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COMBATING MEMORY CORRUPTION
ATTACKS ON SCADA DEVICES

Carlo Bellettini and Julian Rrushi

Abstract Memory corruption attacks on SCADA devices can cause significant dis-
ruptions to control systems and the industrial processes they operate.
However, despite the presence of numerous memory corruption vulner-
abilities, few, if any, techniques have been proposed for addressing the
vulnerabilities or for combating memory corruption attacks. This paper
describes a technique for defending against memory corruption attacks
by enforcing logical boundaries between potentially hostile data and
safe data in protected processes. The technique encrypts all input data
using random keys; the encrypted data is stored in main memory and
is decrypted according to the principle of least privilege just before it
is processed by the CPU. The defensive technique affects the precision
with which attackers can corrupt control data and pure data, protecting
against code injection and arc injection attacks, and alleviating prob-
lems posed by the incomparability of mitigation techniques. An experi-
mental evaluation involving the popular Modbus protocol demonstrates
the feasibility and efficiency of the defensive technique.
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1. Introduction

This paper describes the design and implementation of a run-time system
for defending against memory corruption attacks on SCADA devices. SCADA
systems are widely used to operate critical infrastructure assets such as the
electric power grid, oil and gas facilities, and water treatment plants. Recent
vulnerability analyses of SCADA protocol implementations have identified sev-
eral memory corruption vulnerabilities such as buffer overflows and faulty map-
pings between protocol elements (handles and protocol data unit addresses) and
main memory addresses [8, 27]. These include [19, 40] for Inter Control Center
Protocol (ICCP) [20, 42] for OLE for Process Control (OPC) [21], respectively.
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Very few defensive techniques have been devised specifically for SCADA
systems. Consequently, most of the techniques discussed in this paper are
drawn from efforts related to traditional computer systems. All these tech-
niques, which the exception of pointer taintedness detection [10, 11], focus on
protecting control data (e.g., saved instruction pointers, saved frame pointers
and pointers in various control tables) from corruption. The techniques do
not protect against attacks that corrupt non-control data, also called “pure
data,” which includes user identification data, configuration data and decision-
making data [12]. Furthermore, the techniques only protect against pre-defined
attack techniques. This problem, which is referred to as the “incomparability
of defensive techniques” [34], is stated as follows: for any two categories of
techniques A and B there are attacks prevented by A that are not prevented
by B, and there are attacks prevented by B that are not prevented by A. The
approach described in this paper overcomes the limitations of current defensive
techniques in terms of attack vector coverage. Also, it protects against control
data attacks as well as pure data attacks.

We have evaluated our defensive technique using a Modbus protocol [26]
implementation running under Linux. In particular, we employed FreeMOD-
BUS [44] running on a Debian machine (OS kernel 2.6.15) with 1024 MB main
memory and an [A-32 processor with a clock speed 1.6 GHz. The Modbus
client and server ran on the same physical machine and communicated via a
null-modem cable between /dev/ttyS1 and /dev/ttyS0. The experimental
results indicate that the defensive technique is both feasible and efficient for
real-time operation in industrial control environments.

2. Related Work

Simmons, et al. [38] have proposed code mutation as a technique for detect-
ing buffer overflow exploits in SCADA systems before the exploits are executed.
The technique involves altering SCADA executable code without changing the
logic of the original algorithms. Code mutation is one of the first approaches
proposed for protecting SCADA systems from memory corruption attacks. The
other techniques discussed below were originally developed for traditional com-
puter systems.

Instruction set randomization [6, 23] counters attacks that hijack the exe-
cution flow of a targeted program in order to execute injected shellcode. This
defensive technique prevents the injected shellcode from being executed by en-
crypting program instructions with a random key; the encrypted code is loaded
into memory and is decrypted just before it is processed by the CPU.

Kec, et al. [23] randomize ELF [40] executables by extending the objcopy
utility to create a binary by XORing the original instructions with a 32-bit
key. This key is then embedded in the header of the executable. When a new
process is generated from a randomized binary, the operating system extracts
the key from the header and stores it in the process control block. After the
process is scheduled for execution, the key is loaded into a special register of the
CPU via a privileged instruction; the key is then XORed with the instructions
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before they are processed by the CPU. This approach protects against attacks
on remote services, but not from local attacks. Also, it has a considerable
performance cost and does not handle dynamic libraries. In fact, because a
key is associated with a single process, it is difficult to use dynamic libraries
whose code is shared by different processes. A solution is to copy the shared
library code to a memory area where it could be XORed with the key of the
corresponding process; this enables each process to create and use a private
copy of the shared code. However, the memory consumption is high and the
strategy conflicts with the rationale for having shared libraries.

Barrantes, et al. [6] have developed the RISE tool that generates a pseudo-
random key whose length is equal to the total number of bytes of the program
instructions. The instructions are XORed with the key when they are loaded
into the emulator and are decrypted right before being executed. When a pro-
cess needs to execute shared library code, the operating system makes a private
copy of the code, encrypts it and stores the encrypted code in the virtual mem-
ory assigned to the process. Thus, the use of shared libraries consumes a large
amount of main memory. RISE is based on valgrind [29] and adds a latency
of just 5% to a program running under valgrind. Instruction set randomiza-
tion cannot prevent control data attacks or pure data attacks that operate in
a return-into-libc manner because these attacks do not use injected shell-
code [28].

The instruction set randomization technique can be subverted. Sovarel, et
al. [39] have demonstrated the efficiency of incremental key guessing where an
attacker can distinguish between incorrect and correct key byte guesses. The
incremental key guessing exploit injects either a return instruction (which is
one byte long for the TA-32 processor) or a jump instruction (two bytes long)
encrypted with one or two guessed bytes, respectively. If an attacker employs
a return instruction in a stack overflow exploit [1], the stack is overflowed so
that the saved frame pointer is preserved. The saved instruction pointer is
then modified to point to the encrypted return instruction that is preliminar-
ily injected and the original saved instruction pointer is stored next to it. If
the guess of the encryption byte is correct, the CPU executes the injected re-
turn instruction and the vulnerable function returns normally; if the guess is
incorrect, the targeted process crashes.

The subversion technique requires knowledge of the saved frame pointer and
the saved instruction pointer. An attacker may also inject a short jump with a
-2 offset. If the attacker’s guess of the two encryption bytes is correct, the jump
instruction is executed and proceeds to jump back to itself, causing an infinite
loop; an incorrect guess causes the targeted process to crash. After successfully
guessing the first byte or the first two bytes, the attacker changes the position
of the byte(s) to be guessed and proceeds as in the previous step. Because a
failed key guess causes the targeted process to crash, incremental subversion
is possible only for programs that are encrypted with the same key every time
they execute. Incremental subversion is also applicable to programs whose
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forked children are encrypted with the same key, in which case the technique
is directed at a child process.

PointGuard [15] XORs pointers with a 32-bit key when they are stored in
main memory, and XORs them again with the same key right before they
are loaded into CPU registers. The encryption key is generated randomly at
load time and is kept secret. An attacker cannot corrupt a pointer with a
value that is useful (from the attack point of view) as the encryption key is
not known. This is because the corrupted pointer is decrypted before being
loaded into a CPU register; thus, it will not accomplish the attacker’s task [15].
However, PointGuard does not counter injected shellcode. Also, uncorrupted
bytes in a partially-corrupted pointer are decrypted correctly. This means
that an attacker can corrupt the least significant byte of a pointer in a process
running on a Little Endian architecture and then employ a brute force technique
to land in a memory location where shellcode or a program instruction is stored.
The subversion may be carried out on any architecture by exploiting a format
bug [18, 30, 37] to corrupt any one byte of a target pointer [2].

StackGuard [16] places a load-time-generated random value or a string ter-
minating value (called a “canary”) on the stack next to the saved instruction
pointer. The integrity of the canary is checked upon function return. If the
original value of the canary has been modified, a stack overflow has occurred,
the incident is reported in a log file and program execution is aborted [16].

StackShield [43] creates a separate stack to hold a copy of each saved in-
struction pointer. It saves a copy of the saved instruction pointer at function
call and copies the saved value back to the saved instruction pointer location at
function return; this ensures that the function correctly returns to its original
caller. However, Bulba and Kil3r [9] have shown that StackShield can be by-
passed by corrupting the saved frame pointer using a frame pointer overwrite
attack [24]. Also, StackGuard can be bypassed by attack techniques that do
not need to pass through a canary in order to corrupt the saved instruction
pointer of a vulnerable function. Examples include heap overflows, longjmp
overflows, format strings and data/function pointer corruption.

The StackGuard limitation can be addressed by XORing a saved instruction
pointer with a random canary at function call and at function return. The
attack fails if the saved instruction pointer is corrupted without also modifying
the corresponding canary. When a function completes its execution, XORing
the canary with the corrupted instruction pointer will not yield a pointer to
the memory location defined by the attacker.

FormatGuard [14] is a countermeasure against format string attacks. It
compares the number of actual parameters passed to a format function against
the number of formal parameters. If the number of actual parameters is less
than the number of formal parameters, FormatGuard reports the fact as an
incident in a log file and aborts program execution. Robins [35] has proposed
libformat, a library that aborts program execution if it calls a format function
with a format string that is writable and contains a %n format directive.
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Baratloo, et al. [5] utilize the 1ibsafe library to intercepts calls to functions
that are known to cause buffer overflows and replace each function with one that
implements the same functionality, but with buffer overflows restricted to the
current stack frame. Note that 1ibsafe does not protect against heap overflows
or attacks that corrupt data/function pointers. With regard to format string
vulnerabilities, libsafe rejects dangerous format directives such as %n that
attempt to corrupt saved instruction pointers. Baratloo, et al. [4] have created
the libverify library that offers the same kind of protection as StackShield.
The main difference is in the way the copy of a saved instruction pointer is
compared with the saved pointer on the stack at function return.

Krennmair [25] has developed ContraPolice for protecting against heap over-
flows [3, 13, 17, 22]. ContraPolice places a random canary before and after the
memory region to be protected. Integrity checks are performed on the canary
before exiting from a function that copies data to the protected memory region.
Program execution is aborted when the canary indicates corruption.

The PaX kernel patch [33] for Linux employs non-executable pages for TA-32
to make the stack and heap non-executable [33]. Page privilege flags are used to
mark pages as non-executable; a page fault is generated when a process accesses
such a page. PaX then checks if a data access occurred or the CPU tried to
execute an instruction (in which case the program execution is aborted). PaX
performs well against shellcode injection, but not against attacks structured in
a return-into-1libc manner.

The defensive techniques discussed in this section focus on a few attacks,
often on a single attack. None of the techniques can protect against all at-
tacks that exploit memory corruption vulnerabilities, which raises the issue of
incomparability of mitigation techniques. To the best of our knowledge, the
only approach capable of protecting a process from control data and pure data
attacks is pointer taintedness detection [10, 11]. A pointer is considered to be
tainted when its value is obtained via user input or is derived from user input.
If a pointer is tainted during the execution of a process, an attack is underway
and a response should be triggered. Pointer taintedness detection is a effective
technique, but it requires substantial changes to the underlying hardware to
implement its memory model.

3. Countering Memory Corruption Attacks

The computer security community has traditionally relied on patching mem-
ory corruption vulnerabilities to combat control data and pure data attacks.
However, software patches only address known vulnerabilities; the patched sys-
tems would still be exposed to attacks that exploit vulnerabilities that exist,
but that have not been identified or disclosed. Also, patching SCADA systems
often degrades their real-time performance characteristics.

Intrusion detection and response systems are often used for attack preven-
tion. The problem is that an intrusion detection system generally performs its
analysis and raises alarms after an intrusion has been attempted. Some mod-
ern intrusion detection systems (e.g., Snort [36]) perform real-time intrusion
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prevention tasks. Similarly, a fast proactive defense mechanism could be used
to block the exploitation of memory vulnerabilities.

Building attack requirement trees for known attacks that target memory
corruption vulnerabilities can assist in developing defensive mechanisms. An
attack requirement tree is a structured means for specifying conditions that
must hold for an attack to be feasible [7]. The root node of the tree is the
attack itself, while every other node is a requirement (or sub-requirement) for
the attack. Internal nodes are either AND nodes or OR nodes. An AND node
is true when all its child nodes are true; an OR node is true if if any one of its
child nodes is true.

We use an attack requirement tree corresponding to a specific attack as
a pattern for characterizing the family of memory corruption attacks. The
example attack we consider smashes a buffer on a stack to corrupt the saved
instruction pointer and return execution to injected shellcode. The attack
requirement tree highlights two issues:

The main instrument employed to satisfy one or more critical nodes in
an attack requirement tree is the input data fed to a targeted process. In
our example, the corrupting value of the saved instruction pointer and the
shellcode injected into the address space of a targeted process constitute
the input data (supplied by the attacker).

The nodes are true because the attacker has full control of the input
data in the address space of the targeted process. In our example, an
attacker defines the content of shellcode and the shellcode is stored in
memory in exactly the way the attacker defined it. Furthermore, an
attacker can define the value that overwrites the saved instruction pointer.
Thus, during a memory corruption attack, a saved instruction pointer is
overwritten by the value defined by the attacker.

Obviously, it is not possible to eliminate the attack instrument. However,
it is feasible to eliminate the control that an attacker has on the content of
the input data stored in main memory. The idea is to prevent the attacker
from being able to define the bytes stored in memory. As shown in Figure
1, the attacker develops shellcode that spawns a shell (Figure 1(a)) and feeds
it along with other attack data to a targeted process. Figure 1(b) shows the
shellcode stored in the main memory of a Little Endian Intel machine in the
manner defined by the attacker. Under these conditions, an attacker could
hijack program execution to the injected shellcode and cause its execution. If
users, including malicious users, specify the content of input data while it is
within the process that defines the content stored in main memory, an attacker
cannot control the content of input data stored in main memory.

A process should store input data in main memory so that transformed
data is converted to its original form before it is used. Figure 1(c) presents
the shell-spawning shellcode encrypted in a stream cipher mode using the key
0xd452e957 and stored in main memory as ciphertext. The input data stored
in main memory is different from the input data defined by an attacker at
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RAM RAM
0x52c03199 0x0529634d
0x732f6e68 0x24c63cbc
0x2f2f6868 0x78c63abc
0xe3896962 0xb4603bb6
0xe1895352 0xb6600186

0x80cd0bb0 0xd7245964
® XS ©
Q
\
"\x99" v:ltd
"\x31\xc0" Xxor %eax, Y%eax
"\x52" push %edx

"\x68\x6e\x2f\x73\x68"  push $0x68732f62
"\x68\x2f\x2f\x62\x69" push $0x69622f2f

(a) "\x89\xe3" mov %esp, %ebx
"\x52" push %edx
"\x53" push %ebx
"\x89\xe1" mov %esp, %ecx
"\xb0\x0b" mov $0xb, %al
"\xcd\x80" int $0x80

Figure 1. Potentially hostile data sanitized by stream cipher encryption.

the moment the attack data is provided as input to a targeted process. If the
attacker hijacks control to the transformed shellcode, it is highly likely that the
CPU will execute it, but the machine instructions in the transformed shellcode
would not be recognized.

This situation also holds for a saved instruction pointer. An attacker is able
to define (in the input data) the address of injected shellcode as the value that
overwrites an instruction pointer saved on the stack. However, if a targeted
process transforms the input data before storing it in memory, then the saved
instruction pointer is overwritten with the transformed value, not with the
address of the injected shellcode that the attacker intended. Consequently,
while it is likely that execution will be hijacked, control will not pass to the
injected shellcode. This technique applies to all attack techniques that exploit
memory vulnerabilities by corrupting control data or pure data.

4. Proposed Approach

The principal idea behind enforcing logical boundaries on potentially hostile
data is to encrypt input data before it enters the address space of a protected
process. All the data read from sockets, environment variables, files and stan-
dard input devices are encrypted and then stored in main memory. The stream



148 CRITICAL INFRASTRUCTURE PROTECTION II

cipher mode is used for encrypting and decrypting input data. Specifically,
input data is encrypted by XORing it with a key; the ciphertext is decrypted
by XORing it with the same key. Stream cipher encryption using the XOR
operation is ideal for real-time systems because it is fast and efficient.

A protected process should preserve input data as ciphertext throughout
its execution. Note that encryption defines a logical boundary in the address
space of a protected process between potentially hostile data and control/pure
data. A protected process should be aware of the logical boundaries of data. In
particular, the protected process should be able to determine if a buffer needed
by a machine instruction contains ciphertext, in which case, the buffer data has
to be decrypted before it is used. Unencrypted buffer data can be used directly.

The decryption of a buffer containing ciphertext should be performed in
compliance with the principle of least privilege. At any point in time, only the
data items required by an instruction are decrypted and made available to the
instruction. For example, format functions parse a format string one byte at
a time. If the byte read is not equal to %, it is copied to output; otherwise,
it means that a format directive (e.g., %x, %d or %n) is encountered and the
related value is retrieved from the stack. In this case, if the format function
needs to parse a byte of the format string, only that byte is decrypted and
made available; the remaining bytes are in ciphertext.

The principle of least privilege applied at such a low level prevents a func-
tion from operating on data other than the data it requires. To alleviate the
performance penalty, the number of bytes decrypted at a time could be slightly
greater than the number of bytes needed by a function — but such an action
should be performed only if it is deemed safe. The plaintext version of data
should not be preserved after an operation completes; otherwise, plaintext at-
tack data (e.g., shellcode) could be exploited in an attack. When a protected
process has to copy or move input data to another memory location, the data
is stored as ciphertext as well. Data created by concatenating strings, where at
least one string is stored as ciphertext, should also be preserved as ciphertext.

Each process generates a random sequence of bytes that is used as a key
for encrypting/decrypting input data. This key is generated before the main
function is executed. Child processes also randomly generate their own keys
immediately after being forked but before their program instructions are exe-
cuted. Thus, parent and child processes generate and use their own keys.

A child process that needs to access ciphertext data stored and handled by
its parent process uses the key of the parent process. To counter brute force
attacks, the lifetime of a key should extend over the entire period of process
execution. A brute force attack against a non-forking process or against a
parent process would require the key to be guessed correctly at the first attempt.
If this is not done, the protected process crashes and a new key is generated the
next time the process is created. The same situation holds for child processes:
if the key of the targeted child process is not guessed during the first try, the
process crashes and a new child process with a new key is forked when the
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attacker attempts to reconnect to the parent process. A brute force attack fails
because the new child process generates and uses a new random key.

A key is stored within the address space of the process that created it and
is available to the process throughout its execution. Care should be taken to
guarantee the integrity of the key when it is stored and loaded from memory.

By encrypting process input, intervention occurs at two vital points of an
attack. The first point is when attack data is stored in buffers to execute various
types of buffer overflow attacks that corrupt control data or pure data. The
second point is when attack data is stored in main memory.

Without the encryption key, an attacker cannot place the correct data re-
quired to execute a buffer overflow attack. In addition, the attacker cannot
inject valid shellcode because it would have to be in ciphertext (like the origi-
nal shellcode). In the case of a format string attack, due to the application of
the least privilege principle for decryption, when a format function processes a
directive (e.g., %n), the bytes to be stored and their starting memory location
are not available. Thus, the attacker loses the ability define a value and the
address where the value is to be stored.

The second point of intervention is when attack data is stored in memory.
This is when an attacker, who has corrupted control data or pure data, could
cause execution to return to shellcode. It is also at this point that an attacker
could inject data into the stack by passing it as an argument to a function. This
is referred to as arc injection (a return-into-libc type of attack). Preserving
potentially malicious data as ciphertext in main memory thus eliminates the
ability of an attacker to use shellcode or to perform arc injection.

Note that an intervention at the first point prevents an attacker from trans-
ferring control to the desired memory location. Therefore, an intervention at
the second point can be considered to be redundant. Nevertheless, we include
it in the specification of our protection strategy as a second line of defense.

5. Experimental Results

Our experimental evaluation of the protection technique employed a Modbus
control system. Modbus is an application-layer protocol that enables SCADA
devices to communicate according to a master-slave model using various types
of buses and networks. Modbus was chosen for the implementation because
it is popular, simple and representative of industrial control protocols. We
instrumented the code of FreeMODBUS, a publicly available Modbus imple-
mentation, to evaluate the feasibility and efficiency of the protection technique.
Several vulnerabilities were introduced into FreeMODBUS in order to execute
memory corruption attacks.

The implementation of the defensive technique involved kernel domain in-
tervention and user domain intervention. Kernel domain intervention requires
system calls to be extended so that all input data to protected processes is
encrypted. The second intervention takes place in the user domain, where ad-
ditional instructions are introduced to Modbus programs to enable them to
access and use the encrypted information.
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5.1 Kernel Domain Intervention

Logical boundaries on potentially hostile data are enforced by having the
operating system encrypt all input data delivered to protected processes. This
functionality is best implemented as a kernel domain activity that ensures that
input data is encrypted as soon as it is generated. Our approach involved
extending system calls responsible for reading data (e.g., read(), pread(),
readv(), recv(), recvfrom() and recvmsg()).

The extension incorporates an additional parameter (encryption key) for
each system call, which is used to encrypt the input data passed to a protected
process. Thus, when a Modbus process needs a service from the operating
system, it fills CPU registers with system call parameters, one of which is
encryption key. Next, the Modbus process generates an interrupt and control
is transferred to the procedure at the system call kernel location, which checks
the system call number, uses it to index the system call table, and issues the
system call. Each extended system call retrieves input data and encrypts it
with the key received from the calling process in the user domain.

5.2 User Domain Intervention

A protected Modbus process in the user domain always receives its input data
as ciphertext; therefore, it should be provided with the appropriate mechanisms
to use and protect input data. These tasks may be performed at compile time
using an ad hoc GCC extension module, or by manually instrumenting Modbus
program source code before compiling it, or by employing a binary rewriting
tool to insert additional instructions in a Modbus binary. Our FreeMODBUS
experiments implemented the first two methods.

Modbus data items include discrete inputs (1-bit read-only data from the
I/0 system), coils (1-bit data alterable by Modbus processes), input registers
(16-bit read-only data provided by the I/O system), and holding registers (16-
bit data alterable by Modbus processes). These items are stored in the main
memory of Modbus devices and addressed using values from 0 to 65,535.

A Modbus implementation generally maintains a pre-mapping table that
maps a data item address used by the Modbus protocol to the actual location
in memory where the data item is stored. In general, Modbus instructions that
work on potentially hostile data include those that consult the pre-mapping
table and those that read from or write to the memory area holding Modbus
data items. Thus, it is relatively easy to identify points in a Modbus program
where instrumentation instructions should be inserted. Note that this is much
more difficult to accomplish in traditional computer systems.

The task of spotting potentially malicious data is essentially a taintedness
tracking problem. This makes our approach specific to implementations of
control protocols such as Modbus. The main GCC executable named gcc is a
driver program that calls a preprocessor and compiler named cc1, an assembler
named as, and a linker named collect2. GCC transforms the preprocessed
source code into an abstract syntax tree representation, then converts it into
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a register transfer language (RTL) representation, before it generates assembly
code for the target platform [31]. A GCC extension module instruments Mod-
bus program code by adding additional assembly language instructions during
assembly code generation. The CPU registers are visible at this stage; there-
fore, it is easier to repair the assembly instructions that store (on the stack) the
contents of the CPU register that holds the encryption key in order to make
that register available for some other use. Therefore, the additional assem-
bly instructions that the GCC extension module inserts into the final Modbus
assembly file implement the protection technique without affecting the compu-
tations of a protected Modbus program.

Assembly instructions are inserted at several points in a program. For
example, the GCC extension module inserts in the .init section assembly
instructions that call an interface to the kernel’s random number generator
that provides the 32-bit key. These instructions read four bytes from the file
/dev/urandom. The .init section is appropriate for this task because it usu-
ally holds instructions for process initialization [40]. GCC also inserts assem-
bly instructions in .init that issue the mmap () system call to allocate mapped
memory from the Linux kernel.

Other instructions are inserted to store keys at the correct memory locations
and to invoke mprotect () to designate these memory locations as read-only.
Instructions that generate and store a key are also inserted in the process that
forks child processes; these instructions are positioned after the child process
is forked but before its original instructions are executed.

During our experiments we considered all Modbus data items (including
input registers and discrete inputs) as potentially hostile; consequently, they
were stored in memory as ciphertext. Just before Modbus instructions pro-
cessed data items, their encrypted versions were copied to a mapped memory
region, where they were decrypted in place. We refer to this portion of memory
as the “temporary storage area.” Note that the GCC extension module inserts
instructions in .init that issue a call to mmap () to allocate the mapped mem-
ory used as the temporary storage area, and then issue a call to mprotect ()
to designate the memory as non-executable.

The GCC extension module thus generates additional assembly language in-
structions for every function that operates on potentially hostile data. These
additional instructions are interleaved with the assembly instructions that im-
plement the original functions. The additional instructions copy the ciphertext
data to the temporary storage area and decrypt portions of the ciphertext as
and when function instructions need them. Some of the original assembly in-
structions are modified in order to obtain data from the temporary storage area
rather than from the original locations. The GCC extension module also in-
serts assembly instructions in the .fini section. These instructions, which are
executed at process termination, issue a call to munmap() to remove previous
memory mappings.

Another technique for implementing defensive capabilities in a Modbus pro-
gram is to instrument its source code. In FreeMODBUS, C instructions that
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operate on potentially hostile data are identified and extra C code for de-
crypting ciphertext is introduced. Likewise, additional C code is included for
generating keys and implementing the temporary storage area.

5.3 Performance Overhead

When analyzing the performance costs involved in enforcing logical bound-
aries on potentially hostile data, we noticed that most of the overhead is due
to constant invocations of the mmap () and mprotect () system calls. However,
these calls can be eliminated if special care is taken when storing keys. Using
mmap () and mprotect () calls to designate the temporary storage area as non-
executable is reasonable only if they do not affect the real-time performance of
the Modbus device being protected.

One question that arises relates to the feasibility of encrypting input data
at the kernel level. Since our technique already compiles a program and makes
it pass the encryption key to a system call, the program could directly encrypt
data returned from the system call. In other words, there is no need for the
kernel to perform the initial encryption of input data.

Our motivation for performing input data encryption at the kernel level is to
reduce the memory consumption incurred by the protection strategy. System
calls as implemented in most operating systems read input data and store them
in internal buffers. Therefore, an encryption extension of a system call would
encrypt input data in place so that it does not consume additional memory.
If a process were to encrypt input data in the user domain, then it certainly
would not place it directly in the destination buffer. This is exactly what
our technique tries to avoid. Consequently, a protected process would have to
allocate an additional buffer, place the input data there, encrypt it and copy the
encrypted data to the original destination. If the process receiving input data
from a system call were to encrypt the data itself, it would consume additional
memory while introducing the overhead of executing extra instructions.

The computational overhead depends on the number of data items in Mod-
bus device memory, the number of data items incorporated in Modbus request
frames in typical transactions, and the number of instructions that operate
on input data. The instruction counter is a CPU performance equation vari-
able [32] that is incremented by our protection technique. In fact, our technique
requires additional instructions to be inserted in Modbus code. The number
of instructions that perform basic boundary enforcement operations such as
generating, storing and deleting keys or creating and releasing the temporary
storage area is constant for all protected processes. The number of instruc-
tions that transfer data to the temporary storage area and decrypt them there
depends on how often a Modbus protected process operates on ciphertext.

The number of clock cycles per instruction (CPI) and the clock cycle time
depend on the CPU architecture. Enforcing logical boundaries on potentially
hostile data in a Modbus process has no affect on the pipeline CPI, but it
causes an overhead in the memory system CPI and contributes to the miss rate
because it uses additional memory. The performance overhead introduced by
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enforcing logical boundaries on potentially malicious data during the execu-
tion of Modbus processes varies from 0.8% for transactions with typical frames
that request a few data items to 2% for transactions with full 253-byte protocol
data units. Furthermore, our protection technique does not rely on complemen-
tary defensive techniques such as address space randomization or StackGuard.
Consequently our technique avoids the performance penalties introduced by
operational security mechanisms.

6. Conclusions

Control data and pure data attacks can be countered by preserving input
data as ciphertext in main memory and by instrumenting SCADA device code
to decrypt potentially malicious data before processing according to the princi-
ple of least privilege. Our experiments demonstrate that the kernel-level stream
encryption of input data using random keys preserves the logical boundary be-
tween potentially malicious data and clean data in the address space of pro-
cesses. This enforcement of logical boundaries causes attackers to lose the
precision with which they can corrupt control data and pure data. It also
eliminates the execution of injected shellcode and the use of injected pure data
while preserving the functionality of the protected processes. To the best of our
knowledge, the protection technique is the only one that is capable of combat-
ing pure data attacks on C/C++ implementations of SCADA protocols such as
Modbus without requiring hardware modification. We hope that this work will
stimulate efforts focused on defending against unknown and zero-day attacks
that rely on memory corruption.
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