MPI processes as well.

3.	 Xeon surpasses Xeon Phi on efficiency until the
aforementioned drop, when Xeon Phi takes over.

4.	 Xeon Phi becomes really inefficient and stops delivering
speedup growth on a large number of MPI processes. It is
possible that OpenMP threads might alleviate this somewhat.

5.	 There is an interesting dip in the Xeon Phi efficiency curve at
around 16 MPI processes. What it is attributed to may require
extra investigation.

If you try to use both Xeon and Xeon Phi at once, you will have to not only balance
their respective numbers but also keep in mind that the data traversing the PCI Express
bus may move slower than inside Xeon and Xeon Phi, and most likely will move slower
most of the time, apart from large messages inside Xeon Phi. So, if you start with the
aforementioned proportion, you will have to play around a bit before you get to the nearly

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

143

ideal distribution, not to mention doing the process pinning and other tricks we have
explored. A good spot to start from would probably be 16 to 24 MPI processes on Xeon
and 64 to 96 MPI processes on Xeon Phi.

The required command will look as follows:
 
$ export I_MPI_MIC=1
$ export I_MPI_DAPL_PROVIDER_LIST=ofa-v2-mlx4_0-1u,ofa-v2-scif0
$ mpiexec.hydra -host `hostname` -np 16 ./miniMD_intel.host : \
 -env LD_LIBRARY_PATH /opt/intel/impi_latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 96 ./miniMD_intel.mic
 

Table 5-11 shows a result of our quick testing on the same platform:

Table 5-11.  MiniMD Execution Time on Intel Xeon and Intel Xeon Phi with Local Minima
Highlighted (Seconds, Cluster)

Xeon/Phi 48 64 96 128

8 1.396 1.349 1.140 1.233

16 1.281 1.324 1.133 1.134

24 1.190 1.256 1.137 1.222

48 0.959 1.219 1.157 1.093

We placed Xeon process counts along the vertical axis and Xeon Phi process counts
along the horizontal axis. This way we could obtain a sort of two-dimensional data-
distribution picture represented by numbers. Also, note that we prudently under- and
overshot the guesstimated optimal process count ranges, just in case our intuition was
wrong. And as it happens, it was wrong! We can observe two local minima: one for
the expected 16:96 Xeon to Xeon Phi process count ratio. However, the better global
minimum is located in the 48:48 corner of the table. And if we compare it to the best we
can get on 48 Xeon–based MPI processes alone, we see that Xeon Phi’s presence draws
the result down by more than three times.

One can use ITAC to see what exactly is happening: is this imbalance induced by
the aforementioned Xeon to Xeon Phi core-to-core performance ratio that has not been
taken into account during the data distribution? Or is it by the communication overhead
basically caused by the PCI Express bus? It may be that both effects are pronounced to
the point of needing a fix. In particular, if the load imbalance is a factor, which it most
likely is because the data is likely split between the MPI processes proportional to their
total number, without accounting for the relative processor speed, one way to fight back

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

144

would be to create a bigger number of OpenMP threads on the Xeon Phi part of the
system. Quite unusually, you can control the number of threads using the program’s
own -t option. For example, the following command uses one of the better miniMD
configurations while generating a valid ITAC trace file:
 
$ mpiexec.hydra -trace -host `hostname` -np 2 ./miniMD_intel.host -t 12 :\
 -env LD_LIBRARY_PATH \ /opt/intel/impi_latest/mic/lib:/opt/intel/itac_
latest/mic/lib:$MIC_LD_LIBRARY_PATH \
 -host `hostname`-mic0 -np 6 ./miniMD_intel.mic -t 32
 

Even a quick look at the resulting trace file shows that load imbalance caused by the
platform heterogeneity is indeed the root cause of all the evil here, as shown in Figure 5-14.

Figure 5-14.  MiniMD trace file in ITAC (cluster, 2 Xeon processes, 6 Xeon Phi processes)

Here, processes P0 and P1 sit on the Xeon, while the rest of them sit on the Xeon Phi.
The difference in their relative speed is very clear from the direct visual comparison of the
corresponding (blue) computing sections. We can discount the MPI_Finalize duration
because it is most likely caused by the ITAC data post-processing. However, the MPI_Send
and MPI_Wait times are out of all proportion.

Further analysis of the data-exchange pattern reveals that two closely knit groups take
four processes each, with somewhat lower exchange volumes between the groups (not
shown). Moreover, a comparison of the transfer rates that can be done by clicking on the
Message Profile and selecting Attribute to show/Maximum Transfer Rate shows that the
PCI Express links achieve at most 0.2 bytes per tick while up to 2 bytes per tick are possible
inside Xeon and up to 1.1 bytes per tick inside Xeon Phi (not shown). This translates to
about 0.23 GiB/s, 2.3 GiB/s, and 1.1 GiB/s, respectively, with some odd outliers.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

145

Hence, we can hope for performance improvement if we do the following:

1.	 Split the Xeon and Xeon Phi portions into equal-size process
groups (say, 4 vs. 4). This should match the data split
performed by the program because currently the first two
processes of the first group sit on Xeon and the other two are
on Xeon Phi.

2.	 Use up to 12 times fewer threads on Xeon than on Xeon
Phi (say, 4 vs. 48). This should compensate for the relative
difference in processor speed.

3.	 Pray that the lower exchange volume in the fringes will not
overload the PCI Express links. The difference in volumes
(25 MiB vs. 17 MiB) is, however, rather small and may not suffice.

Indeed, if we follow these recommendations and change the run string accordingly,
we get a substantial reduction in the program execution time (from 1.58 seconds to
1.26 seconds) despite the fact that we used fewer cores on Xeon and the same number of
cores on Xeon Phi. This is, however, only the beginning of the journey, because we are
still far away from the best Xeon-only result obtained so far (0.3 seconds; see Table 5-10).
Given the prior treatise in this book, and knowing how to deal with the load imbalance
in general, you can read other sources dedicated to Intel Xeon Phi programming if you
want to pursue this path.16 If, after that, the heterogeneity still shows through the less than
optimal data-exchange paths, especially across the PCI Express lane, you can address this
in other ways that we will discuss further along in this chapter.

EXERCISE 5-9

Find out the optimal MPI process to the OpenMP thread ratio for miniMD using a
heterogeneous platform. Quantify this ratio in comparison to the relative component
speeds. How much of the effect can be attributed to the computation and
communication parts of the heterogeneity?

Example 5: MiniGhost Performance Investigation
Let’s take on a beefier example this time. Instead of going for the realistic but relatively small
workloads we used in the case of miniFE and miniMD earlier, we’ll deal with the miniGhost
from the NERSC-8 Trinity benchmark set.17 This finite difference calculation will nicely
complement the finite element and molecular dynamics programs we have considered
so far. However, for Trinity, being a record-setting procurement, even the smallest
configuration of its miniGhost benchmark will certainly overwhelm our workstation, so we
will first have to reduce the size of the workload in order to make sense of it.

Using the benchmarking methods described earlier, you will find that setting
the domain size to 200 cubed will do the trick. Moreover, you will learn that the best
performance is achieved by taking 12 processes per node and running four OpenMP
threads per process, and by splitting the task into 1:3:4 slabs in the X, Y, and Z directions,

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

146

respectively. By the way, for the program to build, you will have to change the Makefile
to reference Intel compilers, and also add the -qopenmp flag to the OPT_F and add the
-lifcore library to the LIBS variables there. It is quite usual that some minor adjustments
are necessary.

Long story made short, here is the run string we used for the workstation launch:
 
$ export OMP_NUM_THREADS=4
$ �mpirun -np 12 ./miniGhost.x --scaling 1 --nx 200 --ny 200 --nz 200
--num_vars 40 \

 --num_spikes 1 --debug_grid 1 --report_diffusion 21 --percent_sum 100 \
 --�num_tsteps 20 --stencil 24 --comm_method 10 --report_perf 1 --npx 1

--npy 3 --npz 4 \
 --error_tol 8
 

Built-in statistics output shows the role distribution among the top three MPI calls,
as illustrated in Listing 5-15:

Listing 5-15.  MiniGhost Statistics (Workstations, 12 MPI Processes, 4 OpenMP Threads
per Process)

[time] [calls] <%mpi> <%wall>
MPI_Allreduce 3.17148 9600 54.74 3.47
MPI_Waitany 2.23135 1360 38.51 2.44
MPI_Init 0.371742 12 6.42 0.41
 

High relative cost of the MPI_Allreduce makes it a very attractive tuning target.
However, let us try the full-size workload first. Once we proceed to run this benchmark
in its “small” configuration on eight cluster nodes and 96 MPI processes, we will use the
following run string inspired in part by the one we used on the workstation (here, we
highlighted deviations from the original script run_small.sh):
 
$ export OMP_NUM_THREADS=4
$ export I_MPI_PERHOST=12
$ �mpirun -np 96 ./miniGhost.x --scaling 1 --nx 672 --ny 672 --nz 672
--num_vars 40 \

 --num_spikes 1 --debug_grid 1 --report_diffusion 21 --percent_sum 100 \
 --�num_tsteps 20 --stencil 24 --comm_method 10 --report_perf 1 --npx 4

--npy 4 --npz 6 \
 --error_tol8
 

The irony of benchmarking in the context of a request for proposals (RFP) like
NERSC-8 Trinity is that we cannot change the parameters of the benchmarks and may
not be allowed to change the run string, either. This means that we will probably have to
go along with the possibly suboptimal data split between the MPI processes this time;
although looking at the workstation results, we would prefer to leave as few layers along
the X axis as possible. However, setting a couple of environment variables upfront to ask
for four instead of one OpenMP threads, and placing 12 MPI processes per node, might

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

147

be allowed. Thus, our initial investigation did influence the mapping of the application
to the platform, and we know that we may be shooting below the optimum in the data-
distribution sense.

Further, it is interesting to see what is taking most of the MPI time now. The built-in
statistics show a slightly different distribution; see Listing 5-16:

Listing 5-16.  MiniGhost Statistics (Cluster, 8 Nodes, 12 MPI Processes per Node,
4 OpenMP Threads per Process)

[time] [calls] <%mpi> <%wall>
MPI_Init 149.771 96 44.95 4.17
MPI_Allreduce 96.3654 76800 28.92 2.68
MPI_Waitany 79.7788 17920 23.94 2.22
 

The sharp hike in relative MPI_Init cost is probably explained by the presence of the
relatively slower network. It may also be explained by all the threads being busy when the
network stack itself needs some of them to process the connection requests. Whatever the
reason, this overhead looks abnormally high and certainly deserves further investigation.

This way or another, the MPI_Init, MPI_Allreduce, and MPI_Waitany take about 99
percent of all MPI time, between them. At least the first two calls may be amenable to the
MPI-level tuning, while the last one may indicate some load imbalance (to be continued).

EXERCISE 5-10

Find the best possible mapping of your favorite application on your favorite platform.
Do you do better with the virtual or the physical cores? Why?

Tuning the Intel MPI Library
Once you are certain that the application is properly mapped onto the platform, it makes
sense to turn to the way the MPI Library is exploiting this situation. This is where MPI
tuning for the platform comes into play. As mentioned above, you are likely to go this way
if your application falls into the wide class of bandwidth-bound programs. In the case of
latency-bound applications, you will probably want to use the application-specific tuning
described later in this section.

Tuning Intel MPI for the Platform
There are two ways to tune Intel MPI for the platform: automatically by using the mpitune
utility or manually.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

148

If you elect to use the mpitune utility, run it once after installation and each time after
changes in cluster configuration. The best configuration of the automatically selected
Intel MPI tuning parameters is recorded for each combination of the communication
device, the number of nodes, the number of MPI ranks, and the process layout. The
invocation string is simple in this case:
 
$ mpitune
 

Be aware that this can take a lot of time, so it may make sense to run this job
overnight. Note also that for this mode to work, you should have the writing permission
for the etc subfolder of the Intel MPI Library installation directory, or use the -od option
to select a different output directory.

Once the mpitune finishes, you can reuse the recorded values in any run by adding
the -tune option to the normal mpirun invocation string; for example:
 
$ mpirun –tune –np 32 ./your_app
 

You can learn more about the mpitune utility in the Tutorial: MPI Tuner for Intel MPI
Library for Linux* OS.18 If you elect to do the tuning manually, you will have to dig into the
MPI internals quite a bit. There are several groups of tuning parameters that you will need
to deal with for every target fabric, number of processes, their layout, and the pinning.
They can be split into point-to-point, collective, and other magical settings.

Tuning Point-to-Point Settings

Point-to-point operations form the basis of most MPI implementations. In particular,
Intel MPI uses point-to-point communication extensively for the collective and (however
counterintuitive this may seem) one-sided communications. Thus, the tuning should
start with the point-to-point settings.

Note■■   You can output some variable settings using the I_MPI_DEBUG value of 5.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

149

Adjusting the Eager and Rendezvous Protocol Thresholds
MPI implementations normally support two communication protocols:

•	 Eager protocol sends data immediately regardless of the
availability of the matching receive request on the other side.
This protocol is used normally for short messages, essentially
trading better latency on the sending side for the danger of having
to allocate intermediate buffers on the receiving side when the
respective receive operation has not yet been posted.

•	 Rendezvous protocol notifies the receiving side on the data
pending, and transfers it only once the matching receive request
has been posted. This protocol tries to avoid the cost of the
extra buffer allocation on the receiving side at the sacrifice of,
typically, two extra short messages used for the notification and
acknowledgment.

The protocol switchover point is controlled by the environment variable
I_MPI_EAGER_THRESHOLD. Below and at this integral value that currently defaults to
256 KiB, the eager protocol is used. Above it, the rendezvous protocol kicks in. As a rule
of thumb, the longer the messages you want to send immediately, the higher will be your
optimal eager threshold.

Changing DAPL and DAPL UD Eager Protocol Threshold
Specifics of the Intel MPI Library add another, lower-level eager/rendezvous protocol
threshold to the DAPL and DAPL UD communication paths. This has to do with how
messages are sent between the processes using Remote Direct Memory Access (RDMA)
methods. Basically, the lower-level eager protocol tries to avoid the cost of extra memory
registration, while the rendezvous protocol goes for this registration to speed up the
resulting data transfer by bypassing any intermediate buffers.

As in the case of the high-level eager threshold, each of the fabrics has its own threshold,
called I_MPI_DAPL_DIRECT_COPY_THRESHOLD and I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD,
respectively. When setting these environment variables, you will have to balance the
desire to send messages off immediately with the increase in memory consumption
associated with the raised value of the respective threshold.

Bypassing Shared Memory for Intranode Communication
It may happen on certain platforms that fabric performance overtakes the shared memory
performance intranode. If it happens at all, it normally occurs at around 350 KiB message
size. If your preliminary benchmarking reveals this situation, set the environment
variable I_MPI_SHM_BYPASS to enable. This will make Intel MPI use the DAPL or TCP
fabrics, if selected, for message sizes larger than the value of the environment variable
I_MPI_INTRANODE_EAGER_THRESHOLD that currently defaults to 256 KiB for all fabrics
but shm.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

150

Bypassing the Cache for Intranode Communication
As a final note on point-to-point thresholds, there is a way to control what variant of
the memory copying is used by the shared memory communication path. If you set the
environment variable I_MPI_SHM_CACHE_BYPASS to enable, Intel MPI Library will use
the normal, cache-mediated memory for messages below the values of the I_MPI_SHM_
CACHE_BYPASS_THRESHOLDS and special non-temporal memory copy for larger messages.
If activated, this feature may prevent the so-called cache pollution by data that
will be pushed out of cache by additional incoming message segments anyway.

This last is a fairly advanced control, so you should approach it with care and read
the respective part of the Intel MPI Library Reference Manual. The default values set to
half of the size of L2 cache are normally adequate, but you may want to set them to the
size of the L1 cache if you feel adventurous; for example:
 
$ export I_MPI_SHM_CACHE_BYPASS_THRESHOLDS=16384,16384,-1,16384,-1,16384
$ mpirun –np 2 –genv I_MPI_FABRICS shm IMB-MPI1 PingPong

Choosing the Best Collective Algorithms

Now that you are sure of your fabric selection and the most important point-to-point
thresholds, it is the right time to proceed to tuning the collective operations. Certainly,
you should make a list of operations that are relevant to your task. Looking into the built-
in statistics output by the Intel MPI Library is a good first step here.

As it happens, Intel MPI Library provides different algorithms for each of the many
MPI collective operations. Each of these algorithms has its strengths and weaknesses,
as well as its possible limitations on the number of processes and message sizes it can
sensibly handle.

Note■■   You can output default collective settings using the I_MPI_DEBUG value of 6.

You can use the environment variables named after the pattern I_MPI_
ADJUST_<opname>, where the <opname> is the name of the respective collective operation.
This way you come to the variable names like I_MPI_ADJUST_ALLREDUCE.

If we consider the case of the MPI_Allreduce a little further, we will see that there are
no less than eight different algorithms available for this operation alone. Once again, the
Intel MPI Library Reference Manual is your friend. Here, we will only be able to give some
rules of thumb as to the algorithm selection by their class. To see how this general advice
fits your practical situation, you will have to run a lot of benchmarking jobs to determine
where to change the algorithm, if at all. A typical invocation string looks as follows:
 
$ mpirun -genv I_MPI_ADJUST_ALLREDUCE 4 -np 16 IMB-MPI1 Allreduce
 

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

151

You can certainly use any other benchmark, or even application, you want for this
tuning. We will stick to the IMB here, out of sheer weight of experience. This way or
another, you will end up with pretty fancy settings of the following kind that will have to
be put somewhere (most likely, a configuration file):
 
$ export I_MPI_ADJUST_ALLGATHER= \
 '1:4-11;4:11-15;1:15-27;4:27-31;1:31-32;2:32-51;3:51-5988;4:5988-13320'
 

Well, it’s your choice. Now, going through the most important collective operations
in alphabetical order, in Table 5-12, we issue general recommendations based on
extensive research done by Intel engineers.19 You should take these recommendations
with a grain of salt, for nothing can beat your own benchmarking.

Table 5-12.  Intel MPI Collective Algorithm Recommendations

Operation Algorithm Small
msgs

Large
msgs

Rec.
PPN

MPI_Allgather (1) Recursive Doubling + + 1*

(2) Bruck’s + + 1*

(3) Ring + any

(4) Topological Gatherv/Bcast + >1

MPI_Allreduce (1) Recursive Doubling +

(2) Rabenseifner’s + +

(3) Reduce/Bcast +** 1

(4) Topological Reduce/Bcast +** >1

(5) Binomial Tree + 1

(6) Topological Binomial Tree + >1

(7) Shumilin’s Ring +**

(8) Ring +

MPI_Alltoall (1) Bruck’s +

(2) Isend/Irecv +

(3) Pairwise Exchange +

(4) Plum’s + +

(continued)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

152

Operation Algorithm Small
msgs

Large
msgs

Rec.
PPN

MPI_Barrier (1) Dissemination N/A N/A 1

(2) Recursive Doubling N/A N/A 1

(3) Topology Dissemination N/A N/A >1

(4) Topology Recursive Doubling N/A N/A >1

(5) Binominal Gather/Scatter N/A N/A 1

(6) Topology Binominal
Gather/Scatter

N/A N/A >1

MPI_Bcast (1) Binomial Tree + 1

(2) Recursive Doubling + + 1

(3) Ring + 1

(4) Topological Binomial Tree + >1

(5) Topological Recursive Doubling + + >1

(6) Topological Ring + >1

(7) Shumilin’s +**

MPI_Gather & (1) Binomial Tree + + 1

MPI_Scatter (2) Topological Binomial Tree + + >1

(3) Shumilin’s +

MPI_Reduce (1) Shumilin’s +** 1

(2) Binomial Tree + 1

(3) Topological Shumilin’s +** >1

(4) Topological Binomial Tree + >1

(5) Rabenseifner’s + + 1

(6) Topological Rabenseifner’s + + >1

*Only for large messages, otherwise any PPN.

**For buffers larger than the number of processes times the algorithm specific segment size.

Table 5-12.  (continued)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

153

Tuning Intel MPI Library for the Application
Again, you can tune Intel MPI for a particular application either automatically using the
mpitune utility or manually. The mpitune invocation string is a little more complicated in
this case (the use of backslashes and quotes is mandatory):
 
$ mpitune --application \"mpiexec -np 32 ./my_app\" --of ./my_app.conf
 

This way you can tune Intel MPI for any kind of MPI application by specifying its
command line. By default, performance is measured as the inverse of the program
execution time. To reduce the overall tuning time, use the shortest representative
application workload (if applicable). Again, this process may take quite a while to
complete.

Once you get the configuration file, you can reuse it any time in the
following manner:
 
$ mpirun -tune ./my_app.conf -np 32 ./my_app
 

Note that here you not only mention the file name but also use the same number of
processes and generally the same run configuration as in the tuning session. (You can
learn more about this tuning mode in the aforementioned tuning tutorial.)

If you elect to tune Intel MPI manually, you will basically have to repeat all that you
did for the platform-specific tuning described in the previous section, with the exception
of using your application or a set of representative kernels instead of the IMB for the
procedure. Certainly, you will do better instead by addressing only those point-to-point
patterns and collective operations at the number of processes, their layout and pinning,
and message sizes that are actually used by the target application. The built-in statistics
and ITAC output will help you in finding out what to go for first.

Using Magical Tips and Tricks
Sometimes you will have to foray beyond the normal tuning of the point-to-point and
collective operations. Use the following expert advice sparingly: the deeper you get into
this section, the closer you are moving toward Intel MPI open heart surgery.

Disabling the Dynamic Connection Mode

Intel MPI establishes connections on demand if the number of processes is higher than
64. This saves some time at startup and may diminish the total number of connections
established, so it is an important scalability feature. However, it may also lead to certain
delays during the first exchange that require a new connection to be set up. Set the
environment variable I_MPI_DYNAMIC_CONNECTION to disable in order to establish all
connections upfront.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

154

Applying the Wait Mode to Oversubscribed Jobs

Sometimes applications do a lot of I/O and may profit from running in the so-called
oversubscribed mode—that is, in the mode with the number of processes that exceeds
the number of the available cores. In these rare cases, try to set the environment variable
I_MPI_WAIT_MODE to enable so as to make MPI processes wait for an interrupt to be
delivered to them instead of polling the fabrics for the new messages. Even though Intel
MPI possesses a rather elaborate back-off strategy in the default polling mode, going for
the outright wait mode (also called event-driven mode) may bring a quantum leap in
performance under some circumstances.

Fine-Tuning the Message-Passing Progress Engine

Deep inside any MPI implementation there sits a vital component called the progress
engine. It is this component that actually pushes bytes into the fabric layers and makes
sure they proceed to their respective destinations, reach them, and are put into the user
buffers on the other side.

Typically, this component is called (or, in implementor speak, “kicked”) every
time there is a substantial call into the MPI Library that can be implicated in moving
data across the wires. Examples of this class include the MPI_Send, MPI_Recv, MPI_Wait,
MPI_Test, MPI_Probe, all collective operations, their multiple friends and relations, and
some other calls. This approach is called synchronous invocation of the progress engine.
On a level with this, an MPI implementation can offer asynchronous capabilities by, say,
running part of the progress engine in a background thread.

This way or another, this component is faced with a difficult existential dilemma.
On one hand, it needs to be reactive to new messages coming and going, in order to
achieve acceptable latency. On the other hand, it should try to avoid using up too much
of the processor’s time, for this would make the overall system performance go down.
To address this dilemma, various MPI implementations offer so-called back-off strategies
that try to find the right balance between reactivity and resource consumption. Of course,
there are multiple settings that control this strategy, and the default tuning tries to select
them so that a typical application will do alright.

Intel MPI has elaborate and finely tuned back-off mechanisms. Should you become
dissatisfied with the default settings, however, try to increase the I_MPI_SPIN_COUNT
value from the default of 1 for one process per node and 250 for more than one process
per node. This will change the number of times the progress engine spins, waiting for a
message or connection request, before the back-off strategy kicks in. Higher values will
favor better latency, to a degree. If you raise this value too much, you will start burning
too many CPU cycles, polling the memory needlessly.

If you run more than one process per node that use the shared memory channel for
data exchange, try to increase the I_MPI_SHM_SPIN_COUNT value above its default of 100.
This may benefit multicore platforms when the application uses topological algorithms
for collective operations.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

155

Reducing the Pre-reserved DAPL Memory Size

Large-scale applications may experience memory resource pressures due to a big number
of pre-allocated buffers pinned to the physical memory pages. If you do not want to go for
the DAPL UD mode, use the environment variable I_MPI_DAPL_BUFFER_NUM to decrease
the number of buffers for each pair in a process group. The default value is 16.

If you increase this value, you may notice better latency on short messages (see the
low-level eager protocol threshold mentioned earlier). In addition, if your application
mostly sends short messages, you can try to reduce the DAPL buffer size by changing the
environment variable I_MPI_DAPL_BUFFER_SIZE. The default value is 23808.

Finally, you can try to set the environment variable I_MPI_DAPL_SCALABLE_PROGRESS
to enable for high process count. This is done automatically for more than 128
processes, though.

What Else?

Here is an assorted mix of tips and tricks you may try in your spare time:

•	 I_MPI_SSHM=1 Turns on the scalable shared memory path, which
might be useful on the latest multicore Intel Xeon processors and
especially on the many-core Intel Xeon Phi coprocessor.

•	 I_MPI_OFA_USE_XRC=1 Turns on the extensible reliable
connection (XRC) capability that may improve scalability for
several thousand nodes.

•	 I_MPI_DAPL_UD_RDMA_MIXED=1 Makes DAPL UD use
connectionless datagrams for short messages and connection-
oriented RDMA for long messages.

•	 I_MPI_DAPL_TRANSLATION_CACHE_AVL_TREE=1 May be useful for
applications sending a lot of long messages over DAPL.

•	 I_MPI_DAPL_UD_TRANSLATION_CACHE_AVL_TREE=1 Same for DAPL UD.

Of course, even this does not exhaust the versatile toolkit of tuning methods
available. Read the Intel MPI documentation, talk to experts, and be creative. This is what
this work is all about, right?

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

156

Example 5 (cont.): MiniGhost Performance Investigation
Figure 5-15 shows the split of the MPI and load imbalance issues in the breakdown mode.

So, the total MPI overhead is evenly split between the MPI_Allreduce and the
MPI_Waitany. Most of the MPI_Allreduce overhead is induced by load imbalance on small
messages, while most of the MPI_Waitany overhead is caused by actual communication
that we will analyze later on. We can assume that the picture will be qualitatively the same
on the cluster. So, if you decide to address the MPI_Allreduce performance right away,
which is not recommended, you can do some benchmarking at the target node counts for
all MPI_Allreduce algorithms to see whether there is anything to haul there. Given several
MPI processes per node and short messages dominating the MPI_Allreduce overhead,
topology-aware algorithm number 6 is going to be your first preference (see Table 5-12).
Such a trial is very easy to perform. Just enter the following command before the launch:
 
$ export I_MPI_ADJUST_ALLREDUCE=6
 

A quick trial we performed confirmed that algorithm number 6 was among the best
for this workload. However, algorithms 1 and 2 fared just as well and were only 0.2 seconds
below the default one. Hence, most likely, optimization of the program source code
aimed at reduction of the irregularity of the exchange pattern will bring more value if
done upfront here. That may include both load imbalance correction and tuning of the
communication per se, because they may be interacting detrimentally with each other
(to be continued).

Figure 5-15.  MiniGhost trace file in ITAC imbalance diagram breakdown mode
(Workstation, 12 MPI processes, 4 OpenMP threads)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

157

EXERCISE 5-11

Try your hand at both platform- and application-specific Intel MPI tuning, using your
favorite platform and application. Gauge the overall performance improvement.
Identify the cases where platform-specific tuning goes against the application-
specific one.

Optimizing Application for Intel MPI
At last, it is time to turn to the application itself. That is, unless you noticed much earlier
a grave and apparent problem that went against all good MPI programming practices. In
that case, you may want to try and fix that problem first, provided you make double sure it
is that problem that is causing trouble—as usual.

You can sensibly apply the advice contained in this section only if you have access to
the application source code. It may be way out of reach in most industrial situations in the
field. This situation is, however, different if you are using open-source software or have
been graciously granted a source code license to a piece of closed-source code. Thus, we
are talking about real optimization rather than tuning here, and real optimization takes
time—a luxury that you most likely will not have under real conditions.

There are quite a few things that can go wrong. This book is not a guide to MPI
programming per se, so we will be brief and will focus on the most important potential issues.

Avoiding MPI_ANY_SOURCE
Try to make your exchanges deterministic. If you have to use the MPI_ANY_SOURCE, be
aware that you may be paying quite a bit on top for every message you get. Indeed,
instead of waiting on a particular communication channel, as prescribed by a specific
receive operation, in the case of MPI_ANY_SOURCE the MPI Library has to poll all existing
connections to see whether there is anything matching on input. This means extensive
looping and polling, unless you went for the wait mode described earlier. Note that use of
different message tags is not going to help here, because the said polling will be done still.

Generally, all kinds of nondeterminism are detrimental and should be avoided,
if possible. One way this cannot be done is when a server process distributes some
work among the slave processes and waits to them to report back. However the work is
apportioned, some will come back earlier than others, and enforcing a particular order
in this situation might slow down the overall job. In all other cases, though, try to see
whether you can induce order and can benefit from doing that.

Avoiding Superfluous Synchronization
Probably the worst thing application programmers do, over and over again, is superfluous
synchronization. It is not uncommon to see, for example, iterations of a computational
loop separated by an MPI_Barrier. If you program carefully and remember that MPI
guarantees reliable and ordered data delivery between any pair of processes, you can

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

158

skip this synchronization most of the time. If you are still afraid of missing things or
mixing them up, start using the MPI message tags to instill the desired order, or create a
communicator that will ensure all messages sent within it will stay there.

Another aspect to keep in mind is that, although collective operations are not
required to synchronize processes by the MPI standard (with the exception of the
aforementioned MPI_Barrier, of course), some of them may do this, depending on the
algorithm they use. This may be a boon in some cases, because you can exploit this
side effect to your ends. You should avoid doing so, however, because if the algorithm
selection is changed for some reason, you may end up with no synchronization point
where you implied one, or vice versa.

About the only time when you may want to introduce extra synchronization points is
in the search for the load imbalance and its sources. In that case, having every iteration or
program stage start at approximately the same time across all the nodes involved may be
beneficial. However, this may also tilt the scale so that you will fail to see the real effect of
the load imbalance.

Using Derived Datatypes
There are a few more controversial topics besides the one related to the derived datatypes
(one word, as it appears in the MPI standard). As you may remember, these are opaque
MPI objects that basically describe the data layout in memory. They can be used almost
without limitation in any imaginable data-transfer operation in MPI.

Unfortunately, they suffer from a bad reputation. In the early days of MPI, the
implementors could not always make data transfer efficient in the presence of the
derived datatypes. This may still be the case now in some implementations, especially
if the datatype involved is, well, too involved. Owing to this mostly ungrounded fear,
application programmers try to use contiguous data buffers; and if they have to work with
noncontiguous data structures, they do the packing in and out themselves by hand or by
using the MPI_Pack/MPI_Unpack calls.

For most of the time, though, this is a thing of the past. You can actually win quite
a bit by using the derived datatypes, especially if the underlying MPI implementation
provides native support for them. Modern networks and memory controllers can do
scatter, gather, and some other manipulations with the data processed on the fly, without
any penalty you would need to take care of at this level. Moreover, buffer management
done inside the MPI library, as well as packing and unpacking if that ever becomes
necessary, is implemented using techniques that application programmers may simply
have no everyday access to. Of course, if you try hard enough, you will write your own
specific memory copy utility or a datatype unrolling loop that will do better than the
generic procedure used by your MPI implementation. Before you go to this trouble,
however, make sure you prove it’s worth doing.

Using Collective Operations
Another rudimentary fear widespread among application programmers is that of
suboptimal collective operations. Especially, older codes will go to great pains
tore-implement all collective operations they need on the basis of the earlier status of
MPI implementations.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

159

Again, this is mostly a thing of the past. Unless you know a brilliant new algorithm
that beats, hands down, all that can be extracted by the MPI tuning described earlier, you
should try to avoid going for the point-to-point substitute. Moreover, you may actually
win big by replacing the existing homegrown implementations with an equivalent MPI
collective operation. There may be exceptions to this recommendation, but you will have
to justify any efforts very carefully in this case.

Betting on the Computation/Communication Overlap
Well, don’t. Most likely you will lose out. That is, there is some overlap in certain cases,
but you have to measure its presence and real effect before you can be sure. Let’s look
into a couple of representative cases where you can hope to get something in return for
the effort of converting mostly deterministic blocking communication into the controlled
chaos of nonblocking transfers (again, this is the way the MPI standard decided to refer to
these operations).

This method may be effective if you notice that blocking calls make the program
stall and you have eliminated all other possible reasons for this happening. That is, your
program is soundly mapped onto the platform, is well load balanced, and runs on top of
a tuned MPI implementation. If in this case you still see that some processes stall in vastly
premature receive operations; or, on the contrary, you can detect an inordinately high
amount of unexpected receives (that is, messages arrive before the respective receive
operation is posted); or if your sending processes are waiting for the data to be pumped
out, you may need to act. A particular case of unnecessary serialization that happens
when processes wait for each other in turn is well described in the Tutorial: Detecting and
Removing Unnecessary Serialization.20

The replacement per se is rather trivial, at least at first. Every blocking send operation
is replaced by its nonblocking variant, like MPI_Send by MPI_Isend or MPI_Recv by
MPI_Irecv, with the closing call like MPI_Wait or MPI_Test issued later in the program.
You can also group several operations by using the MPI_Waitall, MPI_Waitsome, and
MPI_Waitany, and their MPI_Test equivalents. Here, you will do well by ordering the requests
passed to these calls so that those most likely to be completed first come first. Normally,
you want to post a receive operation just in time for the respective send operation to
match it on the other side. You may even go for special variations on the send operations,
like buffered, synchronous, or ready sends, in case this is warranted by your application
and it brings a noticeable performance benefit. This can be done with or without making
them nonblocking, by the way. Moreover, you can even generate so-called generic
requests or use persistent operations to represent these patterns, provided doing so
brings the desired performance benefit.

What is important to understand before you dive in is that the standard MPI_Send can
be mapped onto any blocking send operation depending on the message size, internal
buffer status in the MPI library, and some other factors. Most often, small messages
will be sent out eagerly in order to return control back to the application as soon as
possible. To this end, even a copy of the user buffer may be made, as in the buffered
send, if the message passing machinery appears overloaded at the moment. In any case,
this is almost equivalent to a nonblocking send operation, with the very next MPI call
implicated in the data transfer in any way actually kicking the progress engine and doing
what an MPI_Isend and/or MPI_Test would have done at that moment. Changing this
blocking operation to a nonblocking one would probably be futile, in many cases.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

160

Likewise, large messages will probably be sent using the rendezvous protocol
mentioned above. In other words, the standard send operation will effectively become
a synchronous one. Depending on the MPI implementation details, this may or may
not be equivalent to just calling the MPI_Ssend. Once again, in absence of a noticeable
computation/communication overlap, you will not see any improvement if you replace
this operation with a nonblocking equivalent.

More often than not, what does make sense is trying to do bilateral exchanges
by replacing a pair of sends and receives that cross each other by the MPI_Sendrecv
operation. It may happen to be implemented so that it exploits the underlying hardware
in a way that you will not be able to reach out for unless you let MPI handle this transfer
explicitly. Note, however, that a careless switch to nonblocking communication may
actually introduce extra serialization into the program, which is well explained in the
aforementioned tutorial.

Another aspect to keep in mind is that for the data to move across, something or
someone—in the latter case, you—will need to give the MPI library a chance to help you.
If you rely on asynchronous progress, you may feel that this matter has been dealt with.
Actually, it may or it may not have been, and even if it has been addressed, doing some
relevant MPI call in between, be aware that even something apparently pointless, like
an MPI_Iprobe for a message that never comes, may speed up things considerably. This
happens because synchronous progress is normally less expensive than asynchronous.

Once again, here the MPI implementation faces a dilemma, trading latency for
guarantee. Synchronous progress is better for latency, but it cannot guarantee progress
unless the program issues MPI calls relatively often. Asynchronous progress can provide
the necessary guarantee, especially if there are extra cores or cards in the system doing
just this. However, the context switch involved may kill the latency. It is possible that in
the future, Intel MPI will provide more controls to influence this kind of behavior. Stay
tuned; until then, be careful about your assumptions and measure everything before you
dive into chaos.

Finally, believe it or not, blocking transfers may actually help application processes
self-organize during the runtime, provided you took into account their natural desires.
If your interprocess exchanges are highly regular, it may make sense to do them in a certain
order (like north-south, then east-west, and so on). After initial shaking in, the processes
will fall into lockstep with each other, and they will proceed in a beautifully synchronized
fashion across the computation, like an army column marching to battle.

Replacing Blocking Collective Operations by MPI-3
Nonblocking Ones
Intel MPI Library 5.0 provides MPI-3 functionality while maintaining substantial binary
compatibility with the Intel MPI 4.x product line that implements the MPI-2.x standards.21
Thus, you can start experimenting with the most interesting features of the MPI-3
standard right away. We will review only the nonblocking collective operations here, and
bypass many other features.22 In particular, we will not deal with the one-sided operations
and neighborhood collectives, for their optimization is likely to take some time yet on the
implementor side. Of course, if you want to experiment with these new features, nobody
is going to stop you. Just keep in mind that they may be experimenting with you in return.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

161

Contrary to this, nonblocking collective operations are relatively mature, even
if their tuning may still need to be improved. You can replace any blocking collective
operation (including, surprisingly, the MPI_Barrier) by a nonblocking version of it, add a
corresponding closing call later in the program, and enjoy—what?

Let’s see in more detail what you may hope to enjoy. First, your program will
become more complicated, and you will not be able to tell what is happening with the
precision afforded by the blocking collectives. This is a clear downside. Even in the case
of the MPI_Ibarrier, you will not be able to ascertain when exactly the synchronization
happens, whether in the MPI_Ibarrier call itself (which is possible) or in the matching
closing call (which is probably desired). All depends on the algorithm selected by the
implementation, and this you can control only externally, if at all.

Next, tuning of the settings for the blocking collectives may not influence the
nonblocking ones and vice versa. Indeed, tuning of the nonblocking operations may not
be controllable by you at this moment, at all. In addition, the MPI standard specifically
clarifies that the blocking and nonblocking settings may be independent of each other, for
the sake of making proper choices on the actual performance benefits observed. This is
another clear downside.

On the bright side, you can use more than one nonblocking collective at a time over
any communicator, and hope to exploit the computation/communication overlap in as
much as is supported by the MPI library involved. In the Intel MPI Library, you may profit
from setting the environment variable MPICH_ASYNC_PROGRESS to enable.

EXERCISE 5-12

If your application fares better with the MPI-3 nonblocking collectives inside, let us
know; we are looking for good application examples to justify further tuning of this
advanced MPI-3 standard feature.

Using Accelerated MPI File I/O
If your program relies on MPI file I/O, you can speed it up by telling Intel MPI what
parallel file system you are using. If this is PanFS,23 PVFS2,24 or Lustre,25 you may obtain
noticeable performance gain because Intel MPI will go through a special code path
designed for the respective file system. To achieve this, enter the following commands:
 
$ export I_MPI_EXTRA_FILE_SYSTEM=on
$ export I_MPI_EXTRA_FILE_SYSTEM_LIST=panfs,pvfs2,lustre
 

You can mention only those file systems that interest you in the second line, of course.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

162

Example 5 (cont.): MiniGhost Performance Investigation
Analysis of the full miniGhost trace file done on the “small” problem size on the cluster
basically confirms all findings observed on the workstation (not shown). Surprisingly,
ITAC traces do not show MPI_Init anomaly in either case. Possibly, we have to do with a
so-called Heisenbug that disappears due to observation.

That phenomenon aside, if we can fix the substantially smaller workstation variant,
we should see gains in the bigger cluster case. This can be further helped by adjusting
the workstation run configuration so that it fully resembles the situation within one node
of the “small” cluster run by 12 MPI processes, four OpenMP threads, and respective
process layout and grid size. Thus, the problems to be addressed, in order of decreasing
importance, are as follows:

1.	 MPI_Init overhead visible only in the built-in statistics
output.

2.	 Load imbalance that hinders proper MPI_Allreduce
performance. This is the biggest issue at hand.

3.	 Communication related to the MPI_Waitany that may be
interacting with the load imbalance and detrimentally
affecting the MPI_Allreduce as well.

The MPI_Init overhead may need to be confirmed by repeated execution and
independent timing of the MPI_Init invocation using the MPI_Wtime to be embedded
into the main program code for this purpose (see file main.c). If this confirms that the
effect manifested by the statistics output is consistently observable in other ways, we
can probably discount the ITAC anomaly as a Heisenbug. At the moment of this writing,
however, our bets were on the involuntary change of the job manager queue that may
have contributed to this effect.

The earlier statistics measurements were done in a queue set up for larger jobs,
while the later ITAC measurements used another queue set up for shorter jobs, because
the larger queue became overloaded and nothing was moving there, as it usually does
under time pressure. This resulted in the later jobs being put onto another part of the
cluster, with comparable processors but with a possibly better connectivity. This once
again highlights the necessary of keeping your environment unchanged throughout the
measurement series, and of doing the runs well ahead of the deadlines.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

163

Load imbalance aside, we may have to deal with the less than optimal process layout
(4x4x6) prescribed by the benchmark formulation. Indeed, when we tried other process
layouts within the same job manager session, we observed that the communication along
the X axis was stumbling—and more so as more MPI processes were placed along it;
see Table 5-13:

Table 5-13.  MiniGhost Performance Dependency on the Process Layout (Cluster, 8 Nodes,
96 MPI Processes, 4 OpenMP Threads per Process)

Layout,
XxYxZ

Performance,
GFLOPS

Time,
Sec

4x4x6 3.69E+03 3.55E+01

1x8x12 3.72E+03 3.52E+01

8x1x12 3.55E+03 3.69E+01

8x12x1 3.41E+03 3.85E+01

1x1x96 3.10E+03 4.23E+01

1x96x1 3.11E+03 4.21E+01

96x1x1 1.72E+03 7.62E+01

Figure 5-16.  Typical MiniGhost exchange pattern (Workstation, 12 MPI processes,
4 OpenMP threads)

Let’s try to understand what exactly is happening here. If you view a typical
problematic patch of the miniGhost trace file in ITAC, you will notice the following
picture replicated many times across the whole event timeline, at various moments and at
different time scales, as shown in Figure 5-16.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

164

This patch corresponds to the very first and most expensive exchange during the
program execution. Rather small per se, it becomes a burden due to endless replication;
all smaller MPI communication segments after this one follow the same pattern or at
least have a pretty imbalanced MPI_Allreduce inside (not shown). It is clear that the
first order of the day is to understand why the MPI_Waitany has to work in such irregular
circumstances, and then try to correct this. It is also possible that the MPI_Allreduce will
recover its dignity when acting in a better environment.

By the looks of it, the pattern in Figure 5-16 resembles a typical neighbor exchange
implemented by nonblocking MPI calls. Since the very first MPI_Allreduce is a
representative one, we have no problem identifying where the prior nonblocking
exchange comes from: a bit of source code and log file browsing lead us to the file called
MG_UNPACK_BSPMA.F, where the waiting is done using the MPI_Waitany on all
MPI_Request items filled by the prior calls to MPI_Isend and MPI_Irecv that indeed
represent a neighbor data exchange. In addition to this, as the name of the file suggests
and the code review confirms, the data is packed and unpacked using the respective MPI
calls. From this, at least three optimization ideas of different complexity emerge:

1.	 Relatively easy: Use the MPI_Waitall or MPI_Waitsome instead
of the fussy MPI_Waitany. The former might be able to
complete all or at least more than one request per invocation,
and do this in the most appropriate order defined by the MPI
implementation. However, there is some internal application
statistics collection that is geared toward the use of
MPI_Waitany, so more than just a replacement of one call may
be necessary technically.

2.	 Relatively hard: Try to replace the nonblocking exchange with
the properly ordered blocking MPI_Sendrecv pairs. A code
review shows that the exchanges are aligned along the three
spatial dimensions, so that a more regular messaging order
might actually help smoothe the data flow and reduce the
observed level of irregularity. If this sounds too hard, even
making sure that all MPI_Irecv are posted shortly before the
respective MPI_Isend might be a good first step.

3.	 Probably impossible: Use the MPI derived datatypes instead
of the packing/unpacking. Before this deep modification
is attempted, it should be verified that packing/unpacking
indeed matters.

This coding exercise is only sensible once the MPI_Allreduce issue has been dealt
with. For that we need to look into the node-level details in the later chapters of this book,
and then return to this issue. This is a good example of the back-and-forth transition
between optimization levels. Remember that once you introduce any change, you will
have to redo the measurements and verify that the change was indeed beneficial. After
that is done, you can repeat this cycle or proceed to the node optimization level we
will consider in the following chapters, once we’ve covered more about advanced MPI
analysis techniques (to be continued in Chapter 6).

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

165

EXERCISE 5-13

Investigate the miniGhost MPI_Init overhead and clarify whether this is a
Heisenbug or not. If it is, contact Intel Premier and report the matter.

EXERCISE 5-14

Return here once the MPI_Allreduce load imbalance has been dealt with, and
implement one of the proposed source code optimizations. Gauge its effect on the
miniGhost benchmark, especially at scale. Was it worth the trouble?

Using Advanced Analysis Techniques
We have barely scratched the surface of capabilities offered by the Intel MPI and Intel
Trace Analyzer and Collector. This section introduces more advanced features that you
may need in your work, but you will have to read more about them before you can start to
use them.

Automatically Checking MPI Program Correctness
We started with the premise of a correctly written parallel application. Here’s the truth,
though: there are none. That is, there are some applications that manifest no apparent
errors at the moment. Even as we were writing this book, we detected several errors in
candidate programs of various levels of maturity, from our own naïve code snippets to
the venerable, internationally recognized, and widely used benchmarks. Some programs
would not build, some would not run, some would break on ostensibly valid input data,
and so on. This is all a fact of life.

Fortunately, if you use Intel MPI and ITAC, you can mitigate at least some of the risk in
trying to optimize an erroneous program. Just add option -check_mpi to your application
build string or the mpirun, run string, and the ITAC correctness checking library will
start watching all MPI transfers and checking them for many issues, including incorrect
parameters, potential or real deadlocks, race conditions, data corruption, and more.

This may cost quite some a bit at runtime, especially if you ask for the buffer check
sums to be computed and verified, or you used the valgrind in addition to check the
memory access patterns. However, in return you will get at least some of that warm
and fuzzy feeling that is otherwise unknown to programmers in general and to parallel
programmers in particular; that feeling, though, is the almost certain yet dangerously
wrong belief that your program is MPI bug free.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

166

Comparing Application Traces
You have seen how we compared real and ideal traces (see Figure 5-12). Actually, this is
a generic feature you can apply to any two traces. While comparing two unrelated traces
might be a bit off topic, comparing two closely related traces may reveal interesting
things. For example, you can compare two different runs of the same application, done on
different process counts or just having substantially different performance characteristics
on the same process count. Looking into the traces side by side will help you spot where
they differ. This is how to go about it:

1.	 Easiest of all, open two trace files you want to compare in one
ITAC session when starting up. This is how you can do this:
 
$ traceanalyzer trace1.stf trace2.stf
 

2.	 If you are already in an ITAC session where you have been
analyzing a certain trace file, open another file via the global
File/Open menu, and then use the File/Compare item.

3.	 If you want to do this by hand, open the files in any way
described above, configure to your liking the charts you want
to compare, and then use the global View/Arrange menu item
to put them side by side or on top of each other.

For example, if you do any of this for the real and ideal files illustrated in Figure 5-12,
you will get the results shown in Figure 5-17.

Figure 5-17.  MiniMD real and ideal traces compared side by side (Workstation, 16 MPI
processes)

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

167

This view confirms the earlier observation that, although there may be up to
2.5 times improvement to haul in the MPI area, the overall effect on the total program’s
execution time will be marginal. Another interesting view to observe is the Breakdown
Mode in the imbalance diagram shown in Figure 5-18 (here we again changed the default
colors to roughly match those in the event timeline).

Figure 5-18.  MiniMD trace file in ITAC imbalance diagra breakdown mode (Workstation,
16 MPI processes)

From this view you can conclude that MPI_Wait is probably the call to investigate
as far as pure MPI performance is concerned. The rest of the overhead comes from the
load imbalance. If you want to learn more about comparing trace files, follow up with the
aforementioned serialization tutorial.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

168

Instrumenting Application Code
Once in a while you may want to know exactly what is happening in the user part of
the application, rather than just observe the blue Group Application mentioned in the
respective ITAC charts. In this case you can use several features provided by Intel tools to
get this information:

1.	 Probably the easiest is to ask Intel compiler do the job for
you. Add the compiler option -tcollect to get all source
code functions instrumented to leave a trace in the ITAC trace
file. This option needs to be used both at the compilation
and at the linkage steps. If the number of the resulting call
tracing events is too high, use the -tcollect-filter variety
to limit their scope. You may—and probably should—apply
these features selectively to those files that interest you most;
otherwise, the trace file size may explode. You can find more
details in the ITC documentation.26

2.	 If you want complete control and are willing to invest some
time, use the ITAC instrumenting interface described in the
documentation mentioned above. An instrumentation source
code example that comes with the ITAC distribution will be a
good starting point here.

You can learn more about these advanced topics and also control the size of the trace
file, the latter which is very important if you want to analyze a long running or a highly
scalable application, in the Tutorial: Reducing Trace File Size.27

Correlating MPI and Hardware Events
As a final point before we close the MPI optimization, we give a recommendation on how
to correlate the ITAC trace events with the hardware events, including those registered by
the Intel VTune Amplifier XE data collection infrastructure.28 As usual, there is more than
one way to do this.

Collecting and Analyzing Hardware Counter Information in ITAC
Believe it or not, you can collect and display a lot of hardware counter information right in
the ITAC. Its facilities are not as extensive and automated as those of VTune Amplifier XE;
however, they can give you a good first hack at the problem. You can read about this topic
in the ITAC documentation. Note that quite a bit of hacking will be required upfront.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

169

Collecting and Analyzing Hardware Counter Information in VTune
If you have no time for hacking, you can choose the normal way. First, you need to launch
VTune Amplifier XE. There are, again, several methods to do so:

1.	 Launch amplxe-cl with mpirun. For example: Collect 1 result/
rank/node from M nodes – M result directories in total:
 
$ mpirun <machine file> -np <N> ... amplxe-cl -collect <analysis
type> ./your_app
 
Assumptions: N>M and at least 1 rank/node.

2.	 Collect 2 hotspots on the host ‘hostname’:
 
$ mpirun -host 'hostname' -np 14 ./a.out : \
 -�host 'hostname' -np 2 amplxe-cl –r foo -c hotspots

./your_app
 

3.	 Launch mpirun with amplxe-cl. For example: Collect N ranks
in one result file on a node (e.g., ‘hostname’):
 
$ amplxe-cl -collect <analysis type> ... -- mpirun -host
‘hostname’ -np <N> ./your_app
 

Limitation: Currently collects only on the localhost.
We will cover the rest of this topic in Chapter 6, but you may want to read the

Tutorial: Analyzing MPI Application with Intel Trace Analyzer and Intel VTune Amplifier
XE as well.29

Summary
We presented MPI optimization methodology in this chapter in its application to the Intel
MPI Library and Intel Trace Analyzer. However, you can easily reuse this procedure with
other tools of your choice.

It is (not so) surprising that the literature on MPI optimization in particular is rather
scarce. This was one of our primary reasons for writing this book. To get the most out of
it, you need to know quite a bit about the MPI programming. There is probably no better
way to get started than by reading the classic Using MPI by Bill Gropp, Ewing Lusk, and
Anthony Skjellum30 and Using MPI-2 by William Gropp, Ewing Lusk, and Rajeev Thakur.31
If you want to learn more about the Intel Xeon Phi platform, you may want to read Intel
Xeon Phi Coprocessor High-Performance Programming by Jim Jeffers and James Reinders
that we mentioned earlier. Ultimately, nothing will replace reading the MPI standard,
asking questions in the respective mailing lists, and getting your hands dirty.

We cannot recommend any specific book on the parallel algorithms because they are
quite dependent on the domain area you are going to explore. Most likely, you know all
the most important publications and periodicals in that area anyway. Just keep an eye on
them; algorithms rule this realm.

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

170

References
1. � MPI Forum, “MPI Documents,” www.mpi-forum.org/docs/docs.html.

2. � H. Bockhorst and M. Lubin, “Performance Analysis of a Poisson Solver Using Intel
VTune Amplifier XE and Intel Trace Analyzer and Collector,” to be published in TBD.

3. � Intel Corporation, “Intel MPI Benchmarks,”
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/.

4. � Intel Corporation, “Intel(R) Premier Support,”
www.intel.com/software/products/support.

5. � D. Akin, “Akin’s Laws of Spacecraft Design,”
http://spacecraft.ssl.umd.edu/old_site/academics/akins_laws.html.

6. � A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - A Portable
Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers,” www.netlib.org/benchmark/hpl/.

7. � Intel Corporation, “Intel Math Kernel Library – LINPACK Download,”
http://software.intel.com/en-us/articles/intel-math-kernel-library-
linpack-download.

8. � A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL FAQs,”
www.netlib.org/benchmark/hpl/faqs.html.

9. � “BLAS (Basic Linear Algebra Subprograms),” www.netlib.org/blas/.

10. � Sandia National Laboratory, “HPCG - Home,”
https://software.sandia.gov/hpcg/.

11. �� “Home of the Mantevo project,” http://mantevo.org/.

12. � Intel Corporation, “Configuring Intel Trace Collector,”
https://software.intel.com/de-de/node/508066.

13. � Sandia National Laboratory, “LAMMPS Molecular Dynamics Simulator,”
 http://lammps.sandia.gov/.

14. � Ohio State University, “OSU Micro-Benchmarks,”
http://mvapich.cse.ohio-state.edu/benchmarks/.

15. � Intel Corporation, “Intel MPI Library - Documentation,”
https://software.intel.com/en-us/articles/intel-mpi-library-documentation.

16. � J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-Performance Programming
(Waltham, MA: Morgan Kaufman Publ. Inc., 2013).

17. � “MiniGhost,” www.nersc.gov/users/computational-systems/nersc-8-
system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-
benchmarks/minighost/.

18. � Intel Corporation, “Tutorial: MPI Tuner for Intel MPI Library for Linux OS,”
https://software.intel.com/en-us/mpi-tuner-tutorial-lin-5.0-pdf.

http://www.mpi-forum.org/docs/docs.html
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://www.intel.com/software/products/support
http://spacecraft.ssl.umd.edu/old_site/academics/akins_laws.html
http://www.netlib.org/benchmark/hpl/
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://www.netlib.org/benchmark/hpl/faqs.html
http://www.netlib.org/blas/
https://software.sandia.gov/hpcg/
http://mantevo.org/
https://software.intel.com/de-de/node/508066
http://lammps.sandia.gov/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
https://software.intel.com/en-us/mpi-tuner-tutorial-lin-5.0-pdf

Chapter 5 ■ Addressing Application Bottlenecks: Distributed Memory

171

19. � M. Chuvelev, “Collective Algorithm Models,” Intel Corporation, Internal technical
report, 2013.

20. � Intel Corporation, “Tutorial: Detecting and Removing Unnecessary Serialization,”
https://software.intel.com/en-us/itac_9.0_serialization_pdf.

21. � A. Supalov and A. Yalozo, “20 Years of the MPI Standard: Now With a Common
Application Binary Interface,” The Parallel Universe 18, no. 1 (2014): 28–32.

22. � M. Brinskiy, A. Supalov, M. Chuvelev, and E. Leksikov, “Mastering Performance
Challenges with the New MPI-3 Standard,” The Parallel Universe 18, no. 1 (2014): 33–40.

23. � “PanFS Storage Operating System,” www.panasas.com/products/panfs.

24. � “Parallel Virtual File System, Version 2,” www.pvfs.org/.

25. � “Lustre - OpenSFS,” http://lustre.opensfs.org/.

26. � Intel Corporation, “Intel Trace Analyzer and Collector - Documentation,”
 https://software.intel.com/en-us/articles/intel-trace-analyzer-and-
collector-documentation.

27. � Intel Corporation, “Tutorial: Reducing Trace File Size,”
https://software.intel.com/en-us/itac_9.0_reducing_trace_pdf.

28. � Intel Corporation, “Intel VTune Amplifier XE 2013,”
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

29. � Intel Corporation, “Tutorial: Analyzing MPI Application with Intel Trace Analyzer
and Intel VTune Amplifier XE,”
https://software.intel.com/en-us/itac_9.0_analyzing_app_pdf.

30. � W. Gropp, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message Passing Interface, 2nd. ed. (Cambridge, MA: MIT Press, 1999).

31. � W. Gropp, E. L. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message
Passing Interface (Cambridge, MA: MIT Press, 1999).

https://software.intel.com/en-us/itac_9.0_serialization_pdf
http://www.panasas.com/products/panfs
http://www.pvfs.org/
http://lustre.opensfs.org/
https://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation
https://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation
https://software.intel.com/en-us/itac_9.0_reducing_trace_pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/itac_9.0_analyzing_app_pdf

	Chapter 5: Addressing Application Bottlenecks: Distributed Memory
	Algorithm for Optimizing MPI Performance
	Comprehending the Underlying MPI Performance
	Recalling Some Benchmarking Basics
	Gauging Default Intranode Communication Performance
	Gauging Default Internode Communication Performance
	Discovering Default Process Layout and Pinning Details
	Gauging Physical Core Performance

	Doing Initial Performance Analysis
	Is It Worth the Trouble?
	Example 1: Initial HPL Performance Investigation

	Getting an Overview of Scalability and Performance
	Learning Application Behavior
	Example 2: MiniFE Performance Investigation

	Choosing Representative Workload(s)
	Example 2 (cont.): MiniFE Performance Investigation

	Balancing Process and Thread Parallelism
	Example 2 (cont.): MiniFE Performance Investigation

	Doing a Scalability Review
	Example 2 (cont.): MiniFE Performance Investigation

	Analyzing the Details of the Application Behavior
	Example 2 (cont.): MiniFE Performance Investigation

	Choosing the Optimization Objective
	Detecting Load Imbalance
	Example 2 (cont.): MiniFE Performance Investigation

	Dealing with Load Imbalance
	Classifying Load Imbalance
	Addressing Load Imbalance
	Example 2 (cont.): MiniFE Performance Investigation
	Example 3: MiniMD Performance Investigation

	Optimizing MPI Performance
	Classifying the MPI Performance Issues
	Addressing MPI Performance Issues
	Mapping Application onto the Platform
	Understanding Communication Paths
	Selecting Proper Communication Fabrics
	Using Scalable Datagrams
	Specifying a Network Provider
	Using IP over IB
	Controlling the Fabric Fallback Mechanism
	Using Multirail Capabilities

	Detecting and Classifying Improper Process Layout and Pinning Issues
	Controlling Process Layout
	Controlling the Global Process Layout
	Controlling the Detailed Process Layout
	Setting the Environment Variables at All Levels

	Controlling the Process Pinning
	Controlling Memory and Network Affinity
	Example 4: MiniMD Performance Investigation on Xeon Phi
	Example 5: MiniGhost Performance Investigation

	Tuning the Intel MPI Library
	Tuning Intel MPI for the Platform
	Tuning Point-to-Point Settings
	Adjusting the Eager and Rendezvous Protocol Thresholds
	Changing DAPL and DAPL UD Eager Protocol Threshold
	Bypassing Shared Memory for Intranode Communication
	Bypassing the Cache for Intranode Communication

	Choosing the Best Collective Algorithms

	Tuning Intel MPI Library for the Application
	Using Magical Tips and Tricks
	Disabling the Dynamic Connection Mode
	Applying the Wait Mode to Oversubscribed Jobs
	Fine-Tuning the Message-Passing Progress Engine
	Reducing the Pre-reserved DAPL Memory Size
	What Else?

	Example 5 (cont.): MiniGhost Performance Investigation

	Optimizing Application for Intel MPI
	Avoiding MPI_ANY_SOURCE
	Avoiding Superfluous Synchronization
	Using Derived Datatypes
	Using Collective Operations
	Betting on the Computation/Communication Overlap
	Replacing Blocking Collective Operations by MPI-3 Nonblocking Ones
	Using Accelerated MPI File I/O
	Example 5 (cont.): MiniGhost Performance Investigation

	Using Advanced Analysis Techniques
	Automatically Checking MPI Program Correctness
	Comparing Application Traces
	Instrumenting Application Code
	Correlating MPI and Hardware Events
	Collecting and Analyzing Hardware Counter Information in ITAC
	Collecting and Analyzing Hardware Counter Information in VTune

	Summary
	References

