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Abstract. This chapter examines the superscalar pipeline Fast Fourier 

Transform algorithm and architecture. The algorithm presents a memory 

management scheme that avoids memory contention throughout the pipeline 

stages. The fundamental algorithm, a switch-based FFT pipeline architecture 

and an example 64-point FFT implementation are presented. The pipeline 

consists of log2N stages, where N is number of FFT points. Each stage can have 

M Processing Elements (PEs.)  As a result, the architecture speed up is 

M*log2N. The pipeline algorithm is configurable to any M > 1. 

I. INTRODUCTION 

THE FAST FOURIER TRANSFORM (FFT) ALGORITHM, presented in [1], is a standard 

method for computing the Discrete Fourier Transform (DFT). The FFT algorithm 

consists of log2N loops; where each loop executes N/2 complex operations. FFT 

processor design has been researched extensively in the last few decades for speed, 

area and power optimization. As a result, many implementations have been proposed 

and developed to address one or more of the following optimization areas: 

architecture, memory access and power consumption. A variety of FFT architectures 

have been proposed, which employ different techniques such as pipelining, multi-

processing and cache-design, as shown in Figure 1 [2]. A single memory architecture 

consists of a scalar processor connected to a single N-word memory via a 

bidirectional bus. While this architecture is simple, its performance suffers from 

inefficient memory bandwidth. A cache memory architecture adds a cache memory 

between the processor and the memory to increase the effective memory bandwidth. 

A dual memory architecture uses two memories connected to a digital array signal 

processor. A memory controller generates addresses to memories in a ping-pong 

fashion. The processor array architecture consists of independent processing 

elements, with local buffers, which are connected using an interconnect network. 

Finally, the pipeline FFT architecture utilizes logrN blocks; each block consists of 

delay lines and radix-r butterfly units.    

Processor memory access is another area of optimization that has received 

considerable research. Several algorithms have been proposed to avoid memory 

contention. Specifically, the address generation algorithm and logic are optimized for 

speed and area. A memory address generation scheme was presented by Cohen in [3], 

that allows parallel organization of memory so that the pairs of data that are used at 

any instant reside in different memories. The address generation is based on a counter, 
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shifters and rotators. In [4], Pease proposed dividing the memory into sub-memories 

for overlapping the access. He observed that the operand addresses differ only in the 

(n-i)-th bit for the butterfly operand pair in stage i, where n is the number of address 

bits. A multi-bank memory address assignment for a radix-r FFT was developed in 

[5]. A fast address generation scheme is described in [6] with hardware cost 

comparable to the address generation scheme in [3]. Ma and Wanhammar presented 

an address generation scheme in [7] to reduce the hardware complexity and power 

consumption. Power is reduced by activating only half of the memory during memory 

access and by minimizing the number of memory accesses. The methods do not 

address conflicts for multi-processors accessing memory simultaneously. 

 

 

Fig. 1. FFT Processor Memory-System Architectures (after [2])  

Lastly, several power reduction techniques were designed for energy-efficient 

processors; including techniques to reduce memory accesses. A cache-memory 

architecture was described in [8] to reduce communication energy between FFT 

processors and memories. In [9] and [10], Zhong, et al. described a power-scalable 

reconfigurable ring-architecture multiprocessor for a single chip FFT/IFFT processor. 
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The processor is capable of processing different FFT sizes with scalable power across 

FFT sizes. However, while the use of the processor ring architecture seems to be an 

interesting idea, the case for using the ring architecture to compute FFTs is weak. The 

architecture seems to be better suited for more serialized computations such as FIR 

filters. Also, large values of N require more complex processor programs. Further, 

power does scale well for N ≤ 128. 

This chapter presents a superscalar pipeline architecture to achieve maximum speed 

for FFT processing. A switch fabric controls and connects single-port memories and 

processing elements (PEs). A memory management algorithm avoids memory access 

contention. Rearranging data in the memories requires tracking them throughout the 

pipeline to process the right pair of data for FFT computations. The ordering of data 

elements is used to calculate the twiddle factors and other important indices. The 

algorithm provides an implicit method to track data. The superscalar pipeline achieves 

a speed up of M*log2N. 

The chapter is organized as follows. Section II discusses current pipeline designs. 

Next, Section III explains the pipeline architecture and analyzes pipeline speedup 

hazards and optimizations. Section IV discusses hazard conditions and resolutions. It 

provides a pseudo code for the pipeline memory management algorithm. Section V 

details the design of a 64-point FFT with emphasis on the data movement and storage 

in the pipeline and memories. Section VI compares the proposed design with other 

pipeline FFTs. 

 

II. EXISTING PIPELINE FFT ARCHITECTURES 

This section reviews the main pipeline FFT architectures. Groginsky and Works 

developed an early pipeline FFT design [11]. Several pipeline FFTs have been 

implemented [12]-[14]. Later, several pipeline architectures were proposed and 

designed [15]-[17]. Pipeline FFT processors consist of logrN stages, each stage 

utilizes variable sizes of memories and complex multipliers/adders depending on the 

pipeline type. Because it performs logrN butterflies in parallel, the radix-r pipeline 

FFT processor has as a speed-up of (at least) logrN compared to an FFT performed on 

a single radix-r FFT processor. Based on the number of paths between stages, FFT 

pipelines are classified into Single-path Delay Feedback (SDF) and Multi-path Delay 

Commutator (MDC). The modular pipeline constructs the pipeline from two smaller 

pipelines to reduce power. The rest of this section will explain the SDF, MDC and 

modular pipelines. 

SDF Pipeline FFT 

The SDF pipeline FFT has one path between stages, as shown in Figure 2. The 

pipeline uses feedback registers in each stage. The feedback registers store previous 

stage outputs for use by the butterfly. Figure 2 illustrates the SDF pipeline FFT for a 
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radix-r N-point FFT and shows an example of an 8-point radix-2 pipeline [15], [16]. 

Each SDF stage is comprised of:  

• A radix-r FFT butterfly. Each butterfly is followed by a complex multiplier (shown 

explicitly in Figure 2), with the exception of the last stage. 

• Shift registers to hold intermediate values. For stage i, the number of shift registers 

is (r-1)(N/r(stage+1)), e.g., stage 0 has (r-1)(N/r) registers.  

The pipeline hardware complexity depends on the number of delay elements and 

multipliers. The total number of complex multipliers is (logrN -1) [15], [16]. 

Additionally, the total number of registers in the pipeline is N-1. A high radix SDF 

(i.e., r >2) can be also implemented by cascading several radix-2 processing elements 

referred to as 2
s 

[15]. Calculating pipeline throughput and complexity is 

straightforward. The SDF pipeline accepts a new point each clock cycle. Further, it 

outputs one point per cycle. Therefore, the pipeline throughput is one point per cycle. 

 

 

Fig. 2. SDF Pipeline FFT (after [15]) 

 

MDC Pipeline FFT 

The radix-r MDC pipeline FFT utilizes r paths between stages, as shown in Figure 

3 [15], [16]. With the exception of one path, all paths utilize delays with different 

numbers of registers. Each stage receives r intermediate results from the previous 

stage, and passes r outputs to the next stage. An example of an 8-point radix-2 MDC 

pipeline FFT is shown in Figure 3. An MDC stage is comprised of: 

• An r-input commutator,  

• A radix-r butterfly which includes (r-1) complex multipliers  
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• Two sets of shift registers. The first set is located before the commutator (shown as 

D). This set does not exist in stage 0. The second set is situated after the 

commutator. Moreover, the number of registers in the j-th element of each set in 

stage i can be expressed as: Dij  = DDij  = j × ( N/ ri+1). An example of the shift 

register sizes for a 1024-point radix-4 pipeline FFT is shown in Table 1. 

 

 

Fig. 3. Radix -r N-point MDC Pipeline (after [16])  

Table 1. DMC Delay Element Sizes for a 1024 Point Radix-4 FFT Processor 

Stage D size DD size 

0 N/A 64, 128, 192 

1 16, 32, 48 16, 32, 48 
2 16, 32, 48 16, 32, 48 

3 4, 8, 12 4, 8, 12 

4 1, 2, 3 1, 2, 3 

 

The pipeline complexity is a function of the number and size of delay shift 

registers, adders and multipliers. The total number of delay registers is (r+1)N/2 – r. 

In addition, there are (r-1) (logrN -1) complex multipliers and 2(r-1) (logrN -1) 

complex adders in the pipeline [12], [16]. In contrast to the SDF pipeline, the MDC 

pipeline receives r points and outputs r points in each clock cycle. Thus, the pipeline 

throughput is r. 
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The Modular Pipeline 

El-Khasahab, et al. developed the modular pipeline FFT detailed in [18]-[20]. The 

N-point modular pipeline FFT consists of two N -point FFT modules joined by a 

specialized center element. The center element contains coefficient and data memory 

as well as addressing, routing and control logic. The modular pipeline FFT 

significantly reduces the size of the shift registers. Moreover, the coefficient storage is 

concentrated within the center element, which can be implemented using energy-

efficient RAM memories. Further, the throughput of the modular pipeline FFT is 

identical to that of the standard pipeline FFT, although the end-to-end latency is very 

slightly higher.  

The modular pipeline FFT algorithm is expressed mathematically by the following 

equation, which demonstrates the two-stage N-point FFT: 
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     where: 1,0 10 −≤≤ Nkk  

(1) 

 

To obtain the correct results, the transforms of the first stage are combined (in a 

fixed way) and fed to the second stage.  Further, adjustment is made for intermediate 

results prior to second stage. Figure 4 shows how to construct a 16-point FFT with the 

second stage having same four FFTs as first stage. This demonstrates that the N-point 

FFT is now divided into two N  point FFTs.  

 
Fig. 4. 16-Point FFT Butterfly with Identical First and Second Stages [18] 
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Figure 5 shows the overall architecture of an N-point radix-2 modular pipeline 

FFT. It consists of the two N -point FFT blocks and a center element. The center 

element includes an address generator, RAMs for storing intermediate values and 

ROMs for the coefficients. The design allows data to be both read and written 

simultaneously to maximize performance. The pipeline operation can be explained as 

follows. Two discrete inputs are received from the left side of the pipeline. The 

address generation guarantees the two points have different parities, and hence they 

reside in different memories. Once N points have been output from the first stage, 

the control dispatches intermediate data to second stage. At the same time, the next 

N points begin entering the first stage. Hence the pipeline is able to input and 

output data every clock.   

 

 

Fig. 5. Radix-2 Modular Pipeline Architecture [19] 

Table 2 compares the modular pipeline with a conventional N-point pipeline FFT. 

Despite the fact that it requires a larger memory; the modular pipeline has fewer shift 

registers. The modular pipeline FFT requires an additional pre-rotation multiplication 

and has very slightly higher latency than the standard pipeline FFT. 

Table 2. Complexity of Radix-r Conventional and Modular Pipeine FFTs Using Optimum 

Sized Stages 

Parameter STANDARD Modular 

ROM (Coefficient) N-r 2( N -r) 

Shift Registers N-r 2( N -r) 

Complex Multipliers logr(N)-1 logr(N)-1 

Central Element RAM 0 N 

Throughput r points / cycle r points / cycle 
Delay  
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III. THE SWITCH-BASED ARCHITECTURE 

This section describes the superscalar pipeline architecture for a radix-2 FFT.  

Superscalar Pipeline Architecture 

The pipeline architecture of an N-point radix-2 FFT consists of log2(N) stages. 

Figure 6 shows a block diagram of the pipeline stage. Stage i of the pipeline executes 

the i-th loop of the Radix-2 decimation-in-frequency FFT algorithm. 

Each stage consists of: 

1. A switch fabric that connects PEs and memories. 

2. PEs that have three inputs (a, b, w) and two outputs (c, d) and perform the radix-2 

butterfly operation: 

   c  = a + b 

   d = (a – b) * w  (1) 

(a, b) are inputs, w is the twiddle factor and (c, d) are outputs. There are M PEs 

per stage, where 

• N/2 ≥ M ≥ 2 

• M = 2
p
, where p is an integer p > 1. 

3. Memories that store intermediate results. There are 4*M single-port memories per 

stage, the size of each memory is equal to N/(2*M). Memories can be implemented 

as RAM, caches, register files or flip-flops, based on the size of the memory and 

cost constraints. One half of the input memories will be active per cycle, while the 

other half will be active in the following cycle 

 

4. Memories that store twiddle factors. Since the twiddle factors do not change, the 

twiddle factor memories can be implemented as ROMs. There are M ROMs per 

stage, each with size equal to N/(2*M) words.  

 

 

Switch

Fabric

M(i+1,0)

M(i+1,1)

M(i+1,4M-1)

PE 
0

ROM 
(r-1)

ROM 
0

ROM 
1

PE 
(M-1)

PE 
1

M(i,0)

M(i,1)

M(i,4M-1)

Pipeline Stage i

 
Fig. 6. Block Diagram of the Switch-Based Pipeline Stage [21] 
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Figure 7 shows an overview of pipeline architecture. Each stage is capable of 

calculating M radix-2 butterfly results. Using the Instruction Level Parallelism (ILP) 

classification from [22], the architecture is a superscalar machine with Instruction 

Parallelism (IP) equal to M. It is also a super-pipeline where each cycle has N/(2*M) 

minor-cycles. The architecture applies to the decimation-in-time FFT as well, where 

the specifications of stage i in the decimation-in-time algorithm is the same as that of 

stage log2(N)–i in the decimation-in-frequency algorithm. A scalar machine takes 

(N/2)*log2(N) steps to execute an N-point radix-2 FFT algorithm. The architecture 

consists of log2(N) stages, where each stage executes M operations. Therefore, the 

pipeline speedup is: M*log2(N). The maximum pipeline speedup is (N/2)*log2(N), 

when M = N/2. In this case memories are reduced to registers, and the switch fabric 

connects each any register to any PE. Clearly, while this case provides the most speed 

up, its hardware is expensive. The optimum value of M is decided by design 

parameters: speed, area and power. 
 

 
Fig. 7. Overview of the Pipeline Architecture [21] 

Pipeline Design Optimization 

Upon close examination of the FFT algorithm, it is clear that not all twiddle factors 

are used in all stages. Also, the algorithm allows PEs to have identical twiddle factors 

in some stages, and therefore, not all the ROMs are required. In fact, the number and 

size of ROMs per stage can be reduced as outlined in Table 3. 

Table 3. Number and Size of ROM Size Per Stage 

Stage “i” 
Number of 

ROMs 
Size of ROM 

0 M N/(2*M) 

log2M ≥ i ≥ 0   M N/(M* 2i) 

i > log2M M/2(i- log2M)  1 

 

If the pipeline is designed for a specific value of N, where N is fixed, the pipeline 

connectivity and twiddle factors are fixed. As a result, the design implementation can 

be optimized since the connectivity of each stage is predetermined. Figure 8 illustrates 

the connectivity of 16-point 2-PE pipeline. Furthermore, in many computations the 

value of the twiddle factor is one. A twiddle factor of one reduces the PE computation 

to add/subtract operations. Also, several PEs execute specific sets of twiddle factors, 

which can lead to design simplification. 
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Fig. 8. Example FFT Data Flow [21] 

 

As indicated earlier, the speed up of the pipeline depends on two factors: the 

number of PEs/stage (i.e., M) and the number of stages (log2(N)) since Speedup = 

M*log2(N). One might ask, “Given fixed target speedup (e.g., S), which factor should 

be increased to achieve more efficient design: the number-of-stages or the number-of-

PEs/stage?” Consider a pipeline with a speedup of S with two designs: Design A and 

design B, as shown in Table 4. Design A has one PE per stage, while design B has 

one stage. Clearly, 

• Design B requires less memory than design A since the design A total memory is 

proportional to S.  

• Design A switch fabric is simpler than that of design B. The complexity of the 

design B switch fabric is proportional to S
2
. 

Table 4. Analyzing Speed Up Factors 

Parameter Design A Design B 

Number of Stages S 1 

Number of PEs per Stage 1 S 

Memory Size N/2 N/(2*S) 
Number of Memories 4*(S+1) 2*S 

Total Memory 2*N*(S+1) N 

Switch Complexity 2*2 S*S 

 

The main disadvantage of the increasing the number of stages is the increase in total 

memory. On the other hand, increasing the number of PEs per stage increases the 

complexity of the switch fabric. Hence, the tradeoffs between the two factors depend 
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on the constraints on the total memory and the maximum complexity of the switch. 

Only specific design goals and technology processes can determine the optimum 

solution. 

Pipeline Hazards 

The main source of hazards in the pipeline is memory contention. Memory 

contention occurs when one or more PEs requests two or more accesses to a given 

memory at the same time. Memory contention results in stalling the pipeline and 

reduces the system speed. In the decimation-in-frequency FFT, memory contention 

does not occur in the early stages, it occurs from stage log2(M)+1 to the last stage. In 

the decimation-in-time FFT, contention affects stage 0 to stage log2(N) – log2(M) – 1. 

Figure 8 shows an example of memory contention for N=16 and M=2. It is clear 

that stage 0 and stage 1 have no contention. However, contention occurs in stage 2 

and stage 3.  Observe the following:  

• In stage 2 the inputs for the top PE are x2(0) and x2(2), both of which reside in 

MEM0.  

• In stage 3 the inputs for the top PE are x3(0) and x3(1), both of which reside in 

MEM0. 

One solution for memory contention is to use a multi-port memory. However, 

multi-port memories are expensive and can slow down the system performance. In 

addition, the later stages of the pipeline have higher degree of contention which 

requires more ports in the memory. Eventually, it becomes impractical to implement 

the required multi-port memory. Moreover, the number of memory ports varies in the 

memory hierarchy. Register files usually have more ports than caches and SRAMs.  

Requiring a certain number of memory ports restricts where the intermediate results 

can be saved in the memory system. Another solution to resolve memory contention 

is to employ a memory management mechanism to mitigate the hazard, as discussed 

in the next section. 

IV. HAZARD FREE PIPELINE ALGORITHM 

The main idea of the algorithm is resolve memory contention in the early stages of 

the pipeline. The rest of the section describes the hazard conditions, memory 

management operations and the algorithm.  

Detecting Pipeline Hazards 

From Figure 8, in stage 0, x(0) and x(8) go to PE0. Similarly, x(1) and x(9) go to 

PE1,..., etc. Define stage distance as the index delta in each stage. The stage distance 

for a 16-point pipeline FFT is shown in Table 5. 
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Table 5. Stage Distance For 16-point Pipeline FFT 

Stage Distance 
Stage 

Decimation-In-Frequency 

 

Decimation-in-Time 

0 8 1 

1 4 2 

2 2 4 

3 1 8 

 

In general, for an N-point pipeline FFT, the stage distance for stage i is equal to 

N/2
(i+1)

. Memory contention occurs when the stage distance falls in a single memory 

space. From Section III, the memory size is equal to N/(2*M). Hence, memory 

contention occurs in stage i if the following condition is satisfied: 

)(log

)2/(2/

2

)1(

Mi

NN
Mi

≥

≤
+

 
(2) 

A stage that satisfies condition (2) will be referred to as a hazard stage; the rest of the 

stages are safe stages. For instance, in Figure 8, stage 2 and stage 3 are hazard stages. 

Define memory pair (i, j)t as memory location x(i) and x(j) for stage t. In stage 2, the 

following memory pairs are hazard pairs: (0, 2)2, (1, 3)2, (4, 6)2, (5, 7)2. Other pairs 

will be referred to as safe pairs, for instance (3, 5)2. The stage distance can be 

represented in binary form: 
    Stage-3 distance = 001 

 Define pair (i, j)t as a hazard pair if and only if: 

1. t is a hazard stage 

2. The bit wise Exclusive-OR of addresses i and j is equal to the stage t distance.  

For example, the address pair (5, 7)2 is a hazard pair since:  

    Stage-2 distance = 210 

    510 ⊕ 710 = 1012 ⊕ 1112 = 0102 = Stage-2 distance 

On the other hand, address pair (3, 5)2 is a safe pair because: 

    310 ⊕ 510 = 0112 ⊕ 1012 = 1102 != Stage-2 distance 

 

Memory Management Operations 

Let xi(t) and xj(t) be the i-th and j-th elements in stage t and i < j. Define the 

memory management operations as follows (see Figure 9): 

• Normal Operation: Inputs xi(t) and xj(t) are provided to the first and second inputs 

of the PE: a, b. The results c and d are saved in xi(t+1) and xj(t+1).  

• Shuffle Operation affects how PE results are saved back in memory. In shuffle 

operation, the results c and d are saved in xj(t+1) and xi(t+1)  

• Swap Operation: The swap operation affects the order of PE inputs. In swap 

operation, xi(t) is provided to b (instead of a) and xj(t) is provided to a (instead of 

b). The reason for the swap operation is because the PE is an asymmetric unit and 

the memory management algorithm changes the normal order of data in the 
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memory. If the algorithm detects a case with incorrect inputs, the swap operation is 

performed.  

• Swap and shuffle operation: A PE operation can have both swap and shuffle 

memory operations at the same time. 

 

 

 

Fig. 9. Memory Management Operations [21] 

The Algorithm 

The main idea of the pipeline algorithm is to identify hazard pairs in early stages 

and perform memory management operations to resolve the hazard. Because data is 

rearranged in memory, the algorithm has to track where data is. One idea to track the 

movement of data is to use a separate memory to store the data indexes (i.e., pointers), 

as shown in Figure 10. This approach provides a great flexibility in moving data in 

the memory. It also simplifies the reordering logic of the final stage hardware. The 

downside of this approach is it increases memory size. Also, it increases loading the 

operands in the PE by one cycle to retrieve pointers from memory.  Another (less 

flexible) solution is to move data in memory in a fixed way to simplify data tracking 

in the pipeline. This approach resolves hazards for next stage only. As a result of 

reordering data in the pipeline, results from the last stage in the pipeline should be 

reordered.  
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Fig. 10. Tracking Shuffled Data [21] 

The algorithm utilizes several counters to calculate memory addresses and 

determine memory management operations. There are three main counters which are 

described in the upper three rows of Table 6. Other counters are derived from the 

main counters and described in the rest of the table. The flow of the algorithm of stage 

i is shown in Figure 11. The pseudocode of the algorithm is listed at the end of the 

section.  Figure 12 illustrates the shuffle and swap operations performed by the 

algorithm to resolve the memory contentions in Figure 8 example. 

Table 6. The Main Counters 

Counter Description/Usage 

Current_Stage Stage counter 

Current_Stage_Cycle Cycle counter within a stage 

Current_Cycle_Operation Operation counter within a cycle 
Horizontal_op_index Determines shuffle operations 

Vertical_op_index Used in generating RAM addresses 

Group_Count Determines swap operation 
Current_Operation Used in generating RAM addresses 
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Fig. 11. Algorithm Flow in Stage i 

 

 
 

 

Fig. 12. Resolving Contentions in Pipeline Hazard Example [21] 
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Algorithm Pseudocode 

// Preparation Step 

Number_Of_Stages   = log2NUMBER_OF_FFT_POINTS 

Cycles_Per_Stage  = N/(2*NUMBER_OF_PE)  

Memory_Size       = N/2
(NUMBER_OF_PE+1)

    

Safe_Stage        = log2NUMBER_OF_PE 

// Start main nester loops 

for Current_Stage=0 to (Number_Of_Stages -1) 

 Group_Size = N/2
(Current_Stage+1)

    

 for Current_Stage_Cycle=0 to (Cycles_Per_Stage -1) 

  for Current_Cycle_Operation=0 to (NUMBER_OF_PE -1) 

   // Calculate Operation Indices  

   Horizontal_op_index = Cycles_Per_Stage *  

                         Current_Cycle_Operation 

                         + Current_Stage_Cycle 

   Vertical_op_index   = NUMBER_OF_PE * Current_Stage_Cycle 

                         + Current_Cycle_Operation  

   Current_Stage_Rev = Number_Of_Stages - Current_Stage – 1 

   Current_Group     = floor(Horizontal_op_index/ 

                             2
Current_Stage_Rev

) 

   Current_Operation = Horizontal_op_index mod 2
Current_Stage_Rev

 

   // Calculate Memory Address    

   M0_addr = Current_Stage_Cycle 

   If Current_Stage <= Safe_Stage 

     M1_addr = M0_addr 

   Else 

     K = Safe_Stage +1 

     L = Current_Stage  

     M1_Addr = Reverse M0_Addr0 bits between K to L bits 

   End 

   // Calculate Memory Select 

   If Current_Stage <= Safe_Stage 

     Group_Offset = Current_Group * N /2Current_Stage 

     Group_Count  = Horizontal_op_index mod Group_Size 

     Memory_Count = floor (Group_Count / Memory_Size) 

     Offset       = Memory_Count * Memory_Size 

     M0_Select    = Offset + Group_Offset  

     M1_Select    = Offset + Group_Offset + Group_Size 

   Else 

     Memory_Count = Vertical_op_index mod NUMBER_OF_PE 

     Offset    = 2 * Memory_Count * Memory_Size 

     M0_Select = Offset; 

     M1_Select = Offset + 2 * Memory_SiZe 

   End 

   M0_data = Memory(Current_Stage, M0_Select0) [ M0_addr ]        

   M1_data = Memory(Current_Stage, M1_Select1) [ M0_addr ]        

   // Determine if swap operation is required 

   If  Current_Group is even   

       AND Current_Sage <= Safe_Stage 

     // Read data with no swap 

     M0_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        

     M1_data = Memory(Current_Stage, M1_Select) [ M1_addr ]             

   Else 

     // Read Data and perform Swap 

     M1_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        

     M0_data = Memory(Current_Stage, M1_Select) [ M1_addr ]        

 End 

 // Read Twiddle 
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 ROM_SELECT  = Current_Cycle_Operation 

 ROM_Address = Current_Operation * 2
Current_Stage

 

   W   = ROM(Current_Stage, ROM_SELECT) [ROM_Address ] 

 // Enable PE to perform FFT butterfly operation 

 [Result1, Result0] =  

       PECurrent_Cycle_Operation(M0_data, M1_data, W); 

   // Perform shuffle operation 

   Shuffle_Bit = log2NUMBER_OF_FFT_POINTS  

                 - Current_Stage - 2 

   Shuffle_Flag = Horizontal_op_index [Shuffle_Bit] 

   If  Current_Stage >= Sage_Stage  AND  

     Shuffle_Flag == 1 

     // Shuffle ResultsShuffle = 1 

     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result1       

     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result0       

   Else 

     // No Shuffling  

     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result0       

     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result1       

   End 

  end // Current_Cycle_Operation 

 end // Current_Stage_Cycle loop 
end // Current_Stage loop 

V. 64-POINT PIPELINE FFT DESIGN 

This section explains a 64-point pipeline FFT design using four PEs per stage. 

Therefore, although there are 16 memories per stage, only eight memories will be 

active memory at any time. The memory size is eight words. There are four ROMs 

per stage, each with a capacity of eight words. The pipeline speed up equals 6*4=24. 

The following tables detail the operation of the pipeline PEs and illustrate the memory 

contents.  

Table 7 gives the PE operand pairs for Stage 0. The rows give the operand pairs for 

PE0, PE1, PE2 and PE3. The columns give the pairs for each micro-cycle in Stage 0 

cycles. There are eight micro-cycles per stage. For example, at micro-cycle 0: 

• PE0 input operands will be MEM[0] and MEM[32]   

• PE1 input operands will be MEM[8] and MEM[40] 

• PE2 input operands will be MEM[16] and MEM[48] 

• PE3 input operands will be MEM[24] and MEM[56] 

Tables 8-12 give the PE operand pairs for Stages 1-5. Underlined pairs indicate 

shuffle operation. Since Stages 0-2 are safe stages, the first shuffle operation starts in 

Stage 2 to prevent hazards in stage 3. Table 13 lists the memory contents for pipeline 

stages. For example, the output of stage 2 has the memory contents for Memory 0 as 

follows: 0, 1, 2, 3, 12, 13, 14, and 15. 
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Table 7. Pipeline Stage-0 Operand Paris 

Stage-0 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,32 1,33 2,34 3,35 4,36 5,37 6,38 7,38 

1 8,40 9,41 10,42 11,43 12,44 13,45 14,46 15,47 

2 16,48 17,49 18,50 19,51 20,52 21,53 22,54 23,55 

3 24,56 25,57 26,58 27,59 28,60 29,61 30,61 31,63 

 

 

Table 8. Pipeline Stage-1 Operand Paris 

Stage-1 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,16 1,17 2,18 3,19 4,20 5,21 6,22 7,23 

1 8,24 9,25 10,26 11,27 12,28 13,29 14,30 15,31 

2 32,48 33,49 34,50 35,51 36,52 37,53 38,54 39,55 

3 40,56 41,57 42,58 43,59 44,60 45,61 46,62 47,63 

 

 

Table 9. Pipeline Stage-2 Operand Paris 

Stage-2 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15 

1 16,24 17,25 18,26 19,27 20,28 21,29 22,30 23,31 

2 32,40 33,41 34,42 35,42 36,44 37,45 38,46 39,47 

3 48,56 49,57 50,58 51,59 52,60 53,61 54,62 55,63 

 

 

Table 10. Pipeline Stage-3 Operand Paris 

Stage-3 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,4 1,5 2.6 3,7 12,8 13,9 14,10 15,11 

1 16,20 17,21 18,22 19,23 28,24 29,25 30,26 31,27 

2 32,36 33,37 34,38 35,39 44,40 45,41 46,42 47,43 

3 48,52 49,53 50,54 51,55 60,56 61,57 62,58 63,59 
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Table 11. Pipeline Stage-4 Operand Paris 

Stage-4 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,2 1,3 6,4 7,5 12,14 13,15 10,8 11,9 

1 16,18 17,19 22,20 23,21 28,30 29,31 26,2 27,25 

2 32,34 33,35 38,36 39,37 44,46 45,47 42,40 43,41 

3 48,50 49,51 54,52 55,53 60,62 61,63 58,56 59,57 

 

Table 12. Pipeline Stage-5 Operand Paris 

Stage-5 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,1 3,2 6,7 5,4 12,13 15,14 10,11 9,8 

1 16,17 19,18 22,23 21,20 28,29 31,30 26,27 25,25 

2 32,33 35,34 38,39 37,36 44,45 47,46 42,43 41,40 

3 48,49 51,50 54,55 53,52 60,61 63,62 58,59 57,56 

 

 
 

Table 13. Pipeline Memory Content 

Stages 
MEM 

Input 0 1 2 3 4 5 
0 0 0 0 0 0 0 

1 1 1 1 1 3 3 

2 2 2 2 6 6 6 

3 3 3 3 7 5 5 

4 4 4 12 12 12 12 

5 5 5 13 13 15 15 

6 6 6 14 10 10 10 

0 

7 7 7 15 11 9 9 

8 8 8 8 8 8 8 

9 9 9 9 9 11 11 

10 10 10 10 14 14 14 

11 11 11 11 15 13 13 

12 12 12 4 4 4 4 

13 13 13 5 5 7 7 

14 14 14 6 2 2 2 

1 

15 15 15 7 3 1 1 

16 16 16 16 16 16 16 

17 17 17 17 17 19 19 

18 18 18 18 22 22 22 

19 19 19 19 23 21 21 

20 20 20 28 28 28 28 

21 21 21 29 29 31 31 

22 22 22 30 26 26 26 

2 

23 23 23 31 27 25 25 

24 24 24 24 24 24 24 

25 25 25 25 25 27 27 
3 

26 26 26 26 30 30 30 
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27 27 27 27 31 29 29 

28 28 28 20 20 20 20 

29 29 29 21 21 23 23 

30 30 30 22 18 18 18 

31 31 31 23 19 17 17 

32 32 32 32 32 32 32 

33 33 33 33 33 35 35 

34 34 34 34 38 38 38 

35 35 35 35 35 37 37 

36 36 36 44 44 44 44 

37 37 37 45 45 47 47 

38 38 38 46 42 42 42 

4 

39 39 39 47 43 41 41 

40 40 40 40 40 40 40 

41 41 41 41 41 43 43 

42 42 42 42 46 46 46 

43 43 43 43 47 45 45 

44 44 44 36 36 36 36 

45 45 45 37 37 39 39 

46 46 46 38 34 34 34 

5 

47 47 47 39 35 33 33 

48 48 48 48 48 48 48 

49 49 49 49 49 51 51 

50 50 50 50 54 54 54 

51 51 51 51 55 53 53 

52 52 52 60 60 60 60 

53 53 53 61 61 63 63 

54 54 54 62 58 58 58 

6 

55 55 55 63 59 57 57 

56 56 56 56 56 56 56 

57 57 57 57 57 59 59 

58 58 58 58 62 62 62 

59 59 59 59 63 61 61 

60 60 60 52 52 52 52 

61 61 61 53 53 55 55 

62 62 62 54 50 50 50 

7 

63 63 63 55 51 49 49 

VI. Comparison with Other FFT Pipelines 

The hardware complexity of a pipeline FFT is measured by the number of complex 

adders, complex multipliers and the memory size. A radix-2 butterfly consists of one 

complex multiplier and two complex adders which can be implemented using four 

real multipliers and six real adders. A radix-4 butterfly consists of three complex 

multipliers and eight complex adders and can be implemented using 12 real 

multipliers and 22 real adders. Less expensive (but slower) butterfly implementations 

exist especially for slow pipelines, e.g., SDF pipelines. The rest of this section uses 

counts of complex operations to compare different pipelines. 

The SDF pipeline FFT has a total of (logrN -1) multipliers and N-1 delay elements. 

Further, the MDC pipeline FFT utilizes (r+1)N/2 – r delay elements, and (r-1) (logrN 

-1) real multipliers and roughly 2(r-1) (logrN -1) adders. Table 14 summarizes the 

hardware and timing complexities for FFT pipeline architectures discussed in 

references [18], [20]. The table also illustrates the complexities for the switch based 

architecture (shown in the last row of the table.) The other pipeline architectures 

require delay elements in the pipeline implementation. Delays are implemented by 

shift registers (which dissipate high dynamic power) or by RAMs with additional 

address generation hardware (which increases design complexity). The modular 

pipeline reduces number of delay elements to 2( N -r). The switch-based pipeline 

uses SRAM memory arrays, which consume less power than registers and are easier 
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to implement. Moreover, the throughputs of the other pipelines are limited to one 

(single-path) or a few (multi-path) data per clock, while the switch based 

implementation has a throughput of M.  Unfortunately, the switch based pipeline 

requires larger memory size and more hardware in the data path.    

Table 14. FFT Pipeline Architectures 

FFT Pipeline 

 

Multipliers  

 
Adders Memory Size Speed up 

Radix-2 SDF  2(log4 N-1) 4 log4N N  - 1 log2N 

Radix-4 SDF log4 N-1 8 log4N N  - 1 log2N 

Radix-2 MDC  2(log4 N-1) 4 log4N 3N/2  - 2 log2N 

Radix-4 MDC 3(log4 N-1) 8 log4N 5N/2  - 4 log2N 

Radix-4 Single-path Delay Commutator log4 N-1 3 log4N 2N/2  - 2 log2N 

Radix-22 Single-path Delay feedback log4 N-1 4 log4N N - 1 log2N 

Radix-2 Modular Pipeline 2(log4 N-1) 4 log4N N - 6 

+ 2*sqrt(N) 
log2N 

Switch-Based Pipeline M*2(log4 N-1) M*4 log4N 2*N*  

(1+log2 N) 

M* log2N 

VII. CONCLUSION AND FUTURE WORK 

This chapter extends results from [21]. It presents a switch-based architecture for 

FFT engine implementation. It also presents an algorithm to predict and resolve 

memory contentions. As a result the pipeline speedup is M*log2N, where N is the 

number of points and M is the number of processing elements. An implementation of 

a 64-point FFT machine using the proposed architecture is presented. The architecture 

compares favorably to other FFT pipelines. Future research should focus on reducing 

power consumption of the FFT pipeline. 
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