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A b s t r a c t . Image classification is addressed in this paper by utilizing 
spatial relation of detected objects in a rule-based fashion. Instances 
of particular object classes are detected combining bottom-up (learn-
able models based on simple features) and top-down information(object 
models consisting of primitive geometric shapes such as lines). The rule-
based system acts as a model for the spatial configuration of objects, 
also providing a human interpretable justification of image classifica­
tion. Experimental results in the athletic domain show that despite 
inefficiencies in object detection, spatial relations allow for efficient dis­
crimination between visually similar images classes. 

K e y w o r d s : image classification, object detection, spat ial realations 

1 Introduction 

Retrieving images based on their content is a challenging issue. Although the 
last decade research has being focusing on the query-by-example paradigm [1], 
an ambitious goal is to allow the user to formulate semantic queries th rough 
a na tu ra l language interface. Beside t ransla t ing textual information into a se-
mantically valid query, this goal also requires an association of semantic classes 
to their visual representations. 

An approach to handle semantic queries has been to label images with coarse 
classes, such as indoor /ou tdoor and ci t ies/ landscapes, based on global charac­
teristics of images. Such a labelling, though, tends to be inadequate in respect 
to reaHstic user-queries. At the same t ime, finer grain classification based di­
rectly on global image features, seems unfeasible. In more realistic scenarios, 
a user may wish to retrieve an image based on part icular objects they appear 
in it. This brings up the question of detecting and classifying part icular areas 
of images to one among a certain number of object classes. W h a t ' s more, once 
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Fig, 1- Schematic diagram of the detection and classification process 

this question is addressed, an overall image classification becomes conceivable, 
by resolving it to a particular spatial combination of objects it is made of. 

In this study, we apply an object detection followed by image classifica­
tion approach to detect objects and events in the athletics domain. Our object 
detection method results in finding image areas corresponding to a (possibly 
partially occluded) 2D-representation of an instance of a predefined set of ob­
ject classes. To that end, we combine a top-down strategy, i.e. take into account 
modelHng of specific object classes, with a bottom-up approach, i.e. determine 
region boundaries based on visual cues, as suggested in [2, 3, 4]. As a next 
step, we consider the image as a combination of distinct semantic objects corre­
sponding to different area locations [5, 6, 7, 8]. We then verify the object spatial 
relations against a set of rules, to characterize the whole image. 

In unconstrained images, there is a great variability of object classes in 
respect to lighting conditions and camera positions. Hence, most literature has 
been concentrating on very specific application domains, such as car plates 
recognition, horses, street scene analysis and face detection [9]. In this article, 
we present on-going work focused on the athletic domain, where (a) the objects 
to be identified are the humans and the athletic instruments and facilities and 
(b) the image is classified as a whole in respect to the athletic event it focuses 
on. Nevertheless, as it will be shown, our methodology allows to improve image 
classification results even when objects are missing or not properly detected. 

2 System Overview 

Semantics extraction from images has been frequently depicted as bridging the 
gap between concepts and their visual representations. Our approach consists 
of constructing this bridge with, as an intermediate abutment, the detection 
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of particular image areas as instances of semantic classes. The overview of our 
method is depicted in Figure 1. 

Our assumption is that in most circumstances, even when an image can 
be overall described by a single word, its semantics are too complex to be de­
tected directly by visual cues. We refer to those semantics as high-level concepts. 
Instead, it may be easier to decompose the image semantics into a set of inter­
related concepts corresponding to distinct visual areas of the image, which may 
be much more easily detectable. We will refer to these concepts as mid-level 
concepts [10], since they serve as intermediates between visual cues and the 
final image classification^. This has the advantage of being able to explicitly 
supplement the extraction system with known semantics regarding the relation 
between the mid-level concepts and the high-level ones, thus providing useful 
a-priories to the extraction procedure. 

To illustrate our methodology, consider an example of the athletics domain, 
where an image shows an athlete holding a pole and jumping over an horizontal 
bar, whereas a pillar is also visible. Clearly, this may be interpreted as a photo 
taken from a pole-vault event, as long as the relative position of these objects 
does indicate this. Although a direct classification of an image as a pole-vault 
event is theoretically possible, detecting each object separately and then asso­
ciate them seems a more robust and scalable solution, if a distinction between 
a very visually similar event, such as high jump, is desirable. 

Our methodology results in semantic labelling of images as well as of ob­
jects within images, which makes it potentially suitable for image retrieval. An 
important issue that arises then is how the results are further used to allow 
for query answering. Although early approaches employed ad-hoc methods for 
querying specially crafted databases [11], the approach we suggest here is to 
populate an ontology, which can be then further queried using a standard rea-
soner (see [12]). This approach has the additional advantage of using further 
knowledge, implied by the T-box of the ontology, to answer complex semantic 
queries. 

3 Object Detection 

Our approach to object detection is a conjunction of bottom-up and top-down 
techniques to detect specific objects. Namely, following a domain-independent 
segmentation to find a first set of segments (bottom-up approach), particular al­
gorithms [13] [14], taking into account information regarding the colour/texture 
of objects, are used to detect fragments of objects classes (top-down approach). 
Additional information regarding the expected shape of the object classes is also 
used either to merge adjacent fragments of the same object class or to directly 

^ Notice that although the concepts' qualifier "mid-level" refers to their role as inter­
mediates in bridging the semantic gap, they can also be characterised as "atomic" 
in that they constitute the smallest semantic entities detected directly through 
image processing techniques. 
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locate them in the image (top-down). In the latter case, a further combination 
of the segments found with the general-purpose segmentation is used to opti­
mally adjust the object boimdaries. To further distinguish among object classes 
in a finer grain, we extract features of the detected objects and feed them to a 
learnable classifier, assigning the object class with the highest score. 

In the remainder of this section, we describe in details the way detection is 
done for three object classes: human bodies, human faces and elongated objects. 
The choice of these object has been such that, as it will be shown at section 4, 
it will enable a final image classification based on their spatial relations. 

Detection of human bodies To detect human bodies, the image / is first 
partitioned into segments S = {Si} using the JSEG [15] algorithm, such that 

Û ' (1) 

To allow for more accurate object contour detection, over-segmentation is pro­
moted, by choosing high values for the merging threshold of this algorithm. 
Subsequently, a small number among these segments is kept, based on whether 
these constitute foreground areas of the image. Foreground areas are modelled 
as the visually attended areas, computed with the aid of the algorithm described 
in [14]. The assumption here is that the human to be detected is always part of 
the foreground, since during photo capturing, the focus is on him. In particular, 
the set of segments S' kept as candidates for humans, comprises those having 
overlap precision ratio higher than a defined threshold T: 

S'^{Sr.^-^^>T} (2) 

where Mi denotes the mask of segment Si, Mp denotes the mask of area detected 
as foreground, D denotes the logical AND operation and | • | denotes the sum 
over pixel values. A typical value for the threshold T is 0.5. 

To further reduce the elements of S', we make use of a classifier, which 
decodes wether a segment is part of a body, rather than some other object 
class. Since the same classifier is used to discriminate among object classes, it 
is described separately below. Finally, adjacent partitions of this set are, then, 
merged and the human body is considered as the largest (with respect to area 
measuring) candidates after merging. 

Detection of human faces To detect human faces, we rely on two essential 
characteristics of a face: (a) faces are skin areas having significant intensity 
variability due to the presence of eyes, eyebrows, mouth and nostrils and (b) 
faces tend to have an oval-like shape. In particular, we first detect segments 
containing skins, based on the combination of the JSEG segmentation algorithm 
with a skin-detection algorithm described in [13]. Again, over-segmentation is 
pursuit in order to allow discrimination between the face and neighboring naked 
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body parts (neck and arms)^. Having identified a number of potential face 
fragments, we proceed by selectively merging their corresponding segments. 
Segments are recursively merged under the condition that (a) they are adjacent 
and (b) the resulting segment jointly maximizes both the anticipated skin colour 
[13] and the circularity index, as compared to the largest of the component ones. 
The circularity index is computed as the ratio of the area of a circle having as 
radius the variance of the segment along its longest projection, to the actual 
area of the segment: 

27r(max|v[^i var{v^5})^ 

\s\ ^' 
The resulting candidate human faces segments are then given to the machine 
learning algorithm for a final scoring. 

Detection of elongated objects Particular attention has been given to the 
detection of possibly occluded objects having an important elongated nature, 
since these are pertinent in respect to the athletics domain (horizontal bars, 
poles, pillars). Elongated objects have line segment characteristics and their 
detection involves the combination of the radon transform with hough trans­
form. Namely, the image edges are first extracted, by using information from 
the gradient and the entropy of the pixels' images. Then, the matrix stemming 
from the radon transform, evaluated at angles with a small step (e.g. 3°), is 
processed by a hough transform to find optimal angles, where the intensity 
of accumulation is important across a wide range of pixels. Subsequently, the 
image-mask corresponding to each of the angles found is dilated and combined 
with the original image with the AND operator. The detected objects are then 
fed to the classifier for a final decision. To allow for discrimination among sev­
eral types of elongated object classes, features such as orientation and length 
are also extracted. 

Finer Object Classes The above methods for human face, human body and 
elongated objects result in image segments that possibly correspond to one 
of these object classes. To further enhance the ability to discriminate among 
these classes, as well as to discriminate among sub-classes, we make use of 
a classifier. This requires generating a feature vector corresponding to each 
image segment. The features that have been used are area, colour, area entropy 
(texture), circularity index, angle, and position. The generated feature vectors 
are then fed to a multiclass 1-vs-all extension of an RBF-SVM classifier. The 
class with the maximum score is then used to finally characterize the segment. 

4 Ruled-Based Image Classification 

In the proposed methodology for image classification, the role of rules is to pro­
vide relations between semantic entities (objects) so as to allow for an overall 

^ Notice that this is not always feasible and is actually the main reason for achieving 
high area recall but low area precision values (see the evaluation section below). 
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image interpretation. The rules are derived automatically based on the manually 
annotated objects and refer to spatial relations between them. Justification of 
using rules referring to spatial relations was, first, identified during the manual 
image annotation process. The question there was: "Which are the discrimi­
natory cues that allow (humans) for identifying the class of an image given a 
set of available classes?". In the athletics domain it turned out that these cues 
were: (a) Existence of particular athletic instruments (e.g., pole, hurdles, etc), 
(b) posture of athlete's body, and (c) recognition of an athlete and association 
with her/his athletic event of expertise. The existence of particular objects, in 
our approach, is verified through the object detection process. As already men­
tioned, however, object detection (even in the context of a particular domain 
like athletics) is neither easy nor reliable. Thus, rules of the form "if instrument 
X was found then input image belongs to class Y" are error pruned. On the 
other hand by using spatial rules between two objects we ensure that neither ob­
ject detection false alarms nor object detection misses would be able to activate 
a rule because a spatial relation with another object needs also to be fulfilled. 
As far as the athlete's body posture cue is concerned, by defining human body 
and human face as different objects one can define rules describing a variety 
of postures. Finally, the third image classification cue implies face recognition 
abilities so as to recognize athletes from photos. Despite the lot of work done 
in this area, unconstrained face recognition from images is closed to impossible 

In order to construct rules concerning the spatial relations between objects 
we have defined a set of spatial relations that can be easily identified in the 
2D-projection of a physical scene through the use of image analysis techniques. 
In the first stage we have used the following spatial predicates: 'is above', 'is 
below','is left', 'is right', 'is adjacent', 'is near', 'is above left', 'is above right', 'is 
below left', 'is below right'. We are currently working towards reliable automatic 
extraction of the 'is behind' relation. 

Rule extraction Rules are automatically extracted by using the manually 
annotated content. Spatial relations are then computed based on the object 
masks. Although formal rule extraction exist [16], in a preliminary study we 
have constructed spatial rules by exhaustive search in om: training corpus. In 
particular we have tried to identify rules that frequently appear in the content 
of a particular image class and are able to separate this image class from the 
other classes. A sample of derived rules are shown in Table 1. For instance, 
the rule with id=10 can be expressed as 'a body is below an horizontal bar'; 
this rule holds in the 5% (see frequency field) of training images. The 75% (see 
confidence field) of these images belong to the pole vault class. 

Image Classification In order to classify images w.r.t a set of available classes 
using the above mentioned rules we use a 'rule-voting' process. That is, given 
the object detection results for a particular image, every activated rule votes for 
its class with the rule's confidence value. The overall score for a particular class 
is the sum of votes for this class divided by the total number of activated rules. 
Imagine, for example, that the rules with ids 9,10,11 hold based on the image 
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rule id relation arg. a arg. b frequency class confidence 

9 is above right body pole 7 pole vault 1.00 
10 is below body horizontal bar 5 pole vault 0.75 
11 is left face horizontal bar 14 high jump 0.84 
12 is right face horizontal bar 9 high jump 0.91 

Table 1. Example of spatial rules 

analysis results. The 'voting' score for the pole vault class is (l + .75)/3 = 0.5833 
while the corresponding score for the high Jump class is 0.8421/3 = 0.2807. 
Given that the confidence score for each rule is bounded in the [0,1] interval 
it is obvious that the sum of voting scores for aU classes is bounded by one. 
However, the upper bound is rarely reached in practice. On the other hand, 
there are cases (images) in which no rule is activated. In this case the image 
class is denoted as 'unknown'. In this way images, for which the evidence for 
their class estimation is poor, remain unlabelled. 

We should note, here, that the aim is to transfer the knowledge captured 
through the rule extraction process, outlined earlier, into an ontology to allow 
for usage of description logics. This will allow rule combination and utilization 
of prior knowledge already available in the ontology. A further goal is then 
to use the ontology to guide the object extraction process, by also detecting 
object's configurations unlike to appear. To give an example, in the context of 
pole vault and high jump images, it is unlike that a body can be above a face 
and both of them below an horizontal, unless a pole is also present and touches 
the body. 

5 Evaluation Results 

The performance of the presented algorithms has been evaluated based on a 
set of manually annotated images spatial dimensions 480 x 600, taken from the 
lAAF web site [17]. In total 140 images illustrating pole vault (69) and high 
jump (71) events were manually annotated by two different annotators. In order 
to evaluate the consistency of the manually marked areas the inter-annotator 
agreement (lAG), which equals the ratio of the number of pixels belonging to 
both annotated areas to the number of pixels belonging to at least one annotated 
area, was used: 

_ \MlnMi\ 

The ground truth area for each object instance was set as the logical OR oper­
ation between the areas marked by the two annotators under the constrained 
that the I AG for these annotations is higher than 0.6. In this way a ground 
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object class occurrences recall precision MAR MAP MAM 

horizontal bar 
pole 
human face 
human body 

111 
61 
139 
140 

81.1 
73.8 
62.6 
67.2 

81.8 
81.8 
64.9 
72.9 

79.0 
62.3 
91.9 
93.1 

61.8 
65.1 
48.0 
84.7 

80.1 
85.6 
66.7 
88.3 

Table 2. Evaluation Results for the detection of objects. The first three columns 
correspond to the number of occurrences of instances of each object class, the recall and 
precision of the object detection method. The following three columns are percentages 
in respect to the object correctly identified, conveying information about the area 
mathching: mean area Recall (MAR), mean area precision (MAP) and Mean Area 
Match between annotations (MAM). 

truth set was built comprising of 140 human body instances, 139 human face 
instances (one face was fully occluded), 111 horizontal bars instances and 61 
pole instances. 

Table 2 presents the results of evaluation of the object classes at image level. 
We consider that a segment Si detected automatically is correct when there 
exist a manually annotated segment S^^ classified under the same object class 
with high overlap, in the sense of eq.(4). To be fair, we consider the threshold 
^ as a function of the manually annotated segment size, so as to be more strict 
(respectively less strict) for large objects (respectively small objects). To this 
end, we used the sigmoid-shape function 

where |5 | and | / | are the areas of the segment and image respectively, and a, 
b and c are parameters set to a = 0.1, 6 = 3 and c = 10. For the segments 
classified as correct, the area recall and recision have been evaluated as: 

|M«| ' \M\ ^ ^ 

where M and M" denote the mask of a detected and its corresponding manu­
ally annotated segment respectively. Their mean values across all instances of 
the same class is shown in Table 2. An interesting point one can notice is the 
poor results in face detection. This can be assigned to the variabihty in pose 
(in very few images face appears in frontal position) and a frequent partial oc­
clusion from human body and athletic objects. The authors beUeve that given 
the difficulty of face detection in such an unconstrained environment, results 
are more than satisfactory. Also notice that detection of horizonal bar is more 
accurate than pole's, though both are detected using the same principle (elon­
gated objects). This is due to the higher variability in shape and orientation 
encountered in the visual appearance of poles. 

In Table 3, the evaluation results for image classification are presented. To 
test the generalisation performance of the rules used, we tested them on a set 
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Sport Performance Confusion Matrix 
Recall Precision HighJump Pole Vault Unknown 

High Jump 86,7% 92.2% 13 2 1 
Pole Vault 75.0% 85.7% 1 12 3 

Table 3. Evaluation results for image classification - Confusion matrix 

object class occurrences recall precision 

horizontal bar 
pole 
human face 
human body 

24 
11 
30 
32 

79.2 
63.6 
66.7 
75.0 

79.2 
70.0 
69.0 
82.8 

Table 4. Evaluation Results for the detection of objects in the test set. 

of 32 pole vault and high j u m p images not used during the rule induction and 
object class learning process. Object detection results for the same set are shown 
in Table 4. Notice tha t the only object class which can be used for discriminating 
between pole vault and high j u m p images is pole, since all other object classes 
appear in bo th sports . However, as can be seen from Table 4, retrieving pole 
vault images only upon pole existence would result in poor performance (recall 
63.6%, precision 70%). Rule-based classification achieves significantly higher 
rates (recall 75.0%, precision 85.7%), thus alleviating false alarms and misses 
during pole detection. 

6 Conclusion and Fiiture work 

In this paper, we proposed a methodology tha t allows for fine-grain image clas­
sification. At a first step, a number of key-objects with specific semantics are 
detected. Subsequently, the spatial configuration of these objects has been taken 
into account by a set of rules, to ul t imately characterize the entire image. The 
evaluation of our approach shows tha t spatial relations between objects have 
provided substant ial information for image classification. The redundancy of 
cues induced by bo th detected objects and their spatial relations allows for 
tempering object misses a n d / o r misclassifications, thus rendering the overall 
methodology robust . 

Our future plans to improve upon our methodology involve two main di­
rections. First , we investigating one-class learning models to measure the level 
confidence of the objects detection. The level of confidence can then be used as 
a weighting factor while applying the rules. A second research direction regards 
rules learning, which is currently done though through exhaustive search. We 
expect tha t e laborated machine learning methods for rule extract ion tha t , in 
addition, allow for complex rule formation, can further improve the accuracy 
and robustness of image classification. 
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