
The Hazard-Free Superscalar Pipeline Fast Fourier

Transform Architecture and Algorithm

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz

Abstract. This chapter examines the superscalar pipeline Fast Fourier

Transform algorithm and architecture. The algorithm presents a memory

management scheme that avoids memory contention throughout the pipeline

stages. The fundamental algorithm, a switch-based FFT pipeline architecture

and an example 64-point FFT implementation are presented. The pipeline

consists of log2N stages, where N is number of FFT points. Each stage can have

M Processing Elements (PEs.) As a result, the architecture speed up is

M*log2N. The pipeline algorithm is configurable to any M > 1.

I. INTRODUCTION

THE FAST FOURIER TRANSFORM (FFT) ALGORITHM, presented in [1], is a standard

method for computing the Discrete Fourier Transform (DFT). The FFT algorithm

consists of log2N loops; where each loop executes N/2 complex operations. FFT

processor design has been researched extensively in the last few decades for speed,

area and power optimization. As a result, many implementations have been proposed

and developed to address one or more of the following optimization areas:

architecture, memory access and power consumption. A variety of FFT architectures

have been proposed, which employ different techniques such as pipelining, multi-

processing and cache-design, as shown in Figure 1 [2]. A single memory architecture

consists of a scalar processor connected to a single N-word memory via a

bidirectional bus. While this architecture is simple, its performance suffers from

inefficient memory bandwidth. A cache memory architecture adds a cache memory

between the processor and the memory to increase the effective memory bandwidth.

A dual memory architecture uses two memories connected to a digital array signal

processor. A memory controller generates addresses to memories in a ping-pong

fashion. The processor array architecture consists of independent processing

elements, with local buffers, which are connected using an interconnect network.

Finally, the pipeline FFT architecture utilizes logrN blocks; each block consists of

delay lines and radix-r butterfly units.

Processor memory access is another area of optimization that has received

considerable research. Several algorithms have been proposed to avoid memory

contention. Specifically, the address generation algorithm and logic are optimized for

speed and area. A memory address generation scheme was presented by Cohen in [3],

that allows parallel organization of memory so that the pairs of data that are used at

any instant reside in different memories. The address generation is based on a counter,

Please use the following format when citing this chapter:

VLSI-SoC: Advanced Topics on Systems on a Chip; eds. R. Reis, V. Mooney, P. Hasler; (Boston: Springer), pp. 227–248.
Mohd, B., Swartzlander, E.E. and Aziz, A., 2009, in IFIP International Federation for Information Processing, Volume 291;

shifters and rotators. In [4], Pease proposed dividing the memory into sub-memories

for overlapping the access. He observed that the operand addresses differ only in the

(n-i)-th bit for the butterfly operand pair in stage i, where n is the number of address

bits. A multi-bank memory address assignment for a radix-r FFT was developed in

[5]. A fast address generation scheme is described in [6] with hardware cost

comparable to the address generation scheme in [3]. Ma and Wanhammar presented

an address generation scheme in [7] to reduce the hardware complexity and power

consumption. Power is reduced by activating only half of the memory during memory

access and by minimizing the number of memory accesses. The methods do not

address conflicts for multi-processors accessing memory simultaneously.

Fig. 1. FFT Processor Memory-System Architectures (after [2])

Lastly, several power reduction techniques were designed for energy-efficient

processors; including techniques to reduce memory accesses. A cache-memory

architecture was described in [8] to reduce communication energy between FFT

processors and memories. In [9] and [10], Zhong, et al. described a power-scalable

reconfigurable ring-architecture multiprocessor for a single chip FFT/IFFT processor.

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 228

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

The processor is capable of processing different FFT sizes with scalable power across

FFT sizes. However, while the use of the processor ring architecture seems to be an

interesting idea, the case for using the ring architecture to compute FFTs is weak. The

architecture seems to be better suited for more serialized computations such as FIR

filters. Also, large values of N require more complex processor programs. Further,

power does scale well for N ≤ 128.

This chapter presents a superscalar pipeline architecture to achieve maximum speed

for FFT processing. A switch fabric controls and connects single-port memories and

processing elements (PEs). A memory management algorithm avoids memory access

contention. Rearranging data in the memories requires tracking them throughout the

pipeline to process the right pair of data for FFT computations. The ordering of data

elements is used to calculate the twiddle factors and other important indices. The

algorithm provides an implicit method to track data. The superscalar pipeline achieves

a speed up of M*log2N.

The chapter is organized as follows. Section II discusses current pipeline designs.

Next, Section III explains the pipeline architecture and analyzes pipeline speedup

hazards and optimizations. Section IV discusses hazard conditions and resolutions. It

provides a pseudo code for the pipeline memory management algorithm. Section V

details the design of a 64-point FFT with emphasis on the data movement and storage

in the pipeline and memories. Section VI compares the proposed design with other

pipeline FFTs.

II. EXISTING PIPELINE FFT ARCHITECTURES

This section reviews the main pipeline FFT architectures. Groginsky and Works

developed an early pipeline FFT design [11]. Several pipeline FFTs have been

implemented [12]-[14]. Later, several pipeline architectures were proposed and

designed [15]-[17]. Pipeline FFT processors consist of logrN stages, each stage

utilizes variable sizes of memories and complex multipliers/adders depending on the

pipeline type. Because it performs logrN butterflies in parallel, the radix-r pipeline

FFT processor has as a speed-up of (at least) logrN compared to an FFT performed on

a single radix-r FFT processor. Based on the number of paths between stages, FFT

pipelines are classified into Single-path Delay Feedback (SDF) and Multi-path Delay

Commutator (MDC). The modular pipeline constructs the pipeline from two smaller

pipelines to reduce power. The rest of this section will explain the SDF, MDC and

modular pipelines.

SDF Pipeline FFT

The SDF pipeline FFT has one path between stages, as shown in Figure 2. The

pipeline uses feedback registers in each stage. The feedback registers store previous

stage outputs for use by the butterfly. Figure 2 illustrates the SDF pipeline FFT for a

Algorithm 229

radix-r N-point FFT and shows an example of an 8-point radix-2 pipeline [15], [16].

Each SDF stage is comprised of:

• A radix-r FFT butterfly. Each butterfly is followed by a complex multiplier (shown

explicitly in Figure 2), with the exception of the last stage.

• Shift registers to hold intermediate values. For stage i, the number of shift registers

is (r-1)(N/r(stage+1)), e.g., stage 0 has (r-1)(N/r) registers.

The pipeline hardware complexity depends on the number of delay elements and

multipliers. The total number of complex multipliers is (logrN -1) [15], [16].

Additionally, the total number of registers in the pipeline is N-1. A high radix SDF

(i.e., r >2) can be also implemented by cascading several radix-2 processing elements

referred to as 2
s

[15]. Calculating pipeline throughput and complexity is

straightforward. The SDF pipeline accepts a new point each clock cycle. Further, it

outputs one point per cycle. Therefore, the pipeline throughput is one point per cycle.

Fig. 2. SDF Pipeline FFT (after [15])

MDC Pipeline FFT

The radix-r MDC pipeline FFT utilizes r paths between stages, as shown in Figure

3 [15], [16]. With the exception of one path, all paths utilize delays with different

numbers of registers. Each stage receives r intermediate results from the previous

stage, and passes r outputs to the next stage. An example of an 8-point radix-2 MDC

pipeline FFT is shown in Figure 3. An MDC stage is comprised of:

• An r-input commutator,

• A radix-r butterfly which includes (r-1) complex multipliers

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 230

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

• Two sets of shift registers. The first set is located before the commutator (shown as

D). This set does not exist in stage 0. The second set is situated after the

commutator. Moreover, the number of registers in the j-th element of each set in

stage i can be expressed as: Dij = DDij = j × (N/ ri+1). An example of the shift

register sizes for a 1024-point radix-4 pipeline FFT is shown in Table 1.

Fig. 3. Radix -r N-point MDC Pipeline (after [16])

Table 1. DMC Delay Element Sizes for a 1024 Point Radix-4 FFT Processor

Stage D size DD size

0 N/A 64, 128, 192

1 16, 32, 48 16, 32, 48
2 16, 32, 48 16, 32, 48

3 4, 8, 12 4, 8, 12

4 1, 2, 3 1, 2, 3

The pipeline complexity is a function of the number and size of delay shift

registers, adders and multipliers. The total number of delay registers is (r+1)N/2 – r.

In addition, there are (r-1) (logrN -1) complex multipliers and 2(r-1) (logrN -1)

complex adders in the pipeline [12], [16]. In contrast to the SDF pipeline, the MDC

pipeline receives r points and outputs r points in each clock cycle. Thus, the pipeline

throughput is r.

Algorithm 231

The Modular Pipeline

El-Khasahab, et al. developed the modular pipeline FFT detailed in [18]-[20]. The

N-point modular pipeline FFT consists of two N -point FFT modules joined by a

specialized center element. The center element contains coefficient and data memory

as well as addressing, routing and control logic. The modular pipeline FFT

significantly reduces the size of the shift registers. Moreover, the coefficient storage is

concentrated within the center element, which can be implemented using energy-

efficient RAM memories. Further, the throughput of the modular pipeline FFT is

identical to that of the standard pipeline FFT, although the end-to-end latency is very

slightly higher.

The modular pipeline FFT algorithm is expressed mathematically by the following

equation, which demonstrates the two-stage N-point FFT:

∑ ∑

∑ ∑

−

=

−

=

++

−

=

−

=

+=+














×









+=+

1

0

1

0

0101

1

0

1

0

0101

0 1

001001

0

10

1

0100

)()(

)()(

N

m

N

m

kmNkmNkm

N

N

m

km

N

N

m

km

N

km

N

WmmNxkkNX

WWmmNxWkkNX

 where: 1,0 10 −≤≤ Nkk

(1)

To obtain the correct results, the transforms of the first stage are combined (in a

fixed way) and fed to the second stage. Further, adjustment is made for intermediate

results prior to second stage. Figure 4 shows how to construct a 16-point FFT with the

second stage having same four FFTs as first stage. This demonstrates that the N-point

FFT is now divided into two N point FFTs.

Fig. 4. 16-Point FFT Butterfly with Identical First and Second Stages [18]

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 232

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

Figure 5 shows the overall architecture of an N-point radix-2 modular pipeline

FFT. It consists of the two N -point FFT blocks and a center element. The center

element includes an address generator, RAMs for storing intermediate values and

ROMs for the coefficients. The design allows data to be both read and written

simultaneously to maximize performance. The pipeline operation can be explained as

follows. Two discrete inputs are received from the left side of the pipeline. The

address generation guarantees the two points have different parities, and hence they

reside in different memories. Once N points have been output from the first stage,

the control dispatches intermediate data to second stage. At the same time, the next

N points begin entering the first stage. Hence the pipeline is able to input and

output data every clock.

Fig. 5. Radix-2 Modular Pipeline Architecture [19]

Table 2 compares the modular pipeline with a conventional N-point pipeline FFT.

Despite the fact that it requires a larger memory; the modular pipeline has fewer shift

registers. The modular pipeline FFT requires an additional pre-rotation multiplication

and has very slightly higher latency than the standard pipeline FFT.

Table 2. Complexity of Radix-r Conventional and Modular Pipeine FFTs Using Optimum

Sized Stages

Parameter STANDARD Modular

ROM (Coefficient) N-r 2(N -r)

Shift Registers N-r 2(N -r)

Complex Multipliers logr(N)-1 logr(N)-1

Central Element RAM 0 N

Throughput r points / cycle r points / cycle
Delay










r

N
2

 ()NN
r

+
2

Algorithm 233

III. THE SWITCH-BASED ARCHITECTURE

This section describes the superscalar pipeline architecture for a radix-2 FFT.

Superscalar Pipeline Architecture

The pipeline architecture of an N-point radix-2 FFT consists of log2(N) stages.

Figure 6 shows a block diagram of the pipeline stage. Stage i of the pipeline executes

the i-th loop of the Radix-2 decimation-in-frequency FFT algorithm.

Each stage consists of:

1. A switch fabric that connects PEs and memories.

2. PEs that have three inputs (a, b, w) and two outputs (c, d) and perform the radix-2

butterfly operation:

 c = a + b

 d = (a – b) * w (1)

(a, b) are inputs, w is the twiddle factor and (c, d) are outputs. There are M PEs

per stage, where

• N/2 ≥ M ≥ 2

• M = 2
p
, where p is an integer p > 1.

3. Memories that store intermediate results. There are 4*M single-port memories per

stage, the size of each memory is equal to N/(2*M). Memories can be implemented

as RAM, caches, register files or flip-flops, based on the size of the memory and

cost constraints. One half of the input memories will be active per cycle, while the

other half will be active in the following cycle

4. Memories that store twiddle factors. Since the twiddle factors do not change, the

twiddle factor memories can be implemented as ROMs. There are M ROMs per

stage, each with size equal to N/(2*M) words.

Switch

Fabric

M(i+1,0)

M(i+1,1)

M(i+1,4M-1)

PE
0

ROM
(r-1)

ROM
0

ROM
1

PE
(M-1)

PE
1

M(i,0)

M(i,1)

M(i,4M-1)

Pipeline Stage i

Fig. 6. Block Diagram of the Switch-Based Pipeline Stage [21]

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 234

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

Figure 7 shows an overview of pipeline architecture. Each stage is capable of

calculating M radix-2 butterfly results. Using the Instruction Level Parallelism (ILP)

classification from [22], the architecture is a superscalar machine with Instruction

Parallelism (IP) equal to M. It is also a super-pipeline where each cycle has N/(2*M)

minor-cycles. The architecture applies to the decimation-in-time FFT as well, where

the specifications of stage i in the decimation-in-time algorithm is the same as that of

stage log2(N)–i in the decimation-in-frequency algorithm. A scalar machine takes

(N/2)*log2(N) steps to execute an N-point radix-2 FFT algorithm. The architecture

consists of log2(N) stages, where each stage executes M operations. Therefore, the

pipeline speedup is: M*log2(N). The maximum pipeline speedup is (N/2)*log2(N),

when M = N/2. In this case memories are reduced to registers, and the switch fabric

connects each any register to any PE. Clearly, while this case provides the most speed

up, its hardware is expensive. The optimum value of M is decided by design

parameters: speed, area and power.

Fig. 7. Overview of the Pipeline Architecture [21]

Pipeline Design Optimization

Upon close examination of the FFT algorithm, it is clear that not all twiddle factors

are used in all stages. Also, the algorithm allows PEs to have identical twiddle factors

in some stages, and therefore, not all the ROMs are required. In fact, the number and

size of ROMs per stage can be reduced as outlined in Table 3.

Table 3. Number and Size of ROM Size Per Stage

Stage “i”
Number of

ROMs
Size of ROM

0 M N/(2*M)

log2M ≥ i ≥ 0 M N/(M* 2i)

i > log2M M/2(i- log2M) 1

If the pipeline is designed for a specific value of N, where N is fixed, the pipeline

connectivity and twiddle factors are fixed. As a result, the design implementation can

be optimized since the connectivity of each stage is predetermined. Figure 8 illustrates

the connectivity of 16-point 2-PE pipeline. Furthermore, in many computations the

value of the twiddle factor is one. A twiddle factor of one reduces the PE computation

to add/subtract operations. Also, several PEs execute specific sets of twiddle factors,

which can lead to design simplification.

Algorithm 235

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

x1(0)

x1(1)

x1(2)

x1(3)

x1(4)

x1(5)

x1(6)

x1(7)

x1(8)

x1(9)

x1(10)

x1(11)

x1(12)

x1(13)

x1(14)

x1(15)

x2(0)

x2(1)

x2(2)

x2(3)

x2(4)

x2(5)

x2(6)

x2(7)

x2(8)

x2(9)

x2(10)

x2(11)

x2(12)

x2(13)

x2(14)

x2(15)

x3(0)

x3(1)

x3(2)

x3(3)

x3(4)

x3(5)

x3(6)

x3(7)

x3(8)

x3(9)

x3(10)

x3(11)

x3(12)

x3(13)

x3(14)

x3(15)

x4(0)

x4(1)

x4(2)

x4(3)

x4(4)

x4(5)

x4(6)

x4(7)

x4(8)

x4(9)

x4(10)

x4(11)

x4(12)

x4(13)

x4(14)

x4(15)

Stage 0 Stage 1 Stage 2 Stage 3

MEM

0

MEM

1

MEM

2

MEM

3

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Fig. 8. Example FFT Data Flow [21]

As indicated earlier, the speed up of the pipeline depends on two factors: the

number of PEs/stage (i.e., M) and the number of stages (log2(N)) since Speedup =

M*log2(N). One might ask, “Given fixed target speedup (e.g., S), which factor should

be increased to achieve more efficient design: the number-of-stages or the number-of-

PEs/stage?” Consider a pipeline with a speedup of S with two designs: Design A and

design B, as shown in Table 4. Design A has one PE per stage, while design B has

one stage. Clearly,

• Design B requires less memory than design A since the design A total memory is

proportional to S.

• Design A switch fabric is simpler than that of design B. The complexity of the

design B switch fabric is proportional to S
2
.

Table 4. Analyzing Speed Up Factors

Parameter Design A Design B

Number of Stages S 1

Number of PEs per Stage 1 S

Memory Size N/2 N/(2*S)
Number of Memories 4*(S+1) 2*S

Total Memory 2*N*(S+1) N

Switch Complexity 2*2 S*S

The main disadvantage of the increasing the number of stages is the increase in total

memory. On the other hand, increasing the number of PEs per stage increases the

complexity of the switch fabric. Hence, the tradeoffs between the two factors depend

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 236

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

on the constraints on the total memory and the maximum complexity of the switch.

Only specific design goals and technology processes can determine the optimum

solution.

Pipeline Hazards

The main source of hazards in the pipeline is memory contention. Memory

contention occurs when one or more PEs requests two or more accesses to a given

memory at the same time. Memory contention results in stalling the pipeline and

reduces the system speed. In the decimation-in-frequency FFT, memory contention

does not occur in the early stages, it occurs from stage log2(M)+1 to the last stage. In

the decimation-in-time FFT, contention affects stage 0 to stage log2(N) – log2(M) – 1.

Figure 8 shows an example of memory contention for N=16 and M=2. It is clear

that stage 0 and stage 1 have no contention. However, contention occurs in stage 2

and stage 3. Observe the following:

• In stage 2 the inputs for the top PE are x2(0) and x2(2), both of which reside in

MEM0.

• In stage 3 the inputs for the top PE are x3(0) and x3(1), both of which reside in

MEM0.

One solution for memory contention is to use a multi-port memory. However,

multi-port memories are expensive and can slow down the system performance. In

addition, the later stages of the pipeline have higher degree of contention which

requires more ports in the memory. Eventually, it becomes impractical to implement

the required multi-port memory. Moreover, the number of memory ports varies in the

memory hierarchy. Register files usually have more ports than caches and SRAMs.

Requiring a certain number of memory ports restricts where the intermediate results

can be saved in the memory system. Another solution to resolve memory contention

is to employ a memory management mechanism to mitigate the hazard, as discussed

in the next section.

IV. HAZARD FREE PIPELINE ALGORITHM

The main idea of the algorithm is resolve memory contention in the early stages of

the pipeline. The rest of the section describes the hazard conditions, memory

management operations and the algorithm.

Detecting Pipeline Hazards

From Figure 8, in stage 0, x(0) and x(8) go to PE0. Similarly, x(1) and x(9) go to

PE1,..., etc. Define stage distance as the index delta in each stage. The stage distance

for a 16-point pipeline FFT is shown in Table 5.

Algorithm 237

Table 5. Stage Distance For 16-point Pipeline FFT

Stage Distance
Stage

Decimation-In-Frequency

Decimation-in-Time

0 8 1

1 4 2

2 2 4

3 1 8

In general, for an N-point pipeline FFT, the stage distance for stage i is equal to

N/2
(i+1)

. Memory contention occurs when the stage distance falls in a single memory

space. From Section III, the memory size is equal to N/(2*M). Hence, memory

contention occurs in stage i if the following condition is satisfied:

)(log

)2/(2/

2

)1(

Mi

NN
Mi

≥

≤
+

(2)

A stage that satisfies condition (2) will be referred to as a hazard stage; the rest of the

stages are safe stages. For instance, in Figure 8, stage 2 and stage 3 are hazard stages.

Define memory pair (i, j)t as memory location x(i) and x(j) for stage t. In stage 2, the

following memory pairs are hazard pairs: (0, 2)2, (1, 3)2, (4, 6)2, (5, 7)2. Other pairs

will be referred to as safe pairs, for instance (3, 5)2. The stage distance can be

represented in binary form:
 Stage-3 distance = 001

 Define pair (i, j)t as a hazard pair if and only if:

1. t is a hazard stage

2. The bit wise Exclusive-OR of addresses i and j is equal to the stage t distance.

For example, the address pair (5, 7)2 is a hazard pair since:

 Stage-2 distance = 210

 510 ⊕ 710 = 1012 ⊕ 1112 = 0102 = Stage-2 distance

On the other hand, address pair (3, 5)2 is a safe pair because:

 310 ⊕ 510 = 0112 ⊕ 1012 = 1102 != Stage-2 distance

Memory Management Operations

Let xi(t) and xj(t) be the i-th and j-th elements in stage t and i < j. Define the

memory management operations as follows (see Figure 9):

• Normal Operation: Inputs xi(t) and xj(t) are provided to the first and second inputs

of the PE: a, b. The results c and d are saved in xi(t+1) and xj(t+1).

• Shuffle Operation affects how PE results are saved back in memory. In shuffle

operation, the results c and d are saved in xj(t+1) and xi(t+1)

• Swap Operation: The swap operation affects the order of PE inputs. In swap

operation, xi(t) is provided to b (instead of a) and xj(t) is provided to a (instead of

b). The reason for the swap operation is because the PE is an asymmetric unit and

the memory management algorithm changes the normal order of data in the

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 238

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

memory. If the algorithm detects a case with incorrect inputs, the swap operation is

performed.

• Swap and shuffle operation: A PE operation can have both swap and shuffle

memory operations at the same time.

Fig. 9. Memory Management Operations [21]

The Algorithm

The main idea of the pipeline algorithm is to identify hazard pairs in early stages

and perform memory management operations to resolve the hazard. Because data is

rearranged in memory, the algorithm has to track where data is. One idea to track the

movement of data is to use a separate memory to store the data indexes (i.e., pointers),

as shown in Figure 10. This approach provides a great flexibility in moving data in

the memory. It also simplifies the reordering logic of the final stage hardware. The

downside of this approach is it increases memory size. Also, it increases loading the

operands in the PE by one cycle to retrieve pointers from memory. Another (less

flexible) solution is to move data in memory in a fixed way to simplify data tracking

in the pipeline. This approach resolves hazards for next stage only. As a result of

reordering data in the pipeline, results from the last stage in the pipeline should be

reordered.

Algorithm 239

Fig. 10. Tracking Shuffled Data [21]

The algorithm utilizes several counters to calculate memory addresses and

determine memory management operations. There are three main counters which are

described in the upper three rows of Table 6. Other counters are derived from the

main counters and described in the rest of the table. The flow of the algorithm of stage

i is shown in Figure 11. The pseudocode of the algorithm is listed at the end of the

section. Figure 12 illustrates the shuffle and swap operations performed by the

algorithm to resolve the memory contentions in Figure 8 example.

Table 6. The Main Counters

Counter Description/Usage

Current_Stage Stage counter

Current_Stage_Cycle Cycle counter within a stage

Current_Cycle_Operation Operation counter within a cycle
Horizontal_op_index Determines shuffle operations

Vertical_op_index Used in generating RAM addresses

Group_Count Determines swap operation
Current_Operation Used in generating RAM addresses

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 240

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

Fig. 11. Algorithm Flow in Stage i

Fig. 12. Resolving Contentions in Pipeline Hazard Example [21]

Algorithm 241

Algorithm Pseudocode

// Preparation Step

Number_Of_Stages = log2NUMBER_OF_FFT_POINTS

Cycles_Per_Stage = N/(2*NUMBER_OF_PE)

Memory_Size = N/2
(NUMBER_OF_PE+1)

Safe_Stage = log2NUMBER_OF_PE

// Start main nester loops

for Current_Stage=0 to (Number_Of_Stages -1)

 Group_Size = N/2
(Current_Stage+1)

 for Current_Stage_Cycle=0 to (Cycles_Per_Stage -1)

 for Current_Cycle_Operation=0 to (NUMBER_OF_PE -1)

 // Calculate Operation Indices

 Horizontal_op_index = Cycles_Per_Stage *

 Current_Cycle_Operation

 + Current_Stage_Cycle

 Vertical_op_index = NUMBER_OF_PE * Current_Stage_Cycle

 + Current_Cycle_Operation

 Current_Stage_Rev = Number_Of_Stages - Current_Stage – 1

 Current_Group = floor(Horizontal_op_index/

 2
Current_Stage_Rev

)

 Current_Operation = Horizontal_op_index mod 2
Current_Stage_Rev

 // Calculate Memory Address

 M0_addr = Current_Stage_Cycle

 If Current_Stage <= Safe_Stage

 M1_addr = M0_addr

 Else

 K = Safe_Stage +1

 L = Current_Stage

 M1_Addr = Reverse M0_Addr0 bits between K to L bits

 End

 // Calculate Memory Select

 If Current_Stage <= Safe_Stage

 Group_Offset = Current_Group * N /2Current_Stage

 Group_Count = Horizontal_op_index mod Group_Size

 Memory_Count = floor (Group_Count / Memory_Size)

 Offset = Memory_Count * Memory_Size

 M0_Select = Offset + Group_Offset

 M1_Select = Offset + Group_Offset + Group_Size

 Else

 Memory_Count = Vertical_op_index mod NUMBER_OF_PE

 Offset = 2 * Memory_Count * Memory_Size

 M0_Select = Offset;

 M1_Select = Offset + 2 * Memory_SiZe

 End

 M0_data = Memory(Current_Stage, M0_Select0) [M0_addr]

 M1_data = Memory(Current_Stage, M1_Select1) [M0_addr]

 // Determine if swap operation is required

 If Current_Group is even

 AND Current_Sage <= Safe_Stage

 // Read data with no swap

 M0_data = Memory(Current_Stage, M0_Select) [M0_addr]

 M1_data = Memory(Current_Stage, M1_Select) [M1_addr]

 Else

 // Read Data and perform Swap

 M1_data = Memory(Current_Stage, M0_Select) [M0_addr]

 M0_data = Memory(Current_Stage, M1_Select) [M1_addr]

 End

 // Read Twiddle

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 242

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

 ROM_SELECT = Current_Cycle_Operation

 ROM_Address = Current_Operation * 2
Current_Stage

 W = ROM(Current_Stage, ROM_SELECT) [ROM_Address]

 // Enable PE to perform FFT butterfly operation

 [Result1, Result0] =

 PECurrent_Cycle_Operation(M0_data, M1_data, W);

 // Perform shuffle operation

 Shuffle_Bit = log2NUMBER_OF_FFT_POINTS

 - Current_Stage - 2

 Shuffle_Flag = Horizontal_op_index [Shuffle_Bit]

 If Current_Stage >= Sage_Stage AND

 Shuffle_Flag == 1

 // Shuffle ResultsShuffle = 1

 Memory(Current_Stage+1, M0_Select) [M0_addr] = Result1

 Memory(Current_Stage+1, M1_Select) [M1_addr] = Result0

 Else

 // No Shuffling

 Memory(Current_Stage+1, M0_Select) [M0_addr] = Result0

 Memory(Current_Stage+1, M1_Select) [M1_addr] = Result1

 End

 end // Current_Cycle_Operation

 end // Current_Stage_Cycle loop
end // Current_Stage loop

V. 64-POINT PIPELINE FFT DESIGN

This section explains a 64-point pipeline FFT design using four PEs per stage.

Therefore, although there are 16 memories per stage, only eight memories will be

active memory at any time. The memory size is eight words. There are four ROMs

per stage, each with a capacity of eight words. The pipeline speed up equals 6*4=24.

The following tables detail the operation of the pipeline PEs and illustrate the memory

contents.

Table 7 gives the PE operand pairs for Stage 0. The rows give the operand pairs for

PE0, PE1, PE2 and PE3. The columns give the pairs for each micro-cycle in Stage 0

cycles. There are eight micro-cycles per stage. For example, at micro-cycle 0:

• PE0 input operands will be MEM[0] and MEM[32]

• PE1 input operands will be MEM[8] and MEM[40]

• PE2 input operands will be MEM[16] and MEM[48]

• PE3 input operands will be MEM[24] and MEM[56]

Tables 8-12 give the PE operand pairs for Stages 1-5. Underlined pairs indicate

shuffle operation. Since Stages 0-2 are safe stages, the first shuffle operation starts in

Stage 2 to prevent hazards in stage 3. Table 13 lists the memory contents for pipeline

stages. For example, the output of stage 2 has the memory contents for Memory 0 as

follows: 0, 1, 2, 3, 12, 13, 14, and 15.

Algorithm 243

Table 7. Pipeline Stage-0 Operand Paris

Stage-0 Cycles
PE

0 1 2 3 4 5 6 7

0 0,32 1,33 2,34 3,35 4,36 5,37 6,38 7,38

1 8,40 9,41 10,42 11,43 12,44 13,45 14,46 15,47

2 16,48 17,49 18,50 19,51 20,52 21,53 22,54 23,55

3 24,56 25,57 26,58 27,59 28,60 29,61 30,61 31,63

Table 8. Pipeline Stage-1 Operand Paris

Stage-1 Cycles
PE

0 1 2 3 4 5 6 7

0 0,16 1,17 2,18 3,19 4,20 5,21 6,22 7,23

1 8,24 9,25 10,26 11,27 12,28 13,29 14,30 15,31

2 32,48 33,49 34,50 35,51 36,52 37,53 38,54 39,55

3 40,56 41,57 42,58 43,59 44,60 45,61 46,62 47,63

Table 9. Pipeline Stage-2 Operand Paris

Stage-2 Cycles
PE

0 1 2 3 4 5 6 7

0 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15

1 16,24 17,25 18,26 19,27 20,28 21,29 22,30 23,31

2 32,40 33,41 34,42 35,42 36,44 37,45 38,46 39,47

3 48,56 49,57 50,58 51,59 52,60 53,61 54,62 55,63

Table 10. Pipeline Stage-3 Operand Paris

Stage-3 Cycles
PE

0 1 2 3 4 5 6 7

0 0,4 1,5 2.6 3,7 12,8 13,9 14,10 15,11

1 16,20 17,21 18,22 19,23 28,24 29,25 30,26 31,27

2 32,36 33,37 34,38 35,39 44,40 45,41 46,42 47,43

3 48,52 49,53 50,54 51,55 60,56 61,57 62,58 63,59

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 244

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

Table 11. Pipeline Stage-4 Operand Paris

Stage-4 Cycles
PE

0 1 2 3 4 5 6 7

0 0,2 1,3 6,4 7,5 12,14 13,15 10,8 11,9

1 16,18 17,19 22,20 23,21 28,30 29,31 26,2 27,25

2 32,34 33,35 38,36 39,37 44,46 45,47 42,40 43,41

3 48,50 49,51 54,52 55,53 60,62 61,63 58,56 59,57

Table 12. Pipeline Stage-5 Operand Paris

Stage-5 Cycles
PE

0 1 2 3 4 5 6 7

0 0,1 3,2 6,7 5,4 12,13 15,14 10,11 9,8

1 16,17 19,18 22,23 21,20 28,29 31,30 26,27 25,25

2 32,33 35,34 38,39 37,36 44,45 47,46 42,43 41,40

3 48,49 51,50 54,55 53,52 60,61 63,62 58,59 57,56

Table 13. Pipeline Memory Content

Stages
MEM

Input 0 1 2 3 4 5
0 0 0 0 0 0 0

1 1 1 1 1 3 3

2 2 2 2 6 6 6

3 3 3 3 7 5 5

4 4 4 12 12 12 12

5 5 5 13 13 15 15

6 6 6 14 10 10 10

0

7 7 7 15 11 9 9

8 8 8 8 8 8 8

9 9 9 9 9 11 11

10 10 10 10 14 14 14

11 11 11 11 15 13 13

12 12 12 4 4 4 4

13 13 13 5 5 7 7

14 14 14 6 2 2 2

1

15 15 15 7 3 1 1

16 16 16 16 16 16 16

17 17 17 17 17 19 19

18 18 18 18 22 22 22

19 19 19 19 23 21 21

20 20 20 28 28 28 28

21 21 21 29 29 31 31

22 22 22 30 26 26 26

2

23 23 23 31 27 25 25

24 24 24 24 24 24 24

25 25 25 25 25 27 27
3

26 26 26 26 30 30 30

Algorithm 245

27 27 27 27 31 29 29

28 28 28 20 20 20 20

29 29 29 21 21 23 23

30 30 30 22 18 18 18

31 31 31 23 19 17 17

32 32 32 32 32 32 32

33 33 33 33 33 35 35

34 34 34 34 38 38 38

35 35 35 35 35 37 37

36 36 36 44 44 44 44

37 37 37 45 45 47 47

38 38 38 46 42 42 42

4

39 39 39 47 43 41 41

40 40 40 40 40 40 40

41 41 41 41 41 43 43

42 42 42 42 46 46 46

43 43 43 43 47 45 45

44 44 44 36 36 36 36

45 45 45 37 37 39 39

46 46 46 38 34 34 34

5

47 47 47 39 35 33 33

48 48 48 48 48 48 48

49 49 49 49 49 51 51

50 50 50 50 54 54 54

51 51 51 51 55 53 53

52 52 52 60 60 60 60

53 53 53 61 61 63 63

54 54 54 62 58 58 58

6

55 55 55 63 59 57 57

56 56 56 56 56 56 56

57 57 57 57 57 59 59

58 58 58 58 62 62 62

59 59 59 59 63 61 61

60 60 60 52 52 52 52

61 61 61 53 53 55 55

62 62 62 54 50 50 50

7

63 63 63 55 51 49 49

VI. Comparison with Other FFT Pipelines

The hardware complexity of a pipeline FFT is measured by the number of complex

adders, complex multipliers and the memory size. A radix-2 butterfly consists of one

complex multiplier and two complex adders which can be implemented using four

real multipliers and six real adders. A radix-4 butterfly consists of three complex

multipliers and eight complex adders and can be implemented using 12 real

multipliers and 22 real adders. Less expensive (but slower) butterfly implementations

exist especially for slow pipelines, e.g., SDF pipelines. The rest of this section uses

counts of complex operations to compare different pipelines.

The SDF pipeline FFT has a total of (logrN -1) multipliers and N-1 delay elements.

Further, the MDC pipeline FFT utilizes (r+1)N/2 – r delay elements, and (r-1) (logrN

-1) real multipliers and roughly 2(r-1) (logrN -1) adders. Table 14 summarizes the

hardware and timing complexities for FFT pipeline architectures discussed in

references [18], [20]. The table also illustrates the complexities for the switch based

architecture (shown in the last row of the table.) The other pipeline architectures

require delay elements in the pipeline implementation. Delays are implemented by

shift registers (which dissipate high dynamic power) or by RAMs with additional

address generation hardware (which increases design complexity). The modular

pipeline reduces number of delay elements to 2(N -r). The switch-based pipeline

uses SRAM memory arrays, which consume less power than registers and are easier

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 246

The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and

to implement. Moreover, the throughputs of the other pipelines are limited to one

(single-path) or a few (multi-path) data per clock, while the switch based

implementation has a throughput of M. Unfortunately, the switch based pipeline

requires larger memory size and more hardware in the data path.

Table 14. FFT Pipeline Architectures

FFT Pipeline

Multipliers

Adders Memory Size Speed up

Radix-2 SDF 2(log4 N-1) 4 log4N N - 1 log2N

Radix-4 SDF log4 N-1 8 log4N N - 1 log2N

Radix-2 MDC 2(log4 N-1) 4 log4N 3N/2 - 2 log2N

Radix-4 MDC 3(log4 N-1) 8 log4N 5N/2 - 4 log2N

Radix-4 Single-path Delay Commutator log4 N-1 3 log4N 2N/2 - 2 log2N

Radix-22 Single-path Delay feedback log4 N-1 4 log4N N - 1 log2N

Radix-2 Modular Pipeline 2(log4 N-1) 4 log4N N - 6

+ 2*sqrt(N)
log2N

Switch-Based Pipeline M*2(log4 N-1) M*4 log4N 2*N*

(1+log2 N)

M* log2N

VII. CONCLUSION AND FUTURE WORK

This chapter extends results from [21]. It presents a switch-based architecture for

FFT engine implementation. It also presents an algorithm to predict and resolve

memory contentions. As a result the pipeline speedup is M*log2N, where N is the

number of points and M is the number of processing elements. An implementation of

a 64-point FFT machine using the proposed architecture is presented. The architecture

compares favorably to other FFT pipelines. Future research should focus on reducing

power consumption of the FFT pipeline.

References

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex

Fourier series,” Mathematics of Computation, vol. 19, pp. 297-301, 1965.

[2] B. M. Baas, “A low-power high-performance 1024-point FFT processor,” IEEE Journal of

Solid-State Circuits, vol. 34, pp. 380–387, March 1999.

[3] D. Cohen, “Simplified control of FFT hardware,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. ASSP-24, pp. 577-579, 1976.

[4] M. C. Pease, “Organization of large scale Fourier processors,” JACM, vol. 16, pp. 474-

482, 1969.

[5] L. G. Johnson, “Conflict free memory addressing for dedicated FFT hardware,” IEEE

Transactions on Circuits and Systems, II, vol. 39, pp. 312-316, 1992.

[6] Y. Ma, “An effective memory addressing scheme for FFT processors,” IEEE Transactions

on Signal Processing, vol. 47, pp. 907-911, 1999

Algorithm 247

[7] Y. Ma and L. Wanhammar, “A hardware efficient control of memory addressing for high-

performance FFT processors,” IEEE Transactions on Signal Processing, vol. 48, pp. 917-

921, 2000.

[8] B. M. Baas, “A generalized cached-FFT algorithm,” IEEE International Conference on

Acoustic, Speech and Signal Processing, 18-23 March 2005 pp. v/89 - v/92.

[9] G. Zhong, F. Xu and A. N. Willson, Jr., “A power-scalable reconfigurable FFT/IFFT IC

based on a multi-processor ring,” IEEE Journal of Solid-State Circuits, Volume 41,

Issue 2, Feb. 2006 pp. 483 - 495

[10] G. Zhong, F. Xu and A. N. Willson, Jr., “An energy-efficient reconfigurable FFT/IFFT

processor based on a multi-processor ring,” XII European Signal Processing Conference

(EUSIPCO), 2004, Vienna, Austria. pp. 2023-2026.

[11] H. L. Groginsky and G. A. Works, “A pipelined fast Fourier transform,” IEEE

Transactions on Computers, vol. C-19. pp. 1015-1019, 1970

[12] J. H. McClellan and R. J. Purdy, “Applications of Digital Signal Processing to Radar,” in

A. V. Oppenheim, ed., Applications of Digital Signal Processing, Englewood Cliffs, NJ:

Prentice-Hall, pp. 239-329, 1978

[13] E. E. Swartzlander, Jr., “Systolic FFT Processors,” in W. Moore, A. McCabe and R.

Urquhart, eds., Systolic Arrays, Boston: Adam Hilger, 1987, pp. 133-140.

[14] S. M. Currie, P. R. Schumacher, B. K. Gilbert, E. E. Swartzlander, Jr. and B. A. Randall,

“Implementation of a Single Chip, Pipelined, Complex, One-Dimensional Fast Fourier

Transform in 0.25 µm Bulk CMOS,” IEEE International Conference on Application-

Specific Systems, Architectures and Processors, 2002, pp. 335-343.

[15] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,”

Proc. of URSI International Symposium on Signals, Systems, and Electronics, 1998, pp.

257-262

[16] S. He and M. Torkelson. “Design and Implementation of a 1024-point Pipeline FFT

Processor,” IEEE Custom Integrated Circuits Conference, pp. 131–134, May 1998

[17] P.-Y. Tsai, T.-H. Lee and T.-D. Chiueh, “Power-Efficient Continuous-Flow Memory-

Based FFT Processor for WiMax OFDM Mode,” International Symposium on Intelligent

Signal Processing and Communication Systems (IPACS 2006), December 12-15, 2006.

[18] A. M. El-Khashab and E. E. Swartzlander, Jr., “The Modular Pipeline Fast Fourier

Transform Algorithm and Architecture,” Proceedings of the Thirty-Seventh Asilomar

Conference on Signals, Systems, and Computers, November 9-12, 2003, Pacific Grove,

CA, pp. 1463-1467.

[19] A. M. El-Khashab and E. E. Swartzlander, Jr., “A modular pipelined implementation of

large fast Fourier transforms,” Proceedings of the Thirty-Sixth Asilomar Conference on

Signals, Systems and Computers, November 3-6, 2002, Pacific Grove, CA, pp. 995 – 999.

[20] A. M. El-Khashab and E. E. Swartzlander, Jr., “An architecture for a radix-4 modular

pipeline fast Fourier transform,” IEEE International Conference on Application-Specific

Systems, Architectures and Processors, June 24-26, 2003, pp. 378 – 388

[21] B. J. Mohd, A. Aziz and E. E. Swartzlander, Jr. “The Hazard-Free Superscalar Pipeline

Fast Fourier Transform Algorithm and Architecture,” 15th Annual IFIP VLSI SoC 2007,

Atlanta, Oct, 2007

[22] J Shen and M Lipasti, Modern Processor Design: Fundamentals of Superscalar

Processors, New York: McGraw-Hill, 2005, pp. 27-32.

Bassam Mohd Earl E. Swartzlander, Jr. Adnan Aziz 248

