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What the Paediatrician Needs to Know 
When Pandemic Influenza Arrives 
in Clinical Practice

Nicole Ritz and Nigel Curtis

1 Introduction

1.1 The Media Outbreak

Avian (H5N1) influenza or “bird ‘flu” has received considerable attention in both 
the medical literature and the mass media in the last few years. Despite the 
 tabloids’ portrayal of an imminent threat, to date there have been relatively few 
cases in humans in spite of large numbers of infected poultry (Hien et al. 2004). 
However, this may be falsely reassuring. Most indications suggest that it is just a 
matter of time until the next influenza pandemic occurs (Osterholm 2005). In the 
words of the UK Chief Medical Officer: “most experts believe that it is not a 
 question of whether there will be another severe influenza pandemic but when” 
(Department of Health 2005). Although experts are agreed that a future influenza 
pandemic is almost inevitable, its timing is unpredictable and it is uncertain 
whether the virus responsible will be H5N1 or another, novel, influenza strain 
(Osterholm 2005). A recent editorial described avian influenza as a “predicament 
of extraordinary proportions” (Anonymous 2006). The next influenza pandemic 
will have a dramatic impact on all levels of health care including the everyday 
work of doctors. This chapter focuses on the clinical aspects of pandemic  influenza 
about which paediatricians need to be familiar.

2 The Impact of Pandemic Influenza

2.1 How Many People will be Affected?

There have been ten influenza A pandemics in the past 300 years, of which the last 
three have been the best studied. The pandemic of 1918 (H1N1) “Spanish 
Influenza” killed 50–100 million people, with more than half of deaths occurring 
in healthy people between 18 and 40 years of age (Osterholm 2005). In the 
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 following two pandemics – in 1957 (H2N2; “Asian influenza”) and 1968 (H3N2; 
“Hong Kong influenza”) – the mortality was strikingly lower, with each pandemic 
killing approximately one million people (Hien et al. 2004). This highlights the 
association between the virulence of virus subtype and mortality. Death rates are 
also determined by various other factors including clinical attack rates, R

0
 (basic 

reproduction number), vulnerability of affected populations and the effectiveness 
of preventive measures. It is therefore impossible to predict with accuracy the 
impact of the next pandemic. Best-case scenarios, modelled on the mild pandemic 
of 1968, predict global deaths in the range of 2–7.4 million (World Health 
Organization 2005a). Should a virulent H5N1 become the next pandemic strain, 
evidence suggests that this strain would mimic the 1918 pandemic with estimates 
up to 360 million deaths globally (Osterholm 2005). As of September 2007, there 
have been 327 confirmed cases (with 199 deaths) of H5N1 avian influenza (World 
Health Organization 2006b). The mortality rate of 60% is remarkably high, but may 
decrease in a pandemic. The 1918 Spanish influenza which had an estimated mor-
tality rate of 2.5% (Hien et al. 2004).

2.2 How Fast will Pandemic Influenza Spread?

In a pandemic situation it is likely that influenza would strike in several waves, 
each lasting approximately 15 weeks with a cumulative clinical attack rate of up to 
25% of the population (Department of Health 2005). In the first wave, it is expected 
that the number of cases would rise exponentially within a few weeks. Second and 
third waves, which may be weeks or months apart, with possible increased 
 virulence may occur, as has been the case during past pandemics (Department of 
Health 2005; World Health Organization 2005a). Previous pandemics spread 
around the globe in 6–9 months. Given the pace and dimensions of international 
travel today, it is likely that pandemic influenza will spread more rapidly, reaching 
all continents in less than 3 months (World Health Organization 2005a).

The World Health Organisation (WHO) has defined stages in the evolution of an 
influenza pandemic ranging from phase 1 (inter-pandemic) to phase 6  (pandemic). 
During 2006 and 2007, WHO declared a phase 3 (pandemic alert) stage, which is 
defined as “no or very limited human-to-human transmission.” The next phases are 
“evidence of increased” (phase 4), “significant” (phase 5) and “efficient and sustained” 
(phase 6) “human-to-human transmission” (World Health Organization 2005b).

2.3 Is Human-to-Human Transmission Likely to Occur?

In birds there has been a substantial rise in the number of cases of H5N1 
 influenza during the past few years, with an expanding range of infected avian 
species, (Perkins and Swayne 2002). In mammals the broadening of the host 
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range  including infection of felids, mice, pigs and ferrets has also been docu-
mented (Chen et al. 2004; Kuiken et al. 2004). To date, human H5N1 avian 
influenza has occurred almost exclusively as a result of bird-to-human trans-
mission (Tran et al. 2004; Beigel et al. 2005). Human-to-human transmission 
has been  associated with two family clusters of H5N1 avian influenza (Tran 
et al. 2004). The first documented human-to-human transmission occurred in 
September 2004 in Thailand. An  11-year-old girl infected her mother and aunt, 
who both provided unprotected nursing care and subsequently developed res-
piratory symptoms. Autopsy tissue from the mother and nasopharyngeal and 
throat swabs from the aunt were positive for H5N1 by reverse transcriptase-
 polymerase chain reaction (RT-PCR). No other routes of transmission could be 
identified (Ungchusak et al. 2005).

At the time of the most recent pandemic, which emerged in China in 1968, 
the population of that country comprised 790 million humans, 5.2 million pigs 
and 12.3 million poultry. Today these populations have increased to 1.3 billion, 
508 million and 13 billion respectively (Osterholm 2005). This potent mix of 
people, pigs and poultry creates the perfect conditions for genetic reassortment 
to create a novel influenza virus strain (antigenic shift). However, recent 
 evidence suggests that reassortment is probably less dangerous than expected 
in the case of H5N1 avian influenza. In an animal model in ferrets – who have 
a similar α -2,6 sialic acid  receptor predominance on respiratory epithelial cells 
as humans – transmission of H5N1 reassorted influenza virus was poor (Maines 
et al. 2005).

Nevertheless, the properties of an influenza virus that increase  transmissibility 
are poorly understood and it is also possible that, without re-assortment, a 
mutation of an influenza virus such as H5N1 could produce a strain adapted to 
humans. For example, the receptor binding specificity of influenza H5N1 virus 
can be altered through a change of one amino acid in the H5 protein 
(Gambaryan et al. 2006). There is evidence that the change of preferred bind-
ing of the  influenza H5N1 virus to the specific receptor on human respiratory 
epithelial cells (sialic acid α-2,6) could be the critical event in the evolution 
of a  human-to-human transmissible strain (Matrosovich et al. 2000, Wong and 
Yuen 2006).

3 Diagnosis and Clinical Features of H5N1 Avian Influenza

3.1 Differences Between Pandemic Influenza and Seasonal 
Influenza

Important differences between annual and pandemic influenza are summarised in 
Table 1. The remainder of this section relates to H5N1 avian influenza specifically.
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3.2 Clinical Features

3.2.1 Clinical Features at Presentation

More than half of H5N1 avian influenza cases have been in individuals under 18 
years of age and a quarter have occurred in children under 10 years of age (Fig. 1). 
In the first published series of ten case of H5N1 avian influenza, of which eight 
subsequently died, the mean age was 13.2 years (range 5–24 years) (Tran et al. 
2004). Significantly, none of these patients had any known pre-existing medical 
condition. Nine had clear evidence of either handling poultry or exposure to sick 
poultry the week before the onset of illness.

Table 1 Key differences between seasonal and pandemic influenza

Seasonal influenza Pandemic influenza

Seasonality Winter Unpredictable; not always 
in winter

Clinical 
attack rate

Up to 10% of population Up to 25% of population

Incubation 1–3 days 2–4 days (up to 10 days)a

Pattern of 
illness

“Typical” influenza illness Wide spectrum of presenta-
tion and illness

Excretion 
of virus

Peak 1–3 days (up to 10 days) (Frank 
et al. 1981)

Up to 18 days (Beigel et al. 
2005)a

Viral titres Higher viral titre in nose Higher viral titre in throata

Highest 
mortality

<5 years and >65 years All ages (in previous 
 pandemics >50% deaths 
in healthy adults 18–40 
years)

Case fatality 
rate

2.5% (Hien et al. 2004) 60% (World Health 
Organization 2006b)a

Antiviral
treatment

For any person likely to have a  life-
 threatening influenza-related  illness; 
for persons >65 years of age

Likely to be an important 
component of treatment 
but efficacy uncertain

Prophylactic 
antiviral 
treatment

For persons who live or work in  institutions 
in case of an  institutional outbreak; 
exposed high risk persons within a 
family; persons with immuno-
suppressive conditions who are not 
likely to mount adequate immune 
response to vaccination (Centers for 
Disease Control and Prevention 2006)

Optimal strategy for use 
of  antivirals uncertain 
but likely to be used 
to  protect health care 
workers and in  strategy 
to contain initial 
 outbreaks

Vaccine Highly effective vaccine available and 
 recommended annually

Will probably take up to 6 
months to develop and 
 distribute in best case 
 scenario

aSpecifically for H5N1 avian influenza
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The incubation period in H5N1 avian influenza is 2–10 days (Ungchusak et al. 
2005). Patients present with initial symptoms of fever (38.5–40°C), an  influenza-
like illness (headache, myalgia, malaise) and lower respiratory tract symptoms 
(non- productive cough, shortness of breath). Upper respiratory tract symptoms and 
 conjunctivitis are rare, in contrast to other types of influenza A. Diarrhoea (seven 
of ten patients in the first series (Tran et al. 2004) ), vomiting, abdominal pain, 
pleuritic pain and bleeding from the nose or gums have all been reported early in 
the course of illness (Beigel et al. 2005). Dyspnoea develops a median of 5 days 
after the onset of symptoms (range 1–16 days) (Chotpitayasunondh et al. 2005) and 
respiratory  distress, tachypnoea and inspiratory crackles are common. Most patients 
have required ventilatory support within 48 h of admission (Tran et al. 2004; 
Chotpitayasunondh et al. 2005).

3.2.2 Presentation with Delayed Respiratory Features

Of major importance is the observation that the clinical presentation of H5N1 
avian influenza has a wide spectrum. One report from Vietnam documented sib-
lings (a 9- year-old girl and her 4-year-old brother) who died following a presenta-
tion with severe  diarrhoea, seizures and coma. Notably, both of them lacked any 
respiratory symptoms and both had normal chest radiographs on admission to 
hospital (de Jong et al. 2005a). H5N1 avian influenza virus was isolated from 
throat, stool, serum and cerebrospinal ‘fluid. A presentation with watery diarrhoea 
(without blood or inflammation) preceding respiratory symptoms by 1 week has 
also been described (Apisarnthanarak et al. 2004).

Fig. 1 Distribution of H5N1 cases by age group, as of April 2006 (n = 202) (World Health 
Organization 2006c)
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3.2.3 Complications

Complications of H5N1 avian influenza include renal and liver dysfunction, 
 cardiac compromise, supraventricular tachyarrhythmia (due to dilatation), 
 myocarditis, pulmonary haemorrhage, pneumothorax, pancytopenia, Reye’s 
 syndrome,  encephalopathy and sepsis syndrome (Tran et al. 2004; Beigel et al. 
2005). Death is associated with acute respiratory distress syndrome (ARDS) and 
multi-organ failure due to a virus-induced “cytokine storm” (Osterholm 2005).

Death has occurred an average of 9–10 days after the onset of illness (range 
6–30 days) (Beigel et al. 2005) and, similar to the 1918 pandemic, most patients 
have died of progressive respiratory failure associated with ARDS and a “cytokine 
storm” (Beigel et al. 2005; Osterholm 2005). The fatality rate among hospitalised 
patients is between 33% and 100%. In contrast to the H5N1 outbreak in 1997, in 
which most deaths occurred in patients older than 13 years of age, recent H5N1 
avian influenza outbreaks have caused high rates of death among infants and young 
children with a case fatality rate of 89% reported among those younger than 15 
years of age in Thailand (Chotpitayasunondh et al. 2005).

3.3 Radiology

Radiographic abnormalities in H5N1 avian influenza are present a median of 7 days 
after the onset of fever in almost all patients. Chest x-ray findings are very variable 
and include diffuse, multifocal or patchy infiltrates, interstitial infiltrates, and 
 segmental and lobular consolidation with air bronchograms. Pleural effusions are 
uncommon (Beigel et al. 2005). Progression to respiratory failure and ARDS is 
associated with diffuse, bilateral, ground-glass infiltrates (Beigel et al. 2005).

3.4 Laboratory Features

3.4.1 Routine Investigations

Abnormalities detected on laboratory tests in H5N1 avian influenza include 
 significant lymphopenia (median count 700/mm3) and mild thrombocytopenia 
(median count 75,000/mm3) (Tran et al. 2004), hyperglycaemia (Beigel et al. 2005). 
Lymphopenia and thrombocytopenia have been associated with a poor  prognosis 
(Tran et al. 2004; Chotpitayasunondh et al. 2005).

3.4.2 Laboratory Confirmation

The following specimens from the upper respiratory tract are suitable for the 
 diagnosis of H5N1 avian influenza: nasal swab, nasopharyngeal swab,  nasopharyngeal 
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aspirate, nasal wash and throat swab. In addition, diagnosis can be made from other 
specimens including tracheal aspirate, bronchoalveolar lavage fluid, lung biopsy 
tissue, cerebrospinal fluid and faeces. H5-specific RNA is not detected in urine 
(Beigel et al. 2005). Viral excretion is prolonged and can be detected in  throat-swabs 
up to 18 days after illness onset and in nasopharyngeal isolates from 1 to 16 days after 
onset. Viral loads detected in H5N1 avian influenza from pharyngeal swabs are at 
least 10 times higher than in H3N2 or H1N1 influenza (Beigel et al. 2005). Throat 
samples may have a better yield than nasal samples but the  sensitivity and specificity 
of different samples and assays is not well defined (Beigel et al. 2005). Procedures 
for specimen collection, especially those involving potential aerosol generation, 
should be performed with appropriate precautions. WHO has produced detailed 
guidelines for the safe collection of specimens (World Health Organization 2005c).

H5N1 avian influenza can be confirmed in several different ways: rapid antigen 
test, viral isolation from culture, and the detection of H5-specific RNA with  RT-PCR 
assays. Rapid antigen tests are less sensitive than RT-PCR. WHO laboratory criteria 
for confirmation require one or more of the following: a positive viral culture, a 
 positive PCR assay, a positive immunofluorescence test for antigen (monoclonal 
antibody against H5), and at least a fourfold rise in H5-specific antibody titre in 
paired serum samples (Beigel et al. 2005).

3.5 When Should H5N1 Avian Influenza be Considered?

The possibility of H5N1 avian influenza should be considered in all patients with 
severe acute respiratory illness and those who present with serious unexplained 
 illness (e.g. encephalitis or diarrhoea), who have had possible exposure to H5N1 
avian influenza in the previous 2 weeks (i.e. all individuals who either live in or 
who have visited areas where H5N1 avian influenza has been identified in birds or 
other animals (Fig. 2) ).

4 The Treatment of H5N1 Avian Influenza

The primary strategy for treatment of H5N1 influenza should be prevention. 
However, currently no commercially available vaccine against H5N1 avian influ-
enza is available. In any case, the preparation of a vaccine against a novel strain 
will require several months and in the course of a pandemic, it is likely to take a 
minimum of 6 months before adequate supplies of vaccine are available. Therefore, 
effective antiviral agents are of major importance. There are two classes of drugs 
currently available for treatment and prophylaxis of influenza: the adamantanes 
(amantadine and rimantadine) and the neuraminidase inhibitors (zanamivir and 
oseltamivir). Other drugs, such as peramivir, which is highly effective in vitro and 
in animal models are subject to further studies (McCullers 2006).



F
ig

. 2
 

A
re

as
 r

ep
or

tin
g 

co
nf

ir
m

ed
 o

cc
ur

re
nc

e 
of

 H
5N

1 
av

ia
n 

in
fl

ue
nz

a 
in

 p
ou

ltr
y 

an
d 

w
ild

 b
ir

ds
 s

in
ce

 2
00

3 
(W

or
ld

 H
ea

lth
 O

rg
an

iz
at

io
n 

20
06

c)

13 What the Paediatrician Needs to Know When Pandemic Influenza Arrives  171



172 N. Ritz and N. Curtis

4.1 Adamantanes (M2 blockers)

Influenza virus enters host respiratory cells by endocytosis and it is then enclosed within 
endosomes in the cell. Subsequent acidification, through influx of H+ ions through the 
M2 protein channel, is the precondition for release of the viral nucleic acid from the 
endosome into the cell (Fig. 3). At low concentrations, the  adamantanes block the influx 
of H+ ions through the M2 protein channel. This inhibits the uncoating of the virus 
(McKimm-Breschkin 2005; Hayden 2006; Pinto and Lamb 2006). At very high con-
centrations the adamantanes prevent the fusion of the virus and cell membrane by inter-
fering with binding to hemagglutinin (McKimm-Breschkin 2005). Adamantanes may 
be cheaper than neuraminidase inhibitors, but they have significant limitations. They are 
only effective against influenza A viruses, as they exclusively block the A/M2 channel, 
which is not present on influenza B virus. The B/M2 channels on influenza B viruses 
are not affected by adamantanes (Pinto and Lamb 2006). Adamantanes are associated 
with gastrointestinal (nausea) and central nervous system (nervousness, anxiety, 
 difficulty concentrating, insomnia and hallucinations (Harper et al. 2005; Jefferson et al. 
2006) ) adverse effects in 10–30% of patients (McKimm-Breschkin 2005). The greatest 
problem with this class of anti-influenza drugs is the rapid emergence (as early as day 
two of treatment) of resistance in up to 30% of patients ( McKimm-Breschkin 2005). 
Furthermore, adamantane-resistant isolates can be transmitted to susceptible contacts 
and are pathogenic (Moscona 2005a; Wong and Yuen 2006).

4.2 Neuraminidase Inhibitors

4.2.1 Mechanism of Action

The neuraminidase inhibitors interfere with the release of influenza virus from 
infected host cells and thereby limit the spread of the infection (Moscona 2005a).

The neuraminidase enzyme – the target molecule of the neuraminidase inhibitor 
– is present on the cell surface of all influenza viruses. It cleaves the bond by which 
the surface viral protein hemagglutinin attaches to the host cell-surface receptor, 
sialic acid. Cleavage is essential for both viral entry into the host cell but more 
importantly for exit of viral progeny after replication within the host cell (Fig. 4) 
(McKimm-Breschkin 2005; Moscona 2005a; McCullers 2006). The neuraminidase 
inhibitors mimic the sialic acid cell-surface receptor preventing neuraminidase from 
cleaving host-cell receptors and, as a result, from releasing newly-replicated virus.

4.2.2 Administration

Neuraminidase inhibitors need to be taken as early as possible in the course of the 
illness and ideally within 72 h, as replication of influenza virus in the respiratory 
tract reaches its peak between 24 and 72 h after onset of symptoms. However, a 
recent report suggests that treatment may still be beneficial later, if there is evidence 
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Fig. 3 Mechanism of action and development of resistance to M2 inhibitors. In the absence of 
amantadine, the proton channel mediates an influx of H+ ions into the infecting virion early in the 
viral replication cycle, which facilitates the dissociation of the ribonucleoproteins from the virion 
interior and allows them to be released into the cytoplasm and transported into the cell nucleus. 
In highly pathogenic avian viruses (H5 and H7), the M2-proton channel protects the  hemagglutinin 
from acid-induced inactivation in the trans-Gol gi network during transport to the cell surface. In 
the presence of amantadine, the channel is blocked and replication is inhibited. The serine at 
 position 31 lies partially in the protein–protein interface and partially in the channel (see inset). 
Replacement of serine by a larger asparagine leads to the loss of amantadine binding and the 
restoration of channel function. Depending on the particular amino acid, other mutations at 
 position 26, 27, 30, or 34 may inhibit amantadine binding or allow binding without the loss of 
ion-channel function. Inset courtesy of Rupert Russell, Phillip Spearpoint, and Alan Hay, National 
Institute for Medical Research, London (Hayden 2006) (with permission from the publisher, 
Copyright © 2006 Massachusetts Medical Society)

of ongoing viral replication. This was shown in four patients with H5N1 avian 
influenza who had a rapid decline in viral load, and who all subsequently sur-
vived, despite oseltamivir being initiated later than 72 h after illness onset (de 
Jong et al. 2005b).
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4.2.3 Formulations

Oseltamivir is available as a capsule or powder for liquid suspension with good 
oral bioavailability. After absorption and conversion through hepatic esterases, the 
active form (oseltamivir carboxylate) is widely distributed in the body with a half-
life of 6–10 h. The drug is excreted primarily through the kidneys thus requiring 
 dosing modifications in patients with renal insufficiency (Moscona 2005a) (Table 2). 
Zanamivir is not bioavailable orally and is directly delivered to the respiratory 
tract through inhalation of a dry powder from a specially-designed device. 
Between 10% and 20% of the active component reaches the lungs and the rest is 
deposited in the oropharynx. Bioavailability in serum reaches a maximum of 2% 
(Moscona 2005a).

4.2.4 Effectiveness

Neuraminidase inhibitors are effective against all strains of influenza and their effi-
cacy has been subject to numerous trials (Hayden et al. 1999; Mc Kimm-Breschkin 
2005; Moscona 2005a; Jefferson et al. 2006). Children with clinically-diagnosed 
influenza who received oseltamivir within 48 h of onset of symptoms had the dura-
tion of their illness reduced by 36 h (Whitley et al. 2001).

Fig. 4 Mechanism of action of neuraminidase inhibitors. Panel A shows the action of neurami-
nidase in the continued replication of virions in influenza infection. The replication is blocked by 
neuraminidase inhibitors (Panel B), which prevent virions from being released from the surface 
of infected cells (Moscona 2005a) (with permission from the publisher, Copyright © 2005 
Massachusetts Medical Society)
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Clinical trials on the efficacy of neuraminidase inhibitors for the treatment of 
H5N1 avian influenza have not been undertaken. In an animal model of H5N1 
avian influenza-infected mice, both zanamivir and oseltamivir improved survival 
(Leneva et al. 2001). However, the predominant sialic acid on the cell surface 
receptor in mice is α-2,3 (in contrast to primarily α-2,6 in humans), which limits 
the interpretation of this study. In vitro studies in human survivors of H5N1 avian 
influenza have showed that the virus can generally no longer be cultured 2 or 3 days 
after starting oseltamivir (Beigel et al. 2005).

4.2.5 Adverse Effects

Neuraminidase inhibitors are associated with a low risk of adverse effects. Transient 
nausea, vomiting and abdominal pain occurs in up to 10% of patients treated with 
oseltamivir (Moscona 2005a). Cough and bronchospasm have been reported fol-
lowing treatment with zanamivir (Freund et al. 1999).

4.2.6 Dosing in Children

Table 2 details dosing of neuraminidase inhibitors, including dose adjustment in 
renal insufficiency.

Higher doses (150 mg twice daily) and longer treatment (7–10 days) may be 
considered in severe H5N1 influenza infections but no data have yet been published 
(Beigel et al. 2005).

The safety of oseltamivir in infants under 1 year of age has not been 
 established yet. Of concern is the observation that juvenile rats accumulate high 
levels of oseltamivir in the central nervous system. Although the immature 
blood–brain barrier in infants could similarly lead to high levels of oseltamivir 
in the central nervous system, there have been no reports of adverse effects from 
oseltamivir use in infants. In addition, a retrospective study in Japan, in which 
103 children younger than 1 year of age were treated with 4 mg/kg for 4 days, 
did not show any encephalopathy (Okamoto et al. 2005). Concerns about 
 potential toxicity in pregnant women and breast-feeding mothers have also been 
raised (Moscona 2005a).

4.3 Resistance to Anti-Influenza Drugs

Resistant influenza virus can be isolated from approximately 1% of adults and 5% of 
paediatric patients treated with oseltamivir (Whitley et al. 2001; McKimm-Breschkin 
2005). The emergence of oseltamivir-resistant H5N1 avian influenza can result from 
the substitution of a single amino acid in the N1 neuraminidase (tyrosine for histidine 
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at position 274: His274Tyr) (Ward et al. 2005). In a report of eight patients with H5N1 
avian influenza in Vietnam, two had high-level resistance to oseltamivir with the 
His274Tyr mutation. This may have been associated with disease progression as both 
patients died. In the other two patients who died, one revealed wild-type 274H and in 
the other patient no sequences could be obtained from the specimen. In the four surviv-
ing patients none showed oseltamivir-resistant H5N1 virus (de Jong et al. 2005b).

Factors which may favour the development of resistance include: the chemical 
 structure of oseltamivir (Moscona 2005b), altered pharmacokinetics in severely ill 
patients, inadequate dosing, and reduced bioavailability resulting from diarrhoea. 
Prolonged therapy, higher doses or combination therapy may be of benefit (de Jong 
et al. 2005b). Murine studies indicate that, compared with a strain from 1997, the H5N1 
avian influenza virus strain from 2004 requires higher doses and longer administration 
(8 days) to induce similar antiviral effects and survival rates (Yen et al. 2005). The 
transmissibility of oseltamivir-resistant H5N1 avian influenza strains is not yet known.

No influenza strains resistant to zanamivir have yet been isolated from immuno-
competent patients after therapy (Moscona 2005b). The His274Tyr mutation does 
not lead to cross-resistance as the binding of zanamivir is not prevented by this 
mutation (McKimm-Breschkin 2002). Treatment regimens combining the two 
 different neuraminidase inhibitors might be of benefit but to date there is  insufficient 
evidence (Gupta and Nguyen-Van-Tam 2006).

Amantadine resistance in H5N1 avian influenza is associated with the presence 
of several mutations (Ser31Asn, Val27Ala, Leu26Ile), which result in loss of 
 binding to M2 ion channel blockers. The distribution of amantadine-resistant H5N1 
virus appears to be largely limited to Thailand, Vietnam and Cambodia. Most 
H5N1 isolates from China, Indonesia (Cheung et al. 2006), Mongolia, Russia and 
Turkey appear to be sensitive to amantadine (Hayden 2006). However, susceptible 
strains rapidly develop resistance. In addition, WHO states that current isolates of 
H5N1 avian influenza, in contrast to isolates from the 1997 outbreak, are highly 
resistant to amantadine and rimantadine, and that consequently these drugs should 
not be used in treatment (Beigel et al. 2005). The only role for amantadine may be 
in combination with neuraminidase inhibitors. In vitro studies suggest that 
 combination chemotherapy with adamantanes and neuraminidase inhibitors reduces 
the emergence of drug-resistant influenza variants (Ilyushina et al. 2006).

4.4 Prophylaxis

Both zanamivir (Monto et al. 2002) and oseltamivir (Moscona 2005a) are effective 
for post-exposure prophylaxis in seasonal ‘flu with a protective efficacy of 80% in 
children older than 1 year. In the 1968 pandemic, adamantanes were found to have 
a protective efficacy of 70%. The protective efficacy of neuraminidase inhibitors in 
a pandemic is expected to be at least as high (Moscona 2005a), but current data on 
the effectiveness of neuraminidase prophylaxis in a pandemic situation are lacking. 
It is thought that prophylactic use of neuraminidase inhibitors does not prevent 
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infection but efficiently limits viral replication and shedding. This is important 
because children are the main source of dissemination of influenza within the com-
munity, since they usually have higher viral loads and excrete viruses for longer 
periods (Moscona 2005b). As a result, children who receive oseltamivir for prophy-
laxis will be able to mount an immune response due to sub clinical infection, but 
will not be the hub for infectious spread (Dolin 2005; Smith et al. 2006).

4.5 Who Should be Treated?

Recommendations for the use of antiviral drugs in seasonal influenza are detailed else-
where (Jefferson et al. 2006, Centers for Disease Control and Prevention 2006). During 
an influenza pandemic, depending on the number of cases, current supplies of neurami-
nidase inhibitors may be inadequate for any proposed strategy of prevention (e.g. 
around a localised outbreak or post exposure) and may not be sufficient for the  treatment 
of even those with disease (Hayden 2004). One approach that has been proposed to 
maximise supplies is to reduce the required dose of neuraminidase inhibitors through 
the co-administration of probenecid. By reducing the renal clearance of oseltamivir, 
probenecid has the capacity to increase plasma levels by 50% (Howton 2006).

4.6 Additional and Other Treatments

Secondary bacterial infection is a common and serious complication of seasonal 
 influenza. Rates of secondary bacterial infections in H5N1 avian influenza have not 
been defined, but Staphylococcus aureus and Haemophilus influenzae have been 
 isolated from tracheal aspirates in patients with H5N1 influenza (Tran et al. 2004). 
WHO  recommends that empirical treatment with broad spectrum antibiotics should be 
considered in patients with suspected H5N1 avian influenza (Beigel et al. 2005). Other 
drugs that have been used but for which there is currently no evidence of efficacy in the 
treatment of H5N1 avian influenza include ribavirin, corticosteroids, interferon alpha 
and intravenous immunoglobulin (Beigel et al. 2005; Wong and Yuen 2006).

4.7 Personal Stockpiling of Antiviral Drugs

A benefit of having a supply of antivirals at home is that treatment can be started 
soon after onset of symptoms, without any delay through access to medical  services. 
However, if oseltamivir were dispensed in advance of an outbreak, it is likely that 
patients would misuse their stockpiles, possibly wasting it on illnesses other than 
influenza. Insufficient dosing and inadequate courses are of further concern. High 
rates of resistance (16%) have been shown in H1N1 influenza A virus isolated from 
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patients in Japan as a result of under-dosing (Ward et al. 2005). Patients’ requests 
for a personal stockpile of oseltamivir place the physician in a difficult position in 
between the obligation to an individual patient and the demands of public health. 
Currently, there is no evidence of a benefit from personal stockpiling of antivirals 
and therefore an individual physician has no obligation to prescribe (Brett and 
Zuger 2005), and moreover, has an obligation from a public health viewpoint not 
to prescribe. Therefore, because personal stockpiles of oseltamivir will lead to 
improper use and shortages of supply they should be strongly discouraged.

5 Limiting the Spread of Influenza During a Pandemic

H5N1 avian influenza is transmitted through inhalation of respiratory droplets and 
droplet nuclei (dry droplets), by direct or indirect contact, or by contact with 
fomites. The relative efficiency of these different routes has not been defined 
(Beigel et al. 2005), but it is highly likely that the major mode of spread is through 
respiratory droplets expelled when coughing or sneezing (Bridges et al. 2003).

The possibility of person-to-person transmission of avian H5N1 influenza is of 
great concern since the case in Thailand, described above, in which there was 
 apparent transmission to the child’s relatives who provided unprotected care. Further 
transmission to health care workers did not occur in this case (Ungchusak et al. 2005). 
The current low risk of nosocomial transmission to health care workers is reassuring. 
However, in the advent of a pandemic, precautions to prevent human-to-human 
 transmission would be critical for individuals caring for affected patients. In addition 
to standard and droplet precautions, the WHO recommends eye  protection and, where 
possible, airborne precautions (World Health Organization 2006a).

Furthermore, respiratory hygiene, so-called “cough etiquette,” is  recommended by 
several health organisations, though it is of unproven efficacy. It involves  covering 
coughs and sneezes with a disposable tissue, the use of masks if  coughing and sneez-
ing, and personal hand hygiene after contact with respiratory secretions (Centres for 
Disease Control and Prevention 2003; World Health Organization 2006a).

Contacts of a patient with proven or suspected virus should monitor their 
 temperature and self-quarantine for a period of 1 week after their last exposure 
(Beigel et al. 2005). Household contacts of individuals with confirmed H5N1 
avian influenza should receive post-exposure prophylaxis as described above 
(Beigel et al. 2005).

Travel restrictions and quarantine were not very effective in the previous three 
pandemics. However, banning of public gatherings and closure of schools may be 
effective in preventing the spread that is associated with close contact and  crowding. 
Such measures may not need to be in place for prolonged periods, as pandemic 
influenza peaks have generally been short-lived. Preventing spread may lead to 
cases occurring over a longer time frame by flattening the epidemiological peak. 
The resulting fewer cases in any time period would decrease the burden on medical 
and other essential services (World Health Organization 2005a).
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6 The Prevention of Pandemic Influenza

Controlling avian influenza in birds is a key tactic in preventing the emergence 
of pandemic influenza. Active surveillance in animals and humans is needed to 
monitor the evolution of potentially threatening avian viruses (Hien et al. 2004). 
In Hong Kong, for example, surveillance of influenza in poultry, recognition of 
early outbreaks and active surveillance in humans helped keep Hong Kong free 
of H5N1 avian influenza virus in humans for 7 years after the 1997 outbreak 
(Hien et al. 2004).

Vaccination remains the primary strategy for prevention of influenza and is 
beyond the scope of this chapter.

7 Conclusion

The world has its first opportunity to be prepared for the next influenza pandemic 
(Shortridge 2006). Understanding the epidemiology, clinical and laboratory fea-
tures, and treatment and prophylactic strategies might provide a head start that will 
prevent the repetition of the mistakes in previous pandemics (Anonymous 2006).

8 Addendum

Subsequent to the completion of this manuscript in September 2006, new informa-
tion about pandemic influenza had continued to be published at a high rate. 
Amongst the most interesting new developments are:

- Concerns about abnormal neuropsychiatric behaviour in adolescents receiving 
oseltamivir (2007)

- WHO recommendations on treatment and prophylaxis of H5N1 avian influenza, 
including a once daily dose of oseltamivir for the prophylactic treatment of 
children 1 to 12 years of age (Schunemann et al., 2007)

- The description of clades and subclades of H5N1 avian influenza virus with impli-
cations for resistance patterns and vaccine production (Webster and Govorkova, 
2006)

- Confirmation that H5N1 avian influenza is predominantly a paediatric disease 
possibly explained by the presence of a-2,3 sialic acids in the upper airway tract 
in children (Goicoechea, 2007)
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Key web resources for pandemic and H5N1 avian influenza
Of the tens of millions of web sites with information about pandemic and H5N1 
avian influenza available on the internet, many happy hours can be spent browsing 
the following sites that are amongst the most useful:
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World Health Organisation
http://www.who.int/csr/disease/avian_influenza/en/index.html
http://www.who.int/csr/disease/influenza/nationalpandemic/en/index.html (other 
countries’ guidelines)

UK Health Protection Agency
www.hpa.org.uk/infections/topics_az/influenza/avian
www.hpa.org.uk/infections/topics_az/influenza/avian/microbiological_guidance.htm

UK Department of Health
http://www.dh.gov.uk/en/PandemicFlu/index.htm

UK National Health Service
http://www.nhsdirect.nhs.uk/articles/article.aspx?articleId = 1565&sectionld = 10
http://www.nhsdirect.nhs.uk/ articles/article.aspx?articleId = 1303&sectionld = 10

European Centre for Disease Prevention and Control
http://www.ecdc.eu.int

US National Library of Medicine and National Institute of Health
www.nlm.nih.gov/medlineplus/flu.html

US Department of Health and Human Services
http://www.pandemicflu.gov

Centers for Disease Control and Prevention
http://www.cdc.gov/flu
http://www.cdc.gov/flu/avian/index.htm

International Society of Infectious Diseases
http://www.promedmail.org

Miscellaneous
http://www.medscape.com/resource/influenza
http://www.influenzareport.com
http://www.fluwikie.com
http://www.fluwire.com
http://www.connotea.org/tag/AvianFlu
http://pandemicnews.blogspot.com/




