
Software Process Improvement Based on
the Method Engineering Principles

Marko Bajec, Damjan Vavpoti6, ~tefan Furlan and Marian Krisper
University of Ljubljana, Faculty of Computer & Information Science

Trzaska 25, 1000 Ljubljana, Slovenia
{marko.bajec, damjan.vavpotic, stefan.furlan, marjan.krisper} @fri.uni-lj.si

Abstract. While it used to be a common belief that the use of rigorous
methods in software development is beneficial if not compulsory to assure
success of software development projects, the investigations in practice reveal
developers often avoid to follow prescribed methods and that there is a wide
gap between the organisations' official methods and the work actually
performed by their developers in IT projects. According to the literature, there
are many reasons contributing to this rather undesirable situation. The two of
them are rigidity of methods and their social inappropriateness. In the
MasterProc project we have addressed these issues by developing a
framework and tool-support for the reengineering of software development
methods. Using the framework an organisation can reengineer its existing
ways of working into a method that is organisation-specific and auto-
adjustable to specifics of its projects. The evaluation that was performed in
five partner companies is motivating, as it shows the framework can be very
useful in improving software development practice. This paper describes the
framework philosophy and its main components.

1 Introduction

It was decades ago when the software development became acknowledged as a
complex process that needed disciplined methodological approaches. Since then a
number of software development methods have emerged. Interestingly, in the last ten
years, software development methods are not seen anymore as a panacea for
software development and the wave of enthusiasm about their practical value has
started to decrease. It has been empirically proved that in real practice the use of
methods is actually low (see e.g. [1 - 5]). In the research community, several reasons
have been identified as explanatory for this situation (see e.g. [4 - 5]). The two of
them that seem to be the most important are: inflexibility, which is a characteristic of

Please use thejbltowingJbrmat when citing this chapter:

Bajec, M., Vavpoti6, D., Furlan, (~., Krisper, M., 2007, in IFIP International Federation for Information Processing,
Volume 244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S.,
Henderson-Sellers B., (Boston Springer), pp. 283-297.

284 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

methods that permits virtually no adjustments to specific circumstances (a.k.a.
rigidity), and social inappropriateness, i.e. unsuitability of the prescribed method to
the company's actual performance or to the characteristics of the company's
development team.

In this paper we present a framework for reengineering softwaredevelopment
methods that we have developed under the MasterProc project 1. Building on the
established principles of the software process improvement initiatives and
specifically of the method engineering, the framework facilitates companies that
wish to improve their software development processes with guidelines and tools for
acquiring their ways of working, for their continuous improvement, and for their
adaptation to circumstances of a particular project or team.

The paper is organised as follows. In Section 2 we describe the research approach
adopted in our work. Next is the related works section that briefly describes related
research areas and explains how our work fits into this research. The core of the
paper is in Sections 4 where the philosophy and main components of the suggested
framework are described. The paper ends with concluding remarks and ideas for
further work on the subject.

2 Research Method

The MasterProc project was organized as a collaborative practice research [6] using
a combination of action research, experiments and study practices. Interviews and
surveys were used to carry out the assessment of the existing state of the art of
software development methods in each of the participating software companies. The
main focus of the assessment was to determine how socio-technically suitable are the
methods for typical projects carried out by each of the software companies.
Furthermore, the goal was to identify the level of flexibility of the existing processes.
The information that we received from the interviews and surveys was
complemented by action research. For each of the participating software companies a
working team was set up comprising two researchers and two practitioners. The main
responsibility of the team was to take part in real projects to get firsthand
information. The practitioners acted as project managers and methodologists, while
the researchers were more or less observers.

In the organization of the MasterProc project the principles of a general learning
cycle have been adopted, i.e. interpret current situation, find ways to improve
practice, plan and implement improvements, and learn from the actions taken. The
CPR supports such learning cycle by the three goals it identifies: to understand the
current state of software development, to build new knowledge that can support
practice, and finally to plan changes and implement them as necessary. After
implementing the improvements, the interpretation of the lessons learned have to
take place, hopefully leading into the next learning cycle.

1 The MasterProc is a research project which is carried out under the umbrella of the Centre of
exceIIence. The project was co-founded by the Slovenian Ministry of Higher Education,
Science and Technology, European Commission and the participating Software
Companies.)

Software Process Improvement Based on the Method Engineering Principles 285

3 Re la ted w o r k

The main principles on which we build our research can be found in two autonomous
but related research areas: Software process improvement (SPI) and Situational
method engineering (SME). While the main purpose of the SPI is to facilitate the
identification and application of changes to the software development process in
order to improve the product, the SME primarily deals with developing or tailoring
software methods in order to facilitate specific projects and circumstances. The
introduction of a specific SME approach into a software company to improve the
flexibility of its existing methods can be thus seen as a specific step towards SPI. In
this section we shortly describe both research fields and their relation to our work.

3.1 Software Process Improvement

Today, many organisations are trying to adopt models of total quality management
(TQM) principles. In the software development arena these efforts typically manifest
through software process improvement (SPI) initiatives of software companies that
strive to improve the quality, safety, and reliability of the software they develop and
in this way try to increase productivity and customer satisfaction with their products.

One of the commonly known models in the SPI is the capability maturity model
(CMM), which represents a central framework for software quality and process
improvement (see e.g. [7-8]). The CMM introduces five levels of maturity into
which an organisation can fall according to the quality of their software processes.
The five levels are: initial, repeatable, defined, managed and optimised. While in the
initial level (level 1) the process is typically ad-hoc and chaotic, the repeatable level
(level 2) introduces basic project management processes to track cost, schedule and
functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications. In level 3 (defined), the software process for
both management and engineering activities is documented, standardized and
integrated into a standard software process for the organization. All projects use an
approved, tailored version of the organization's standard software process for
developing and maintaining software. In level 4 (managed), detailed measures of the
software process and product quality are collected. Both the software process and
products are quantitatively understood and controlled. Finally, in level 5 (optimized),
continuous process improvement is enabled by quantitative feedback from the
process and from piloting innovative ideas and technologies 2.

In our framework we use CMM as a model against which we evaluate how
mature are specific software processes and identify desired maturity levels, i.e. the
maturity levels the evaluated organisations want to achieve. Building on the
empirical studies that have shown there is a correlation between CMM levels and
software quality [9-10], we assume the increased maturity will lead also to the
improved software quality. The use of the framework for method reengineering
inherently leads to at least level 3 (defined) while it includes also activities, such as
constant measurement of success and continuous evaluation and feedback from the

z The description of CMM maturity levels is based on [7].

286 Marko Bajec, Damjan Vavpotir, Stefan Furlan and Marjan Krisper

process that can lead to higher levels of CMM maturity, i.e. level 4 (managed) and
level 5 (optimised).

3.2 Situational Method Engineering

As described above, if we want to achieve the maturity level 3 or more, all projects
must be performed according to an approved, tailored version of the organization's
standard software process for developing and maintaining software. This is where
SME fits in. In the SME literature, a number of approaches can be found that
propose how to create project-specific methods. One that is probably the most
popular is based on the so-called reuse strategy. In this approach a new method is
constructed from the fragments of existing methods. The notion of method fragment
was introduced by Harmsen et al [11] who defined it as a reusable part of a method.
Fragments can be further categorized into product and process fragments depending
on the perspective they cover. Much effort has been put into decomposing existing
methods into fragments [12]. Also, different repositories have been proposed for
their storage (e.g. [11-13]). The method construction using the reuse strategy is,
however, far from easy, as the fragments have to be first retrieved from the
repository, changed if necessary and than assembled together into one consistent and
congruent method.

Another approach to SME, known from the literature as the extension-based
approach, uses the extension strategy. In this approach, method engineers are
provided with extension patterns that help them to identify typical extension
situations and provide guidance to perform extensions. In [13], Ralyt6 describes two
possible ways to perform extensions: (a) directly through matching extension
patterns stored in a library to satisfy the extension requirements, and (b) indirectly
through first selecting a meta-pattern corresponding to the extension domain and
then guiding the extension applying the patterns suggested by the meta-pattern.
Karlsson and Agerfalk have, however, criticized this approach for not considering
situations that are actually very frequent in practice, i.e. when a method is both
extended in some fragments and reduced in others [14]. As a solution they proposed
a new method for SME that uses a combination of the cancellation and extension
operators. They named it method for method configuration (MMC). The MMC
differs from the aforementioned approaches also in the fact that it does not deal with
modular construction of a method but rather with method tailoring taking a particular
method as the starting point. From the literature, it is clear that this approach has
been somewhat overlooked by the method engineering research in the past.

Finally, the approach to SME that seems to be a result of the most recent efforts
in the method engineering research is the paradigm-based approach [13] a.k.a.
evolution-based approach [15]. This approach is founded on the idea that the new
method can be obtained either by abstracting from an existing model or by
instantiating a metamodel. A new method is then created by first constructing a
product model and then process model while for the construction of both product and
process model different strategies are available.

For the purpose of our framework we created our own approach to SME which
uses a combination of the meta-modelling and extension/reduction based approaches.

Software Process improvement Based on the Method Engineering Principles 287

The approach shares several commonalities with other approach to SME, but most
notably with MMC. Both, our approach and MMC suggest configuring an existing
method rather then assembling fragments from different methods to construct a new
one. Detailed description as well as comparison between our approach and other
SME approaches can be found in [16].

4 A framework for method reengineering

The idea that lies behind the framework for reengineering software development
methods is relatively simple. It is based on the assumption that in each software
development company, patterns of work could be found that tell how the company is
developing software. While a large percentage of software companies own some
kind of formalized methods (typically commercial methods), empirical investigations
show that what they really do on IT projects differs a lot from what is written in the
methods they own (e.g. [4, 17]). Our assumption in the suggested framework is that
in a typical software company the ways of working are sufficiently repeatable to be
captured into a formalized method (base method) reflecting how the company
actually performs its IT projects. If base methods are captured and represented in the
way we suggest in this paper then project-specific methods can be created on-the-fly
almost without any need for method engineers to intervene. This is done by
processing the rules that define, for each method component, in what circumstances
its use is compulsory, advisable or discouraged. The configuration process is
however interactive. The questions that are subjective in their nature and influenced
by particular developers involved in the project can be addressed when they arise and
users may intervene as they wish.

The framework consists of four distinct but related phases: (I) Method
Construction, (II) Method Configuration, (III) Method Use and (IV) Method
Evaluation and Improvement. In the remaining part of this section each of the phases
will be described in more detail.

4.1 Method Construction

Method construction is probably the most important phase of the method
reengineering framework and a prerequisite for the other phases. Its aim is to
construct a base method that will provide formal description of how the organization
that is being analyzed is performing its project. Furthermore, the construction of a
base method is crucial as it presents a foundation for creating project-specific
methods on-the-fly. Due to the limits of space we will provide here only a brief
description of the main activities of the method construction process. For details
please refer to [17] and [16].

The construction of a base method is a process that has to be done for each
organization individually. It starts with the analysis of existing practice in the
company and leads into identification of the parts that are technically and socially
sound and those that are in these respects problematical. For the analysis of the

288 Marko Bajec, Damjan Vavpoti6, gtefan Furlan and Marjan Krisper

socio-technical suitability of the existing practice an evaluation model has been
designed that facilitates the evaluation [18]. Possible improvements to the existing
practice are then suggested and discussed with the company's development team.
Once the vision for the new method is developed and accepted, a metamodel is
designed that helps to formalize the method. The metamodel can be developed either
from scratch or from existing metamodels that have been recently constructed to
both underpin and to help formalize methods. Those represent a good source for
selecting generic concepts for method formalization. Finally, the metamodel is
instantiated and fragments of the base method are captured. Besides the fragments of
the existing practice that have been previously approved as technically and social
appropriate, many new fragments may emerge. These are based on the suggestions
for improvements that have been identified within the analysis of the existing
practice. The fragments are first classified according to the underlying metamodel
and then described using templates. The templates, which belong to the metamodel,
outline how elements of a certain metamodel type should be described.

For the purpose of representing a base method we designed a generic data
structure that can be used to underpin any metamodel. The idea of a generic data
structure is to allow method engineers to design metamodels according to their
perception of how their methods should be formally represented.

GENERIC DATA STRUCTURE
, ,

[MetaElement

1
I.~,, J' i
",,,~~:7c ~' ~' 1 :

1

Element 1

1 ~ h-ore, "

I ~ to *

' • ff 'Om *

to *

I

A 1 •

Selected
Element

1 . 4 hom

1 41~ tO *

MetaLink

i

* I ItlS{at~CO Of

1 ~ coustraiP, tS
Link

......... T i
1 | lk po,'ntsto

I

Selected
Link

BASE METHOD

Condition

PROJECT-SPECIFIC METHOD

Fig. 1. A generic data structure

Fig. 1 illustrates the main components of the aforementioned generic data
structure, base method and project-specific method. The classes representing
metamodel are: a metaelement (it can be of two types: content element, such as
activity, tool, discipline, role, etc. or process flow element, such as decision node,

Software Process Improvement Based on the Method Engineering Principles 289

join and synchronization) and metalink (links between metaelements). By using such
a generic data structure, a base method is represented as a structure of instances of
the metaelements and metalinks, and a project-specific method is represented as a
selection of the elements and links of the base method.

LEGEND

Process flow elements

Decision node
l Synchronisation

Content elements

U Discipline

Q Activity

E ~ Adifact

Role

Tool

Delphi MS Visio

R, ~ . .~ d'
i
[

System ~ ~ . , ,
Analyst

'l

I

Fig. 2. Representation of a base method

Technical

Strategy

DecisL%r~
rc(;e

r

S,:,nch rortEsa ion

Decision
'-ode:

/An al},'sJs ResuItsX~
X o Custome/

I

As mentioned before, a base method encompasses various situations that may
occur when projects are performed. In other words, it comprises a number of
elements and their alternatives which describe several possible ways to perform a
particular project (similar to project paths as defined by Hares [12]). The paths and
method structure, however, are not static. They are defined by the rules that tell
which elements to consider in specific circumstances and consequently which path to
take. As depicted in Fig. 1, rules apply directly to the links that bind elements of the
method (see the element Condition).

290 Marko Bajec, Damjan Vavpoti6, gtefan Furlan and Marjan Krisper

Besides the rules that put constraints on the links between elements of the
method there are also other types of rules that play important role in the suggested
framework. In general, they can be categorised into constraint rules and facts. Since
in configuring the base method for the needs of a particular project or situation these
rules play essential role we will explain their taxonomy in more detail.

4.1.1 Constraint rules
Constraint rules can be seen as assertions that constrain some aspect of the procedure
for constructing project-specific methods. They can be decomposed into four
subgroups: process flow rules, structure rules, completeness rules, and consistency
rules.

Process flow rules are rules that define conditional transitions among activities in
the process view of a method. They define the conditions that have to be met to
perform a particular transition. For example, in Fig. 2., the rule R1 defines a
conditional transition to the activity Analyse Logical Structure while the rule R2
determines in what circumstances the activity Analyse Logical Structure can be
omitted.

Similar to process flow rules are rules that belong to the structure rule category.
Their distinction is that they can constrain any link between method elements and not
just links between activities, in Fig. 2, the rule R4 represents an example of a
structure rule. It constrains the link between the activity Develop Prototype of the
System and the tool MS Visio.

Structure and process flow rules that belong to a base method of a particular
organisation actually define project characteristics that are important at a particular
stage of projects performed by the organisation. Examples of process flow rules
(rules RI, R2 and R3) and structure rules (rule R4 and Rs) are provided below 3.

• RI: If the process is in the decision node 1 and the scope of the system is large or
incremental SDLC is chosen then go to the activity Analyse logical structure of
the system.

• R2: if the process is in the decision node 1 and the scope of the system is not large
and incremental SDLC is not chosen then go to the synchronisation point 2.

° R3: If the process is in the decision node 2 and the problem domain is new or
customer requires the prototype of the system then go to the activity Develop
prototype of the system.

• R4: If the process is in the activity Develop prototype of the system and the time
frame for producing the prototype is more than 1 month then develop the
prototype of the system using Delphi tool.

• Rs: If the process is in the activity Develop prototype of the system and important
reports are to be developed then create output artifact Reports as a part of the
prototype.

Project characteristics, such as project length, project risk, project complexity,
the scope of the system, the number of parties involved, etc. and their respective
domains are defined within the organisation's base method. However the values that

3 The rules are here written in natural language to ensure their understanding.

Software Process Improvement Based on the Method Engineering Principles 291

these characteristics receive are project-specific and are thus defined during the
configuration process.

Besides process flow rules and structure rules that both put constraints on
associations between elements of a base method the constraint rule category
comprises also completeness and consistency rules. The purpose of these two
subcategories is to assure that each project-specific method, created from the
elements of a base method, is complete and consistent.

Completeness rules a p p l y - in contrast to the process flow rules and structure
rules - to a metamodel and not to a base method (see Fig. 1). Their responsibility is
to define the conditions that must be met when creating a project-specific method.
Completeness rules actually help to check whether a project-specific method that has
been created includes all required components. For example, an organisation may
decide the following rules have to be followed when creating methods for projects:

• R6: each activity except the last one must have at least one successor activity.
• RT: each activity must be linked with exactly one role.
° R8: each technique must be linked with at least one tool, etc.

Consistency rules are the last category in the group of constraints. They are
similar to completeness rules. Their goal is to assure that the selection of fragments
comprising a project-specific method is consistent. While completeness rules only
apply to elements that are linked together, consistency rules deal with
interdependency between any two elements. In other words, for each element e they
determine a set of other elements E that need to be included into a project-specific
method if e is included. In the example below the rule R9 asserts that the deliverable
Business model is dependent on the activity Business modelling.

• R9: The deliverable Business Model depends on the activity Business modelling.

This means that if the deliverable Business model is selected for the inclusion
into a project-specific method, the activity Business modelling has to be selected too.
While such a dependency may seem trivial it is important as it helps to avoid
conflicting situations.

4.1.2 Facts
Another important group of rules that are considered during the configuration
process are facts. Facts are assertions that define characteristics of the project for
which we create a project-specific method. Depending on how they define project
characteristics they can be classified into base facts or derived facts. Base facts
define project variables directly while derived facts are derived from base facts using
inferences or calculations. In the examples below, the rule R10 is a base fact while the
rule Rll is a derived fact.

• R10: The project domain is well known.
• Rll: If the project field is telecommunications or healthcare then the project

domain is well known.

In the method configuration process facts are very important as they are checked
when structure and process flow rules are processed. For example, a structure rule
might state that "when performing requirements validation there is no need to

292 Marko Bajec, Damjan Vavpoti~, Stefan Furlan and Marjan Krisper

produce a prototype if the problem domain is well known". To be able to perform
this rule we must first check the facts about the project domain to find out whether
the domain is well known or not.

As indicated in the examples of the constraint rule category (see e.g. rules R3 or
Rs) facts can describe virtually any condition that is important for the project.
Furthermore, they are created dynamically during the method configuration process.
For example, when an element e is selected to be included into a project-specific
method this becomes a fact (e is selected) which could become important latter on in
the method configuration process.

4.2 Method configuration and use

Once a base method has been successfully established and discussed with its users it
is ready for use. However before it is actually applied to a specific project or
situation it has to be configured so that it includes only the components that are
relevant to the situation in question. At this point the representation of a base method
that was described before reveals its value. With an appropriate tool the adjustment
can be done automatically. In this section we describe the algorithms that facilitate
the auto-adjustment process.

The algorithm that supports the method configuration process is relatively simple.
It starts with an element in the base method (typically this would be a starting
activity) and ends when there is no link that would connect the current element
further with any other element. If such links are found they are examined for
constraints they might have. When a particular link has no constraints or when
constraints exist but are satisfied than the element at the end of that link is processed
in the same way using recursion.

PROCEDURE CreateProj ectMethod(pm, e);
/ / p m - project method, e - starting element of the base method
BEGIN

Find [inks for the element e
For each U nk [

IF conditions are satisfied for the [ink [
THEN

Mark the output element of the Unk [as selected for the pm
Mark the [ink [as selected for the prn
CreateProjectMethod(output element of the Link [,pm)//recursion
END IF

NEXT
END;

When a project-specific method is created using the algorithm above, the
elements that have been selected has to be checked for consistency and
completeness. The verification algorithms below show how this can be done.

PROCEDURE CheckComp[etness (pm);

Software Process Improvement Based on the Method Engineering Principles 293

/ / p m - project method
BEGIN

//comp[eteness verification
Se[ect a[[[inks from the pm
For each Link [

/ /Check the completeness constraint for the [ink [
Count the [inks that connect the input element of the Link i with the

output e[ements of the same type as is the output e[ement of the
Link [

IF the number of [inks is outside the min, max limits
THEN mark the Link [as probtematica[.

NEXT;
END;

PROCEDURE CheckConsistency (pm, e);
/ / p m - project method, e - starting e[ement or
/ / [i n k of the project-specific method
BEGIN

//consistency verification
Se[ect the set of elements and [inks D that e is dependent on
For each etement or [ink d from D

IF d is not setected THEN Mark d as probtematica[
CheckConsistency(pm, d) / / recurs ion

NEXT;
END;

For detailed description on the process configuration approach, its comparison
with other SME approaches, as well as on the experiences with its application in
practice, please see [16].

4.3 Method evaluation and improvement

In the suggested framework it is essential that the underlying base method and
corresponding rules continuously evolve as a reflection of knowledge and
experiences acquired through project performance. This means that when using the
framework new fragments may emerge as a result of situations that are specific and
thus not yet supported by a current base method. In such cases, additional fragments
are captured and circumstances for their use are determined. In practice, it actually
takes some time for a base method to become all-inclusive in terms of providing
guidelines for all kinds of situations that may happen in projects a particular
company is performing. This phase, in which the base method rapidly evolves, is
called the learning phase. It takes place in the first few projects after the framework
has been introduced into a company. Eventually however, the base method would
become more stable and changes on a large scale less frequent.

For the aforementioned reasons the framework provides specific activities for the
continuous method evaluation and improvement. To retain social and technical

294 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

suitability base methods are regularly evaluated and improved. The evaluation is
performed on a level of a single method element, which enables precise
identification of less suitable method elements, determination of reasons for their
unsuitability and creation of improvements consequentially.

The evaluation activities are based on the method evaluation model. Although
various method evaluation models have been proposed in the past, they tend to
consider either only technical [19 - 21] or only social [22 - 24] dimension of a
method. However, such partial evaluation does not provide a complete understanding
of method's suitability. Therefore, an evaluation model was created that facilitates
simultaneous evaluation of method suitability on a social and technical dimension.
The social dimension focuses on method's suitability for social and cultural
characteristics of a development team and facilitates determination of the level of
method's adoption. The technical dimension considers suitability of a method for
technical characteristics of a project and an organization, and helps to determine the
level of method's efficiency.

CO

g~

C
P~

z

....,--.- .q

,:ii>

0

O

0
0

Technical Unsuitab!e suitability Suitable

Fig. 3. Application of the evaluation model

Fig. 3 depicts application of the evaluation model in practice. After an evaluation
is completed, all method elements are positioned in a scatter plot diagram that is
divided into four quadrants distinguishing between four different types of method
elements (regarding their value):

Software Process Improvement Based on the Method Engineering Principles 295

• A useless method element is both technically and socially unsuitable. Different
reasons for such unsuitability can be identified. For instance, unsuitability can be
caused by constant technology change that eventually renders a method element
technically unsuitable. Consequently, developers stop using the element, which
finally results in its complete unsuitability. Alternatively, an element might have
been technically unsuitable from the beginning and therefore never used.

° An inefficient method element is socially suitable, but does not suit technical
needs of a project or an organisation. For instance, these can be method elements
that have been technically suitable in preceding projects and are well adopted
among users, but are technically inappropriate for the current project.

• In contrast to an inefficient element, an unadopted method element is technically
suitable, but its potential users do not use it because it is socially unsuitable.
Many reasons why potential users do not adopt a technically efficient method
element can be identified. The element might be overwhelmingly complex, it
might be difficult to present advantages of its use to the potential users, it might
be incompatible with existing user experience and knowledge, etc.

• A useful method element is socially and technically suitable. Such method
element is adopted among its users and suits technical needs of the project and
the organisation.

A method element that is perceived as not suitable can be improved by using
different improvements scenarios. These depend on the quadrant where the element
is positioned. In case of an inefficient method element (see Fig. 3, arrow A.), its
technical suitability should be improved and social suitability retained. Since users
already adopted the element, it should be modified only to the extent that it becomes
technically efficient again. In case of an unadopted but technically suitable method
element (see Fig. 3, arrow B.), the causes for element's rejection among its potential
users should be explored. For instance, potential users of the element might lack
knowledge and experience to use it. Consequentially the improvement should focus
on training of element's potential users rather than on altering the element. In case of
a useless element (see Fig. 3, arrow C.) that is both socially and technically
unsuitable the most reasonable action would be to replace or discard it completely.
Most likely a technically and/or socially more suitable element can be found or the
element is not needed at all.

After application of improvement scenarios most method elements are expected
to move to useful method elements quadrant, though some of the elements might still
need further improvements or even replacement.

Two distinctive qualities of the proposed model can be identified. Firstly, it
simultaneously considers social and technical suitability of a method; and secondly,
it facilitates evaluation on a scale of a single method element. These allow a software
development organization to observe value of its method in detail, to identify
technically and/or socially inappropriate parts, and to create customized
improvement scenarios based on the evaluation of each method element. For the
detailed information on the method evaluation model please see [18] and [25].

296 Marko Bajec, Damjan Vavpoti6, Stefan Furlan and Marjan Krisper

5 Conclusions and further work

In this paper we presented a framework for reengineering software development
methods. Using the framework organisations can reengineer their existing ways of
working and establish formalised methods that are organisation-specific and auto-
adjustable to specifics of their projects.

In respect to the method engineering field the contribution of the framework
should be seen in the integration of the method engineering principles within the
software process improvement scenario. This way we assure the improved methods
are not rigid but adjustable to specific circumstances. Furthermore, the framework
encapsulates activities for continuous method evaluation and improvement based on
the organisation's technical and social characteristics. Specifically the latter have
been very often neglected by the traditional approaches to method engineering.

There are several directions in which we tend to continue the existing research
work. Firstly, we wish to extend the framework to cover not only the creation and
configuration of software development processes but rather arbitrary IT processes or
even business processes. The research on this subject has started and is reported in a
separate paper submitted to this conference. Next, we wish to improve the
framework by incorporating a repository of best practices in software development
which will facilitate (following assembly-based method engineering principles)
semi-automatic creation of base methods. Finally, our goal is to employ the
framework, specifically the method configuration phase, in the research project
aimed at software development in rapidly created virtual teams.

6 References

1. C. J. Hardy, J. B. Thompson, and H. M. Edwards, The use, limitations and customization
of structured systems development methods in the UK, Information and Software
Technology, 37(9), 467-477 (1995).

2. M. Huisman and J. Iivari, The individual deployment of systems development methods,
Lecture Notes in Computer Science, (Springer 2348, 134-150, 2002).

3. M. Huisman and J. Iivari, The organizational deployment of systems development
methods, Information Systems Development: Advances in Methods, Components, and
Management, (Kluwer 87-99, 2003).

4. B. Fitzgerald, An empirical investigation into the adoption of systems development
methods, Information & Management, 34(6) 317-328 (I 998).

5. P. Middleton, Managing information system development in bureaucracies, Information
and Software Technology. 41 (8), 473-482 (1999).

6. L. Mathiassen, Collaborative practice research. Information Technology and People, 15,
321-345 (2002).

7. M.C. Paulk, B. Curtis, M. B. Chrisis, C. V. Weber, Capability Maturity Model for
Software, version 1.1, CMU/SEI-93-TR-24, February, Software Engineering Institute
(1993).

8. R. S. Pressman, Software Engineering: A Practitioner's Approach. McGraw-Hill, New
York (2004).

9. D.E. Harter, M. S. Krishnan, S. A. Slaughter, Effects of process maturity on quality,
cycle time, and effort in software projects. Management Science April 46 (4), 451 (2000).

Software Process Improvement Based on the Method Engineering Principles 297

10.M.J. Parzinger, R. Nath, R., A study of the relationships between total quality management
implementation factors and software quality. Total Quality Management 11 (3), 353-371
(2000).

11. F. Harmsen, S. Brinkkemper, and H. Oei, Situational Method Engineering for IS Project
Approaches, in: Methods and Associated Tools for the IS Life Cycle, edited by A. Verrijn-
Stuart and T. W. Olle (Elsevier, 1994), pp. 169 - 194.

12. S. Brinkkemper, K. Lyytinen, and R. J. Welke, Method engineering: principles of method
construction and tool support. Conf. on Principles of Method Construction and Tool
Support, selected papers. Edited by S. Brinkkemper, K. Lyytinen, and R. J. Welke,
(Kluwer Academic Publishers, Boston, MA, 1996).

13. J. Ralytr, R. Deneckrre, and C. Rolland, Edited by J. Eder et al, Towards a genetic model
for situational method engineering (CAiSE 2003), Klagenfurt, Austria, June 16-18, 2003,
(Springer, Haidelberg, 2003), pp 95-110.

14. F. Karlsson, and P. J. Agerfalk, Method configuration: adapting to situational
characteristics while creating reusable assets, Information and Software Technology, 46(9),
619-633 (2004).

15. M. B. Ayed, J. Ralyte, C. Rolland, Constructing the Lyee method with a method
engineering approach, Knowledge-Based Systems 17(7-8), 239-248 (2004).

16. M. Bajec, D. Vavpotir, M. Krisper, Practice-driven approach for creating project-specific
software development methods, information and Software Technology, 49(4), 345-365
(2007).

17. M. Bajec, D. Vavpotir, and M. Krisper, The scenario and tool-support for constructing
flexible, people-focused systems development methodologies, in: Proc. ISD'04, Vilnius,
Lituania, (2004).

18. D. Vavpotir, M. Bajec, M. Krisper, Measuring and improving software development
method value by considering technical and social suitability of its constituent elements, in:
Advances in theory, practice and education: proc. of the 13th Inter. Conf. on IS
Development, edited by O. Vasilecas, J. Zupanrir, (Technika, Vilnius, 2004), pp. 228-238.

19. CMU/SEI-2002-TR-029, Capability Maturity Model ® Integration (CMMISM), Version
1.1. SEI., (2002)

20. ISO/IEC- 15504, Information technology - software process assessment, (1998)
21. ISO/IEC-FCD-9126-1, Software product quality - Part 1: Quality model, (1998)
22. E. M. Rogers, Diffusion of innovations, (Free Press, New York, 2003).
23. I. Ajzen, The Theory of Planned Behavior, Organizational Behavior and Human Decision

Processes, 50, 179-211 (1991).
V. Venkatesh, and F. D. Davis, A theoretical extension of the Technology Acceptance Model:

Four longitudinal field studies, Management Science 46(2), 186-204 (2000).
24. D. Vavpotir, M. Bajec, M. Krisper, Scenarios for improvement of software development

methodologies, in: Advances in information systems development. Vol. 1, Bridging the
gap between academia and industry, edited by A.G. Nilsson, R. Gustas, W. Wojtkowski,
W.G. Wojtkowski, S. Wrycza and J. Zupancic, (Springer, New York, 2006), pp. 278-288.

