
Presence-Based Runtime Composition of

IMS

Services Deployed in a SIP Servlet

Platform

Juan Miguel Espinosa Carlı́n

Communication and Distributed Systems, RWTH Aachen University,
52074 Aachen, Germany,

e-mail: espinosa@i4.informatik.rwth-aachen.de

Abstract The IP Multimedia Subsystem (IMS) is aimed to enable the
delivery of rich multimedia services in converged networks. Due to the
current needs of the mobile telecommunications market to deliver tai-
lored experiences to its users, IMS operators must be able to manage
the interoperability and cooperation between the deployed services, in
order to provide a high level of customization to their subscribers. With
this goal in mind, this paper presents an extension to the Default Ap-
plication Router introduced in the Java SIP Servlet API v1.1. The pro-
posed Presence AR allows runtime changes in the precedence relation-
ships and application subscriptions that build the composition chains,
based on the Presence information of the users involved in the session.

1 Introduction

The convergence-driven need to seamlessly deliver services, has forced operators
to adopt new approaches, like the Intelligent Networks, Web Services API’s, and,
most recently, the IP Multimedia Subsystem (IMS) [7]. In the context of the IMS
architecture, Java SIP Servlets are a suitable option to implement a SIP Application
Server (AS). In March 2003, the Java Community Process (JCP) released the Java
SIP Servlet API (SSAPI), under the Java Specification Request (JSR) 116 [13], for
building and deploying SIP applications. In such environment, a SIP Servlet con-
tainer acts as an AS, and hosts one or more applications that are invoked according

Please use the following format when citing this chapter: 
 
Espinosa Carlín, J. M., 2008, in IFIP International Federation for Information Processing, Volume 286; 
Towards Sustainable Society on Ubiquitous Networks, eds. Oya, M., Uda, R., Yasunobu, C., (Boston: 
Springer), pp. 113–124. 



114 Juan Miguel Espinosa Carlı́n

to specific mapping rules. Although the JSR 116 states that application composition
is desirable, no standard compositions mechanisms are defined, and its definition is
left entirely to the container implementation.

With the goal of promoting software modularity and reuse, the Java Community
Process specified the SIP Servlet API v1.1 under the JSR 289 [15]. In the applica-
tion composition framework of this specification, the core entity is the Application
Router (AR), to which the container communicates to know the sequence in which
the applications have to be invoked. Although the AR is essential for the proper op-
eration of the container, the specification only provides the definition of a Default
AR (DAR), which has no processing logic besides the declaration of the order in
which applications will be invoked; the implementation of more powerful AR’s that
make use of complex rules and diverse data repositories, is left to the container im-
plementations. With the goal of providing a richer component, this paper presents an
extension that allows the AR to perform runtime composition, based on the Presence
information associated to the users involved in a session.

The rest of this paper is structured as follows. Section 2 gives an overview of the
available approaches for enabling IMS service composition. Then, Sect. 3 describes
the proposed AR in detail. Section 4 presents the Proof-of-Concept prototype devel-
oped for implementing the Presence AR. Finally, the conclusions and an outline of
future work are given in Sect. 5.

2 Available Approaches for IMS Service Composition

Although there are many techniques for enabling service composition in the IMS,
most of them are based on at leat one of the approaches shown in Fig. 1.



Presence-Based Runtime Composition of IMS Services Deployed in SIP Servlets 115

2.1 iFC Evaluation at the S-CSCF

For delivering services to the end users, the IMS makes use of the information stored
in the user profiles residing in the HSS’s. According to TS 23.218 [3], a service pro-
file is composed by a Private User Identity to which the profile is applicable, and
one or more service profiles associated to it. For each one of these service profiles, a
Public User Identity (PUI) and zero or more initial Filter Criteria (iFC) are defined.
iFC contain all the necessary information that helps the Serving Call-Session Con-
trol Function (S-CSCF) to decide when a specific AS must be involved in order to
provide a service to the subscriber. iFC are evaluated by the S-CSCF for all those SIP
requests that either create a dialog, or are stand-alone requests (e.g. SUBSCRIBE,
INVITE, OPTIONS).

For the case in which there is more that one AS involved in the signaling path,
the S-CSCF will forward the matched request to each one of them, according to
the priority field of the iFC. Although this chaining mechanism is both efficient and
reasonably simple, it only allows to sequence the interactions at the AS level. In
order to coordinate the orchestration of individual services, a composing approach
achieving refined granularity is needed [4].

2.2 3GPP Brokering Functions

The 3GPP has defined two entities aimed to deal with the feature interaction man-
agement in an IMS network. The first concept is the Service Capability Interaction
Manager (SCIM), a function aimed to manage service capability coordination. The
second one is the OSA/Parlay Service Broker (SB), aimed to broker OSA/Parlay
applications, application hosted on SIP AS’s, and services offered by legacy net-
works (e.g. CAMEL). Both components were supposed to be standalone entities
placed between the S-CSCF and the AS, communicating with them via a SIP inter-
face. However, the SCIM was never further defined, and for the case of the SB, the
progress is being slowly documented in 3GPP TR 23.810 as part 3GPP Release 8.

Although these entities are theoretically able to manage the interaction of appli-
cations deployed in different domains (e.g. OSA/Parlay and CAMEL), a scenario in
which such approach would be needed is not very realistic [4], notably limiting the
practical use of both approaches.

2.3 Web Services Orchestration

Web Services orchestration is a topic on which a lot of research has been done in the
past years. Based on the Universal Description, Discovery, and Integration (UDDI)
for listing, on the Web Service Description Language (WSDL) for description, and
on the Web Services Business Process Execution Language (BPEL) for orchestra-



116 Juan Miguel Espinosa Carlı́n

tion, Web Services are a successful technology that allowed the IT community to
realize key features behind the Service Oriented Architecture (SOA) concept.

Even though many efforts have been done for enabling the use of Web Services in
the telecommunications environment [5], the process-driven nature of their orches-
tration techniques is not suitable for composing real-time communications services,
being the later better described from an event-driven perspective [2].

2.4 Java SIP Servlets

The AR concept introduced in the JSR 289 allows for a clear separation between
concerns and responsibilities, with developers implementing the application logic
of the services, and deployers controlling the application selection and invocation
order.

Because the container must support the invocation of originating applications for
the caller and terminating applications for the callee, the specification introduces
the concepts of ORIGINATING and TERMINATING routing regions. When the
container queries the AR for the next application to invoke, it also sends the routing
region in which the invocation has to be performed; a third NEUTRAL routing region
is defined for applications that do not serve a particular subscriber.

As stated in the JSR 289, the Default AR (DAR) should be available in every
compliant implementation, and should invoke applications driven by a properties
file, in which the name of the property is the invoked SIP method, and the value of
the property is the SipRouterInfo object converted into a string. The informa-
tion contained by this string consists of the following [15]:

• The name of the application to be invoked, as identified by the application de-
ployment descriptors.

• The subscriber’s identity returned by the DAR, that can be any header present in
the SIP request.

• The routing region in which the application has to be invoked (i.e. ORIGINATING,
TERMINATING, or NEUTRAL).

• A SIP URI that indicates the route as returned by the AR.
• A route modifier, to indicate the direction to be followed in the invocation chain

(i.e. ROUTE, ROUTE BACK, or NO ROUTE).
• A sting representing the AR’s internal state. Because this information will be

exclusively used by the AR, its contents are up to the individual DAR implemen-
tations.

An example of such configuration file is the following:

INVITE: ("OriginatingCallWaiting", "DAR:From",
"ORIGINATING", "", "NO ROUTE", "0"),
("CallForwarding", "DAR:To",
"TERMINATING", "", "NO ROUTE", "1")



Presence-Based Runtime Composition of IMS Services Deployed in SIP Servlets 117

For this example, the DAR is configured to invoke two applications on receiving
an INVITE request, one for the originating region, and the other for the terminating
region. The applications are identified by their names, and the returned subscriber
identities are bonded with the contents of the From and To headers of the request.

The specification of the DAR is heavily based on the Distributed Feature Com-
position (DFC) algorithm [6], with the only available implementation, called the
DFC-AR, being statically configured with no dependencies on external databases or
other data stores [1]. DFC is realized from a pipe-and-filter perspective, in which
multiple feature boxes (FB’s) are linked by internal featureless calls, thus forming a
sequences of FB’s. In the context of the DFC-AR, these sequences are called appli-
cation chains. A typical arrangement of feature boxes is shown in Fig. 2.

Fig. 2 Architecture of the Distributed Feature Composition

Table 1 shows a comparison between the described composition techniques in
terms of the granularity offered by the approach, its provider interoperability, and
the paradigm used for doing composition.

Table 1 Comparative Analysis of IMS Composition Approaches

Technique Granularity Interoperability Paradigm

iFC Evaluation Coarse High (3GPP Standard) Event-driven
3GPP Brokering Functions Refined Low (Propietary) Event-driven
Web Services Orchestration Refined High (OASIS Standard) Data-driven
JSR 289 Application Router Refined High (Java-based) Event-driven

Because the SIP Servlet API builds on the well known API for deploying HTTP
servlets, the programming model is already known to a considerably large commu-
nity of developers; at the time of writing, there are at least five commercial and one
open source implementations of the standard.



118 Juan Miguel Espinosa Carlı́n

3 A Presence-Driven IMS Application Router

3.1 Functional Architecture

The proposed architecture for the Presence AR is shown in Fig. 3. A brief descrip-
tion of each of the entities is given next. For the aim of clarity, let’s take the example
of Alice establishing a call with Bob. Both of them have a contract to use the fol-
lowing services: Speed Dial, Call Waiting, Call Forwarding, Voice Mail, and SMS.
Additionally, their IMS provider enables the Enhanced Call service, which com-
poses the mentioned services depending on Alice’s and Bob’s Presence status.

3.1.1 Extended Precedence Relationships

The application chains built by the DFC-AR are based on Precedence Relation-
ships statically stored in an XML file. These relationships are enclosed within
<ordering> elements, and establish a partial order among applications in each
one of the routing regions. The higher an application name appears in the list, the
higher priority that the application has in the region in which is listed. Due to the
fact that not all the deployed applications keep a precedence relation with the oth-
ers, it is absolutely valid that some applications are not listed on the relationships.
Because the priority assigned to the applications is based on their proximity to the
subscribers, applications with higher precedence will appear closer to the endpoints
when invoked.

For the Presence AR, the idea is to reuse these relationships to give the AR alter-
native Paths inside an extended application chain: the taken Path will depend on the
Presence information of the user being called. Because the published information
represents only a weak form of contract, it does not ensure that it will always be
possible to successfully contact the presentity, so a Default Path inside the extended
chain has to be always defined. For the case of our example, a possible extended



Presence-Based Runtime Composition of IMS Services Deployed in SIP Servlets 119

application chain built by the Extended Precedence Relationships is shown in Fig.
4.

Fig. 4 Extended Application Chain for the Enhanced Call Service

The Extended Precedence Relationships configured on the Presence AR for Path
2 in both routing regions are structured as follows:

<originating-region>

<ordering>

<app-name>SD</app-name>

<app-name>CW</app-name>

<path id=2>
<app-name>CF</app-name>

</path>
</ordering>

</originating-region>

<terminating-region>

<ordering>

<path id=2>
<app-name>FW</app-name>

<app-name>CW</app-name>

</path>
</ordering>

</terminating-region>

3.1.2 Extended Application Subscriptions

In the DFC-AR, the bindings between the received SIP requests and the invoked
applications are statically configured by the Application Subscriptions. These Java



120 Juan Miguel Espinosa Carlı́n

regular expressions are called Address Patterns, and are enclosed by <mapping>
XML elements that are evaluated against the From header, including its display-
name portion for the case of the originating address, and against the Request-URI,
for the case of the terminating address of the processed request.

The Presence AR uses an extended version of these subscriptions, and defines
the bindings for each one of the Paths configured by the Extended Precedence Rela-
tionships. For the case of our example, the Extended Application Subscriptions for
the originating routing region of the Default Path are the following:

<originating-region-mapping>

<mapping>

<path id=default>
<address-pattern>.*sip:*</address-pattern>

<app-name>SD</app-name>

<app-name>CW</app-name>

</path>
</mapping>

</originating-region-mapping>

The additional subscriptions are configured as follows. For the originating region
of Path 1, the Address Patterns contain the same two applications shown above (i.e.
Speed Dial and Call Waiting), while for the originating region of Path 2, they contain
one extra application (i.e. Call Forwarding). For the terminating routing region, the
Address Patterns contain two applications for the first Path (i.e. Voice Mail and
SMS), two for the second Path (i.e. Call Forwarding and Call Waiting), and one for
the Default Path (i.e. Call Waiting).

3.1.3 Presence Bindings, Binding Manager, and Watcher User Agent

The Presence Bindings are managed through the Bindings Manager, and are defined
to indicate the Presence AR which of the defined Paths has to be taken in the ex-
tended application chain, depending on whether or not specific parts of the conveyed
Presence information meet certain criteria. These bindings are linked to both, the
IMS Public User Identities (PUI’s) stored in the HSS, and the Paths defined in the
Extended Precedence Relationships. In order to get the Presence status of the users,
the Presence AR implements a Watcher User Agent that fetches the data from the
Presence Server. Assuming that the Rich Presence Information Data Format (RPID)
[10] is used for publication, Bob could define the following Presence Bindings for
the Enhanced Call service:

if ((RPID.person.place-type == residence) &&

(RPID.person.activities == tv)) then path 1

if ((RPID.person.place-type == office) &&

(RPID.person.activities == meeting)) then path 2



Presence-Based Runtime Composition of IMS Services Deployed in SIP Servlets 121

In case that the Presence data is provided by a large number of sources, the
Presence AR can make use of already available mechanisms for integrating this
information in a consistent and unified way [11].

3.1.4 Presence Application Router

The Presence AR is the key element of the proposed extension. At runtime, it fetches
information from the Extended Precedence Relationships, from the Extended Ap-
plication Subscriptions, from the Presence Bindings, and from the Watcher User
Agent. It first verifies if one of the defined Paths is compatible with the received
Presence information; if this is the case, the application chain enabled by the
matched Path is used, and the first application in the chain is sent to the container.
For example, if Bob’s Presence indicates that he is at home watching TV, he doesn’t
want to be disturbed, so Alice will be rerouted to Bob’s Voice Mail and Bob will
receive and SMS indicating that Alice just tried to contact him (i.e. Path 1 in Fig.
4). In a second scenario, if Bob is at his office on a meeting, all his incoming calls
are forwarded to his secretary, Carol (i.e. Path 2 in Fig. 4). Finally, if none of the
defined paths is compatible with the current Presence status, or if the Presence ser-
vice is currently unavailable, the service sets up a call with Bob, as indicated by the
Default Path.

3.2 Deployment in an IMS Network

Figure 5 shows the placement of the Presence AR in a basic IMS deployment. On
reception of an initial SIP request filtered through the iFC, the S-CSCF invokes the
involved AS (i.e. the Servlet container). Next, the container queries the Presence
AR to find out the order in which the services have to be invoked. Based on the
chosen application chain, the Presence AR answers the container with the list of
applications to be executed, together with the corresponding Routing Region (i.e.
ORIGINATING, TERMINATING, or NEUTRAL) and the proper Routing Directive
(i.e. ROUTE, ROUTE BACK, or NO ROUTE).



122 Juan Miguel Espinosa Carlı́n

4 Proof-of-Concept Prototype

An overview of the prototype’s architecture is shown in Fig. 6.

4.1 SIP Servlet Container

The abstraction level provided by the SSAPI is located between the transactions
users and the SIP transaction layer. As such, it enables applications developers to
access and control protocol details like the contents and the headers of the SIP mes-
sages, while issues as the formatting, retransmission, and correlation of the requests
are fully managed by the container.

The used implementation is the one provided by the SailFin Project [16] as an ex-
tension to the GlassFish Application Server [14]. SailFin fully implements JSR 116,
and current work is focused towards achieving full JSR 289 compatibility, adding
high availability and clustering features.

For communicating with the IMS network, the prototype uses the JAIN SIP im-
plementation provided by NIST as the SIP stack for SailFin, and for accessing the
subscribers’ information stored in the HSS, SailFin uses the Java Diameter stack
developed by the FOKUS Fraunhofer Institute.



Presence-Based Runtime Composition of IMS Services Deployed in SIP Servlets 123

4.2 Application Router and Presence Server

Regarding the AR, four approaches were evaluated. The first one was SailFin’s Al-
phabetical AR, which routes every initial SIP request to the deployed applications in
alphabetical order. The second one was SailFin’s DAR implementation, as defined
in the Appendix C of the JSR 289. As already discussed, the DAR routes every
initial request to the deployed applications based on the contents of the properties
file. The third one was the DFC-AR, which is a DAR implementation based on the
approach presented in [12]. These three AR’s don’t allow changing their behavior
without modifying the source code and without doing a redeployment of the appli-
cation, so they are not suited for the solution proposed in this paper.

A fourth option, taken as base for the Presence AR, is an AR that makes use of the
Java Management Extensions (JMX) technology (JMX-AR), and is also included in
the SailFin distribution. The JMX-AR offers a runtime configuration interface that
allows to dynamically modify the application chains.

4.3 Data Repositories, Core IMS Network, and IMS Client

The Extended Application Subscriptions, the Extended Precedence Relationships,
and the Presence Bindings, were deployed as Derby databases embeded through
the GlassFish JDBC driver. Finally, the Bindings Manager was developed in Java
Swing as a stand alone application, with the needed functionality to manipulate the
Presence Bindings database.

For testing the Presence AR, a fully 3GPP compliant IMS environment based on
the FOKUS Open IMS Core implementation [8] was deployed. For the IMS client, a
prototype was developed in Java Swing, based on the UCT IMS Client Project [17].
The client was extended with the needed funtionality to manipulate the Presence
information via XCAP [9], and an XCAP server developed at our research group
was used.

5 Conclusions and Future Work

This paper presented an AR proposal based on the DAR specified by the JSR 289,
and on the DFC-AR implementation presented in [12].

The Presence AR queries at runtime the Extended Precedence Relationships and
the Extended Application Subscriptions associated with a composed service, and
does the application routing based on bindings that relate specific portions of the
published Presence information with Paths that have to be followed in an extended
application chain. For the time being, only sequential application chains were con-
sidered. Additionally, a roadmap towards a Presence AR prototype implementation
and its deployment in an IMS environment was also presented.



124 Juan Miguel Espinosa Carlı́n

Further improvements on the Presence AR include the analysis and implementa-
tion of mechanisms that allow the composition of externally deployed applications,
the structuring of hierarchical applications chains, and the cooperation between ap-
plications deployed in different environments.

References

1. Cheung, E., Purdy, K.H.: An Application Router for SIP Servlet Application Composition.
IEEE International Conference on Communications, 2008. ICC ’08 (2008)

2. Dinsing, T., Eriksson, G.A., Fikouras, I., Gronowski, K., Levenshteyn, R., Pettersson, P., Wiss,
P.: Service composition in IMS using Java EE SIP servlet containers. Ericsson Review 3, 92–
96 (2007)

3. 3rd Generation Partnership Project: IP Multimedia (IM) session handling; IM call model;
Stage 2. 3GPP TS 23.218 (2007)

4. Gourraud, C.: The IMS Latern. http://theimslantern.blogspot.com/ (2008). Last retrieved on
25.03.2008

5. Griffin, D., Pesch, D.: A Survey on Web Services in Telecommunications. IEEE Communica-
tions Magazine 45(7), 28–35 (July 2007). DOI 10.1109/MCOM.2007.382657

6. Jackson, M., Zave, P.: Distributed Feature Composition: A Virtual Architecture for Telecom-
munications Services. IEEE Transactions on Software Engineering 24(10), 831–847 (Oct
1998). DOI 10.1109/32.729683

7. Magedanz, T., Blum, N., Dutkowski, S.: Evolution of SOA Concepts in Telecommunications.
Computer 40(11), 46–50 (Nov. 2007). DOI 10.1109/MC.2007.384

8. Magedanz, T., Witaszek, D., Knuettel, K.: The IMS playground @ FOKUS-an open testbed
for generation network multimedia services. First International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities, 2005. Trident-
com 2005 pp. 2–11 (23-25 Feb. 2005). DOI 10.1109/TRIDNT.2005.35

9. Rosenberg, J.: The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP). RFC 4825 (Proposed Standard) (2007). URL http://www.ietf.org/rfc/rfc4825.txt

10. Schulzrinne, H., Gurbani, V., Kyzivat, P., Rosenberg, J.: RPID: Rich Presence Extensions to
the Presence Information Data Format (PIDF). RFC 4480 (Proposed Standard) (2006). URL
http://www.ietf.org/rfc/rfc4480.txt

11. Shacham, R., Kellerer, W., Schulzrinne, H., Thakolsri, S.: Composition for Enhanced SIP
Presence. 12th IEEE Symposium on Computers and Communications, 2007. ISCC 2007 pp.
203–210 (1-4 July 2007). DOI 10.1109/ISCC.2007.4381531

12. Smith, T.M., Bond, G.W.: ECharts for SIP servlets: a state-machine programming environment
for VoIP applications. In: IPTComm ’07: Proceedings of the 1st international conference on
Principles, systems and applications of IP telecommunications, pp. 89–98. ACM, New York,
NY, USA (2007). DOI http://doi.acm.org/10.1145/1326304.1326318

13. Sun Microsystems: Java Specification Request 116: SIP Servlet API.
http://jcp.org/en/jsr/detail?id=116 (2003). Last retrieved on 20.04.2008

14. Sun Microsystems: GlassFish. http://glassfish.dev.java.net (2008). Last retrieved on the
20.04.2008

15. Sun Microsystems: Java Specification Request 289: SIP Servlet v1.1.
http://jcp.org/en/jsr/detail?id=289 (2008). Last retrieved on 20.04.2008

16. Sun Microsystems: SailFin. http://sailfin.dev.java.net (2008). Last retrieved on the 20.04.2008
17. University of Cape Town: UCT IMS Client. http://uctimsclient.berlios.de (2007). Last re-

trieved on the 15.11.2007


