
WRAPPING THE FUTURE

Tom Anderson, Brian Randell and Alexander Romanovsky
School of Computing Science, University of Newcastle upon Tyne, UK
{tom.anderson, brian.randell, alexander.romanovsky}@newcastle.ac.uk

Abstract: Enclosing a component within a software “wrapper” is a well-established way
of adapting components for use in new environments. This paper presents an
overview of an experimental evaluation of the use of a wrapper to protect
against faults arising during the (simulated) operation of a practical and critical
system; the specific context is a protective wrapper for an off-the-shelf
software component at the heart of the control system of a steam raising boiler.
Encouraged by the positive outcomes of this experimentation we seek to
position protective wrappers as a basis for structuring the provision of fault
tolerance in component-based open systems and networks. The paper
addresses some key issues and developments relating wrappers to the
provision of dependability in future computing systems.

Key words: dependability; off-the-shelf components; fault tolerance; protective wrapping.

Many siren voices, and some harsh economic facts, argue in favour of off
the shelf (OTS) components as a way to reduce the costs of software system
development. Compared with bespoke design and development, the OTS
option offers a number of potential benefits, including: immediate
availability, proven in use, low price due to amortisation. The increasing
scale and complexity of modern software systems is a powerful driver for
modularity in design, which clearly chimes with a structured and therefore
such a component (or sub-system) based approach.

The need for economy is often most keenly felt in expensive systems,
and this can certainly be the case for systems that have critical requirements
(such as safety-critical systems). But it is in the nature of these systems that
they really must deliver on their requirements; their operational behaviour
must exhibit dependability; they must do what they are supposed to do, and
must not do what is prohibited (well, almost always). With a completely
bespoke development, designers can strive very hard to achieve a



166 Tom Anderson, Brian Randell and Alexander Romanovsky

dependable system, and regulators can obtain access to extensive
information on the development process (as well as the delivered product) in
order to evaluate a documented justification that the system will meet its
critical requirements (for example, a safety case). Utilisation of an OTS
software component is likely to inhibit this evaluation, since – in the extreme
case – the component may have to be viewed as a black box, with no
information on its inner workings or its development; the proven-in-use
evidence for the component’s suitability may, or may not, be valid, but such
evidence cannot be relied upon if it is merely anecdotal or does not relate to
an identical use environment.

So, consider the situation where use of an OTS software component is
feasible and there is a strong financial reason for doing so, but the
component’s behaviour needs to be trusted, and we have insufficient
evidence to justify that trust. How can we proceed? The approach to be
considered in this paper is a simple application of diversity to provide an
architectural solution. The OTS component will be enclosed in a bespoke
protective wrapper [Voa98, Arl02], a purpose designed additional
component that intercepts all inputs to, and outputs from, the OTS
component in order to monitor its behaviour. The aim is for the wrapper to
deal with any problems arising from inadequate behaviour of the OTS
component, ideally masking any such deleterious effects from the rest of the
system. This is thus a special case of the more general use of software
wrapping, a technology that has a long history of use as a means of adapting
existing components for use in new environments.

1. THE DOTS PROJECT

DOTS – “Diversity with OTS components” – is a joint project at CSR
(Centre for Software Reliability) in Newcastle and City Universities, funded
by the UK EPSRC. Work at Newcastle is exploring architectural approaches
to diversity in the presence of OTS items, while colleagues at City
concentrate on assessment of the benefits that can be expected.

Our architectural exploration has concentrated on protective wrapper
technology, a phrase that gives an appealing technical ring to this simplistic
approach of enveloping a possibly suspect component. However, despite its
apparent simplicity, there are a range of issues to consider and questions to
be asked. We believe that our work gives some encouragement that positive
answers may be given to the following questions:

is protective wrapper technology feasible in practical systems?
can protective wrappers detect and respond successfully to erroneous
situations in practical systems?



Wrapping the Future 167

In order to draw conclusions for practical systems we sought realism in
our investigation. Experimentation with a real-world critical system would
be fraught with peril, so we made use of a software model of a real-time
software system. To maximise realism we adapted a model taken directly
from industry: a Honeywell-supplied industrial grade simulation of a steam
boiler and its associated control system. Written in Simulink [Mat], the
model represents a real steam raising system in which a coal-fired boiler
responds to demands for steam under the operational authority of an
automated control system; the control system consists of a PID (i.e.
Proportional, Integral and Derivative) controller together with a range of
smart sensors, actuators, and configuration controls (collectively referred to
as the ROS (rest of system)), as illustrated in Figure 1.

Figure 1. Boiler System and Control System

We chose to treat the PID controller as an OTS item, and then developed
a (simulated) protective wrapper that can monitor and, when appropriate,
modify all input/output signals between the PID controller and the rest of the
control system. As a purely protective wrapper there was no intention to
adjust or upgrade the PID controller’s behaviour at the interface; the aim was
simply to provide fault-tolerant elements that can detect and recover from
errors. In designing the wrapper we only had access to limited information
about the operation of the boiler and the control system; furthermore we
deliberately ignored any details of the inner working of the PID controller,
treating it as a black box. Ideally we would have wished for access to a full
external specification of the PID controller, but the lack of this made our
position even more realistic.

In creating our own, approximate, specification for the PID controller we
built up a set of Acceptable Behaviour Constraints (ABCs) [Pop01] which
stipulate what may be considered as acceptable behaviour at the interface
between the PID controller and the rest of the control system.



168 Tom Anderson, Brian Randell and Alexander Romanovsky

2. ERROR DETECTION

Given the limitations of the scenario we were exploring our strategy for
error detection was necessarily based on a systematic application of generic
criteria. Erroneous situations can arise anywhere in the system, but the
wrapper can only check for symptomatic “cues” at the interface to the PID
controller. The wrapper was programmed to check inputs to the PID
controller cyclically against constraints established as ABCs (missing,
invalid, unacceptable, marginal or suspect values from the sensors or
configuration variables). Similarly, outputs from the PID controller were
also checked against ABCs (missing, invalid or unacceptable values
intended for the actuators). Thus we were attempting to deal with both the
PID’s monitoring and its control activities.

To help inform the next stage of wrapper design we categorised these
error cues as follows:

unavailability of signal (inputs or outputs),
signal violating specified constraints (usually out of range errors),
excessive signal oscillations (in amplitude or frequency).
Additionally, we recognised that with respect to the safety of the system,

some erroneous situations are much more acute than others. In a steam
boiler, a key parameter is the “drum level”; this parameter measures the
mass of water contained in the boiler drum more accurately than the “water
level” (which is also monitored, of course). Too little water and the boiler
tubes are exposed to heat stress, too much and water could go over the
header causing corrosion. The danger of excessive steam pressure is obvious
and explosive. Thus detected errors that concerned either steam pressure or
the quantity of water in the drum were designated as needing an immediate
and effectual response. (A boiler operated via a PID controller is one of the
most widely deployed systems, installed in many industrial facilities and
residential houses, for the safe and reliable generation of steam and/or hot
water. Nevertheless, critical incidents in these systems lead to deaths and
injuries every year [Nat03].)

3. ERROR RECOVERY

The purpose of error recovery is to transform a system state that contains
errors to one that does not. Backward recovery returns the system to a
previous state, prior to the incidence of error, and is unlikely to be available
for OTS components. So our protective wrapper attempts to implement
application-specific forward recovery, which does not discard the current



Wrapping the Future 169

state. Exception handling provides a general framework for such forward
recovery.

We implemented three elementary recovery actions:
H1: reset signal to normal value and alert operator
H2: wait if error goes away no action taken; otherwise send alarm to
operator and wait no further action if error goes away; otherwise
invoke H3 {delay times and chosen by the wrapper designer}
H3: shut system down and send alarm to operator.

We then devised a rationale for a recovery strategy in which:
all errors for PID controller outputs invoke H1
all errors from configuration controls invoke H1
all PID input errors (except drum level and steam pressure) invoke H2
excessive signal oscillation errors concerning drum level and steam
pressure invoke H2
all other errors concerning drum level and steam pressure invoke H3.

[Adopting this (or any other) recovery strategy for an actual boiler plant
would, of course, require safety analysis and justification.]

In our experimental situation, having implemented a protective wrapper
with a detection and recovery capability we need to observe how well the
system responds. Initial test exercises gave very positive indications, and we
have just completed a first phase of setting up a range of fault injection
scenarios, running these, and recording the outcomes. Our fault injection
scenarios involve signal communication faults (bias, random noise, stuck-at
previous, stuck-at random) and faults that impinge directly on the algorithms
of the PID controller (transient zeros, control parameter overwrites). A
preliminary examination of the experimental data generated indicates that
the wrapper has been very effective in reducing serious failures of the boiler
system.

4. PROTECTIVE WRAPPING – WHAT NEXT?

Thus far we merely claim to have built a reasonably realistic, albeit rather
simplistic, demonstrator of a protective wrapper in action to enhance the
dependability of an industrial OTS component, with encouraging early
results. The exercise of working with the demonstrator has helped us to
address a number of specific concerns, which we consider in more detail
elsewhere [And03a, And03b, And03c]. However, and much more
significantly, we now discern a salient role for wrapper technology as a
means for structuring, designing and building future ICT systems. We
believe that protective wrapping has considerable promise as a uniform
approach for incorporating fault tolerance into new and existing complex



170 Tom Anderson, Brian Randell and Alexander Romanovsky

systems, particularly when these are organised and created as integrative
networks of interacting components.

Openness is often considered to be one of the defining characteristics of
the ICT systems that are expected to be widely deployed in future – systems
that will support mobile access and that are pervasive of society; systems
that deliver ambient “intelligence” in terms of services, information,
processing and communication; networks of heterogeneous
systems/components which interact with (and depend upon) other networks;
sub-networks that combine and decompose dynamically. Openness allows
on-line composition, reconfiguration, evolution and upgrading, performed on
the basis of a dynamic analysis of the available information representing
possible changes. This flexibility is made possible by features that can be
used dynamically to select or devise optimal configurations, and then to
realise these configurations by locating, deploying and integrating the
appropriate components. Openness is usually understood in the widest
possible sense, in that it should allow systems to deal with changes in:
requirements, location (mobility), quality of service (QoS) characteristics,
the environment, component behaviour, users’ expectations, users’
behaviour, etc. Clearly this must include dealing with changes due to
accidental or malicious faults.

There is a significant challenge in identifying and developing fault
tolerance solutions that fit the specific characteristics of open systems;
protective wrapping has considerable potential to be one of the fundamental
fault tolerance techniques needed, primarily because it sits well with the
open network based approach but also because it provides such a simple but
general starting point. Of course, there are numerous issues that will need to
be examined further before that potential can be converted into a fully
effective approach. Among these issues we can draw attention to:

wrapper deficiencies – the role of a protective wrapper is to improve
system dependability by providing an error detection and recovery
capability, but there is always a risk in including defensive mechanisms
for fault tolerance that by adding an additional software component new
opportunities for erroneous computation may arise; the best general
guidance is to keep wrappers as simple as possible
formal development of wrappers – the need to minimise the risk of a
protective wrapper introducing additional fault modes is not only a driver
for simplicity in wrapper design, but also for adherence to stringent and
rigorous development practice; we see a basis for progress here based on
contracts derived from constraint-based specification of component
interfaces (e.g. ABCs), and by exploiting compositional semantics
timing issues – there is considerable scope for considering how best a
protective wrapper should stipulate and monitor deadlines, and react to



Wrapping the Future 171

delays; strategies and protocols from distributed systems work will need
to be adapted for open networks
scoping issues – the most simplistic image of a protective wrapper gives
it full access to all communications across the wrapped component’s
interface and no access to any variables elsewhere in the system (either
internal to the wrapped component or in its environment), but any
realistic implementation is likely to deviate from this artifice; it will
rarely be feasible or necessary to control each and every component
interaction, access to internal values (though often undesirable and/or
inhibited by lack of knowledge) may be possible and of benefit in special
circumstances, and supplementary information about external conditions
could be an invaluable guide to the operation of the wrapper (both for
error detection and response)
wrapper interactions – a set of protective wrappers in a network of
wrapped components may need to be able to communicate and interact in
order to best achieve their several and collective dependability
objectives; imposing constraint and mediation on inter-wrapper
communication is likely to involve approaches based on interactive
consistency solutions
The above list of bulleted topics could be extended almost indefinitely,

for instance with issues from specific dependability domains (safety and
security, for example) and more general systems engineering concerns
(modelling and requirements, for example) but instead we move on, to relate
the technology of protective wrapping to anticipated developments in the
dependability of systems more generally.

A recently-commissioned Foresight document [Jon04] identified a
number of core directions for future research in dependability, including:
dependability-explicit systems, cost-effective formal methods, architecture
theory, and adaptivity. In the remainder of this paper we outline how
advances in these four areas could impact on protective wrapper technology,
and vice-versa.

Dependability-explicit system development [Kaâ00] is an emerging area
of research which supports the explicit incorporation of dependability-
related information into system development artefacts right through the
development life-cycle, starting from the earliest phases of development, and
continuing through to on-line support for maintaining, updating and
exporting this dependability information within the operational system (with
reference to the current state of the system and its environment). Examples
of dependability information are fault descriptions, expected
normal/abnormal behaviour, redundancy resources, mappings between errors
and handlers, abnormal situations that components are capable of handling,
failure frequency data, etc. Protective wrapping fits this approach extremely



172 Tom Anderson, Brian Randell and Alexander Romanovsky

well, since such data will be relevant for informing decisions by the
wrappers relating to error detection and recovery, potentially allowing the
evolution of wrappers in response to changes in system and environment
behaviour, and after network reconfiguration. Furthermore, wrappers are an
obvious candidate mechanism for processing the dependability information,
and publishing it across the network.

Research on cost-effective formal methods will contribute to overall
system dependability by accumulating a set of advanced tools (operating
within an open platform) for cutting-edge formal development methods
focussed on fault tolerance, mobility and adaptivity. Formal models of future
open systems will enable wrappers to be rigorously described, and the
systems containing them to be formally analysed. A key research objective is
the development of tools that can analyse the models of a system and a
specific component, from that analysis determine requirements for a
protective wrapper for the component, and then generate the wrapper model
– with the long term objective that this analysis and generation can be
performed fully automatically as an adaptive open system evolves.

Architecture theory research aims to provide methods for reasoning about
dependability concerns at an architectural level much earlier in system
development. Protective wrappers provide a major structuring approach that
embodies fault tolerance capabilities (including confinement of error
propagation, and exception handling), but they will need to have adequate
architectural support. In particular, there is a need to introduce recursive
architectural solutions that can integrate wrappers within the architectural
styles that will be typical for future open systems. Wrappers will then serve
as a cardinal structure for introducing and managing redundancy at the
architectural level. The focus should be on preserving architectural
representations throughout all development phases until runtime execution to
enable dynamic changes of architecture to be made online to improve overall
system dependability.

It seems clear that future systems will need to have adaptivity, so that
they can respond to changing environments, altered patterns of use, modified
requirements and more. They will need to be dynamically upgradeable and
reconfigurable; they will need to have a capacity for adjustment and
evolution. Despite this mutability, users will demand that the dependable
delivery of service be sustained. Wrappers could provide the fundamental
structure supporting component-level adaptation and evolution; protective
wrappers could embody fault tolerant defences in support of dependable
operation.



Wrapping the Future 173

5. CONCLUSION – ONLY A BEGINNING!

Protective wrappers offer a simplicity of concept and a generality of
applicability that is attractive and encouraging. But it must be acknowledged
that this welcome simplicity defers many of the difficult issues to the next
stage of research and development.

We close this paper with the observation that all computing systems are
(eventually) embedded in groups of humans – that is, in society. Members of
society will need future computing systems to be wrapped as a protective
mechanism and, in turn, it may be appropriate (in effect) to wrap the users to
protect the systems. Very basic protective wrappers are already essential to
shield us from the excesses created by something as trivial as spam e-mails!

ACKNOWLEDGEMENT

This work was partially supported by the UK EPSRC DOTS project.

REFERENCES

[And03a] T. Anderson, M. Feng, S. Riddle, A. Romanovsky. Error Recovery for a Boiler
System with OTS PID Controller, CS Technical Report 798, May 2003, School of
Computing Science, Univ. of Newcastle (presented at ECOOP 2003, Darmstadt).

[And03b] T. Anderson, M. Feng, S. Riddle, A. Romanovsky. Protective Wrapper
Development. Proc. Int. Conf. on COTS-Based Software Systems, Ottawa, Canada,
February 2003, pp. 1-14.

[And03c] T. Anderson, M. Feng, S. Riddle, A. Romanovsky. Investigative Case Study:
Protective Wrapping of OTS items in Simulated Environments. CS Technical Report 821,
December 2003, School of Computing Science, Univ. of Newcastle (submitted to
COMPSAC 2004).

[Arl02] J. Arlat, J.-C. Fabre, M. Rodríguez, F. Salles. Dependability of COTS Microkernel-
Based Systems. IEEE Trans. on Computers. 51, 2, 2002, pp. 138-163.

[Jon04]C. B. Jones, B. Randell. Dependable Pervasive Systems. Foresight report, DTI, UK.
2004.

[Kaâ00] M. Kaâniche, J.-C. Laprie, J.-P. Blanquart, A Dependability-Explicit Model for the
Development of Computing Systems. Proc. SAFECOMP 2000. Rotterdam, The
Netherlands, 2000, pp. 107-116.

[Mat] Mathworks, Using Simulink: reference guide, http://www.mathworks.com
[Nat03] The National Board of Boiler and Pressure Vessel Inspectors. 2002 National Board

Incident Report, http://www.nationalboard.org/incidents/02-IR.html, 2003.
[Pop01] P. Popov, S. Riddle, A. Romanovsky, L. Strigini. On Systematic Design of Protectors

for Employing OTS Items. Proc. Euromicro Conf., Warsaw, Poland, September 2001,
pp. 22-29.

[Voa98] J. Voas. Certifying OTS Software Components, IEEE Computer 31, 1998, pp. 53-59.




