
A Survey of UML Based Regression Testing

Muhammad Fahad and Aamer Nadeem

Mohammad Ali Jinnah University Islamabad, Pakistan.

mhd.fahad@gmail.com, a.n@acm.org

Abstract: Regression testing is the process of ensuring software quality by ana-
lyzing whether changed parts behave as intended, and unchanged parts are not af-
fected by the modifications. Since it is a costly process, a lot of techniques are
proposed in the research literature that suggest testers how to build regression test
suite from existing test suite with minimum cost. In this paper, we discuss the ad-
vantages and drawbacks of using UML diagrams for regression testing and ana-
lyze that UML model helps in identifying changes for regression test selection ef-
fectively. We survey the existing UML based regression testing techniques and
provide an analysis matrix to give a quick insight into prominent features of the
literature work. We discuss the open research issues like managing and reducing
the size of regression test suite, prioritization of the test cases that would be help-
ful during strict schedule and resources that remain to be addressed for UML
based regression testing.

1 Introduction

The purpose of regression testing is to selectively retest the software after certain
modifications to ensure that they have not caused unintended effects on un-
changed parts and changed parts of the software behave as intended [1]. There-
fore, regression testing process focuses on identification of changes so that those
unchanged parts that are already tested should not be tested again to reduce cost,
and only changed parts corresponding to those changes should be tested. The ob-
jectives of regression testing include not only selective retesting of the software to
check its conformance to the new specification, but also enhancing the confidence
of the clients that the software product can be changed according to their require-
ments and the environment [2]. Through the effective regression testing, the pro-
grammer also comes to know about the implications and side effects of the
changes that have been made. Reusing previous test cases not only reduces the
cost of newer test case generation but also reduces other costs of creating test case
execution set-up, building oracle and crafting data that can be used [2].

Please use the following format when citing this chapter:

Fahad, M. and Nadeem, A., 2008, in IFIP International Federation for Information Processing, Volume 288;
Intelligent Information Processing IV; Zhongzhi Shi, E. Mercier-Laurent, D. Leake; (Boston: Springer), pp. 200–210.

A Survey of UML Based Regression Testing 201

Software has to go through a repetitive process of refinement during its devel-
opment lifecycle. Software engineers have to pay much attention to produce high
quality bug free software and it may require many testing techniques at various
levels. Regression testing can be applied at any level of testing i.e. unit testing, in-
tegration testing, and system level testing. It is different from development testing
as in regression testing an existing test suite is available for reuse [3]. It is the
most costly process in software lifecycle and according to a study, about 80% of
testing budget and one-third of the total cost of software is spent on regression
testing and maintenance of the product [4]. Many techniques exist in the literature
for maintenance and regression testing of software. Most of the work has been
done on code based regression testing in which test suite is built about the delta
change between the original code and the changed code, and a survey on code
based regression test selection techniques is provided by Rothermel and Harrold
[5]. Very few techniques use specification or UML design for change impact
analysis to revalidate the software. The main effort is to reduce the cost of testing
by selecting cost minimized subset of test cases for regression suite maintenance
because rerunning all test cases would be time-consuming and would result in
huge cost [2]. Besides cost, a trade-off between the selection and execution of test
cases and the fault detection ability of the test cases that are executed is paid great
attention during regression test selection. Cost-effectiveness of testing techniques
depends upon many factors. Rothermel et al. identify the effect of grouping of test
inputs into test cases on the cost-effectiveness of regression testing techniques [6].
Some researchers provide test case prioritization techniques that help when to test
an artifact with limited budget and strict schedule [7]. Test case prioritization is
also important for UML based regression testing techniques but none of the exist-
ing UML regression techniques incorporate this feature.

In this paper, we survey the UML based regression testing techniques. Al-
though there is not much work in the literature that uses UML design for regres-
sion testing but this has certain advantages over code based regression testing. We
highlight these advantages and significance of using UML Design versus Code for
Regression Testing. While working with UML based regression testing tech-
niques, we observed that UML with OCL constraints can be modeled for Regres-
sion Testing of Component Based Systems for systematic regression testing.
Rest of the paper is organized as follows: Section 2 discusses the advantages and
significance of using UML design rather than code for regressing testing. Section
3 discusses categories of regression test selection techniques based on certain cri-
teria. Section 4 comprises of survey on UML based regression testing techniques
with their salient features. Section 5 discusses our analysis on existing techniques,
and provides an analysis matrix. Section 6 concludes the paper.

2 UML Design versus Code based Regression Testing

UML design based regression testing techniques have many advantages over code
based regression testing techniques, as outlined below:

202 Muhammad Fahad and Aamer Nadeem

 Traceability: Identification of change is easily traceable from design rather
than the code [8]. Finding delta change in modified and original code is much
difficult, and is protracted without code change history that is often ignored by
developer during the implementation.

 Scalability: Code based regression testing is done only on a small scale, i.e., at
unit level [9]. When applied to test large components, scalability becomes the
main hindrance to manage all the information and to create corresponding
traceability matrices. UML design based regression testing techniques are prac-
tical at all levels of testing and of large software applications as well.

 Understandability: Tester has to understand the code programmed by others
which is a tedious and time-consuming task [9]. UML design is easier to under-
stand and gives quick insights about the requirements and specification.

 Language dependence: Code based regression testing process is language de-
pendent. Software that is built on different languages needs many code based
regression-testing techniques [9], which increases complexity of the whole
process. Regression testing by means of UML designs is free from this limita-
tion as they are based on the standard UML notations [8].

 Cost: Code based regression testing detects faults at later stages of software
lifecycle and thus consumes huge amount of cost in correcting them. But re-
gression testing at design time gives early detection of faults and reduces the
overall cost to apply correction procedures earlier during design phase [10].

 Code Dependence: Code based regression testing techniques are only applied
when source code is available and hence they are not practical for component
based software engineering. Component based systems are built-up by reusing
existing components whose implementation is not available [11]. The only
thing that component users have is interface specification and modified data in-
formation. Thus UML design based regression testing is effectively used for
maintenance and correction purposes without the dependency of code.

 Complexity: UML designs provide an easy retrieval of relevant static and dy-
namic information from its various static and dynamic diagrams [8]. This task
would be much difficult while extracting information about dynamic bindings
between methods from code.

 Executable UML: UML based regression testing techniques are also effec-
tively used for validation of executable forms of UML such as Executable
UML and the UML virtual machine.

UML based regression testing techniques have some drawbacks [8] too:

 Invisible Changes: There are certain changes that may not be visible in design
and need special ways to document them, e.g. a change in a method’s body.

 Consistent and up-to-date Design: UML design based regression testing tech-
niques assume that the diagrams used are consistent with each other. Change
can only be detected if this assumption holds; violating this assumption makes
the technique awkward and generates poor performance. Furthermore, they re-
quire design to be complete and up-to-date.

A Survey of UML Based Regression Testing 203

 Low Precision: UML design based regression testing techniques do not pre-
cisely build test suite as compared to techniques that utilize detailed code
analysis. Precision of a technique means that testing strategy only selects re-
quired test cases from existing tests to build regression test suite, i.e., obsolete
test cases are detected and ignored.

3 Regression Test Selection Techniques
To achieve successful regression testing, Hsia et al. identify four phases to ensure
that the system behaves as intended after changes have been made [12]. First, the
process starts by identification of changes made in certain parts, because we have
to analyze that software has not been adversely affected by the modifications.
Second, we have to build regression test suite by identifying three types of test-
cases from original testcases, i.e., i) test cases which are no more valid due to the
changes made, as invalid test cases are no more useful, ii) test cases which are still
valid but not useful as they are already tested and iii) testcases which should be re-
tested to ensure correct software behavior with newer changes. Third, a cost effec-
tive testing strategy is made. Finally, selection of cost-minimized subset of test
suite to retest the system after changes has been made.

Graves et al. [4] categorize the Regression test selection techniques as:

 Minimization Techniques: These techniques focus on selectively retest the
 software with minimum testcases covering modified or affected portions.
 Dataflow Techniques: These techniques select those test cases, which execute

data interactions that have adverse effect by changes made.
 Safe Techniques: These techniques are designed to reveal the same faults as a

retest-all strategy reveals. Thus those test cases that exercise the suspected por-
tion having faults are more focused because they can reveal other most likely
faults and exercise the critical functionality.

 Ad-Hoc /Random Techniques: These techniques build regression test suite by
choosing randomly test cases from original test suite. Randomly rerunning test
cases do not address the coverage of affected portions and may not find the
most severe faults.

 Retest-All Techniques: These techniques rerun the entire original test suite to
ensure that modifications have not regress the software functionality, but this
requires enough time or resources to rerun the entire test suite.

4 Survey on UML Based Regression Testing Techniques

A variety of regression testing techniques have been described in the research lit-
erature. This section throws the light on their summarized features.

204 Muhammad Fahad and Aamer Nadeem

 Specification-based Regression Test Selection with Risk Analysis. Chen et
al. [9] use activity diagram that describes the requirements, behaviors and
workflows of underlying system to test. For regression testing, they select two
types of tests, i.e., Targeted Tests and Safety Tests. Targeted Tests focus on
those features that are still valid in newer version. Safety tests are built to test
the modification parts. Chen et al. have uses the Amland’s [13] proposed risk
model, and emphasis on the cost minimization by detecting the most critical de-
fects first. For regression testing, they apply CFG-based algorithm to activity
diagram for detection of affected entities. Then, they form Targeted Test which
executes the affected edges for regression analysis. For safety tests, they calcu-
late the Risk Exposure for each test case. Safety Tests are chosen from the tests
that have the highest value of risk exposure. The cost estimation and risk expo-
sure calculations would be more attractive when time and cost is short.

 Automating Impact Analysis and Regression Test Selection Based on UML
Designs. Briand et al. [8] use consistent sequence diagram, class diagram and
use case diagram for identification of changes made to generate regression test
suite. For regression testing, they detect changes by comparing previous and
new version of Sequence diagrams and Class diagrams. Changes in sequence
diagrams are obtained by viewing messages with different conditions, due to
change in triggered messages and deleted sequence of boundary messages. De-
tected changes refer to changes in actions i.e. changed operations and changed
classes. Then, they compare two versions of Class diagram to detect the set of
changed attributes, operations, relationships and classes. They emphasize on
OCL expression analysis of both versions in order to detect changes in opera-
tion’s contract or in messages. On basis of identification of changes obsolete,
retestable and reusable testcases are chosen for regression analysis. They
evaluated their work on three industrial case studies and showed effectiveness
of their work. Their case studies showed that the number of reusable test cases
represented a large proportion (up to 100%). Moreover, they gave evidence
about automation of their work by providing Regression Test Selection tool
(RTSTool).

 Maintaining Evolving Component-Based Software with UML. This UML-
based technique was proposed by Wu et al. [14] for component-based software
systems that are particularly built on reusable components. Component-based
systems need three types of maintenance i.e. Corrective, perfective and adap-
tive maintenance. In this paper, author gave a regression testing strategy for
corrective maintenance as it involves modification on individual classes in a
component, leaving none effect on the structure of component as a whole. They
use collaboration diagram and statechart diagram to identify changes. For each
change in collaboration diagram, test cases are selected which traverse such
modified or changed parts. Furthermore, they analyze impacts of change on
control sequences and on data dependencies separately to build regression test
suite. For identification of change on control sequences, they suggest to retest
the modified artifacts in collaboration diagram and all possible affected scenar-

A Survey of UML Based Regression Testing 205

ios that are represented in the statechart diagram. For identification of change
on data dependencies, they suggest to retest all the dependent interfaces as
well.

 Efficient Object-Oriented Integration and Regression Testing. Traon et al.
[15] propose a strategy for integration and regression testing from an object
oriented model. They produced a model of structural system, Test Dependency
Graph (TDG) mapped from the class diagram that evolves with the refinement
process of the OO design. Vertices of this graph represent the component and
directed edges represent dependencies between classes or methods. Once the
TDG is constructed, integration and regression testing strategies are applied on
decomposition of the TDG. To build regression test suite, dependencies of both
versions of TDG are compared for identification of changes. When the edges
are found to be modified that represent dependencies between vertices (compo-
nents), test cases are build up to cover all the dependant vertices and edges.
They formulate two coverage criteria’s for testing a component C in a system.
Weakest criteria suggest that only those components are tested which are di-
rectly dependent from C. But the Strongest coverage criteria suggest testing
each component that is included into a path containing C.

 Model-based Testing and Maintenance. Deng et al. [16] propose a Semantic
Software Development Model (SSDM) for object oriented software and model-
based regression test selection for software testing and maintenance. This
model is more complete as it incorporates all the phases of the software devel-
opment process: requirements, design, implementation, testing and mainte-
nance. Information captured by the testing objects and maintenance objects are
utilized in order to select regression test suite from original test cases. First,
they define the tight-coupled relationships between UML diagrams for efficient
and flexible testing and maintenance. For test selection they suggest that when
a particular operation is modified, find all the operations that are dependant on
this operation, and all the dynamic UML diagrams that include the correspond-
ing behaviors for that operation. Then find all the use cases that are described
by the found dynamic UML diagrams. For regression testing, test all the use
cases whose corresponding operations need to call modified operation.

 Regression Testing UML Designs. Pilskalns et al. [10] propose a safe and ef-
ficient regression testing technique based on test cases for UML designs, where
test cases always map to sequence diagram scenarios. They use the knowledge
of existing approaches to build their regression testing approach, i.e., as a gen-
eral framework[17], to identify changes[8], to classify test cases[18]. But
unlike others, his work was the initial work that was done on identifying
change impact for UML test cases rather than code test cases and map changes
between UML model and UML test cases. For the purpose of testing, first they
made an integrated model named Object Method Directed Acyclic Graph
(OMDAG) from Class Diagrams, Sequence Diagrams and OCL. When the
OMDAG integrated model is created, test cases are generated which are sets of
inputs by using a non-binary analysis technique to partition values that can be

206 Muhammad Fahad and Aamer Nadeem

assigned to variables in conditional nodes. When the test case is executed it
traverses a path in the OMDAG. And when a path changes, it affects one or
more test cases associated with the path. They classify changes into three sets
i.e. NEWSET, MODSET, and DELSET, according to whether they create,
modify or delete elements in the design. They use delta function to find the test
cases affected by a design change, which compares vertices and edges affected
by the change made to the paths associated with a test case. Only Pilskalns et
al. claimed by experimentation that their strategy selects the test cases with run-
time less than as compared to retest-all technique.

 Integrating White- and Black-Box Techniques for Class-Level Regression
Testing. Beydeda et al. [1] first propose a Class-Level testing of object-
oriented prototypes by integrating two existing white box [17] and black box
[19] techniques. Rothermel’s idea [17] of white box testing is based on travers-
ing both versions of a class, represented by class control flow graphs (CCFGs)
to detect and analyze changes. Hong’s idea [19] is based on identifying def-use
pair of each attribute from class flow graph (CFG) and test suite is built by
covering these def-use pairs. For regression testing, Beydeda et al. used a CFG
and CCFGs to construct an integrated model called class specification imple-
mentation graph (CSIG) [20]. They built regression test suite by the algorithm
which takes two versions of CSIG and previous refined test suite. For analyzing
safe regression, previous refined test suite is obtained by manually deleting ob-
solete test cases from original test suite. First test cases are generated by white
box testing criteria in which both graphs are traversed to analyze changes in the
statements against the nodes. Once changes are identified, test cases covering
those changes are generated. Then the algorithm generates test cases from
black box criteria by testing inter-method data flow for def-use pairs.

 An Approach for Selective State Machine based Regression Testing.
Farooq et al. propose an approach for selective state machine based regression
testing [21]. For change identification, they use Behavioral state machine
(UML 2.1) and class diagram, and classify the changes as class-driven changes
and state-driven changes. For building the regression suite, they adopt Briand’s
test suite classification mechanism, i.e., Obsolete, Reusable, and Retestable.
First, they generate class-driven changes by comparing original class diagram,
and modified class diagram. The identified class-driven changes are propagated
to state machine comparator that identifies state-driven changes that are passed
as input to the regression test selector that separates the Obsolete, Reusable and
Retestable test cases. The validity of the approach is tested on a small case
study.

 UML Based Regression Testing for OO Software. Mansour and Takkoush
[22] propose a UML based regression testing for object-oriented software by
using the interaction overview diagram, class diagram and sequence diagram.
Their strategy works by assuming that the test suite contains tests for unit level
testing as well as system level testing, and works in phases by selecting tests
for each level. First, they identify changes from class diagram. Then, they iden-

A Survey of UML Based Regression Testing 207

tify unit and system level tests from interaction overview diagram that are di-
rectly affected by the changes detected in the first phase either by traversing or
dependency analysis. If a change is identified in sequence diagram, their algo-
rithm suggests selecting the test cases that execute changed methods. They
provided the empirical results of their experiment on nine subject applications
and showed that their strategy identified all the tests similar to the retest-all
strategy. Their experiment also showed the good precision results by ignoring
non-modification test case.

Table 1. Comparison of UML based Regression testing Techniques.

Parameter/Reference [9] [8] [16] [10] [20] [14] [15] [21] [22]

UML Notation* AD CD, SD,
OCL

All CD, SD,
OCL

CSM COD, CD CD,
BSM

IOD,CD,

SCD SD

Risk Based Yes No No No No No No No No

No No Yes Yes Yes No Yes No No Transformation needed

No ORR No No No ORR No Test case classifica-
tion*

Safety,
targeted

ORR

No No No No No No No No Cost Analysis Yes

Change impact* CT CT CT UMLT CT CT CT UMLT IMLT

Safety High High No High Low Low Low High High

No Yes, No No No No No No No Tool Support

No No No No Yes Yes Yes Case Study Evidence Yes Yes

Feasibility Yes Yes No Yes Yes Yes Yes Yes Yes

Generality Yes Yes No No No No No Yes Yes

Precision High High No High No Low Low High High

No No SSDMOMDAG CSIG No TDG No No Inter. Model name

*Notations used in comparison matrix

CD: Class Diagram, IOD: Interaction Overview Diagram, SD: Sequence Diagram, AD: Activity Dia-

gram, SCD: State Chart Diagram, COD: Collaboration Diagram, BSM: Behavioral State Machine,

OCL: Object Constraint Language, CT: Code testcases, UMLT: UML testcases, ORR: Obsolete, Re-

usable and Retestable classification

208 Muhammad Fahad and Aamer Nadeem

5 Analysis

This section narrates the identified analysis parameters to compare the efficiency
and effectiveness of existing regression techniques. On basis of these parameters,
analysis matrix is created to give quick insights on each of the approaches ex-
plained above as shown in Table 1. The parameters are:

 UML Artifact: Which UML diagram is used for change identification for
building regression test suite.

 Risk-Based: Whether a technique builds risk matrices to quantitatively meas-
ure the safety of a test suite. By safety we mean whether a technique has the
ability to reveal a fault in the modified program and build test cases that exer-
cise the suspected portion having faults. While analyzing UML based regres-
sion-testing techniques, we found only one technique by Chen et al. that uses
the risk model and calculates the safety of a test suite.

 Transformation Needed: Whether the technique is capable of identifying
changes from the diagrams directly or builds the intermediate model that is ef-
ficient and conveys easy interpretation while identification of change impact
analysis. [8,9,14,21,22] have not built any intermediate model, while Pilskaln’s
OMDAG is easy to understand because nodes of the model are similar to the
classes in Class Diagram, and edges represent sequences between classes. But
others form very complex intermediate model.

 Test Case Categorization: Whether a technique divides the original test suite
to build regression test selection. [9] builds safety and targeted tests, and
[8,10,21] identify Obsolete, Reusable and Retestable regression test cases.

 Cost-Analysis: Whether a technique calculates costs of each test case, and in-
volves cost efficient strategy to select build regression test suite. Only Chen et
al. involve the cost aspects in their strategy.

 Change impact on Code Testcases/UML Testcases: Some techniques iden-
tify changes that impact code test cases rather than UML test cases. [10,21,22]
focused on identifying changes that affect UML test cases and their classifica-
tion upon mapping changes between a UML design and UML test cases.

 Safety: Whether a strategy selects the test cases that reveal the same faults and
helps in exposing errors caused by changes as a retest-all strategy reveals. Only
works from Pilskalns et al. and Mansour et al. is very safe in this regard.

 Feasibility: Whether the testing criterion is feasible in a sense of identifying
the impact of changes in the artifact, and is cost effective to be used for particu-
lar scenarios during software lifecycle.

 Generality: Whether the technique can be extended and applied to a wide and
practical range of situations.

 Precision: Whether the strategy detects obsolete test cases and ignores them ef-
fectively, and change impact analysis only selects those test cases that are
really beneficial to ensure the revalidation of software.

A Survey of UML Based Regression Testing 209

 Tool Support: Whether proposed technique is tool supported. Only Briand et
al. provided the tool named “RTSTool” along the technique.

 Case Study Evidence: Whether the authors have made some experiment or
case study to give evidence of their testing strategy. [8,9,15,21] build a case
study evidence while analyzing their testing techniques to promote understand-
ing.

6 Conclusion and Future directions

Regression testing, as a means of quality control measure, is one of the most
costly testing techniques to ensure that modifications have not affected the work-
ing correct behavior of system and newly created modifications behave as in-
tended. This paper surveys the regression testing techniques based on UML de-
signs. We analyze that UML based regression testing opens a number of
advantages and is practical for small and large applications. Classification of re-
gression test suite into Obsolete, Retestable and Reusable test cases is highly sig-
nificant and most of the literature techniques employed the same classification.
UML models with OCL expressions can be effectively used for regression testing
of component based systems. Safe techniques that identify the same test cases as
the retest-all strategy identifies, are good for small scale test suites and small ap-
plications. However, safety for large applications and test suites is difficult to
achieve as prioritization is needed for the selection of cost minimized subset for
retesting. Identification of changes that affect on UML test cases and Code test
cases are different and needs special attention. Little research has been done on
identifying changes that impact UML test cases and classify test suite based on
mapping changes between UML design and UML test cases, unlike others con-
sider the behavior of the code. One of the future directions on this topic is to per-
form more work on classifying test cases based on UML designs. Another direc-
tion could be to analyze different aspects of cost, test suite minimization, testing
of UML executable models, systematic revalidation of UML models and test case
prioritization for UML, as these are important during regression testing in a con-
trolled environment.

References

[1] S. Beydeda, and V. Gruhn, Integrating white- and black-box techniques for class-level testing
object-oriented prototypes. In Software Engineering and Applications Conference, Las Ve-
gas, Nevada, pp. 23–28, 2000.

[2] H. K. N. Leung, and L. J. White, A Cost Model to Compare Regression Test Strategies. Proc.
Conference on Software Maintenance, Italy, pp. 201-208, October 15-17, 1991.

210 Muhammad Fahad and Aamer Nadeem

[3] Y. Chen, R. L. Probert, D.P. Sims, Specification based Regression test selection with risk
analysis, IBM Center for Advanced Studies Conference. Proceeding of the Conference of the
center for advance studies on collaborative research, 2002.

[4] T. L. Graves, M.J. Harrold, J. Kim, A. Porter, and G. Rothermel, An Empirical Study of Re-
gression Test Selection Techniques, ACM Transactions on Software Engineering and Meth-
odology, Vol. 10 (2001), No. 2, pp 184-208.

[5] G. Rothermel, and M.J. Harrold, Analyzing Regression Test Selection Techniques. IEEE
Transactions on Software Engineering, Vol. 22 (1996), No.8, pp. 529-551.

[6] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, B. Davia, The Impact of Test Suite
Granularity on the Cost Effectiveness of Regression Testing. Proceedings of the 24th Interna-
tional Conference on Software Engineering Orlando, Florida, pp.130-140, 2002.

[7] G. Rothermel, R.H. Untch, Chu. Chengyun, M.J. Harrold, Prioritizing test cases for regres-
sion testing. Transactions on Software Engineering, Vol. 27 (2001), No.10, pp. 929 – 948.

[8] L.C. Briand, Y. Labiche, G. Soccar, Automating Impact Analysis & Regression Test Selec-
tion Based on UML Designs, Proc. of Intl. Conference on Software Maintenance, IEEE,2002.

[9] Y. Chen, R.L. Probert, D.P. Sims, Specification based Regression test selection with risk
analysis, Proc. of the center for advance studies on collaborative research, 2002.

[10] O. Pilskalns, G. Uyan, A. Andrews, Regressin Testing UML Designs, 22nd IEEE interna-
tional Conference on software maintenance (ICSM’2006).

[11] S.A.M. Sajeev, and B. Wibowo, UML modeling for regression testing of component based
systems. Published by Elsevier Science, B.V., 2003.

[12] P. Hsia, X. Li, D.C. Kung, C. Hsu, L. Li, Toyoshima, A technique for the selective revalida-
tion of OO software, software maintenance: research and practice, Vol. 9(1997), pp. 217-233

[13] S. Amland, Risk Based Testing and Metrics: Risk analysis fundamentals and metrics for
software testing including a financial application case study, The Journal of Systems and
Software, Vol. 53(2000), pp. 287-295.

[14] Y. Wu, J. Offut, Maintaining Evolving Component-based Software with UML, Proc. of 7th
European Conference on Software Maintenance and Reengineering (CSMR’03), 2003, IEEE.

[15] Y.L. Traon, T. Jeron, J. Jezequel, and P. Morel, Efficient Object-Oriented Integration and
Regression Testing, IEEE Transactions on Reliability, Vol. 49 (2000), No. 1.

[16] D. Deng, P. C.Y. Sheu, Model-based Testing and Maintenance, Proceedings of International
Symposium on Multimedia Software Engineering (ISMSE’04), IEEE, 2004.

[17] G. Rothermel, M.J. Harrold, and J. Dedhia, Regression test selection for C++ software.
Software Testing, Verification & Reliability, Vol. 10(2000), No. 2, pp. 77–109.

[18] H.K.N. Leung, and L. White, Insights into Regression Testing. Proc. IEEE Intl. Conference
on Software Maintenance (ICSM), Los Almitos, pp. 60-69, October 16-19, 1989.

[19] H.S. Hong, Y.R. Kwon, and S.D. Cha, Testing of object oriented programs based on finite
state machines. In Proc. of the 2nd Asia-Pacific Software Engineering Conference, Brisbane,
Australia, pp. 234–241, 1995.

[20] S. Beydeda, and V. Gruhn, Integrating White- and Black-Box techniques for Class Level
Regression Testing. IEEE computer society, 2001.

[21] Q. Farooq, M.Z.Z. Iqbal, Z.I. Malik, A. Nadeem, An approach for selective state machine
based regression testing, Proceeding of AMOST ’07, July 2007, UK, pp. 44-52, ACM.

 [22] N. Mansour, and H. Takkoush, UML based regression testing for OO software, Proc. of
11th IASTED conference software engineering and applications. Nov, Cambridge, USA.

