Skip to main content

Aldol Reactions with Preformed Enolates

Lithium Enolates

  • Chapter
Aldol Reactions
  • 1663 Accesses

The synthesis of lithium enolates and their application in aldol additions have been the subject of several reviews.1,2,3,4,5,6These are highly reactive, their handling is easy and they can be used on a large scale—even on an industrial scale.7 Ideal starting compounds proved to be chiral ene components. For that reasons most published results used this route. Heathcock et al. used lithium enolates of chiral carbohydrate-derived ketones in aldol additions. By additions to aldehydes moderate diastereo selectivities were detected.8,9,10Pioneering investigations were made by Seebach and coworkers.11 Enantiomerically pure 3-methyl-2- pentanone was converted into the corresponding lithium enolate. Subsequently addition of acetaldehyde, propion aldehyde or benzal-dehyde yielded the expected β-hydroxycarbonyl compounds. Later on, Seebach and coworkers developed the concept of ‘self-reproduction of chirality’, which is based on the use of chiral lactones.12 Aldehydes and unsymmetrical ketones were added to lithium enolates of readily available chiral acetales derived from lactic acid, mandelic acid or amino acids.13,14,15 High stereo selectivities were achieved. Liebeskind and Davies demonstrated that optically active iron acyl complexes can serve as chiral ene components.16,17 Thus, through a diastereoselective reaction high stereoselectivi-ties were observed. An improvement of this strategy was achieved by introducing a pentafluorophenyl containing phosphane ligand instead of triphenylphosphane.18 Due to acceptor—donor interactions of enolate oxygen and perfluorinated phenyl ring high stereoselectivities in reactions with aldehydes were observed. Yamamoto and cow-orkers applied acetates to aldol additions containing an axial chirality. The lithium enolates react with aldehydes in a highly stereoselective manner.19 Braun et al. developed a concept based on the use of hydroxy-1,1,2-triphenylethyl acetate (HYTRA).20 The starting materials—both enantiomers of methyl mandelate—are inexpensive and readily available. Double deprotonation of the starting chiral acetate 1 (commercially available) and addition to aldehydes yielded aldol adducts 2 and 3 in high diastereo meric ratios.21,22,23,24 The diastereoselectivity can be enhanced by further adding magnesium halides (see Scheme 2.1.1).

The reliability of this transformation was demonstrated by the application in the synthesis of a large number of biologically active compounds as well as natural products. This corresponds to the syntheses of γ-amino-β-hydroxybutanoic acid (GABOB),25 shikonin and alkannin,26 digitoxose,27 detoxinine28 and statin.29 Even stereoselective syntheses of tetrahydrolipstatine,30 compactin,31 epothilones,32 (23S)-hydroxyvitamin D3 derivatives33 and synthetic inhibitors of HMG-CoA reductase34 were carried out on an industrial scale with the aid of HYTRA aldol methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meckelburger HB, Wilcox CS (1993) In: Comprehensive Organic Synthesis, Trost BM, Fleming I, Heathcock CH (eds). Oxford, Pergamon, vol 2, p 99

    Google Scholar 

  2. Heathcock CH (1993) In: Comprehensive Organic Synthesis, Trost BM, Fleming I, Heathcock CH (eds). Oxford, Pergamon, vol 2, p 181

    Google Scholar 

  3. Heathcock CH (1992) In: Modern Synthetic Methods, Scheffold R (ed). Verlag Sauerlaender, Aarau, p 1

    Google Scholar 

  4. Braun M (2004) In: Modern Aldol Reactions, Mahrwald R (ed). Wiley-VCH, Weinheim, vol 1, p 1

    Chapter  Google Scholar 

  5. Braun M (2004) In: The Chemistry of Organolithium Compounds, Rappoport Z, Marek I (eds). Wiley, Chichester, p 829

    Chapter  Google Scholar 

  6. Tomooka K, Ito M (2004) In: Main Group Metals in Organic Synthesis, Yamamoto H (ed). Wiley-VCH, Weinheim, vol 1, p 1

    Chapter  Google Scholar 

  7. (a) Totter F, Rittmeyer P (1994) In: Organometallics in Synthesis—A Manual, Schlosser M (ed). Wiley, Chichester, p 167

    Google Scholar 

  8. (b) Hodgson D (2003) Organolithiums in Enantioselective Synthesis. Springer, New York

    Book  Google Scholar 

  9. Heathcock CH, White CT, Morrison JJ, vanDerveer D (1981) J Org Chem 46: 1296

    Article  CAS  Google Scholar 

  10. Heathcock CH, Pirrung MC, Buse CT, Hagen JP, Yound SD, Sohn JE (1979) J Am Chem Soc 101:7077

    Article  CAS  Google Scholar 

  11. Lodge EP, Heathcock CH (1987) J Am Chem Soc 109:3353

    Article  CAS  Google Scholar 

  12. Seebach D, Ehrig V, Teschner M (1976) Liebigs Ann Chem 1357

    Google Scholar 

  13. For a comprehensive overviews see (a) Seebach D, Sting AR, Hoffmann M (1996) Angew Chem 108:2880

    Google Scholar 

  14. (b) Seebach D, Imwinkelried R, Weber T (1986) In: Modern Synthetic Methods Scheffold R (ed). Verlag Sauerlaender, Aarau, p 125

    Google Scholar 

  15. Seebach D, Naef R, Calderari G (1984) Tetrahedron 40:1313

    Article  Google Scholar 

  16. Seebach D, Weber T (1984) Helv Chim Acta 67:1650

    Article  CAS  Google Scholar 

  17. Amberg W, Seebach D (1990) Chem Ber 123:2413

    Article  CAS  Google Scholar 

  18. Davies SG, Dordor IM, Warner P (1984) Chem Commun 956

    Google Scholar 

  19. For a comprehensive overview see McCallum K, Liebeskind LS (1996) In: Houben-Weyl, Methoden der Organischen Chemie, Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds). Thieme, Stuttgart, vol E21b, p 1667

    Google Scholar 

  20. Ojima I, Kwon HB (1988) J Am Chem Soc 110:5617

    Article  CAS  Google Scholar 

  21. Keito SS, Hatanka K, Kano T, Yamamoto H (1998) Angew Chem Int Ed 37:3378

    Article  Google Scholar 

  22. Braun M (1987) Angew Chem Int Ed Engl 26:24

    Article  Google Scholar 

  23. Braun M, Dervant R (1984) Tetrahedron Lett. 25:5031

    Article  CAS  Google Scholar 

  24. Dervant R, Mahler U, Braun M (1988) Chem Ber 121:397

    Article  Google Scholar 

  25. Braun M, Gräf S, Herzog S (1993) Org Synth 72:32

    Google Scholar 

  26. Braun M, Gräf S (1993) Org Synth 72:38

    Google Scholar 

  27. Braun M, Waldmüller S (1989) Synthesis 856

    Google Scholar 

  28. Braun M, Bauer C (1991) Liebigs Ann Chem 1157

    Google Scholar 

  29. Braun M, Moritz J (1991) Synlett 750

    Google Scholar 

  30. Ewing WR, Harris BD, Bhat KL, Joullie MM (1986) Tetrahedron 42:2421

    Article  CAS  Google Scholar 

  31. Wuts PGM, Putt SR (1989) Synthesis 951

    Google Scholar 

  32. (a) Barbier P, Schneider U, Widmer U (1987) Helv Chim Acta 70:1412

    Article  CAS  Google Scholar 

  33. (b) (1986) Eur Patent 185359

    Google Scholar 

  34. (a) Lynch JE, Volante RP, Wattley J V, Shinkai I (1987) Tetrahedron Lett. 28:1385

    Article  CAS  Google Scholar 

  35. (b) (1988) Eur Patent 251714

    Google Scholar 

  36. for an overview of this development see Schinzer D (2004) In: Modern Aldol Reactions, Mahrwald R (ed). Wiley-VCH, Weinheim, vol 1, p 311

    Chapter  Google Scholar 

  37. Yamanashi SR, Shimizu N (1966) Jpn Patent 08301811

    Google Scholar 

  38. (a) Patel DV, Schmidt RJ, Gordon EM (1992) J Org Chem 57:7143

    Article  CAS  Google Scholar 

  39. (b) German Patent 3805801

    Google Scholar 

  40. Woodward RB, Logush E, Nambiar KP, Sakan K, Ward DE, Au-Yeung BW, Balaram P, Browne LJ, Card PJ, Chen CH, Chênevert RB, Fliri A, Frobel K, Gais HJ, Garratt DJ, Hayakawa K, Heggie KW, Hesson DP, Hoppe D, Hoppe I, Hyatt JA, Ikeda D, Jacobi PA, Kim KS, Kobuke Y, Kojima K, Krowicki K, Lee VJ, Leutert T, Malchenko S, Martens J, Matthews RS, Ong BS, Press JB, Rajan Babu TV, Rousseau G, Sauter HM, Suzuki M, Tatsuta K, Tolbert LM, Truesdale EA, Uchida I, Ueda Y, Uyehara T, Vasella AT, Vladuchick WC, Wade PA, Williams RM, Wong HNC (1981) J Am Chem Soc 103:3210

    Article  CAS  Google Scholar 

  41. Heathcock CH, Young SD, Hagen JP, Pirrung CT, White CT, vanDerveer J (1980) J Org Chem 45:3846

    Article  CAS  Google Scholar 

  42. Reetz MT, Drewes MW, Schmitz A (1987) Angew Chem Int Ed Engl 26:1141; for a comprehensive overview see also Reetz MT (1999) Chem Rev 99:1121

    Article  Google Scholar 

  43. Lagu BR, Liotta DC (1994) Tetrahedron Lett 35:4485

    Article  CAS  Google Scholar 

  44. Evans DA, Cee VJ, Siska SJ (2006) J Am Chem Soc 128:9433

    Article  CAS  Google Scholar 

  45. Ando A, Shiori T (1989) Tetrahedron 45:4969

    Article  CAS  Google Scholar 

  46. (a) Majewski M, Nowak P (2000) J Org Chem 65:5152

    Article  CAS  Google Scholar 

  47. (b) Majewski M, Ulaczyk-Lesanko A, Wang F (2006) Can J Chem 84:257

    Article  CAS  Google Scholar 

  48. Yamago S, Machii D, Nakamura E (1991) J Org Chem 56:2098

    Article  CAS  Google Scholar 

  49. Schinzer D, Bauer A, Bohm OM, Limberg A, Cordes M (1999) Chem Eur J 5:2483

    Article  CAS  Google Scholar 

  50. Schinzer D, Bauer A, Schieber J (1999) Chem Eur J 5:2492

    Article  CAS  Google Scholar 

  51. Nicolaou KC, Montagnon T (2008) Molecules That Changed the World. WILEY-VCH, Weinheim

    Google Scholar 

  52. Paterson I, Chen DYK, Coster MJ, Acena JL, Bach J, Wallace D (2005) Org Biomol Chem 3:2431

    Article  CAS  Google Scholar 

  53. Pilli RA, Murta MM, Russowsk D, Boeckelmann MA (1991) J Braz Chem Soc 2:121

    CAS  Google Scholar 

  54. Hintermann T, Seebach D (1998) Helv Chim Acta 81:2093

    Article  CAS  Google Scholar 

  55. Doi T, Iijima Y, Shin-a K, Ganesan A, Takahashi T (2006) Tetrahedron Lett. 47:1177

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2009). Aldol Reactions with Preformed Enolates. In: Mahrwald, R. (eds) Aldol Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8701-1_2

Download citation

Publish with us

Policies and ethics