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PROTECTING INTERNET SERVICES
FROM LOW-RATE DOS ATTACKS

Yajuan Tang, Xiapu Luo and Rocky Chang

Abstract Feedback control is an important element in the engineering of stable
Internet services. However, feedback channels are vulnerable to vari-
ous Internet attacks. This paper shows analytically that the recently
proposed low-rate denial-of-service (DoS) attacks can degrade Internet
services by generating intermittent false feedback signals. The effective-
ness of the attacks is evaluated using a control-theoretic approach for a
general feedback control system and detailed analysis for a specific sys-
tem. A nonparametric algorithm based on changes in traffic distribution
is proposed for detecting attacks.
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1. Introduction
Feedback control is a fundamental building block for many dependable com-

puting systems, network protocols and Internet services that are required to
handle dynamic service demands. A classic example is modeling TCP conges-
tion control dynamics with an active queue management (AQM) scheme at a
router as a feedback control system. Web servers increasingly rely on feed-
back controllers to provide stable and scalable performance (see, e.g., [11, 17,
19]). Moreover, feedback control is a central element in emerging autonomic
computing and communications systems (see, e.g., [4, 10]).

However, relatively little attention has been paid to the lack of security
of feedback control mechanisms. This paper focuses on denial-of-service (DoS)
attacks; in particular, low-rate DoS (LRDoS) attacks that send out intermittent
pulses of malicious requests to victims. Examples of these attacks include
reduction of quality (RoQ) attacks [6, 7] and pulsing denial-of-service (PDoS)
attacks [14, 16]. These low-rate attacks are much more flexible than shrew
attacks [9], which require a fixed time period between attack pulses. In the rest
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of this paper, we do not distinguish between RoQ and PDoS attacks; instead,
we refer them to as low-rate DoS (LRDoS) attacks.

LRDoS attacks are particularly effective on feedback control systems. When
a system encounters an attack pulse, it is temporarily overloaded. There are
two consequences to this overloading: (i) new requests are refused during the
attack, because resources are depleted by the malicious requests, and (ii) it
takes some time for the system to recover to its normal state using a feedback
controller. Many new requests are also turned down during this recovery period.
Therefore, a sequence of properly-spaced attack pulses induces intermittent
false feedback signals, which could force the server to persistently operate in a
low-throughput region.

This paper has two parts. The first part examines the potential effects
of LRDoS attacks on feedback-based Internet services. A control-theoretic ap-
proach is used to model these services and analyze the performance degradation
of a web server under different attack scenarios. The second part of the pa-
per presents a new nonparametric algorithm to detect LRDoS attacks based
on changes in traffic distribution. Simulation results are used to analyze the
attacks and evaluate the detection algorithm.

2. Related Work
Several researchers have studied LRDoS attacks. Guirguis, et al. [6, 7]

originally proposed the RoQ attack, which exploits the transients of adap-
tation. They specifically considered the effects on a web server equipped with
a feedback-based admission controller. Chan, et al. [1] proposed a related at-
tack, which exploits the relative update scheme in computer systems to prevent
normal users from joining the service. The procedure for generating the arrival
time of the next update is essentially a feedback loop. Luo, et al. [14, 15]
analyzed the effects of PDoS attacks on TCP throughput with different AQM
schemes and proposed a two-stage detection algorithm.

Sun, et al. [18] presented an LRDoS attack detection scheme based on dy-
namic time warping (DTWP), but the scheme incurs high computation com-
plexity. Chen and Hwang [2] devised a spectral template matching approach
to identify shrew attacks. However, the template is generated from simulation
and the test is based on parametric distributions, which may not be represen-
tative of real-world environments. Furthermore, the DTWP- and spectrum-
based methods may not be able to handle aperiodic LRDoS attacks. Luo and
Chang [14] developed a two-stage detection scheme. They also proposed the
Vanguard scheme [13] to cover situations where the attack rate is less than or
equal to a bandwidth bottleneck that cannot be handled [14]. However, both
these schemes require bi-directional data to be effective.

3. Vulnerabilities to LRDoS Attacks
We model feedback-based Internet services as a typical feedback control

loop shown in Figure 1. The two major components are the “process” and
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Figure 1. Feedback control loop.

the “controller.” The process could represent any Internet service (e.g., email,
web services, routing or streaming media) [8]. The output of the process ρ(t)
is any measurable “process output” (e.g., system utilization or queue length)
that is fed back to the controller. α(t) is the “control signal” generated by the
controller to move the process output to the desired value ρ∗. The controller is
driven by a “control error” e(t) = ρ∗ − ρ(t).

On the other hand, the combination of normal requests for services and
malicious requests from an LRDoS attack are modeled as a “disturbance input”
d(t). Moreover, we use λn(t) to denote the arrival rate of normal requests. And
we model an LRDoS attack as a sequence of Dirac signals:

∑N
k=1 λaδ(t − kτ),

where λa is the attack intensity of each pulse, τ is the time elapsed between
two adjacent attack pulses, and N is the total number of pulses in the attack.
Thus, the attack pulses are periodic with period τ . The input to the process is
driven by both α(t) and d(t) through an operator Ω. We consider additive [12]
and multiplicative [7] operators Ω in this paper.

In this section, we first use a control-theoretic approach to analyze how an
LRDoS attack can degrade the performance of Internet services. Note that the
results obtained here apply to any controller and process. In the next section,
we will analyze the effect on a web server consisting of a proportional controller,
a constant service rate model and a multiplicative operator Ω.

Table 1 summarizes the symbols used in this paper. The upper rows list
the parameters associated with the process, some of which are used for the
web server in Section 4. The middle rows list the parameters associated with
the controller, and K is used for the proportional controller in Section 4. The
bottom rows list the parameters for the disturbance inputs.

Due to the lack of space, we will derive the results only for the additive
operator Ω; the results for the multiplicative Ω can be derived in a similar
manner. Let d(t) = λn(t) +

∑N
k=1 λaδ(t − kτ) = dn(t) + da(t); its Laplace

transform is given by D(s) = L(λn(t)) + λa

∑N
k=1 e−kτs = Dn(s) + Da(s).

Moreover, let G(s) and H(s) be the Laplace transforms of the transfer functions
of the controller and the process, respectively. Therefore, the system output
for the additive Ω in the s-plane is:

Y (s) =
R(s)G(s) + Dn(s)

1 + G(s)H(s)
H(s) +

Da(s)
1 + G(s)H(s)

H(s), (1)

where Y (s) and R(s) are the Laplace transforms of ρ(t) and ρ∗, respectively.
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Table 1. Notation.

Notation Description

α(·) Admission rate
ρ(·)1 Process output
ρ∗1 Desired process output
n(·) Number of backlogged requests
µ Servicing rate
A, B, C, D, � Constants for determining ρ(·)
e(·) Control error
α(·)2 Control signal
d(·) Disturbance input
K Controller parameter

λn(·) Arrival rate of normal requests
λ(·) Total arrival rate
λa Attack intensity
τ Attack period
N Total number of attack pulses

1We use ρ(·) and ρ∗ to refer to system utilization in Section 4.

2We use α(·) to refer to admission rate in Section 4.

In an attack-free environment, the feedback control loop enables the process
output ρ(t) to converge to ρ∗. Consequently, the entire system could attain
the best performance according to its design. However, Theorem 1 shows that
an LRDoS attack impedes this convergence by introducing oscillations to the
output ρ(t). This is an undesirable phenomenon for Internet services, because
the oscillations result in performance degradation and unstable services. More-
over, Corollary 2 shows that e(t), which affects the control signal α(t), will also
fluctuate periodically, and its amplitude is modulated by the attack intensity.
Therefore, e(t) cannot converge to zero as long as attack pulses are present. In
other words, the attacker could inflict different scales of damage by tuning the
attack intensity.

Theorem 1 Under an LRDoS attack, the system output comprises a response
caused by the normal requests and an additional oscillating component due to
the attack: ρ(t) ∼ ρn(t) + λa

∑N
k=1 f(t − kτ).

Proof 1 We prove the theorem for an additive Ω. By taking an inverse
Laplace transform of Equation 1, ρ(t) comprises an attack-free component and
an attack-induced component: ρ(t) = ρn(t) + ρa(t). Moreover,

ρa(t) = L−1

(
λa

∑N
k=1 e−kτs

1 + G(s)H(s)
H(s)

)

= λa

N∑

k=1

f(t − kτ). (2)
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It is not difficult to see that f(t) = L−1( H(s)
1+G(s)H(s) ) is the system output excited

by δ(t) when ρ∗ = 0, because L(δ(t)) = 1. Moreover, being a stable system,
ρn(t) converges to a steady state. Therefore, the trajectory of ρ(t) is a stable,
periodic function.

Corollary 2 Under an LRDoS attack, e(t) oscillates in the time domain
and its magnitude is proportional to the intensity of the pulse e(t) ∼ en(t) −
λa

∑N
k=1 f(t − kτ), where en(t) is the error caused by the normal requests and

f(·) is a function introduced by the attack.

Proof 2 We prove the corollary for an additive Ω. Since E(s) = R(s)−Y (s),
we have E(s) = En(s) − Ea(s). From Equation 2, ea(t) = λa

∑N
k=1 f(t −

kτ). Moreover, being a stable system, en(t) = L−1(En(s)) vanishes as t →
∞. Therefore, the attack introduces an oscillation to the error signal with an
amplitude proportional to the attack intensity.

4. LRDoS Attack on a Web Server
Having established the general results in the previous section, we examine a

specific feedback-based Internet service – a web server. First, we describe the
service model and analyze the service degradation caused by a single attack
pulse. Next, we consider a sequence of attack pulses and analyze the service
degradation for various attack periods.

The service model under consideration follows Figure 1 with the following
components. First, the utilization (ρ(t)) is employed as the system output;
the utilization is a piecewise linear function of n(t) (see Equation 5). The
controller is a PI controller with parameter K, which takes in ρ∗ − ρ(t) and
generates an admission rate (α(t)) as the control signal. Therefore, the rate
of the admitted requests is given by λ(t)α(t); the unadmitted requests are
dropped. As a result, the state vector of the service model comprises α(t), ρ(t)
and n(t); their evolution and relationships are summarized below:

α̇(t) = K(ρ∗ − ρ(t)), α(t) ∈ [0, 1] (3)
ṅ(t) = λ(t)α(t) − µ, n(t) ∈ [0,+∞) (4)

ρ(t) =
{

An(t) + B if n(t) < �
Cn(t) + D if n(t) ≥ �

, ρ(t) ∈ [0, 1] (5)

Note that this service model is the same as the one in [7], except that it
uses a constant µ and a continuous-time model, both of which are essential for
analytical tractability. In the rest of the paper, we assume a constant rate for
normal requests, i.e., λn(t) = λn.

4.1 Analysis of a Single Attack Pulse
Suppose that an attack pulse arrives at t = 0 when the system is in the steady

state and its state vector is [α0, ρ0, n0]. The system will evolve through three
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Figure 2. Effect of one attack pulse at t = 0 on α(t) and ρ(t) (A = 0.00267, B = 0.2,
C = 0.024, D = −1.4, � = 75, K = 0.01, µ = 90, ρ∗ = 0.7 (from [7])).

different stages before reaching the same state after the attack: saturation,
recovery I and recovery II. The durations of these three stages are denoted by
η1, η2 and η3, respectively. The two recovery stages are due to the two piecewise
linear relationships between ρ(t) and n(t).
Saturation Stage: As soon as the first attack pulse arrives, the system enters
into a saturation stage in which we assume that the aggregated arrival rate
results in a 100% utilization (i.e., ρ(t) = 1). The utilization stays at 100%
throughout this period because n(t) > µ. Since ρ(t) = 1, according to Equa-
tion 3, the admission rate decreases linearly as shown in Figure 2. Therefore, the
state evolution during this stage is characterized by ρ(t) = 1, α̇(t) = K(ρ∗ − 1)
and ṅ(t) = λnα(t) − µ.

This stage ends when all the pending requests have been processed, i.e., the
total number of processed requests is equal to the total number of admitted
requests. Therefore, we can obtain η1 by solving λaα0 +

∫ η1

0
λnα(t)dt = η1µ

with the initial conditions [α0, ρ0, n0], where α0 = α(0−) = α(0+), n+
0 =

(λn + λa)α0 + n−
0 (this is due to the arrival of the attack pulse at t = 0), and

ρ0 = ρ(0+) = 1:

η1 =
(λnα0 − µ) +

√
(λnα0 − µ)2 − 2λnK(ρ∗ − 1)((λn + λa)α0 + n0)

λnK(1 − ρ∗)
. (6)

Recovery Stage I: At the beginning of this recovery stage, we have n(η−
1 ) =

n(η+
1 ) = λnα(η+

1 ), α(η−
1 ) = α(η+

1 ) = α0+K(ρ∗−1)η1 and ρ(η+
1 ) = Aλnα(η+

1 )+
B. Since the utilization is now below the desired level, both the admission rate
and utilization increase in this stage. Their evolutions are given by ρ(t) =
Aλnα(t)+B, α̇(t) = K(ρ∗−ρ(t)) and ṅ(t) = λnα(t)−µ. Since this stage ends
when n(t) = �, we can obtain η2 by solving ρ(η2) = A� + B with the initial
conditions (α(η+

1 ), ρ(η+
1 ), λnα(η1)):

η2 =
1

AλnK
ln

Aλnα(η1) + B − ρ∗

A� + B − ρ∗
. (7)
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Recovery Stage II: The two recovery stages differ only in their parameters
and initial conditions. The initial conditions for the second recovery stage
are: α(η−

2 ) = α(η+
2 ) = �

λ , ρ(η−
2 ) = ρ(η+

2 ) = A� + B, and n(η−
2 ) = ṅ(η+

2 ) =
λnα(η+

2 ) − µ. This stage ends when the utilization reaches the desired value.
Therefore, we can obtain η3 by solving ρ(η3) = ρ∗ with the initial conditions
(α(η+

2 ), ρ(η+
2 ), λnα(η2)):

η3 =
1

CλnK
ln

Cλnα(η2) + D − ρ∗

bρ∗ − ρ∗
, where b ≈ 1 and α(η2) =

�

λ
. (8)

4.2 Analysis of Multiple Attack Pulses
When there are multiple attack pulses, different degrees of damage are pro-

duced for different attack periods. This section considers four different choices
of τ (only one choice was examined in [7]). Figure 3 illustrates how an attack
launched at t = 0 degrades the admission rates for the four cases. In all four
cases there is a relatively long saturation period at the beginning of the attack
(this period is more noticeable for smaller values of τ). After that, the admis-
sion rates converge to oscillating patterns, similar to what we have discussed
in Section 3. Moreover, the oscillating periods and the peaks of the admission
rates increase with τ .
Case 1 (0 < τ ≤ η1): As in the single pulse case, the admission rate drops
linearly (i.e., α̇ = K(ρ∗ − 1)). During this declining period more attack pulses
arrive at the victim. However, they do not cause further damage, because
the admission rate is already very low. Again, as in the single pulse case,
the system eventually serves all the pending requests and the recovery stage
starts. However, another attack pulse arrives before the system can restore the
admission rate to the normal pre-attack level. As a result, the admission rate
drops linearly again. But this time, the system recovers much faster because
the admission rate is already at a very low value when the attack pulse arrives.
Consequently, the admission rate converges to an oscillation pattern with a
small peak value.
Case 2 (η1 < τ ≤ η1 + η2): As in Case 1, the admission rate drops linearly
in the beginning and the additional attack pulses arriving during this period
do not cause further damage. When the recovery stage first starts, the next
attack pulse, say the kth pulse, arrives when the admission rate has not yet been
restored (i.e., α((k − 1)τ) < α0). This α((k − 1)τ) induces a shorter η1 for the
next attack period because η1 is an increasing function with respect to the initial
admission rate (i.e., ∂η1

∂α0
> 0). Consequently, the time to recover before the next

pulse arrival, which is given by kτ −η1, is longer. Unfortunately, the admission
rate still cannot climb back to α0. To see why, suppose that at t = kτ− the
admission rate is large enough that α(kτ−) = α((k − 1)τ−). Therefore, when
the next attack pulse arrives, the same number of attack requests is accepted,
which forces the system to oscillate again. As a result, the admission rate
converges to an oscillating pattern with a peak value less than α0.
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(b) Case 2: η1 < τ ≤ η1 + η2.
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(c) Case 3: η1 + η2 < τ ≤ η1 + η2 + η3.
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(d) Case 4: η1 + η2 + η3 < τ .

Figure 3. Effects of the attack period on the admission rate (four cases).

Case 3 (η1+η2 < τ ≤ η1+η2+η3): The evolution of the system state is similar
to that in Case 2, except that there is an additional recovery part governed by
parameters C and D. The details are, therefore, omitted.
Case 4 (τ > η1 + η2 + η3): In this case, the system state always returns to
the steady state before the next pulse arrives. Since this case has already been
analyzed in [7], we do not discuss it again.

This proves that the system state converges in all four cases. We have
derived the maximal and minimal values of α(t) after convergence, denoted by
αmax and αmin, respectively. However, due to a lack of space, we present the
expressions for αmax and αmin without proof:

αmax =
e−AλnKτ

Aλn
(Ay + Aλnαmax + B − ρ∗)e

A
ρ∗−1 y +

ρ∗ − B

Aλn
. (9)

αmin = K(ρ∗ − 1)η1 + αmax, (10)

where y = −(λnαmax − µ) −
√

(λnαmax − µ)2 − 2λnK(ρ∗ − 1)(λn + λa)αmax.
Note that αmax − αmin measures the magnitude of the oscillations, and as
shown in Figure 3, the magnitude increases with τ .
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5. Detecting LRDoS Attacks
This section describes a new anomaly-based detection scheme for LRDoS

attacks. The approach is based on the fact that high-intensity request bursts
in an attack disturb the distribution of the arrival rates of normal requests. The
detection scheme, therefore, has two components: (i) modeling the distribution
using a histogram, and (ii) using a nonparametric outlier detection algorithm to
determine whether there is a change in the histogram (assumed to be due to an
LRDoS attack). A similar outlier detection approach has been proposed in [5].
However, it differs from our histogram approach in that it uses a clustering
technique to group samples under various resolutions.

Suppose that xi, i ∈ Z, are request rate samples. For every window of W
samples, say {xm−W+1, . . . , xm}, our detection algorithm determines whether
the latest sample xm has disturbed the distribution. This is accomplished by
using a histogram to model the distribution. A histogram consists of a set of
equally-spaced intervals of sample values each of which is called a “bin;” the
total number of bins is called the “bin resolution.” Given a set of samples, the
histogram plots the number of samples falling into each bin (“bin size”). An at-
tack is detected when changes are seen in the histogram for {xm−W+1, . . . , xm}
compared with the histogram for {xm−W+1, . . . , xm−1}.

Determining the proper bin resolution is the main drawback of the histogram
approach. The issue is resolved by applying the detection strategy to a range
of bin resolutions. We first let βxm

(r) be the size of the bin that contains the
sample xm when the bin resolution is r. Figure 4 plots the values of βxm

(r)
for r ∈ [1, 60] obtained from simulation experiments for normal requests and
malicious requests. Note that the βxm

(r) values for normal requests decrease
more gradually from 60 (when r = 1) to 1 (when r = 60). On the other hand,
the βxm

(r) values for malicious requests drop drastically from r = 1 to r = 2,
because xm, a sample from the attack pulse, is an outlier compared with the
normal request samples. Therefore, the attack can be detected by measuring
the changes in βxm

(r) values as r increases. For this purpose, we define a
cumulative ratio for xm:

R(xm) =
W−1∑

r=1

βxm
(r)

βxm
(r + 1)

. (11)

To see how the statistic in Equation 11 is used to detect an attack, let
Rn(xm) (or Ra(xm)) be the value of R(xm) when xm is a sample from normal
(or attack) traffic. If the attack intensity is high enough, the sample xm from
the attack traffic will most likely be the first sample that is separated from
other samples when r is increased beyond one. In the most extreme case,
βxm

(1) = W and βxm
(r) = 1, r > 1; therefore, Ra(xm) = 2W − 2. On

the other hand, suppose that xm is from normal traffic. Then, if the normal
traffic intensity is uniformly distributed, βxm

(r) = 1
r . Therefore, Rn(xm) =

∑W−1
r=1

r+1
r <

∑W−1
r=1

r+r
r = 2(W − 1) = Ra(xm).
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(b) xm is a sample from malicious requests.

Figure 4. Change in xm’s bin size when the bin resolution is increased from 1 to 60.

However, to deal with the fact that the normal traffic distribution is usually
heavy tailed, we introduce appropriate weights to the ratios in Equation 11 by
assigning a higher weight to a βxm

(r) that has a higher traffic intensity:

R(xm) =
W−1∑

r=1

(
βxm

(r)
βxm

(r + 1)

∣
∣
∣
∣
x̄n(r + 1) − x̄

x̄

∣
∣
∣
∣

)

, (12)

where x̄n(r) is the mean of the samples in xm’s bin and x̄ is the mean of all W
samples. Moreover, if xm is from normal traffic, x̄n(r) should not be too far
away from x̄. If xm is from attack traffic, x̄n(r) is much closer to xm because
of the intensity of the attack traffic.

Therefore, the R(xm) values for a normal traffic sample and an attack traffic
sample are revised as follows:

Ra(xm) = (2W − 2)
∣
∣ x̄n−x̄

x̄

∣
∣ ≈ (2W − 2)

∣
∣λa−x̄

x̄

∣
∣ . (13)

Rn(xm) =
∑W−1

r=1

(
r+1

r

∣
∣
∣
x̄n(r)−x̄

x̄

∣
∣
∣
)

< (2W − 2)
∣
∣ x̄n−x̄

x̄

∣
∣ = Ra(xm). (14)

The final step is to choose a threshold θ such that the detection outcome is
positive if R(xm) ≥ θ. The threshold θ is determined as follows. Denote σx

as the standard deviation of the first W − 1 samples in the detection window:

σx =
√

1
W−1

∑m−1
i=m−W+1(xi − x̄)2. Note that if xm is from attack traffic, then

x̄m − x̄ > σx; if xm is from normal traffic, x̄m − x̄ ≈ σx. Also, we have∑W−1
r=2

1
r < W − 1. Taking these into consideration, we set θ = (2W − 2)σx/x̄.

To handle the burstiness in normal traffic, we introduce a weight wd to the
threshold value: θ = (2W − 2)wdσx/x̄.

6. Simulation Results
This section evaluates the performance of the detection algorithm for dif-

ferent values of wd. MATLAB simulation results are used to assess attack
capabilities as well as detection performance. The simulation experiments use
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Figure 5. Capability of LRDoS attacks for different values of τ and λa.

the same parameters as before: A = 0.00267, B = 0.2, C = 0.024, D = −1.4,
� = 75, K = 0.01, µ = 90, and ρ∗ = 0.7.
Attack Capability: In Section 4, we analyzed the effects of τ on the system
output and admission rate of a victim system. Here we use simulations to
further quantify the effects. We also study the effects for different values of λa.
First, we define two metrics that characterize the capability of LRDoS attacks:
(i) the percent of normal requests dropped due to an attack (denoted by φ), and
(ii) the number of normal requests dropped due to an attack per λa (denoted
by ψ). Therefore,

φ =

∫ T

0
(αc − α(t))λndt
∫ T

0
αcλndt

× 100 and ψ =

∫ T

0
(αc − α(t))λndt

Nλa
,

where T is the observation period (all N attack pulses arrive during T ), and
αc is the admission rate when the system is in the steady state and not under
attack. Therefore, φ measures the absolute service degradation. On the other
hand, ψ measures the attack effectiveness in terms of the amount of service
degradation caused by one attack request.

Figure 5 presents the φ and ψ values for attacks with λa = 1000, 1200 and
1500 requests per second, and τ ∈ [20, 500] seconds. For the three λa values, it
is easy to verify that the range of τ covers the four cases discussed in Section 4.
Figures 5(a) and 5(b) show that φ increases with λa while ψ decreases with
λa. Furthermore, for a given value of λa, φ decreases with τ while ψ increases
with τ . Moreover, as τ → ∞, φ → 0, because this is similar to the case of
one attack pulse being encountered over a very long observation period. On
the other hand, ψ converges to a value below 2, which is the maximal service
degradation in terms of ψ.

Figure 6 presents the values of αmax and αmin obtained from simulations;
it also includes the analytical results from Equations 9 and 10 for comparison.
Note that the simulation results closely match the analytical results. Also,
both αmax and αmin are increasing functions of τ , which can be validated by
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Figure 6. Analytical and simulation results for αmax and αmin.

computing the derivatives of Equations 9 and 10. Furthermore, αmax and αmin

eventually reach plateaus, which indicates that the range of τ corresponds to
Case 4 in Section 4.2. Finally, the αmax values for the three λa values converge
to the same value, but the αmin values do not—a higher λa gives a lower
αmin. In other words, a higher attack intensity increases the magnitude of the
oscillations.
Detection Performance: To evaluate the performance of our detection al-
gorithm, normal traffic was generated using log-normal, Pareto and Poisson
distributions. For the log-normal and Pareto distributions, the location para-
meter was set to 4.6027 and 91.6667, respectively, and the scale parameter to
0.0707 and 12, respectively. For the Poisson distribution, the rate was set to
100. These parameter values yielded mean arrival rates of 100 requests per
second for all three distributions. Also, samples for the request arrival rates
were computed every second.

Figures 7(a) and 7(b) show the simulation results for the detection rates
and false alarm rates, respectively. The detection rate increases with λa

λn
for

all three distributions. Also, all the attacks can be detected (i.e., detection
rate is 1) when λa

λn
is around 1.5. Moreover, the detection algorithm achieves

the highest detection rate for the log-normal distribution before the detection
rate reaches 1.0. Note that the variance of the log-normal distribution is ap-
proximately 50; this shows that the detection algorithm works well even under
bursty normal traffic. The false alarm rate also improves (decreases) with λa

λn
.

The false alarm rates for the log-normal and Pareto distributions exhibit simi-
lar decreasing trends, whereas the rate for the Poisson distribution is at a low
(albeit decreasing) level.

7. Conclusions
Low-rate DoS (LRDoS) attacks can significantly degrade feedback-based In-

ternet services. By sending intermittent attack pulses, these attacks induce
victim systems to generate false feedback signals, which cause them to decrease
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Figure 7. Performance of the new detection algorithm for values of λa
λn

.

their request acceptance rates. The nonparametric algorithm presented in this
paper analyzes changes in traffic distribution to detect attacks. Extensive sim-
ulation results demonstrate that the algorithm is very effective at detecting
LRDoS attacks.

Our current research is investigating strategies for optimizing LRDoS attacks
and improving detection capabilities. We are also experimenting with several
TCP variants, especially those targeting Linux systems (e.g., Veno, Hybla,
Westwood+).
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[5] H. Fan, O. Zäıane, A. Foss and J. Wu, A nonparametric outlier detection
for effectively discovering top n outliers from engineering data, in Ad-
vances in Knowledge Discovery and Data Mining (LNCS 3918), W. Ng,
M. Kitsuregawa, J. Li and K. Chang (Eds.), Springer, Berlin-Heidelberg,
Germany, pp. 557–566, 2006.

[6] M. Guirguis, A. Bestavros and I. Matta, Exploiting the transients of adap-
tation for RoQ attacks on Internet resources, Proceedings of the Twelfth
IEEE International Conference on Network Protocols, pp. 184–195, 2004.

[7] M. Guirguis, A. Bestavros, I. Matta and Y. Zhang, Reduction of quality
(RoQ) attacks on Internet end-systems, Proceedings of the Twenty-Fourth
Annual Joint Conference of the IEEE Computer and Communications So-
cieties, vol. 2, pp. 1362–1372, 2005.

[8] J. Hellerstein, Y. Diao, S. Parekh and D. Tilbury, Feedback Control of
Computing Systems, John Wiley, New York, 2004.

[9] A. Kuzmanovic and E. Knightly, Low-rate TCP-targeted denial-of-service
attacks: The shrew vs. the mice and elephants, Proceedings of the Confer-
ence on Applications, Technologies, Architectures and Protocols for Com-
puter Communications, pp. 75–86, 2003.

[10] R. Lotlika, R. Vatsavai, M. Mohania and S. Chakravarthy, Policy schedule
advisor for performance management, Proceedings of the Second Interna-
tional Conference on Autonomic Computing, pp. 183–192, 2005.

[11] Y. Lu, T. Abdelzaher, C. Lu, L. Sha and X. Liu, Feedback control with
queueing-theoretic prediction for relative delay guarantees in web servers,
Proceedings of the Ninth IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 208–217, 2003.

[12] C. Lu, J. Stankovic, G. Tao and S. Son, Feedback control real-time schedul-
ing: Framework, modeling and algorithms, Journal of Real-Time Systems,
vol. 23(1-2), pp. 85–126, 2002.

[13] X. Luo, E. Chan and R. Chang, Vanguard: A new detection scheme for a
class of TCP-targeted denial-of-service attacks, Proceedings of the Tenth
IEEE/IFIP Network Operations and Management Symposium, pp. 507–
518, 2006.

[14] X. Luo and R. Chang, On a new class of pulsing denial-of-service attacks
and the defense, Proceedings of the Twelfth Annual Network and Distrib-
uted System Security Symposium, 2005.

[15] X. Luo and R. Chang, Optimizing the pulsing denial-of-service attacks,
Proceedings of the International Conference on Dependable Systems and
Networks, pp. 582–591, 2005.



Tang, Luo & Chang 265

[16] X. Luo, R. Chang and E. Chan, Performance analysis of TCP/AQM un-
der denial-of-service attacks, Proceedings of the Thirteenth IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pp. 97–104, 2005.

[17] A. Robertsson, B. Wittenmark, M. Kihl and M. Andersson, Design and
evaluation of load control in web-server systems, Proceedings of the Amer-
ican Control Conference, vol. 3(30), pp. 1980–1985, 2004.

[18] H. Sun, J. Lui and D. Yau, Defending against low-rate TCP attacks: Dy-
namic detection and protection, Proceedings of the Twelfth IEEE Interna-
tional Conference on Network Protocols, pp. 196–205, 2004.

[19] M. Welsh and D. Culler, Adaptive overload control for busy Internet
servers, Proceedings of the Fourth USENIX Symposium on Internet Tech-
nologies and Systems, p. 4, 2003.

[20] R. Zhang, C. Lu, T. Abdelzaher and J. Stankovic, Controlware: A middle-
ware architecture for feedback control of software performance, Proceedings
of the Twenty-Second International Conference on Distributed Computing
Systems, p. 301, 2002.




