
Chapter 10

DESIGNING SECURITY-HARDENED
MICROKERNELS FOR FIELD DEVICES

Jeffrey Hieb and James Graham

Abstract Distributed control systems (DCSs) play an essential role in the oper-
ation of critical infrastructures. Perimeter field devices are important
DCS components that measure physical process parameters and per-
form control actions. Modern field devices are vulnerable to cyber at-
tacks due to their increased adoption of commodity technologies and
that fact that control networks are no longer isolated. This paper de-
scribes an approach for creating security-hardened field devices using
operating system microkernels that isolate vital field device operations
from untrusted network-accessible applications. The approach, which
is influenced by the MILS and Nizza architectures, is implemented in a
prototype field device. Whereas, previous microkernel-based implemen-
tations have been plagued by poor inter-process communication (IPC)
performance, the prototype exhibits an average IPC overhead for pro-
tected device calls of 64.59 µs. The overall performance of field devices
is influenced by several factors; nevertheless, the observed IPC overhead
is low enough to encourage the continued development of the prototype.

Keywords: Distributed control systems, field devices, microkernels, security

1. Introduction

Field devices employed in distributed control systems (DCSs) connect sen-
sors and actuators to control networks, providing remote measuring and con-
trol capabilities. Early DCSs were isolated proprietary systems with limited
exposure to cyber threats. However, modern DCSs often engage commer-
cial computing platforms and network technologies, which significantly increase
their vulnerability to cyber attacks. While major disasters have thus far been
averted, incidents such as the 2003 Slammer worm penetration of the Davis-
Besse nuclear power plant network in Oak Harbor (Ohio) and the 2006 hacker

Please use the following format when citing this chapter:

Hieb, J. and Graham, J., 2008, in IFIP International Federation for Information Processing, Volume 290; Critical
Infrastructure Protection II, eds. Papa, M., Shenoi, S., (Boston: Springer), pp. 129–140.

130 CRITICAL INFRASTRUCTURE PROTECTION II

attack on a water treatment facility in Harrisburg (Pennsylvania) underscore
the significance of the cyber threat.

Field devices are attractive targets for cyber attacks on control systems.
Since these devices are used for measurement and control of physical sys-
tems, preventing these attacks is essential to securing DCSs and, by exten-
sion, the critical infrastructures assets they operate. Unlike early field devices,
which were highly specialized systems, modern field devices use commercially-
available hardware and software and can be attacked quite easily.

The need to secure field devices and their operating systems has been dis-
cussed by several researchers (see, e.g., [8, 10]). Guffy and Graham [2] have
applied multiple independent layers of security (MILS) to creating security-
hardened remote terminal units (RTUs). Hieb and Graham [6] have investi-
gated techniques for creating security-hardened RTUs with reduced commercial
kernels or microkernels. Hieb, Patel and Graham [7] have discussed security
enhancements for DCSs involving protocol enhancements and a minimal kernel
RTU (a reduced version of LyxnOS, a commercial RTOS).

This paper describes an approach for creating security-hardened field de-
vices by applying elements of the MILS and Nizza microkernel-based security
architectures. The approach protects field device operations and data by iso-
lating them from less trustworthy application software that may be network
accessible. Field device performance is an important issue because DCSs are
much less tolerant to delays and jitter than traditional IT systems. To enhance
performance, the approach leverages the inter-process communication (IPC)
primitive provided by the microkernel. Preliminary results indicate that the
observed IPC overhead is low enough to warrant further development of the
security-hardened microkernel.

2. Microkernel-Based Security Architectures

Multiple independent levels of security (MILS) [1] and Nizza [5] are two
microkernel-based security architectures. The MILS architecture, which was
developed for high assurance and high performance computing, is based on
Rushby’s separation kernel [9]; it enforces strict security and separation policies
on data and processes within a single processor [14]. The Nizza architecture
is based on the L4 microkernel and protects security critical code. The MILS
and Nizza architectures are presented in Figures 1 and 2, respectively.

MILS and Nizza employ isolated partitions, each with its own protection
domain, that allow software and data of different security levels or sensitivity
to be decoupled from potentially less secure software. Secure compartmental-
ization of components and IPC allow the trusted computing base (TCB) to
remain small, comprising only the kernel and security-critical code; application
software resides outside the TCB. In the MILS architecture, this enables high
assurance application layer reference monitors to be inserted between appli-
cation software components [1, 4]. In Nizza, security-critical code is removed
from commercial applications and placed in a protected isolated compartment,

Hieb & Graham 131

Middleware
OS Services

Processor

CORBA CORBA CORBA CORBA

...

RTOS Micro Kernel (MILS)

Application
Partitions

MLS
RT

CORBA

MLS
Display
Driver

MLS
KBD

Driver

TS
(SLS)

S
(SLS)

TS
(SLS)

S,TS
(SLS)

User Mode

Supervisor Mode
MILS

SLS
MLS

MMU, Interpartition
Communications,
Interrupts

Middleware
OS Services

Middleware
OS Services

Middleware
OS Services

Levels of Security
Single Level Secure
Multilevel Secure

Multiple Independent−

−
−

Figure 1. MILS architecture.

keeping the TCB small. Singaravelu and colleagues [13] describe an application
of Nizza to the secure signing of email.

Legacy OS

Secure
Application

Network
Driver

Loader GUI
Secure
Storage

Small Kernel

Legacy
Applications

Figure 2. Nizza architecture.

MILS and Nizza primarily focus on protecting the confidentiality of data.
MILS is designed for government and military systems that have multilevel
security (MLS) requirements, where independent systems have historically been

132 CRITICAL INFRASTRUCTURE PROTECTION II

used for different security levels. Nizza is aimed at desktop and commodity
computing applications that require small TCBs, mainly for protecting sensitive
user data. Availability and integrity – rather than confidentiality – are the
principal security goals in DCSs. Our research suggests that aspects of MILS
and Nizza can be used to develop security-hardened field devices that satisfy
these goals.

MILS and Nizza use small kernels that provide minimal services to user
processes while enforcing strong isolation of system components in separate
protection domains and supporting communication between the domains. The
kernel constitutes a major portion of the TCB; thus, the reliability or assurance
of the overall system largely depends on the level of protection offered by the
kernel. Providing strong assurance requires rigorous system testing and/or the
application of formal methods. These methods do not scale well and are the
motivation for using a microkernel.

One approach for creating a minimal kernel is to reduce a commercial op-
erating system such as Linux or Windows. Unfortunately, most commercial
operating systems are based on a monolithic design philosophy, which yields
large kernels with poor fault isolation [14]. In a monolithic design, all the core
operating system functionality – memory management, file systems, access con-
trol, network stacks, device drivers and interrupt handling – is implemented in
the kernel. Thus, all the software that implements this functionality is exe-
cuted in privilege mode by the processor where it is not subject to any security
or protection enforcement. Although it is possible to reduce kernel size, it is
difficult to cut down a monolithic kernel to a size that permits formal methods
to be applied.

Another approach is to create a microkernel, a minimal kernel that imple-
ments only the services that cannot be implemented in user space [9]. Three
minimal requirements exist for microkernels: address spaces, IPC and unique
identifiers. Microkernel-based systems allow traditional operating system ser-
vices to be moved to user space where they are run without privileges. Micro-
kernels, by virtue of their size, tend to have significantly less code, making it
possible to apply formal methods, including formal proofs. User-level services
and applications exchange data using IPC, the primary abstraction provided
by the microkernel. However, early microkernels were plagued by poor IPC
performance, which significantly impacted overall system performance.

3. Security-Hardened Field Devices

Our approach is to design a security-hardened field device by enforcing strong
isolation between: (i) critical field device resources and operations such as
analog and digital input/output, (ii) software responsible for carrying out local
control algorithms, and (iii) network-connected field device applications. The
application code that implements network connectivity for field devices includes
network drivers and protocol stacks; any exploitation of this code must not
affect other components. This would enable critical field device code to continue
to execute even when network components are attacked, resulting in graceful

Hieb & Graham 133

Figure 3. Security-hardened field device with a reduced kernel.

degradation as opposed to complete failure. Our approach also isolates security-
critical data and code (e.g., cryptographic keys and cryptographic operations)
in a separate compartment where they are protected from unauthorized access
by a compromised network component. Field device integrity can be further
enhanced by using a device-wide security policy enforcement component placed
between the critical code and network accessible application code.

The partitioning is provided by a microkernel that supplies primitives for
creating and enforcing the isolated compartments. Note that it is necessary to
extract and isolate security-related code from control system software. For ex-
ample, in a field device that supports security-enhanced DNP3 [7], the code that
performs authentication and message integrity checking for DNP3 messages
must be removed from the main body of code and placed in its own protected
compartment. The isolation of security-related code has the added benefit of re-
ducing the complexity of control applications, especially when security-related
code has to be added or upgraded.

The architecture supports the enforcement of a security policy. The policy
may include high-level specifications (e.g., RTU role-based access control [7])
or low-level device-specific requirements. Figure 3 presents a security-hardened
field device with a reduced kernel architecture.

It is important to ensure that the security architecture does not impact
field device performance, especially because industrial control systems have a
very low tolerance for delay and jitter. IPC overhead (i.e., the time taken for
IPC operations) can significantly affect field device performance because IPC is
used extensively to implement communications between field device application
code and protected operations. Device performance is also negatively impacted

134 CRITICAL INFRASTRUCTURE PROTECTION II

by the inclusion of security-related operations (e.g., access control) that are
performed before control messages are processed.

4. Prototype Development and Testing

This section describes the development of the prototype and the experimen-
tal results related to IPC performance.

4.1 OKL4 Microkernel

The OKL4 [12] implementation of the L4 microkernel was used for proto-
type development. OKL4 (from Open Kernel Labs) is based on the Pistachio-
embedded microkernel developed by National ICT Australia (NICTA). The
kernel supports the L4 version 2 API and is written in C++. It supports
ARM, x86 and MIPS processors, and is targeted for embedded systems. OKL4
is released under a BSD license, although commercial licensing is also available.

The L4 microkernel provides three abstractions: address spaces, threads
and IPC. Data (except from hardware registers) accessed by a L4 thread is
contained in the thread’s address space. An L4 address space is a partial
mapping from virtual memory to physical memory. L4 threads are the basic
unit of execution in L4; they share data by mapping parts of their address
spaces to other address spaces. Each thread has a unique identifier (UID) and
a register set that includes an instruction pointer and a stack pointer. Threads
communicate with each other using IPC primitives provided by the L4 kernel;
L4 IPC is synchronous and unbuffered. L4 supports the following basic IPC
primitives:

receive(): Wait for a message from a specific thread

reply wait(): Send a reply message to a client thread and wait for the
next request

send(): Send a message to a thread

wait(): Wait for a message from a thread

An L4 system is composed of address spaces populated by threads that
execute code in their address spaces. Each thread, identified by a thread UID,
operates on data stored in its address space. The L4 kernel ensures that threads
do not execute instructions in other address spaces or access data residing in
other address spaces.

4.2 Hardware Platform

Gumstix [3] was selected as the hardware development platform. It provides
a range of embeddable computers powered by ARM XScale processors and has
been used in a number of commercial devices, indicating the platform may
provide a path for possible commercialization. The Connex 400 was chosen for

Hieb & Graham 135

Figure 4. OKL4-based security-hardened field device.

the development. It has an XScale PXA 255 (32-bit) processor running at 400
MHz with 64 MB RAM and 16 MB of flash memory. In addition to the Gumstix
motherboard, the development platform includes the Netstix and Console ST
daughter boards. Netstix provides an Ethernet controller that can be used as
a network interface for the field device. The console ST board provides two
UART serial interfaces, one of which serves as a console interface.

4.3 System Development

The approach outlined in Section 3 was applied to the development of a
prototype security-hardened field device using the OKL4 microkernel and the
XScale PXA 255 processor. Figure 4 provides a high-level view of the de-
velopment platform implementation. Protected field device components are
implemented as “servers” as in Iguana [11], a transparent, lightweight interface
to the L4 kernel included with OKL4. Each server is assigned its own address
space where it is protected from other system components by the L4 kernel.
The security functions and policy enforcement component are both part of a
single security layer address space. This address space provides an interface
(via IPC) to user applications and is located in the TCB. User applications

136 CRITICAL INFRASTRUCTURE PROTECTION II

may execute unprivileged instructions on the processor, but are limited by the
security architecture from executing privileged instructions or accessing mem-
ory outside their address spaces. All privileged actions (e.g., reads) and, in
particular, updates of device points are accessed through the security layer
server.

The L4 IPC provides the path along which the field device servers, security
layer and field device applications exchange information and cooperate. IPC
overhead is of particular concern, especially with regard to calls from field
device applications to protected operations via the security layer. As discussed
below, IPC overhead was evaluated by implementing one of the servers shown
in Figure 4, a limited field device security layer and a simple test application
program.

4.4 IPC Performance

Since our approach makes extensive use of the microkernel’s IPC primitive,
IPC overhead must be low enough to ensure that field device performance
does not affect DCS operations. To evaluate the IPC overhead associated with
protected field device operations, a security layer server and data server were
implemented using Iguana’s IDL, and a field device application was written.
The data server is designated as the point server because it eventually provides
access to analog and digital I/O for the field device. Under the security archi-
tecture, only the point server has access to the memory locations associated
with connected I/O equipment. Analog I/O is not currently implemented in
the prototype, so the analog input value was stored in a persistent variable.

The primary goal was to determine only the IPC overhead of a call. The
security layer server has access to all the field device servers, enabling it to
enforce access control for these resources. It also creates address spaces for
field device applications and maps them to needed resources. Thus, the security
layer maintains control of the resources available to field device applications.
Field device application threads are started by the security layer, which waits
for an IPC request from a field device application.

Figure 5 shows an example case where the policy enforcement point thread
receives a request to read an analog input. If the request is allowed, then the
operation is performed and the result passed back to the user level thread that
made the call. This involves several IPC operations as shown in Figure 5.
Initially, the field device policy enforcement point thread and the field device
point service call IPC Wait (1) and (2) (IPC Wait is a blocking IPC that waits
for an incoming IPC message). IPC activity is initiated by the application
thread IPC Send to the policy enforcement point thread (3). When the send
succeeds, the field device application thread calls IPC Receive to wait for a
response IPC (4). Next, the policy enforcement point security layer issues
an IPC Send to the appropriate field device server thread (5). The policy
enforcement point thread then calls IPC Receive to wait for a response from
the server (6). The server responds with an IPC Send to the policy enforcement
point thread (7). Finally, the policy enforcement point thread calls IPC Send

Hieb & Graham 137

(8) IPC_Send

(7) IPC_Send

(6) IPC_Receive

(5) IPC_Send
(4) IPC_Receive

(3) IPC_Send

(2) IPC_Wait(1) IPC_Wait

Field Device
Application

Thread

Policy Enforcement
Point Thread

Points Server
Thread

Figure 5. IPC operations involved in policy enforcement.

to return the response to the field device application thread that initiated the
IPC sequence (8).

A code fragment from the test application is shown in Figure 6. The test
loop iterates 300 times. Each loop instance records the start and finish times
of a loop instance using the timer current time() call provided by Iguana.
Iguana’s time tick is one microsecond and the timer current time() returns
the current tick count. Subtracting the final time from the start time gives the
number of microseconds elapsed between (3) and (7). To ensure that protected
operation calls are indeed reaching the point server and are being correctly
returned, different values were written to and read from the point server. The
observed results of the reads and writes were used to confirm that the field
device application thread was retrieving values from the point server. No policy
was enforced to ensure that only the IPC overhead was measured; the elapsed
time between (3) and (8) represents the total IPC overhead of a protected call.

The elapsed time reported by the code fragment in Figure 6 also includes the
overhead of the timer current time() call. A separate test program without
the L4 IPC calls was used, leaving just the two calls to timer current time().
This program obtained a measure of the timer overhead, which was determined
to be 59.63 µs. The time was rounded down to 59 µs when calculating the actual
IPC overhead so that the rounding error is added to the IPC overhead.

The test program was run a total of four times on the development platform.
The first value reported for each run was more than 1,000 µs, but the remaining
sample times were closely grouped around 123 µs. The higher elapsed time for
the first measurement of each run is very likely because the kernel performs a

138 CRITICAL INFRASTRUCTURE PROTECTION II

define READ_ANALOG_INPUT_1 0x01

for (i = 0; i < 300; i++)

{

L4_MsgClear(&msg);

L4_Set_MsgLabel(&msg,READ_ANALOG_INPUT_1);

L4_MsgLoad(&msg);

stime = timer_current_time();

tag = L4_Send(thread_l4tid(listener));

assert(L4_IpcSucceeded(tag));

L4_MsgClear(&msg);

tag = L4_Receive(thread_l4tid(listener));

ftime = timer_current_time();

val = L4_Label(tag);

printf("test app read_analog_input_1 call took \%"

PRIu64 " milliseconds, or \%" PRIu64 " microseconds\n",

((ftime - stime)/1000ULL), (ftime - stime));

}

Figure 6. Test application code fragment.

one-time initialization for thread IPCs. Consequently, the first recorded time
was dropped from the performance calculations.

Table 1. IPC overhead for protected calls.

Description Value

Average reported elapsed time 123.19 µs
Standard deviation 0.784908
95% confidence interval 0.002
Timer overhead 59 µs
Actual average IPC overhead
for protected operation call

64.19 µs

A total of 500 samples were selected from the remaining times. The results
are shown in Table 1. The mean value is 123.19 µs with a standard deviation of
0.785 and a 95% confidence interval of 0.002. This value includes the 59 µs of
timer overhead. After subtracting the timer overhead, the actual IPC overhead
for the entire sequence shown in Figure 6 is 64.19 µs. Since L4 IPC calls are
synchronous and there are a total of four sends in the sequence, the observed
IPC overhead is distributed across four IPC send-receive pairs. Assuming that
the overhead is evenly distributed, a single IPC from one L4 thread to another
takes an average of 16.05 µs. These times are significantly better than the 100
µs reported for first-generation microkernels and are low enough to encourage
further prototype development.

Hieb & Graham 139

5. Conclusions

Embedded operating systems used in field devices provide little, if any, se-
curity functionality. This exposes industrial control systems and the critical
infrastructure assets they operate to a variety of cyber attacks. Creating
security-hardened field devices with microkernels that isolate vital monitor-
ing and control functions from untrusted applications is an attractive solution.
This strategy also produces a small TCB, which reduces vulnerabilities and
facilitates the application of formal methods. Unlike most microkernel-based
implementations for field devices that have been plagued by poor IPC perfor-
mance, the prototype constructed using the OKL4 microkernel running on a
400 MHz XScale PXA 255 microprocessor exhibits low IPC overhead (64.59 µs)
for protected device calls. While the system is not yet complete and other per-
formance issues remain to be considered, the low IPC overhead is encouraging
enough to warrant the continued development of the prototype.

References

[1] J. Alves-Foss, C. Taylor and P. Oman, A multi-layered approach to secu-
rity in high assurance systems, Proceedings of the Thirty-Seventh Annual
Hawaii International Conference on System Sciences, pp. 302–311, 2004.

[2] B. Guffy and J. Graham, Evaluation of MILS and Reduced Kernel Security
Concepts for SCADA Remote Terminal Units, Technical Report TR-ISRL-
06-02, Intelligent Systems Research Laboratory, Department of Computer
Engineering and Computer Science, University of Louisville, Louisville,
Kentucky, 2006.

[3] Gumstix, Products, Portola Valley, California (www.gumstix.com/prod
ucts.html).

[4] N. Hanebutte, P. Oman, M. Loosbrock, A. Holland, W. Harrison and
J. Alves-Foss, Software mediators for transparent channel control in un-
bounded environments, Proceedings of the Sixth Annual IEEE SMC Infor-
mation Assurance Workshop, pp. 201–206, 2005.

[5] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehn-
ert and M. Peter, The Nizza secure-system architecture, Proceedings of the
International Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing, 2005.

[6] J. Hieb and J. Graham, Security-enhanced remote terminal units for
SCADA networks, Proceedings of Nineteenth ISCA International Confer-
ence on Computer Applications in Industry and Engineering, pp. 271–276,
2006.

[7] J. Hieb, S. Patel and J. Graham, Security enhancements for distributed
control systems, in Critical Infrastructure Protection, E. Goetz and S.
Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 133–146, 2007.

[8] V. Igure, S. Laughter and R. Williams, Security issues in SCADA networks,
Computers and Security, vol. 25(7), pp. 498–506, 2006.

140 CRITICAL INFRASTRUCTURE PROTECTION II

[9] J. Liedtke, On micro-kernel construction, ACM SIGOPS Operating Sys-
tems Review, vol. 29(5), pp. 237–250, 1995.

[10] A. Miller, Trends in process control systems security, IEEE Security and
Privacy, vol. 3(5), pp. 57–60, 2005.

[11] National ICT Australia, Project Iguana, Eveleigh, Australia (ertos.nicta
.com.au/software/kenge/iguana-project/latest).

[12] Open Kernel Labs, Products, Chicago, Illinois (www.ok-labs.com).

[13] L. Singaravelu, C. Pu, H. Hartig and C. Helmuth, Reducing TCB complex-
ity for security-sensitive applications: Three case studies, ACM SIGOPS
Systems Review, vol. 40(4), pp. 161–174, 2006.

[14] A. Tanenbaum, J. Herder and H. Bos, Can we make operating systems
reliable and secure? IEEE Computer, vol. 39(5), pp. 44–51, 2006.

