INTRUSION TOLERANCE FOR INTERNET
APPLICATIONS

Yves Deswarte and David Powell
LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
yves. deswarte @laas.fr, david.powell @laas.fr

Abstract: The Internet has become essential to most enterprises and many private
individuals. However, both the network and computer systems connected to it
are still too vulnerable and attacks are becoming evermore frequent. To face
this situation, traditional security techniques are insufficient and fault tolerance
techniques are becoming increasingly cost-effective. Nevertheless, intrusions
are very special faults, and this has to be taken into account when selecting the
fault tolerance techniques.

Key words: security, intrusion-tolerance, Internet, dependability, fault-tolerance

1. INTRODUCTION

Arpanet, the experimental network that was to give rise to the Internet,
was created by a small group of researchers and computer scientists who
wanted to improve communication between themselves and to share some
rare and expensive resources such as processors, mass storage and inter-
computer communication lines. The protocols and services that they
developed were aimed primarily at achieving the best possible availability,
despite the use of relatively unreliable components (communication lines,
routers, computers). They did not envisage any malicious use of the network
since it was only accessible to a small group of pioneers who had a common
aim: making the network work. None of them would have had the crazy idea
of experimenting with attacks endangering this common aim, since that
would probably have led to them being immediately expelled from the
group. It is thus natural that the developed protocols and services only took

242 Yves Deswarte and David Powell

into account transmission errors and accidental faults affecting hardware and
software, without worrying about malicious attacks and intrusions. For
example, in those protocols, nothing guarantees the authenticity of
addresses, which facilitates spoofing attacks and session hijacking.
Furthermore, the protocols include network maintenance functions, such as
source routing (a technique whereby the sender of a packet can specify the
route that a packet should take through the network), which can easily be
exploited to bypass protection mechanisms such as firewalls.

Today, the same protocols are used in the Internet, which has become a
totally open system, i.e., one to which anybody can have access. The current
users of the Internet are very different to those forming the small closely-knit
community of the original Arpanet. There are interactions between many
different user-categories: business-to-business (B2B), business-to-consumer
(B2C), citizen-to-administration (C2A) or government (e-Government), or
simply among private citizens, who create their own virtual communities.
The Internet is used for commercial, administrative, democratic, social, and
cultural reasons, or simply for recreation. Most uses of the Internet are
perfectly legitimate. No single group has the right to exclude another group
under the pretext that the latter could prevent the former from achieving its
objectives. Indeed, there would be no interest in doing so since it is the very
diversity of uses to which the Internet is put that enables it to exist at a
reasonable cost. Since the objectives are different, it is quite normal that the
security requirements are also different, and it would be unreasonable to
expect a schoolchild to manage his personal computer with as much care and
attention to security as would the administrator of a bank server, for
example. There are many more schoolchildren than banks, so it is not
surprising that many systems connected to the Internet are not well
administered. Such machines are very vulnerable to attack from malicious
persons or agents, who might attempt to take control of them to further
propagate their attacks. It is thus possible for attackers not only to increase
their firing power in order to perpetrate attacks targeted at well-protected
sites, but also to hide their tracks and make it more difficult to find clues
enabling them to be identified.

Attacks are very common, which is not really surprising: the users of the
Internet are more or less representative of the populations of developed
countries, and among the hundreds of millions of Internet users, there must
be a non-negligible proportion of individuals who are potential attackers.
The most frequent types of attacks, and also the easiest ones, are those aimed
against availability, by “denial of service”: the attacker aims simply to
prevent the targeted system from being used. Other attacks are aimed against
confidentiality: the attacker aims to obtain sensitive information such as
commercial, industrial, political, or even military secrets, but also personal

Intrusion Tolerance for Internet Applications 243

data whose disclosure may endanger people’s privacy. Yet other types of
attacks are aimed against the integrity of information: destruction or
modification of sensitive data, spreading of false information, manipulation
of published data, etc. Thus, one of the “sports” currently popular among
hackers is to “deface” Web servers, i.e., to alter (or deviate the access route
to) legitimate web pages so as to replace the displayed information by
humoristic, polemic or pornographic parodies.

Attackers have various motivations. They may act out of sport or by
curiosity (to carry out experiments), by vanity (to show off their
competence), by vandalism (for the pleasure of destruction or damage), by
vengeance (to hurt people they don’t like or to punish those who do not
consider them for their “merit”), by greed (blackmail, extortion), or even for
political, strategic or terrorist reasons. Attackers thus vary in degrees of
tenacity and competency, and are able to deploy different levels of resources,
according to whether they are disturbed adolescents, more-or-less structured
groups of hackers, simple thieves, criminal or terrorist organizations, or
government services specialized in electronic warfare.

There are also many ways to carry out attacks. They may exploit
vulnerabilities in networks or their protocols: eavesdropping (or “sniffing”),
interception (message destruction, insertion, modification or replay), address
falsification, injection of counterfeit network control messages (e.g., for
routing), and denial of service (e.g., by network jamming). Routers are also
becoming evermore-frequent targets. Attacks can also exploit flaws in
operating systems and application software, such as buffer or stack
overflows. It should also be noted that the Internet is also a medium for
spreading information about security vulnerabilities, both for hackers, and
for system administrators and developers. The former use this information to
develop and publish new “exploits” (i.e., methods for carrying out successful
attacks) or even scripts to carry them out automatically. The latter use the
same information to develop and publish remedies and patches. Like
Aesop’s tongue, the distribution of such security information over the
Internet can be both the best and the worst of things.

2. SHORTCOMINGS OF CONVENTIONAL
SECURITY TECHNIQUES

Computer and communication security relies mostly on user
authentication and authorization, i.e., control of access rights. Authentication
is necessary to identify each user with sufficient confidence, in order to
assign him adequate privileges and to make him responsible and liable for
his actions. Authorization aims to allow the user to perform only legitimate

244 Yves Deswarte and David Powell

actions. As much as possible, authorization should obey the least privilege
principle: at any given instant, a user can only perform the actions needed to
carry out the task duly assigned to him. Authorization is implemented
through protection mechanisms, which aim to detect and block any attempt
by a user to exceed his privileges. Security officers can then detect such
attempts and initiate legal actions, which in turn constitute deterrence against
further attempts. Authentication, authorization, detection, retaliation and
deterrence constitute the arsenal of security defenders.

Unfortunately, these weapons are of little efficiency in the context of the

Internet:

Any Internet user, even anonymous users, has some rights on connected
machines: e.g., the capacity to know their existence and to identify them
by their name or address, the ability to read pages on public Web servers,
etc.

Many systems connected to the Internet are accessible by the public at
large, making strong authentication infeasible. Weak mechanisms such as
password authentication are often used carelessly, e.g., password lending,
which makes it possible for one user to masquerade as another. Even
without the cooperation of a user, it is often easy to guess passwords.
COTS operating systems and application software contain many design
flaws that can be exploited by attackers to circumvent protection
mechanisms; when software companies develop and distribute patches to
correct such flaws, relatively few system administrators apply the patches
either because this would require more time or competence than
available, or because the patches may disable certain features needed by
other legitimate software.

As mentioned in the introduction, most Internet protocols were designed
thirty years ago, at a time when computing and communication resources
were expensive and unreliable, and when intrusions were unlikely; so
communication availability was the primary objective. Many facilities
developed for that purpose can be diverted by malicious agents to
perform denial of service attacks (e.g., by SYN flooding) or to multiply
their efficiency (e.g., by “smurfing”), to by-pass protection mechanisms
such as firewalls (e.g., by source routing), to hide their tracks (e.g., by IP
address spoofing), etc.

Due to harsh economic pressures, many Internet Service Providers and
telecommunication operators do not implement ingress filtering and
trace-back facilities, which would help to locate and identify attackers.

Intrusion Tolerance for Internet Applications 245

3. A DIFFERENT ANGLE ON SECURITY
METHODS

Almost twenty years ago, a few pioneering researchers contended that a
“tolerance” approach to security could be defined using concepts borrowed
from the area of dependable computing and fault-tolerance. Notable work of
this period includes that done by Laprie et al. [11, 17], Dobson and Randell
[15], Joseph and Avizienis [16]. More recently, institutionally-financed
research efforts such as the DARPA Organically Assured and Survivable
Information System (OASIS) program' and the European IST project on
Malicious and Accidental Fault Tolerance for Internet Applications
(MAFTIA)? have given new credence to the basic tenets of this early work.

Here, we briefly introduce and discuss two particularly-relevant key ideas
from the field of dependable computing and fault tolerance [3, 4, 18].

The first key concept is that three causally-related impairments to system
dependability need to be considered: fault, error and failure. A system failure
is an event that occurs when the service delivered by the system deviates
from correct service. An error is that part of the system state that may cause
a subsequent failure, whereas a fault is the adjudged or hypothesized cause
of an error. The notion is recursive in that a failure at one level can be
viewed as a fault at the next higher level (e.g., a component failure is a fault
seen from the containing system).

The labels given to these concepts conform to standard usage within the
dependability community, but the important point we would like to stress is
not the words but the fact that there are three concepts.

First, it is essential to be able to distinguish the internally observable
phenomenon (error) from the externally observable one (failure), which
tolerance techniques aim to avert. Indeed, any tolerance technique must be
based on some form of detection and recovery acting on internal
perturbations before they reach the system’s interface to the outside world.
The alternative viewpoint, in which any detectable anomaly is deemed to
make the system “insecure” in some sense, would make intrusion-folerance
an unattainable objective.

Second, the distinction between the internally observable phenomenon
(error) and its root cause (fault) is vital since it emphasizes the fact that there
may be various plausible causes for the same observed anomaly, including
an atypical usage profile, an accidental fault or an intentionally malicious
fault.

Thttp://www.tolerantsystems.org/
2 http://www.research.ec.org/maftia/

246 Yves Deswarte and David Powell

The type of intentionally malicious fault of particular concern here is an
intrusion, which is a deliberate software-domain® operational® fault. An
intrusion occurs when an attack is able to successfully exploit a
vulnerability. Attacks may be viewed either at the level of human activity (of
the attacker), or at that of the resulting technical activity that is observable
within the considered computer system. Attacks (in the technical sense) are
malicious faults that attempt to exploit one or more vulnerabilities (e.g.,
email viruses, malicious Java applets or ActiveX controls). The intrusion
resulting from the successful exploitation of a vulnerability by an attack may
be considered as an internal fault, which can cause errors that may provoke a
system security failure, i.e., a violation of the system’s security policy.

The second key concept from dependable computing is that methods for
designing and validating dependable systems can be broadly classified into
four broad categories:

* fault prevention: how to prevent the occurrence or introduction of faults,

¢ fault tolerance: how to deliver correct service in the presence of faults,

* fault removal: how to reduce the number or severity of faults,

* fault forecasting: how to estimate the present number, the future
incidence, and the likely consequences of faults.

Fault prevention and fault removal are sometimes grouped together as
fault avoidance; fault tolerance and fault forecasting constitute fault
acceptance. Note that avoidance and acceptance should be considered as
complementary rather than alternative strategies.

It is enlightening to equate “fault” in these definitions with the notions of
attack, vulnerability and intrusion defined earlier. Taking ‘“‘attack” in both its
human and technical senses leads to ten distinct security-building methods
out of a total of sixteen (see Table 1).

As discussed earlier, it would be illusory to imagine that all attacks over
the Internet might be prevented. Similarly, it is impossible to eliminate all
possible vulnerabilities. For example, the very fact that a system is
connected to the Internet is in itself a vulnerability, but what use would a
Web server be if it were not connected to the net? The focus in this paper is
therefore on intrusion-tolerance techniques, which should be seen as an
additional defense mechanism rather than an alternative to the classic set of
techniques grouped under the heading intrusion-prevention on Table 1.
Before addressing intrusion-tolerance per se, we first present some
background material on fault tolerance in the traditional sense of dependable
computing.

3 As opposed to faults in the hardware domain, e.g., physical sabotage.
4 As opposed to faults introduced during system development, e.g., trapdoors.

Intrusion Tolerance for Internet Applications

Table 1. Classification of Security Methods

247

Method Category | Attack | Attack | Vulnerability ! Intrusion
(human senss) technical sense) |
Prevention deterrence, laws, rewalls, semi-formal & . = attack &
(how to prevent social pressure, uthentication, + formal specification, | vulnerability
occurrence or secret service... | authorization... | rigorous design & | prevention &
introduction of....) § | ... Management removal .
Tolerance = vulnerability prevention & removal, = attack prevention : error detection &
(how to deliver intrusion tolerance & removal, intrusion : recovery, fault
correct service in tolerance = - masking, intrusion
the presence of...) : detection &
 response, fault
S Soe e i handling
Removal physical counter- preventive & | 1. formal proof, | C attack &
(how to reduce measures, capture | corrective i model-checking, i vulnerability
number or severity | of attacker I maintenance aimed | inspection, test... removal, =
of...) | at removal of attack | 2. preventive & ii.e., preventive &
| agents corrective ! corrective
maintenance, i maintenance.
! | including security |
| 3
Forecasting intelligence | assessment of - assessment of: vulnerability &
(how to estimate gathering, threat | presence of latent . presence of :
present number, assessment... | attack agents, - vulnerabilities,
future incidence, potential exploitation it
likely i consequences of | difficulty, potential |
consequences of... | their activation | conseguences... |
4. FAULT TOLERANCE

Fault tolerance [1] is a technique that has proven to be efficient to
implement computing systems able to provide a correct service despite
accidental phenomena such as environmental perturbations (external faults),
failures of hardware components (internal physical faults), or even design
faults such as software bugs.

As outlined in Section 3, faults are causes of errors, errors are abnormal
parts of the computing system state, and failures happen when errors
propagate through the system-to-user interface, i.e., when the service
provided by the system is incorrect. When faults are accidental and
sufficiently rare, they can be tolerated. To do so, errors must be detected
before they lead to failure, and then corrected or recovered: this is the role of
error handling. It is also necessary to diagnose the underlying faults (i.e., to
identify and locate the faulty components), so as to be able to isolate them,
and then replace or repair them, and finally to re-establish the system in its
nominal configuration: fault diagnosis, isolation, repair and reconfiguration
together constitute fault handling.

There are various techniques for detecting errors. For simplicity, we
categorize these as being either property-checks or comparison-checks.

Property-checks consist in observing the system state, in particular
certain values or events, and verifying they satisfy certain properties or rules.

248 Yves Deswarte and David Powell

This usually imposes only a small hardware or software overhead
(redundancy). Among hardware property-checks, let us note that most
microprocessors detect non-existing or unauthorized instructions and
commands, non-existing addresses and unauthorized access modes, and that
watchdogs can detect excessive execution durations. Software-based
property-checks include likelihood tests inserted into programs to check the
values of certain variables, or the instants or sequences of certain events
(defensive programming). Error detecting codes and run-time model
checking can also be viewed as property-checks.

Comparison-checks consist in comparing several executions, carried out
either sequentially on the same hardware, or on different hardware units.
This requires more redundancy than the first class of error detection
techniques, but it also assumes that a single fault would not produce the
same effect (i.e., identical errors) on the different executions. If only internal
physical faults are considered, the same computation can be run on identical
hardware units, since it is very unlikely that each hardware unit would suffer
an identical internal fault at the same execution instant to produce the same
error. On the contrary, design faults would produce the same errors if the
same process is run on identical hardware units, and thus the comparison of
the executions would not detect discrepancies. In that case, it is necessary to
diversify the underlying execution support (hardware and/or software), so
that a single design fault would affect only one execution, or at least would
affect differently the different executions [2, 7, 13].

To correct errors, one approach it to take the system back to a state that it
had occupied prior to the detection of errors, i.e., to carry out rollback
recovery. To be able to do that, it is necessary to have created and saved
copies of the system state, known as recovery points or checkpoints. Another
error correction technique is called forward recovery, which consists of
replacing the erroneous system state by a new, healthy state, and then
continuing execution. This is possible, for example, in certain real-time
control systems in which the system can be re-initialized and input data re-
read from sensors before continuing execution. Finally, a third technique
consists in “masking” errors; This is possible when there is enough
redundant state information for a correct state to be built from the erroneous
state, e.g., by a majority vote on three (or more) executions.

In most cases, the efficacy of fault tolerance techniques relies on the fact
that faults are rare phenomena that occur at random points in time. It is thus
possible, for example in a triple modular redundant architecture, to suppose
that is unlikely for a second unit to fail while a failed unit is being repaired.
This hypothesis is unfortunately not valid when intrusions are considered.
An attacker that succeeds in penetrating one system can pursue his attack on
that system, and also simultaneously attack other similar systems.

Intrusion Tolerance for Internet Applications 249

S. INTRUSION TOLERANCE

Intrusion tolerance aims to organize and manage a system such that an
intrusion in one part of the system has no consequence on its overall
security. To do that, we can use techniques developed in the traditional field
of fault tolerance. However, there are two main problems:

* [t should be made very difficult for the same type of attack to succeed in
different parts of the system. This means that each “part” of the system
must be sufficiently protected in its own right (so that there are no trivial
attacks), and should ideally be diversified.

* An intrusion into a part of the system should not allow the attacker to
obtain confidential data. This is especially important in that redundancy,
which is necessary for fault tolerance, may result in more alternative
targets for hackers to attack.

If these problems can be solved, we can apply to intrusions the
techniques that have been developed for traditional fault tolerance: error
handling (detection and recovery) and fault handling (diagnosis, isolation,
repair, reconfiguration).

5.1 Tolerance based on Intrusion Detection

In the context of intrusions, specific detection techniques have been
developed. These have been named “intrusion detection” techniques, but it
should be noted that they do not directly detect intrusions, but only their
effects, i.e., the errors due to intrusions (or even due to attacks which did not
successfully cause intrusions).

The so-called intrusion detection techniques may be divided into two
categories: anomaly detection and misuse detection (see Figure 1). Anomaly
detection consists in comparing the observed activity (for example, of a
given user) with a reference ‘“normal activity” (for the considered user). Any
deviation between the two activities raises an alert.

. aclivity
referance N anomaly deiection
A —— e

error repor

abnarmal misuse delection
activity
raferance

Figure 1. Intrusion Detection Paradigms

250 Yves Deswarte and David Powell

Conversely, misuse detection consists in comparing the observed activity
with a reference defining known attack scenarios. Both types of detection
techniques are characterized by their proportions of false alarms (known as
false positives) and of undetected intrusive activities (known as false
negatives). In the case of anomaly detection, one can generally adjust the
“threshold” or, by analogy with radar systems, the “gain” of the detector, to
choose a point of operation that offers the best compromise between the
proportions of false positives and false negatives. On the other hand, misuse
detection techniques have the advantage of identifying specific attacks, with
few false positives. However, they only enable the detection of known attack
symptoms. In both cases, it should be noted that detection is based on
property-checks.

To correct the damage caused by the intrusion, one may, like in
traditional fault tolerance, carry out backward recovery (if one has taken the
precaution of maintaining up-to-date backups) or forward recovery (if one
can rebuild a healthy state), but it is often easier and more efficient to mask
errors, using some form of active (or modular) redundancy.

5.2 Fragmentation-Redundancy-Scattering

Several years ago, we developed an error masking technique, called
“fragmentation, redundancy and scattering, or FRS”, aimed at protecting
sensitive data and computations [12]. This technique exploits distribution of
a computing system to ensure that intrusion into part of the system cannot
compromise the confidentiality, integrity and availability of the system.
Fragmentation consists of splitting the sensitive data into fragments such that
a single isolated fragment does not contain any significant information
(confidentiality). The fragments are then replicated so that the modification
or the destruction of fragment replicas does not impede the reconstruction of
correct data (integrity and availability). Finally, scattering aims to ensure
that an intrusion only gives access to isolated fragments. Scattering may be:
topological, by using different data storage sites or by transmitting data over
independent communication channels, or femporal, by transmitting
fragments in a random order and possibly adding false padding fragments.
Scattering can also be applied to privileges, by requiring the cooperation of
several persons with different privileges in order to carry out some critical
operation (separation of duty).

The FRS technique was originally developed in the Delta-4 project [19]
for file storage, security management and data processing (see Figure 2). For
file storage, fragmentation is carried out using simple cryptographic
techniques and fragment naming employs a secret key one-way function.
The fragments are sent over the network in a random order, which means
that one of the hardest tasks for an intruder would be to sort all the fragments

Intrusion Tolerance for Internet Applications 251

Smartcard s 4
 User Sites

Application
J Windows
Key i}
I
Shadow Networks
Scwﬂt:r @_‘J/ Sluﬁm
© Sies
File
Fragment

@&L
Proc msmg
Sites

|_

Applicatior
Fragment

Figure 2. Fragmentation-Redundancy-Scattering in Delta-4

into the right order before being able to carry out cryptanalysis. For security
management, the principle resides in the distribution of the authentication
and authorization functions between a set of sites administered by different
people so that failure of a few sites or misfeasance by a small number of
administrators do not endanger the security functions. On these sites, non-
sensitive data is replicated, whereas secret data is fragmented using threshold
cryptographic functions. Finally, for data processing, two data types are
considered: a) numerical and logical data, whose semantics are defined by
the application, (b) contextual data (e.g., character strings) that is subjected
only to simple operations (input, display, concatenation, etc.). In this
scheme, contextual data is ciphered and deciphered only on a user site during
input and display. In contrast, context data is subjected to successively finer
fragmentation until the fragments do not contain any significant information.
This is achieved using an object-oriented decomposition method.

6. THE INTERNET CONTEXT

The techniques developed in Delta-4 are well adapted to predominately
homogeneous applications that are distributed over a LAN. However, they
are not directly transposable to the Internet, especially when the concerned
applications involve mutually suspicious companies or organizations. In this
case, it is no longer possible to manage security in a homogeneous way.

252 Yves Deswarte and David Powell

Here, we briefly outline two projects were the tolerance approach has been
adapted to account for the inherent heterogeneity of the Internet.

6.1 The MAFTIA Project

The European project MAFTIA was directly aimed at the development of
intrusion-tolerant Internet applications [20]. Protocols and middleware were
developed to facilitate the management of fault-tolerant group
communications (including tolerance of Byzantine faults), possibly with
real-time, confidentiality and/or integrity constraints [5, 8, 9, 21]. In
particular, the developed protocols and middleware enabled the
implementation of trusted third parties or TTPs (e.g., a certification
authority) that tolerate intrusions (including administrator misfeasance) [6]
through error masking.

Particular attention was also paid to intrusion detection techniques
distributed over Internet, since intrusion detection not only contributes to
intrusion tolerance, but is itself an attractive target for attack. It is thus
necessary to organize the intrusion detection mechanisms in such a way as to
make them intrusion-tolerant [10].

Furthermore, the project developed an authorization scheme for
multiparty transactions involving mutually suspicious organizations (see
Figure 3) [14].

Authorization Server

Figure 3. MAFTIA Authorization Scheme

Intrusion Tolerance for Internet Applications 253

An authorization server, implemented as an intrusion-tolerant TTP,
checks whether each multiparty transaction is authorized. If that is so, the
server generates the authorization proofs that are necessary for the execution
of each component of the transaction (invocations on elementary objects).
On each of the sites participating in the authorization scheme, a reference
monitor, implemented on a JavaCard, checks that each method invocation is
accompanied by a valid authorization proof. The scheme is intrusion-tolerant
in the sense that the corruption of a participating site does not allow the
intruder to obtain any additional privileges regarding objects residing on
other sites.

6.2 The DIT Project

In cooperation with SRI International, we are participating in the
development of the DIT (Dependable Intrusion Tolerance) architecture [22].
The objective is to be able to build Web servers that continue to provide
correct service in the presence of attacks. For this type of application,
confidentiality is not essential, but integrity and availability must be ensured,
even if the system is under attack from competent attackers. It is thus
essential that a successful attack on one component of the system should not
facilitate attacks on other components. The architecture design is thus
centered on a diversification approach (Figure 4).

Application
Servers

5 HP/UX Openview Server
Proxies

Figure 4. DIT Architecture

The architecture is composed of a pool of ordinary Web servers, using as
much diversification as possible at the hardware level (Spare, Pentium,
PowerPC, etc.), the operating system level (Solaris, Microsoft Windows,
Linux, MacOS, etc.) and Web application software level (Apache, IIS,
Enterprise Server, Openview Server, etc.). Only the content of the Web
pages is identical on each server. There are sufficient application servers at a

254 Yves Deswarte and David Powell

given redundancy level (see below) to ensure an adequate response time for
the nominal request rate. The servers are isolated from the Internet by
proxies, which are implemented by purpose-built software executed on
diversified hardware. Requests from the Internet, filtered by a firewall, are
taken into account by one of the proxies acting as a leader. The leader
distributes the requests to multiple Web servers and checks the
corresponding responses before returning them to the request initiator. The
back-up proxies monitor the behavior of the leader by observing the
firewall/proxy and proxy/server networks. If they detect a failure of the
leader, they elect a new leader from among themselves. The proxies also
process alarms from intrusion detection sensors placed on the Web servers
and on both networks.

Depending on the current level of alert, the leader sends each request to
one server (simplex mode), two servers (duplex mode), three servers (triplex
mode) or to all available servers. Each server prepares its response, then
computes an MD5 cryptographic checksum of this response and sends it to
the leader. In simplex mode, the server also sends its response to the leader,
which recomputes the checksum and compares it to the one sent by the
server. In duplex mode, the leader compares the two checksums from the
servers and, if they concur, requests one the responses, which is verified by
recomputing the checksum. In triplex or all-available modes, the checksums
are subjected to a majority vote, and the response is requested from one of
the majority servers.

The alert level is defined as either a function of recent alarms triggered
by the intrusion detection mechanisms or other error detection mechanisms
(result cross-checking, integrity tests, etc.), or by information sent by
external sources (CERTSs, other trusted centers, etc.). The redundancy level
is raised towards a more severe mode as soon as alarms are received, but is
lowered to a less severe mode when failed components have been diagnosed
and repaired, and when the alarm rate has decreased. This adaptation of the
redundancy level is thus tightly related to the detection, diagnosis,
reconfiguration and repair mechanisms. In the case of read-only data servers,
such as passive Web servers, repair involves just a simple re-initialization of
the server from a back-up (an authenticated copy on read-only storage).

Diversification renders the task of the attacker as difficult as possible:
when an attacker sends a Web page request (the only means for him to
access the application servers), he does not know towards which servers his
request will be forwarded and thus which hardware or software will process
it. Even if he were able to design an attack that would be effective on all
server types (except maybe for denial-of-service attacks, which are easy to
detect), it would be very difficult to cause redundant servers (in duplex mode
and above) to reply in exactly the same incorrect way.

Intrusion Tolerance for Internet Applications 255

7. CONCLUSION

Given the current rate of attacks on Internet, and the large number of
vulnerabilities in contemporary computing systems, intrusion tolerance
appears to be a promising technique to implement more secure applications,
particularly with diversified hardware and software platforms. There is of
course a price to pay, since it is expensive to support multiple heterogeneous
systems. However, this is probably the price that must be paid for security in
an open, and therefore, uncertain world.

REFERENCES

[1] J. Arlat, Y. Crouzet, Y. Deswarte, J.-C. Laprie, D. Powell, P. David, J.-L. Dega,
C. Rabéjac, H. Schindler, and J.-F. Soucailles, “Fault Tolerant Computing”, in
Encyclopedia of Electrical and Electronic Engineering, vol. 7, J. G. Webster, Ed., Wiley-
Interscience, 1999, pp. 285-313.

[2] A, Avizienis and L. Chen, “On the implementation of N-version programming for
software fault tolerance during execution”, in First IEEE-CS International Computer
Software and Applications Conference (COMPSAC 77), Chicago, IL, USA, November
1977, IEEE CS Press, pp. 149-55.

[3] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental Concepts of Dependability”,
in 3rd Information Survivability Workshop, Boston, MA, USA, 24-26 October 2000,
IEEE CS Press, pp. 7-12.

[4] A. Avizienis, J.-C. Laprie, and B. Randell, “Dependability and its Threats:
A Taxonomy”, in Fault Tolerance for Trustworthy and Dependable Information
Infrastructures, IFIP World Computer Congress, Toulouse, France, August 2004,
Kluwer Academic Publishers (these proceedings).

[5] M. Backes and C. Cachin, “Reliable Broadcast in a Computational Hybrid Model with
Byzantine Faults, Crashes, and Recoveries”, in Proc. of the 2003 Int. Conf. on
Dependable Systems and Networks (DSN’2003), Washington, D.C., USA, 22-25 June
2003, IEEE CS Press, pp. 37-46.

[6] C. Cachin, “Distributing Trust on the Internet”, in Int. Conf. on Dependable Systems and
Networks (DSN-2001), Goteborg, Sweden, 14 July 2001, IEEE CS Press.

[7]1 L. Chen and A. Avizienis, “N-Version-Programming: A Fault-Tolerance Approach to
Reliability of Software Operation”, in 8th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-8), Toulouse, France, June 1978, IEEE CS Press, pp. 3-9.

[8] M. Correia, L. C. Lung, N. F. Neves, and P. Verissimo, “Efficient Byzantine-Resilient
Reliable Multicast on a Hybrid Failure Model”, in 21st IEEE Symp. on Reliable
Distributed Systems (SRDS’2002), Suita, Japan, 13-16 October 2002, IEEE CS Press.

[9] M. Correia, P. Verissimo, and N. F. Neves, “The Design of a COTS Real-Time
Distributed Security Kernel”, in 4th European Dependable Computing Conference
(EDCC-4), Toulouse, France, October 2002, Springer, pp. 234-52.

[10] H. Debar and A. Wespi, “Aggregation and Correlation of Intrusion-Detection Alerts”,
in Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, USA, 10-12 October
2001, Springer, pp. 85-103.

[11] Y. Deswarte, J.-C. Fabre, J. da Silva Fraga, J.-C. Laprie, and D. Powell, “The SATURNE
Project. A Fault- and Intrusion-Tolerant Distributed System”, IEEE Computer
Architecture Technical Committee Newsletter, pp. 4-22, 1985.

256 Yves Deswarte and David Powell

[12] Y. Deswarte, L. Blain, and J.-C. Fabre, “Intrusion Tolerance in Distributed Systems”,
in IEEE Symp. on Security and Privacy, Oakland, CA, USA, May 1991, IEEE CS Press,
pp. 110-21.

[13] Y. Deswarte, K. Kanoun, and J.-C. Laprie, “Diversity against Accidental and Deliberate
Faults”, in Computer Security, Dependability and Assurance: From Needs to Solutions,
P. Amman, B. H. Barnes, S. Jajodia, and E. H. Sibley, Eds., IEEE CS Press, 1999,
pp. 171-82.

[14] Y. Deswarte, N. Abghour, V. Nicomette, and D. Powell, “An Intrusion-Tolerant
Authorization Scheme for Internet Applications”, in Supplement of the IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (DSN’2002), Washngton, D.C., USA, 23-26
June 2002, pp. C.1.1-C.1.6.

[15]]. E. Dobson and B. Randell, “Building Reliable Secure Systems out of Unreliable
Insecure Components”, in IEEE Symp. on Security and Privacy, Oakland, CA, USA1986,
IEEE CS Press, pp. 187-93.

[16] M. K. Joseph and A. Avizienis, “A Fault Tolerance Approach to Computer Viruses”, in
IEEE Symp. on Security and Privacy, Oakland, CA, USA, April 1988, IEEE CS Press,
pp- 52-58.

[17]J.-C. Laprie, “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
in I5th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-15), Ann Arbor, MI, USA,
June 1985, IEEE CS Press, pp. 2-11.

[18] J.-C. Laprie, “Dependability: Basic Concepts and Terminology”, in Dependable
Computing and Fault-Tolerance, vol. 5, A. Avizienis, H. Kopetz, and J.-C. Laprie, Eds.
Vienna, Austria: Springer-Verlag, 1992, pp. 265.

[19] D. Powell, G. Bonn, D. Seaton, P. Verissimo, and F. Waeselynck, “The Delta-4
Approach to Dependability in Open Distributed Computing Systems”, in /8th IEEE Int.
Symp. on Fault-Tolerant Computing Systems (FTCS-18), Tokyo, Japan, June 1988, IEEE
CS Press, pp. 246-51.

[20] D. Powell, A. Adelsbach, C. Cachin, S. Creese, M. Dacier, Y. Deswarte, T. McCutcheon,
N. Neves, B. Pfitzmann, B. Randell, R. Stroud, P. Verissimo, and M. Waidner,
“MAFTIA (Malicious- and Accidental-Fault Tolerance for Internet Applications)”, in
Supplement of the IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN’2001), Goteborg, Sweden, 1-4 July 2001, pp. D32-D35.

[21] R. Stroud, I. Welch, J. Warne, and P. Ryan, “A Qualitative Analysis of the Intrusion-
Tolerant Capabilities of the MAFTIA Architecture”, in Int. Conf. on Dependable Systems
and Networks (DSN 2004), Florence, Italy, 28 June - 1 July 2004, IEEE CS Press.

[22] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saidi,
V. Stavridou, and T. E. Uribe, “An Architecture for an Adaptive Intrusion-Tolerant
Server”, in 10th International Workshop on Security Protocols (2002), Lecture Notes in
Computer Science, 2845 ed, Cambridge, UK: Springer, 2004, pp. 158-78.

