Skip to main content

Flexible Transition Metal Oxide Electronics and Imprint Lithography

  • Chapter
  • First Online:
Flexible Electronics

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 11))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boesen GF, Jacobs, JE (1968) ZnO field-effect transistor. Proc IEEE 56:2094–2095

    Google Scholar 

  2. Khuri-Yakub BT, Kino GS (1974) A monolithic zinc-oxide-on-silicon convolver. Appl Phys Lett 25:188–190

    Article  CAS  Google Scholar 

  3. Mahan, GD (1983) Intrinsic defects in ZnO varistors. J Appl Phys 54:3825–3832

    Article  CAS  Google Scholar 

  4. Kudo A, Yanagi H, Ueda K, Hosono H, Kawazoe H, Yano Y (1999) Fabrication of transparent p–n heterojunction thin-film diodes based entirely on oxide semiconductors. Appl Phys Lett 75:2851–2853

    Article  CAS  Google Scholar 

  5. Chopra K, Major S, Pandya D (1983) Transparent conductors – a status review. Thin Solid Films 102:1–46

    Article  CAS  Google Scholar 

  6. Prins MWJ, Grosse-Holz K, Mller G, Cillessen JM, Giesbers JB (1996) A ferroelectric transparent thin-film transistor. Appl Phys Lett 68:3650–3652

    Article  CAS  Google Scholar 

  7. Kawasaki M, Tamura K, Saikusa K, Aita T, Tsukazaki A, Ohtomo A, Jin ZG, Matsumoto Y, Fukumura T, Koinuma H, Ohrnaki Y, Kishimoto S, Ohno Y, Matsukura F, Ohno H, Makino T, Tuan NT, Sun PD, Chia CH, Segawa Y, Tang ZK, Wang GKL (2000) Can ZnO eat market in optoelectronic applications. Ext. Abst. 2000 Int Conf. Solid State Deyices ard Materials, Sendai, l28–129

    Google Scholar 

  8. Ohtomo A, Kawaski M (2000) Novel semiconductor technologies of ZnO films towards ultraviolet LEDs and invisible FETs. IEEE Trans Electron E83-C:1614–1617

    Google Scholar 

  9. Ohya Y, Niwa T, Ban T, Takahashi Y (2001) Thin-film transistor of ZnO fabricated by chemical solution deposition. Jpn J Appl Phys 40:297–299

    Article  CAS  Google Scholar 

  10. Hoffman R (2002) Development, fabrication, and characterization of transparent electronic devices. Masters Thesis, Oregon State University

    Google Scholar 

  11. Masuda S, Kitamura K, Okumura Y, Miyatake S, Tabata H, Kawai T (2003) Transparent thin-film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys 93:1624–1630

    Article  CAS  Google Scholar 

  12. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272

    Article  CAS  Google Scholar 

  13. Hoffman R, Norris B, Wager J (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735

    Article  CAS  Google Scholar 

  14. Nishii J, Hossain FM, Takagi S, Aita T, Saik K, Ohmaki Y, Ohkubo I, Kishimoto S, Ohtomo A, Fukumura T, Matsukura F, Ohno Y, Koinuma H, Ohno H, Kawasaki M (2003) High mobility thin film transistors with transparent ZnO channels. Jpn J Appl Phys 42:L 347–349 Part 2, No. 4A

    Article  CAS  Google Scholar 

  15. Carcia PF, McLean RS, Reilly MH, Malajovich I, Sharp KG, Agrawal S, Nunes G Jr (2003) ZnO thin film transistors for flexible electronics. Mat Res Soc Symp Proc 769:H7.2.1

    Google Scholar 

  16. Nishii J, Hossain FM, Takagi S, Aita T, Saikusa K, Ohmaki Y, Kishimoto I, Ohtomo A, Fukumura T, Matsukura F, OhnoY, Koinuma H, Ohno H, Kawasaki M (2003) High mobility thin film transistors with transparent ZnO channels. Jpn J Appl Phys 42:347–349

    Article  Google Scholar 

  17. Fortunato E, Hosano H, Granquist C, Wager J (2007) Advances in transparent electronics: From Materials to devices, I, 51(7).

    Google Scholar 

  18. Chaing HQ (2003) Development of zinc tin oxide-based transparent thin-film transistors. Master Thesis, Oregon State University

    Google Scholar 

  19. Chiang HP, Wager JF, Hoffman, RL, Jeong J, Keszler DA (2005) High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl Phys Lett 86: 13503–13505

    Article  Google Scholar 

  20. Carcia PF, McLean RS, Reilly MH, Nunes G (2003) Transparent ZnO thinfilm transistor fabricated by rf magnetron sputtering. Appl Phys Lett 82:1117–1119

    Article  CAS  Google Scholar 

  21. Fortunato E, Pimentel A, Pereira L, Goncalves A, Lavareda G, Aguas H, Ferreira I, Carvalho CN, Martins R (2004) High field-effect mobility zinc oxide thin film transistors produced at room temperature. J Non-Cryst Solids 338–340:806–809

    Article  Google Scholar 

  22. Carcia PF, McLean RS, Reilly MH (2005) Oxide engineering of ZnO thin-film transistors for flexible electronics. J Soc Inf Display 13/7:547–550

    Article  Google Scholar 

  23. Bellingeria E, Marréa D, Pellegrinoa L, Pallecchia I, Canub G, Vignoloa M, Berninia C, Siria HS (2005) High mobility ZnO thin film deposition on SrTiO3 and transparent field effect transistor fabrication Superlattices and Microstructures 38:446–454

    Google Scholar 

  24. Hwang CS, Park SH, Chu HY (2005) ZnO TFT fabricated at low temperature for application active-matrix display. 12th Int. Display Workshops/Asia Display, p1149–1151

    Google Scholar 

  25. Carcia PF, McLean RS, Reilly MH (2006) High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl Phys Lett 88:123509–123511

    Article  Google Scholar 

  26. Jackson WB, Hoffman RL, Herman GS (2005) High-performance flexible zinc tin oxide field-effect transistors. Appl Phys Lett 87:193503–193505

    Article  Google Scholar 

  27. Hoffman RL (2006) Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid-State Electron 50:784–787

    Article  CAS  Google Scholar 

  28. Jackson WB, Herman GS, Hoffman RL, Taussig C, Braymen S, Jeffery F, Hauschildt J (2006) Zinc tin oxide transistors on flexible substrates. J Non-Cryst Solids 352:1753–1755

    Article  CAS  Google Scholar 

  29. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492

    Article  CAS  Google Scholar 

  30. Yaglioglu B, Yeom HY, Beresford R, Paine DC (2006) A high-mobility amorphous In2O3 – 10 wt% ZnO thin film transistors. Appl Phys Lett 89:062103–062105

    Article  Google Scholar 

  31. Fortunato E, Barquinha P, Pimentel A, Gonçalves A, Marques A, Pereira L, Martins R (2005) Fully transparent ZnO thin-film transistor produced at room temperature. Adv Mat 17: 590–594

    Article  CAS  Google Scholar 

  32. Santato C, Manunza I, Bonfiglio A, Ciroira F, Cosseddu P, Zamboni R, Muccini M (2006) Tetracene light-emitting transistors on flexible plastic substrates. Appl Phys Lett 86: 141106–141109

    Article  Google Scholar 

  33. Loi A, Manunza I, Bonfiglio A (2005) Flexible, organic, ion-sensitive field-effect transistor. Appl Phys Lett 86:103512–103514

    Article  Google Scholar 

  34. Bonfiglio A, Mameli F, Sanna O (2003) A completely flexible organic transistor obtained by a one-mask photolithographic process. Appl Phys Lett 82(20):3550–3552

    Article  CAS  Google Scholar 

  35. Ohta H, Nomura K, Hiramatsu H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Frontier of transparent oxide semiconductors. Solid-State Electron 47:2261–2267

    Article  CAS  Google Scholar 

  36. Fortunato EC, Barquinha PM, Pimentel AC, Gonçalves AM, Marques AJ, Martins RF, Pereira LM (2004) Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl Phys Lett 85:2541–2543

    Article  CAS  Google Scholar 

  37. Hosono H, Nomura H, Kamiya T (2005) High performance FET using transparent amorphous oxide semiconductors as channel layer on plastic substrate. 12th Int. Display Workshops/Asia Display IDW/AD05 AMD3-1:251–253

    Google Scholar 

  38. Ellmer K (2001) Resitivity of polycrystalline zinc oxide films: Current status and physical limit. J Phys D: Appl Phys 34:3097–3108

    Article  CAS  Google Scholar 

  39. Chopra K, Major S, Pandya D (1983) Transparent conductors – a status review. Thin Solid Films 102:1–46

    Article  CAS  Google Scholar 

  40. Minami T, Miyata T, Yamamoto T (1998) Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surf Coat Tech 108–109: 583–587

    Article  Google Scholar 

  41. Minami T, Takata S, Sato H, Sonhana H (1995) Properties of transparent zinc stannate conducting films prepared by radio frequency magnetron sputtering. J Vac Sci Technol A 13:1095–1099

    Article  CAS  Google Scholar 

  42. Minami T, Sonohara H, Takata S, Sato H (1994) Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 33:1693–1696

    Article  Google Scholar 

  43. Wu X, Coutts T, Mulligan W (1997) Properties of transparent conducting oxides formed from CdO and ZnO alloyed with SnO2 and In2O3. J Vac Sci Technol A 15:1057–1062

    Article  CAS  Google Scholar 

  44. Young DL, Moutinho H, Yan Y, Coutts TJ (2002) Growth and characterization of radio frequecy magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J Appl Phys 92: 310–319

    Article  CAS  Google Scholar 

  45. Young DL (2000) Electron transport in zinc stannate (Zn2SnO4). Ph. D. thesis, Colorado School of Mines

    Google Scholar 

  46. Minami T, Sonohara H, Kakumu T, Takata S (1995) Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 34:971–974

    Article  Google Scholar 

  47. Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett 85: 1012–1015

    Article  Google Scholar 

  48. Raniero L, Ferreira I, Pimentel A, Goncalves A, Canhola P, Fortunato E, Martins R (2006) Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films 511–512:295–298

    Article  Google Scholar 

  49. Theys B, Sallet V, Jomard F, Lusson A, Rommeluere JF, Teukam Z (2002) Effects of intentionally introduced hydrogen on the electrical properties of ZnO layers grown by metalorganic chemical vapor deposition. J Appl Phys 91:3922–3924

    Article  CAS  Google Scholar 

  50. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO Progress in Materials. Science 50:293–340

    CAS  Google Scholar 

  51. Van deWalle C, Nequgebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–628

    Article  Google Scholar 

  52. Zhang DH, Brodie DE (1995) Photoresponse of polycrystalline ZnO films deposited by r.f. bias sputtering. Thin Solid Films 261:334–339

    Article  CAS  Google Scholar 

  53. Zhang DH (1995) Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J Phys D: Appl Phys 28:1273–1277

    Article  CAS  Google Scholar 

  54. Takahashi Y, Kanamori M, Kondoh A, Minoura H, Ohya Y (1994) Photoconductivity of ultrathin zinc oxide films. Jpn J Appl Phys Part 1, 33:6611–6615

    Article  CAS  Google Scholar 

  55. Studenikin SA, Golego N, Cocivera M (2000) Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J Appl Phys 87:2413–2421

    Article  CAS  Google Scholar 

  56. Xirouchaki C, Kiriakidis G, Pedersen TF, Fritzsche H (1996) Photoreduction and oxidation of as-deposited microcrystalline indium oxide. J Appl Phys 79:9349–9352

    Article  CAS  Google Scholar 

  57. Kim H-J, Almanza-Workman M, Chaiken A, Jackson WB, Jeans A, Kwon O, Luo H, Mei P, Perlov C, Taussig C, Jeffrey, F, Braymen S, Hauschildt J (2006) Roll-to-roll fabrication of active-matrix backplanes using self-aligned imprint lithography (SAIL). 6th Int. Meeting Information Display/5th Int. Display Manufacturing Conf. Daegu, Korea, 2006 Digest 1539–1543

    Google Scholar 

  58. US Patent 20050176182 (2005)

    Google Scholar 

  59. Xia Y, Whitesides GM, (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  60. Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540

    Article  CAS  Google Scholar 

  61. Rogers JA, Nuzzo RG (2005, February) Recent progress in soft lithography. Mater today 8:50–56

    Article  CAS  Google Scholar 

  62. Norland Products Inc. www.norlandprod.com

  63. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942

    Article  CAS  Google Scholar 

  64. Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) P-type oxides for use in transparent diodes. Thin Solid Films 411: 119–124

    Article  CAS  Google Scholar 

  65. Park S, Keszler DA, Valencia MM, Hoffman RL, Bender JP, Wager JF (2002) Transparent p-type conducting BaCu2S2 films. Appl Phys Lett 80:4293–4295

    Google Scholar 

  66. Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N (2000) Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J Appl Phys 88: 4159–4163

    Article  CAS  Google Scholar 

  67. Nagarajan R, Draeseke AD, Sleight AW, Tate J (2001) P-type conductivity in CuCr1-x MgxO2 films and powders. J Appl Phys 89:8022–8025

    Article  CAS  Google Scholar 

  68. Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M (2001) Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition. J Appl Phys, 89:1790–1793

    Article  CAS  Google Scholar 

  69. Duan N, Sleigh AW, Jayaraj MK, Tate J (2000) Transparent p-type conducting CuScO2+x films. Appl Phys Lett 77:1325–1326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank G. Herman and R. Hoffman introducing me to the field of transition metal oxide transistors and for making various samples, and C. Taussig, P. Mei, and C. Perlov for many consultations and support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren B. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackson, W.B. (2009). Flexible Transition Metal Oxide Electronics and Imprint Lithography. In: Wong, W.S., Salleo, A. (eds) Flexible Electronics. Electronic Materials: Science & Technology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74363-9_5

Download citation

Publish with us

Policies and ethics