
A Nonlinear Representation of Page

History in P2P Wiki System

Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

Nancy-Université, LORIA/INRIA Lorraine , Campus Scientifique, BP
239, F-54506 Vandœuvre-lès-Nancy, France,

e-mail: {alshattn, canals, molli}@loria.fr

Abstract Awareness about the document evolution is an important part
in collaborative editing systems. It is represented always by the ver-
sions history. The representation of the document history in centralized
collaborative editing systems is linear. However, in distributed collab-
orative editors, there is no central server and the users can work asyn-
chronously or in isolation and some versions may be produced concur-
rently, in this case, the history is no long linear. The existing history
representations are limited because they don’t provide any information
about the concurrence on the document history. We introduce here a
non linear representation for the page history in P2P wiki systems. The
concurrency information about the page versions is provided; the user
can explore the page versions that resulted under the user’s control or
produced by the server in case of merging concurrent modifications.

1 Introduction

Providing history of versions in collaborative editing systems with each document
is very important. The history contains all the revisions for one document since its
creation, a new revision is created in the history when a user commits his modifi-
cations. The history helps the user to understand the evolution of the document, to
compare between two versions, to see what are the operations that convert one ver-
sion to another, who made these operations and he can revert to precedent version.

Please use the following format when citing this chapter: 
 
Alshattnawi, S., Canals, G., Molli, P., 2008, in IFIP International Federation for Information Processing, 
Volume 286; Towards Sustainable Society on Ubiquitous Networks, eds. Oya, M., Uda, R., Yasunobu, C., 
(Boston: Springer), pp. 151–160. 



152 Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

Some collaborative editors are based on state-based approach [10]. State-based
approach takes into account just the final and initial states of the document. When
the user wants to see the evolution from one revision to another, the two versions are
diffed, diff algorithm compares between two files and compute the changes made to
a current file by comparing it to a former version of the same file, and the difference
between these two revisions is presented. The problem with this approach that there
is no information about the operations that transform one state to the other.

Existing decentralized collaborative editing systems are based in operation-based
approach [7]. In this approach the operations that transform one revision to another
is stored in a history. The operations are kept in a patch that is sent to other sites to be
integrated. The patch is a non mutable object and therefore the set of operations that
transform one revision to another is the same over all sites. State-based approach is
not suitable for decentralized systems because the diff algorithm may give different
set of operations over each site.

In Distributed Version Control Systems (DVCS) [3], the operations that resulted
from the diff algorithm between the committed version and the precedent version
is reserved in a patch. The patch is diffused to other wiki servers where it will be
integrated and recorded by the editor on a log file. When the user gets the history, it
is easy to present the difference between versions.

The documents in traditional systems are always produced by the users, in the
Copy-Modify-Merge paradigm [8] the central server control all the operations of
distributed participants. When it detects concurrent modifications, he asks the user
to merge them manually. So, the existing history representation in this case may
be enough. However, in DVCS, there is no central server and the users can work
asynchronously or in isolation, in this case the merge may be done by the server.
The classical way to notify users about merge results is to modify the file itself with
conflict blocks. The user who gets the page must search for conflict blocks to know
if the page is resulted by the server or by the user. In the history representation there
is no indication about the page state.

In a P2P wiki like in DVCS, concurrent changes may occur because of asyn-
chronous work and may be saved on different servers. Merges are not executed when
pages are saved but when remote changes are received by each site. To ensure even-
tual consistency [12], merges are fully automatic and performed by wiki servers.
In this case the page is server-produced. While when the merge is done under the
control of the user the page is user-produced [4]. Our objective in this paper is to
represent the history of P2P wiki pages by adding information about the pages state
if it either user-produced or server-produced. The evolution of the pages concerning
the concurrence may help the user to understand the intension of each user and re-
solving conflicts. This paper is organized as follow: at the next section we mention
the history representation in different collaborative editing systems, in section 3 we
present our mechanism for detecting the pages states, section 4 presents our history
representation in P2P wiki systems and we conclude our work in section 5.



A Nonlinear Representation of Page History in P2P Wiki System 153

2 Revision Histories in Collaborative Editors

In traditional version control systems such as CVS [5] and subversion [1], no in-
formation about the evolution of one state into another is used. They adopted the
state-based merge where the information about the state is used. Every time the user
commits a file to the CVS repository, a new revision is created. Each revision is iden-
tified by a number (for example, 1.1 or 1.11.3.5). Along with each revision is stored
the author, the date, and a commit comment. In the revision history view, there is a
link near each revision to display diffs between that revision and the previous one,
and the users is allowed to display diff between arbitrary revisions. For conserving
space, RCS [14] stores deltas i.e difference between successive revisions. RCS uses
the program diff which first computes the longest common substring of two revi-
sions, and then produces the delta from that substring. The delta is simply script
consisting of deletion and insertion commands that generate one revision from the
other.

In Wikipedia [2], every article may be edited anonymously or with a user ac-
count. The ”History” page attached to each article contains every single past revi-
sion of the article. Revision history of a wiki is traditionally maintained as a linear
chronological sequence. The informations that we can get from this history repre-
sentation are the date and time of every edit, the user name, the modification size and
from the history we can compare between any two versions or any version with the
actual one. Figure 1 represents the revision history for a page wiki1 taken from the
encyclopedia Wikipedia. From the page history the user can see the difference be-
tween that edit and the current version from the link cur, the link last shows changes
between that edit and the previous version, radio buttons can be used to select any
two versions of the page. Near each version the date and the time, the user or the
contributor name or IP address, edit summary, the nature of the modification and the
size, m: minor edit to indicate that the modifications were not over the content , and
finally the button undo to delete the ancient modifications.

Some approaches are proposed to represent the history for giving additional in-
formation about the evolution of the wiki page. In [11] the author proposed a tree
representation where each edge has a weight indicates the similarity between the
two corresponding page revisions. The tree structure reflects actual evolution of
page content, revealing reverts, vandalism, and edit wars.

Another work presented in [15], provides an overview of a document’s evolution
by analyzing differences between multiple revisions of one document. They provide
information about how a group has contributed to a document or how a modification
has influenced the current version of a document. The existing approaches [11, 15]
try to show the violence over the pages. Unfortunately, they don’t take into account
the concurrency.

1 http://en.wikipedia.org/wiki/Wiki



154 Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

Fig. 1 the pages histories in wikipedia

3 Work Context

The work presented in this paper is based on the concurrency awareness mechanism
and the results obtained from our work presented in [4]. The objective of the con-
currency awareness mechanism is to recognize the server produced pages and the
user produced pages and if the page is server produced to highlight the effects of
concurrent updates inside these pages. This makes explicit the regions of the page
that are subject to concurrency mismatches. Our major contribution, that we intro-
duce here, to P2P wiki is a nonlinear representation to the page history that reflect
the page state concerning the concurrency.

The mechanism is built over P2P wiki system called Wooki [16]. A Wooki net-
work is dynamic p2p network where any site can join or leave at any time. Each
site has a unique identifier named siteid. Site identifiers are totally ordered. Each
site replicates wiki pages of other sites. A Wooki site generates a sequence of op-
erations, when a wooki user saves his page. These operations are integrated locally
on the wooki page by executing the Woot algorithm [9], and broadcasted to be inte-
grated on all other sites.

WOOT ensures eventual consistency [6] and intentions preservation [13] for lin-
ear structures. Integrating a remote operation consists in line arising a dependency
graph between the operations. The algorithm guarantees that the linearisation order
is the same on all sites independently of the delivery order of patches. This allows
to achieve eventual consistency.

In the concurrency awareness mechanism, when a patch is received and inte-
grated in Wooki system the concurrency is checked and if the concurrency is de-
tected then the mechanism analyzes the log file for determining the common version
from which the concurrence operations must be presented to the users. We explain
the mechanism by the following example, suppose that we have three site connect-
ing to Wooki server and editing the same Wooki page. The sequence of the operation
generation is shown in the figure 2. The three users got the page version Sn, at site 1
the user modifies the page by generating the patch Pn1 and at site 2 the user modifies
the page by the generation of Pn2 and Pn3. These patches is propagated and inte-
grated over all the connected sites of the network. At the reception of each patch the



A Nonlinear Representation of Page History in P2P Wiki System 155

Fig. 2 the patch generation and integration over all sites

concurrency is detected. For example, at site 1, when pn2 is received, its integration
will obviously require a merge with pn1, resulting in the server-produced state n12,
labeled S in the figure, because pn1 is concurrent with pn2 . Any user requesting
the page at that stage should be informed of this status. In addition, highlighting the
page region impacted by patches pn1 and pn2 will help him understanding potential
concurrency mismatches.

When site 2 produces patch pn2, reaches the user-produced state n2. Then site
2 produces patch pn3 and broadcasts it. The resulting state at site 2 is n23, labeled
u. When site 2, now, receives pn1, we have pn3 ‖ pn1

2, then the resulting state is
server-produced page n123. Here the log must be analyzed. The algorithm extract
from the log the last applied patch. Then, it checks its concurrency with all patches
in the log. Each concurrent patch is added to a set of concurrent patches. Then, the
algorithm computes the common ancestor state of this set. Finally, it adds to the set
all patches posterior to this state. So, at site 2, the last integrated patch is pn1 and we
have pn3 ‖ pn1, and pn2 ‖ pn1 so this would return the set contained {pn3, pn2, pn1}.

2 we use the symbol ‖ to denote the concurrency between patches



156 Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

The common ancestor is Sn, this means that the integrated operations since Sn must
be highlighted. At this stage, receiving any patch that is not concurrent with the last
one will change the state from server-produced page state to user-produced page
state. The situation is a bit different at site 3 since it does not produce any patch, but
it just receives and integrates patch produced by site 1 and 2. When pn2 arrives, it
is considered as non concurrent and the resulting state n2 is user-produced. When
pn1 is received, it is considered as concurrent, and the resulting state n12 is server-
produced. Here, pn1 ‖ pn2 and the page region that potentially contains concurrency
mismatch is the one impacted by {pn1, pn2}. Finally pn3 is received. It is also a
concurrent patch and the resulting state n123 at site 3 is server-produced. In this
mechanism, the user-produced page state means that the page is reviewed by some-
one and we consider it as valid, while the server-produced page state means that the
page may contain some mismatch and it needs to be reviewed.

4 Representing the Histories in P2P wiki

The user might want to see the evolution of a wiki page: he wants to see when the
page was user-produced and when it was server-produced, and what the patches
that made the page server-produced and what are the patches that convert the page
from server-produced to user-produced page. The user can also see who made these
patches, where the patches were made, when they were made, why and from which
version the concurrency is happened i.e the common ancestor. In this section we
present a way to visualize the history with the concurrency information.

In P2P wiki, the history is not linear and some versions may be produced concur-
rently. We represent the history by a directed acyclic graph. The graph E consists of
vertices and edges E(V,E). Where the vertices (V ) represent the page versions and
the edges (E) represent the patches that convert one version into another. For our
example in section 3, the history is shown in figure 3.

We will introduce some definitions related to the history before establishing our
history representation.

• the history H at site S of page P, Hs(Pi) is the set of revisions v1 . . .vn of the
page P when integrated the patch i and the set of patches 1 . . . i that convert one
revision into another.

• when another patch i+1 is integrated the version history is Hs(Pi+1)= Hs(Pi)+
v(n+1).

• every page revision has a state PS this state may be user-produced or server-
produced

• every applied patch i has a generation context GCi. This context is to determine
if this patch is locally generated or received from other sites, and the precedence
and the concurrency relations with the other patches in the log file. These infor-
mations can be easily computed thanks to the concurrency detection mechanism.
The generation context of pn3, GCpn3 is: pn2 happened before pn3 and pn3 ‖ pn1



A Nonlinear Representation of Page History in P2P Wiki System 157

Fig. 3 pages histories representation

• the size of the concurrence: when the set of concurrent patches is extracted, in
the case of server-produced page, the size of concurrence may be computed by
counting the number of operations that are included in these patches. Because
WOOT works at the line level then the size means how many lines are impacted
by the concurrent operations. This size may give the user the impression that the
version that has more concurrent operations has more priority to be reviewed.

In figure 3, we can see the evolution from Sn, suppose that we got this version
by applying the patch Pn0 made over sitex . Sn is a user-produced page and it is
represented by a transparent vertex. At site 1 when Pn1 is generated the state is stayed
user-produces because this patch is not concurrent with the page state Sn. While
when Pn2 is received, the concurrency is checked and detected with the last patch, for
this reason the page state is converted to server-produced with a shadowed vertex.
The straight dotted line represents the page evolution over the local site while the
other lines represent the patches and the states in the remote sites. For example at site
3, we show at the figure the local evolution and the remote integrated patches from
site1 and site2. We distinguish the operation that transforms the server-produced



158 Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

Fig. 4 the page history over the three sites

page to user-produced page by a shadow edge. At site 2, when Pn4 is integrated,
it is not concurrent with any patch in the log and then it will change the state from
server-produced to user-produced, it is represented as a shadow edge. The samething
will happen sur site 1. Note that the state that have at least two outgoing edges is a
common state while the state that is resulted from at least two incoming edges is a
server-produced page.

Suppose that the user at site 3 validates the concurrency by generating the patch
Pn4. This patch is considered as a validation patch even at site 1 and site 2 because
it is not concurrent with last version state. When the user see this representation, he
will understand that user 3 reviewed the page and he validated it by some operations
in Pn4. The integration of this patch is shown at site 2 in the figure.

The question that must be asked now, is this representation is scalable i.e suitable
for any number of sites in the network? This representation is suitable when the



A Nonlinear Representation of Page History in P2P Wiki System 159

network size is very small but when we have a very huge network the graph will
be complex and can’t fit easily at the user’s screen. For this reason, we adapted
this representation to be seemed the current wiki history representation with some
additional decorations for adding the concurrency informations. We represent it as
shown in figure 4 and the function of each field is as follow:

1. the common ancestor has a shadowed background;
2. the server-produced versions in bold;
3. the user-produced versions appear normally;
4. the common ancestor version appears near the server-produced versions; when

the user point to a server-produced version the versions until the common ances-
tor will be highlighted;

5. a link to the patch generation context is provided with every patch identifier;
6. we can indicate the size of concurrence in the page near the server-produced

page. Being aware of the number of changes others users have made, helps the
user to better understand the evolution of the page and easily collaborate with
others to resolve the conflicts.

7. the date,time and the user name of the generation of each version. In addition,
the case is like in the traditional wiki systems, the user can compare between
any two versions but in this case the effects of concurrent modifications will be
presented in a distinguish way.

We note that the versions order is not the same over sites. However, the patches
that have a causal relation are integrated according to this relation. For example, over
site 2, Pn2 is generated before Pn3, and therefore Pn2 must be integrated before
Pn3 over all sites. When the system is stable i.e all the generated operations are
propagated and integrated aver all sites, the final state and the common ancestor
state are the same and set of integrated patches between these two states are also,
the same over all sites. For example, at the page version n123 the system is stable,
the page state n123 and the common state Sn are the same over all sites and the set
of patches between Sn and n123 equal to {Pn1,Pn2,Pn3}.

5 Conclusion

we have presented here a non linear representation to the pages histories in P2P
wiki systems. This representation is made ,firstly, by a directed acyclic graph and
then it is made as the same form of the existing history representation in wiki for the
scalability reasons. The objective of this representation is to show the page versions
that are concurrently produced, and at any moment the user can compare between
any two versions and see the operations that are integrated concurrently. The second
step of this work is to evaluate this representation from the user point of view.



160 Sawsan Alshattnawi, Gérôme Canals, Pascal Molli

References

1. Open Source Software Engineering Tools. Online http://subversion.tigris.org/ (2006)
2. Wikipedia. The Free Encyclopædia that Anyone Can Edit. Online http://www.wikipedia.org/

(2006)
3. Allen, L., Fernandez, G., Kane, K., Leblang, D.B., Minard, D., Posner, J.: Clearcase multisite:

Supporting geographically-distributed software development. In: Selected papers from the
ICSE SCM-4 and SCM-5 Workshops, on Software Configuration Management, pp. 194–214.
Springer-Verlag, London, UK (1995)

4. Alshattnawi, S., Canals, G., Molli, P.: concurrency awareness in P2P wiki . In: The 2008
International Symposium on Collaborative Technologies and Systems (CTS 2008), pp. 285–
294. IEEE (2008)

5. Berliner, B.: CVS II: Parallelizing software development. Proceedings of the USENIX Winter
1990 Technical Conference 341, 352 (1990)

6. Johnson, P.R., Thomas, R.H.: RFC677: The maintenance of duplicate databases (1976)
7. Lippe, E., van Oosterom, N.: Operation-based merging. SIGSOFT Softw. Eng. Notes 17(5),

78–87 (1992). DOI http://doi.acm.org/10.1145/142882.143753
8. Molli, P., Skaf-Molli, H., Bouthier, C.: State treemap: an awareness widget for multi-

synchronous groupware. In: 7th International Workshop on Groupware - CRIWG’2001.
Darmstadt, Germany (2001)

9. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for p2p collaborative editing. In:
Proceedings of the 2006 ACM Conference on Computer Supported Cooperative Work, CSCW
2006, Banff, Alberta, Canada, November 4-8, 2006. ACM (2006)

10. Robbes, R., Lanza, M.: Versioning Systems for Evolution Research. In: Proceed-
ings of the Eighth International Workshop on Principles of Software Evolution, (IW-
PSE ’05), pp. 155–164. IEEE Computer Society, Washington, DC, USA (2005). DOI
http://dx.doi.org/10.1109/IWPSE.2005.32

11. Sabel, M.: Structuring wiki revision history. In: Proceedings of the 2007 international sym-
posium on Wikis, (WikiSym ’07), pp. 125–130. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1296951.1296965

12. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys (CSUR) 37(1), 42–81
(2005)

13. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality preservation,
and intention preservation in real-time cooperative editing systems. ACM Transactions on
Computer-Human Interaction (TOCHI) 5(1), 63–108 (1998)

14. Tichy, W.: RCS - A System for Version Control. Software - Practice and Experience 15(7),
637–654 (1985)

15. Viégas, F.B., Wattenberg, M., Dave, K.: Studying cooperation and conflict between au-
thors with history flow visualizations. In: Proceedings of the 2004 conference on Hu-
man factors in computing systems, (CHI ’04), pp. 575–582. ACM Press (2004). DOI
10.1145/985692.985765. URL http://portal.acm.org/citation.cfm?id=985765

16. Weiss, S., Urso, P., Molli, P.: Wooki: a p2p wiki-based collaborative writing tool. In: Web
Information Systems Engineering. Springer, Nancy, France (2007)


