Representation of Method Fragments
A Comparative Study

Anat Aharoni and Iris Reinhartz-Berger
Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel
anatah@mis.haifa.ac.il, iris@mis.haifa.ac.il

Abstract. The discipline of situational method engineering promotes the
idea of retrieving and adapting fragments, rather than complete
methodologies, to specific situations. In order to succeed in creating good
methodologies that best suit given situations, fragment representation and
cataloguing are very important activities. This paper presents and
compares three existing approaches to fragment representation. It further
provides a set of evaluation criteria for comparing fragment representation
approaches. These criteria include expressiveness, consistency,
formalism, situational cataloguing, adaptability and flexibility to changes,
comprehensibility, and connectivity. Based on this comparison, we
introduce a new visual approach that combines the benefits of the three
reviewed approaches and attempts to overcome their limitations. This
approach relies on a specific domain engineering method, called
Application-based DOmain Modeling (ADOM), which enables
specification of fragments at various levels of details, specification of
fragment types and their constraints, and validation of specific fragments
against their relevant fragment types. All these activities are done using a
well known modeling language (UML), increasing user accessibility (and
consequently comprehensibility).

1 Introduction

As the complexity and variety of computer-based systems have increased, the
need for well-defined guidelines that will make the development process most
efficient and effective has become crucial. Although sticking to an individual
methodology has potential advantages, such as reducing learning and training
times and improving the expertise of developers in the chosen methodology,
there is no single methodology that can be uniquely pointed as “the best".
Furthermore, the possible existence of a universally applicable methodology has
been doubted by many researchers, such as [0], and, hence, different types of
"local" adaptations and modifications have to be made in order to adjust a
methodology to the specific requirements and constraints of a project. The area
of method engineering [00] aims at providing effective solutions for building,
improving, and supporting evolution of development methodologies. Situational
method engineering [0], which can be viewed as a sub-field of method

Please use the following format when citing this chapter:

Aharoni, A., Reinhartz-Berger, 1., 2007, in IFIP International Federation for Information Processing, Volume 244,
Situational Method Engineering: Fundamentals and Experiences, eds. Ralyté, J., Brinkkemper, S., Henderson-Sellers B.,
(Boston Springer), pp. 130-145.

Representation of Method Fragments: A Comparative Study 131

engineering, focuses on creating methodologies especially for specific situations.
Both regular and situational method engineering refer to fragments, the building
blocks of methodologies, rather than to complete methodologies. They offer
ways to represent fragments, catalogue them according to different features,
retrieve the most appropriate ones to given situations, and organize them into
complete methodologies. In order to succeed in creating good situational
methodologies, i.e., methodologies that best fit given situations, fragment
representation and cataloguing are very important activities. In particular, the
fragments have to be represented in a uniform way that includes all the necessary
information that may influence their retrieval and assembling. This paper focuses
on these activities, presenting and comparing three existing approaches to
fragment representation. Based on this comparison, which involves criteria such
as expressiveness, consistency, and situational cataloguing, we introduce a new
visual approach that combines the benefits of the three reviewed approaches and
attempts to overcome their limitations. The contribution of this paper is two
folded. First, it provides evaluation criteria for comparing and analyzing
situational method engineering approaches that concentrate on fragment
representation and cataloguing. To the best of our knowledge, such criteria have
not been suggested yet and the comparison of situational method engineering
approaches is done based on general method engineering criteria. We use the
evaluation criteria for comparing the three reviewed fragment representation
methods and for explaining the benefits and limitations of the new introduced
approach. Second, the new introduced approach brings further advantages that
are not exhibited by the three reviewed representation approaches (or by others):
it improves the situational cataloguing ability; it enables constraining and
specifying fragment types; and it enables validating the completeness and
correctness of fragments (against their fragment types).

The structure of the rest of the paper is as follows. Section 2 motivates the
need for situational method engineering. We later use this example for
exemplifying the different approaches, their limitations, and advantages. Section
3 lists seven evaluation criteria for comparing fragment representation
approaches, while Section 4 uses these criteria for presenting and comparing
three particular fragment representation approaches. Section 5 introduces and
exemplifies our approach, discussing its benefits and limitations in the light of
the other three approaches and the evaluation criteria. Finally, Section 6
concludes and refers to future research plans.

2 The need for situational method engineering: a motivation
example

As already noted, situational method engineering deals with creation of
methodologies that best fit given situations. The situation can be given as a
vector of different properties related to the project, the customer, the developing
team, the developing organization, etc. Examples to researches that list such
properties can be found at [0, 0]. To motivate the need for situational
methodologies, consider the following simple Obsert Oglesby case [0].

Obsert Oglesby is an art dealer who requests an information system to assist
him in buying and selling paintings for his gallery. After consulting with an
independent consultant, Obsert decided to turn to a well-known development

132 Anat Aharoni and Iris Reinhartz-Berger

company in order to buy a system which will enable him calculating the minimal
and maximal prices of a painting and will also serve in detecting new trends in
the art market as soon as possible. The development company which was chosen
is familiar with the art world and has developed similar systems. The company
mainly works with eXtreme Programming (XP) [0] for small projects which
need to be developed quickly in an environment of rapidly changing
requirements and with RUP [0] for complex projects which are developed by
large teams and require detailed documentation. Since Obsert's case does not
completely fit to any of these options, the development team decided to use
suitable fragments from both methodologies and to adapt them for the particular
case. In order to succeed in this mission, the development team has to tackle
three main questions: (1) How to divide a methodology into different fragments
that can be reused in various contexts? (2) What are the properties that best
characterize each fragment? (3) How (or to what extent) can different fragments
be adapted and organized into a complete, consecutive methodology? In the
context of fragment representation, these questions can be transformed into the
following ones: (1) What are the expressiveness and consistency requirements
needed for specifying all kinds of method fragments? (2) What are the
situational cataloguing abilities required to be supported at the fragment
representation level? (3) How (or to what extent) can the possible adaptation
(that a fragment may undergo in a situational methodology) be constrained?

Returning to our Obsert's case, the required system is small, the client (Obsert
Oglesby) requests his involvement during the development process, and detailed
documentation, especially of the business model and system requirements, is
required. Hence, the fragments which may be found as relevant to the early
development stages of the requested system are "extract requirements” and
"build a business model" from RUP and "on-site customer" from XP. The
"extract requirements" fragment may be selected due to the generality of the
requirements and their extraction by an external consultant. The “building a
business model” may be chosen due to the explicit request of the client to
receive a detailed documentation of his business. Finally, the “on-site customer”
fragment may be selected due to the client's request to be involved throughout
the entire development process. However, since the company has already
previous obligations and since the client is relatively small, the "on-site
customer” fragment cannot be followed literally. Instead, the company may
suggest that the client representative will have the authority and ability to
provide information pertaining to the system and to make timely decisions
regarding the requirements and their prioritization. However, he/she will not be
able to physically present in the development site. This limitation will be
overcome by creating a time schedule that defines slots and places for
collaboration during the development period.

In order that all these selections and modifications will finalize in a complete,
consecutive methodology, the way the fragments are presented and constrained
is very crucial. In the next section, we list and elaborate on evaluation criteria for
examining and comparing fragment representation approaches.

Representation of Method Fragments: A Comparative Study 133

3 Evaluation criteria for fragment representation approaches

The set of evaluation criteria listed here aims at supporting correct, complete,
and consistent representation and cataloguing of method fragments, as well as
supporting the successive activities of retrieval, adaptation, and building
situational methodologies. These criteria were derived from works on qualities
of representation models or languages, especially from [0] and [0].

Expressiveness. Although using the same term, fragments differ from each
other. Brinkkemper et al. [0] refer to three orthogonal dimensions when
modeling and classifying fragments: perspective, abstraction, and granularity.
According to the perspective dimension, a fragment can be either product- or
process-oriented: product fragments relate to the structural and static aspects of
methodologies (e.g., deliverables, documents, and models), whereas process
fragments capture the behavioral and procedural aspects of methodologies (e.g.,
stages, tasks, and activities to be carried out). The abstraction level of a
fragment can be conceptual or technical: conceptual fragments are descriptions
and specifications of methodology parts, while technical fragments are
implementations of operational parts of the methodology in the form of tools.
Finally, a fragment can reside in one of five possible granularity levels: method,
stage, model, diagram, or concept. The expressiveness of a fragment
representation approach can be measured as how much of this variety of
fragment types can be specified using the approach. For specifying process
fragments, for example, means for expressing branching, loops, and concurrency
are required. For expressing fragments at different granularity levels,
encapsulation and generalization mechanisms are required for combining several
concepts to one (aggregated or generalized) concept. Furthermore, the relations
between different fragments, mainly the interactions between process and
product fragments, should be specified somehow.

Consistency. Consistency refers to the fact that the same fragment can be
(re)used in different contexts, e.g., while describing a specialized or an
aggregated fragment, while defining the relations between process and product
fragments, while adapting the fragment to the situation at hand, etc. It is
important that all these occurrences of the fragment will be consistent with each
other, meaning that changes in one place will be applied to all the other places as
well. However, if those changes regard to a specific situation, a separate version
of the fragment should be maintained.

Formalism. There are different ways to represent things: graphically,
textually, logically, mathematically, etc. Generally speaking, representation
formalism is a set of syntactic and semantic conventions that allows describing
and specifying things. It can be formal, semi-formal, or completely informal,
affecting comprehensibility and non-ambiguity of the specifications. In the
context of situational method engineering, the presented fragments have to be
retrieved, adapted, and tailored latter and, hence, it is important that their
representation will be formal or at least semi-formal.

Situational cataloguing. In order to make fragment retrieval easy, effective,
and optionally (semi-)automated, fragment representation approaches should
wisely catalogue and index the different fragments according to characteristics
and features that may define and distinguish different situations. This criterion
checks the ability to describe for each fragment the different organizational,
human, and project-related features that best characterize it and are likely to be

134 Anat Aharoni and Iris Reinhartz-Berger

used for retrieval purposes [0, 0]. These lists of characteristics may be modified
over time and location (the developing organization) and may vary when
different types of fragments are considered.

Adaptability and flexibility to changes. Situational method engineering
mainly deals with two ways for integrating fragments to new methodologies,
customization and assembling. Customization includes operations that have to be
carried out on the original method fragments in order to create new (usually
slightly different) versions of that fragments that suit the given situations.
Assembling deals with attaching and connecting methodology fragments, while
transformation and gluing parts between the fragments can be added in order to
create complete, consecutive methodologies. This criterion checks the ability to
support these operations in the representation level.

Comprehensibility. This criterion checks how easy it is to learn and use the
fragment representation approach. This is derived from the approach complexity
(number of different concepts), ambiguity, and expected stakeholders (users).
Although both regular and situational method engineering are perceived as the
responsibility of method engineers only, involving other stakeholders, such as
software engineers, developers, and even managers, in the associated method
engineering processes and decisions may improve their commitment to the
chosen constructed methodologies, so they will actually follow them.

Connectivity. Connectivity measures the ability of the method to tailor
fragments derived from different source methodologies [0]. Since different
methodologies have different assumptions and characteristics, the ability to
represent fragments from various source methodologies is not a trivial task.
Furthermore, assembling them to consecutive situational methodologies often
requires maintaining transformation and gluing fragments. Although this type of
fragments can be analyzed and described in terms of product and process
fragments, it has also special requirements which need to be considered by the
representation approach, such as storing the associated source and target
fragments.

4 Fragment representation approaches

There are several works in the area of method engineering and situational
method engineering whose focus is fragment and/or methodology representation.
We chose to use three particular approaches in this paper which are consistently
cited in the literature and refer to (at least) several of our evaluation criteria,
discussed in Section 0. Next, we briefly present each approach, exemplify how it
represents the "extract requirements" fragment from RUP, and discuss its
benefits and limitations according to the seven evaluation criteria. The main
outcomes of this comparison are summarized in the appendix.

4.1 An assembly-based situational method engineering approach

The assembly-based situational method engineering approach [0] aims at
supporting the development of web-based Content Management Systems (CMS).
The four main stages in this approach are identification of the implementation
situation, selection of candidate methods, analysis and storage of relevant

Representation of Method Fragments: A Comparative Study 135

fragments in the method base, and assembly of the fragments into a complete
methodology using route maps for tuning the fragments to the situation at hand
[0]. Regarding fragment representation, the approach uses process-data
diagrams, which integrate the process model described by UML activity
diagrams with the product model described by UML class diagrams. The
relations between these two parts are described by dotted arrows that connect
activities with the artifacts they create or adjust. Figure 1 for example, describes
the "extract requirements" fragment in this approach.

Several adjustments have been made to the standard UML notation in this
approach. First, the approach allows specifying unordered activities. The sub-
activities "set priority", "estimate risk", and "set status" in Figure 1, for example,
are unordered, but they are all sequential to the sub-activity "categories to
functional/nonfunctional requirements". Second, the approach uses three
different types of symbols for indicating simple vs. compound concepts. A
simple concept, denoted by a rectangle, is atomic and, hence, does not contain
other (sub-)concepts. An open concept, denoted by a white shadowed rectangle,
consists of a collection of (sub-)concepts. Finally, a closed concept, denoted by a
black shadowed rectangle, is an unexpanded compound concept, which consists
of (sub-)concepts in other fragments. "Value", "Requirement", and "Priority" in
Figure 1 are simple concepts, "Domain Glossary" and "Requirement Document"
are open concepts, and Business Model is a closed concept.

/ p—"\

[&csnrﬁ!ev;amsit»:fﬁ (Make } [Aratvsisdiﬁérem]

interviews document
.

i\ Construct a domain glossary

i A R
{— List requirements Lome=mm v
. 4.
Vi . -
{ Categorized ta functionaknan functional | .
. v J 1 -4
______________________ . ,' Pricrity I——' Requirement I
—r , pricrifiz
Set priorities] { Sat status functionalnon it A Lses
functional requirements J | __ _ ___________. o R
A I 1 *

- . - .p| Requirement
\ { Refine the requirement and y- o mwm =TT document

Figure 1. The "extract requirements" fragment of RUP expressed in the
assembly-based situational method engineering approach [0].

The approach enables expression of both process and product fragments, as
well as the mutual relationships among them. It uses a well known semi-formal,
modeling language (UML) with minor changes, which might slightly affect the
approach comprehensibility and accessibility. However, it only partially refers to
consistency issues by introducing closed concepts, and does not enable
specification of the allowed adaptations and changes that a fragment may
undergo when assembling or customizing it to a given situation. It further misses

136 Anat Aharoni and Iris Reinhartz-Berger

the ability to specify the situational features that characterize each fragment,
leaving the selection process to the user (i.e., the method engineer).

4.2 The OPEN Process Framework (OPF)

The OPEN Process Framework (OPF) [0] is a large repository for supporting
flexible creation of numerous tailored methodologies. Although OPF started as a
method engineering approach, we decided to choose it in our research due to its
good informational website, its large, diverse, and free repository, and its lately
adaptation to situational method engineering requirements.

The OPF consists of three main parts, which are: (1) a repository of reusable
method components documented as hierarchical linked Web pages, (2) a meta-
model describing the organizational structure of the repository, and (3)
construction and usage guidelines. Being a general method engineering
approach, OPF does not explicitly refer to method fragments. However, work
products, which are significant elements that are described using fields such as
contents, stakeholders, and conventions, can be considered as product fragments.
Work units, on the other hand, which are described using fields such as
completion criteria, tasks, and work products to be produced, can be considered
as process fragments. To implement the "extract requirements" fragment, for
example, one can consider the following Web pages from the OPF repository:
“application requirements engineering” and “business requirements
engineering”, which are sub-activities of the “requirements engineering” work
unit, and “requirements work product” which is a sub-work product of the
“requirements” work product.

The main advantage of this approach is its deeply detailed elements which
include a wide variety of aspects that are relevant to each fragment, e.g., goals,
preconditions, completion criteria, guidelines, etc. The approach can and does
support different types of fragments at different granularity levels. The
documentation of the various fragments can also be used for assembling and
customizing them into complete methodologies. However, this documentation
may be too long, informal (expressed in text), and complex to comprehend and
learn to use. Furthermore, the approach does not (semi-)formally support crucial
concepts, such as branching, loops, and concurrency, assembling, evolution
tracing, or situational cataloguing.

4.3 The scenario-based approach

The scenario-based approach [0] refers to method scenario chunks rather than
to fragments. Differently from fragments, a method chunk tightly connects both
product and process parts, allowing specifying mutual relations between them.
The scenario method base is organized in two levels, the method knowledge and
the method meta-knowledge. The method knowledge level includes for each
chunk its interface and body. The chunk body describes the product to be
delivered and the guidelines to be applied in order to produce the product. The
guidelines are defined as hierarchies of related contexts which are connected
through three types of links: refinement, composition, and action. The chunk
interface describes its conditions for applicability to different situations and the
‘intention’ the chunk aims to fulfill. The method meta-knowledge aims at

Representation of Method Fragments: A Comparative Study 137

supporting the retrieval process and deals with the context in which method
knowledge can be (re)used. This is done by using chunk descriptors which
express the situation to which the chunk is suitable in terms of the application
domains and the design activities in which the chunk can be reused. The chunk
interface, body, and descriptor are specified using Standard Generalized Markup
Language (SGML) [0].

exemplifies the approach for the "extract requirements" chunk. For the sake of
clarity and brevity, we brought here only parts of the SGML description,
emphasizing the representation template.

(a) <DESCRIPTOR_SITUATION>
<APPLICATION_DOMAIN> all types of application </APPLICATION_ DOMAIN>
<DESIGN_ACTIVITY> requirements </ DESIGN_ACTIVITY>
</DESCRIPTOR_SITUATION>
<DESCRIPTOR_INTENTION>
<VERB> capturec </VERB>
<TARGET role=<<result>>Type=<<non-scenario-based>>>App. Requirements
</TARGET>
<COMPLEX_MANNER>
<VERB> Produce </VERB>
<TARGET role=<<result>>Type=<<scenario-based>>..>requirements doc.
</TARGET>
<SIMPLE_MANNER> by the requirement workflow of RUP
</SIMPLE _MANNER>
</ COMPLEX_MANNER >
</DESCRIPTOR _INTENTION >

(b)

<CHUNK name=<< produce requirements document >>

type=<<formal>> informal description= << produce requirements document by obtain an

initial understanding of the domain than draw up an initial set of requirements and finally refine

the requirements artifacts >> >
<GRAPHICAL_REPRESENTATION><AHREF=<<fileName.gif>> >
</GRAPHICAL_REPRESENTATION >

<INTERFACE>

<CHUNK_SITUATION> <CHUNK_SITUATION>
</CHUNK_INTENTION> .. <CHUNK_INTENTION>
</INTERFACE>

<BODY>

<PRODUCT name=<< Requirements document>>
informal description=<< informal description of the requirements document
structure>>>...
</ PRODUCT>

<PRODUCT_GRAPHICAL REPRESENTATION>
<A HREF =<<grapich_rep.gif>>>.....
</ GUIDELINE > .. <GUIDELINE>

</BODY>
</CHUNK>

Figure 2. The "extract requirements" chunk of RUP expressed in the scenario-based
approach: a partial SGML code of (a) the chunk descriptor (b) chunk interface and body

This approach supports specification of method chunks, including their
product and process parts, at different granularity levels. It uses a (semi-)formal
language in the form of SGML code that might be complex to understand and
manage by human users. Each chunk can be reused in a more complex
aggregated chunk. Furthermore, the approach enables adapting and changing
chunks to specific situations by supporting the definition of parameters within
the SGML code. However, the tight coupling between product and process
fragments in the approach may cause redundancy and difficulties in reusing the

138 Anat Aharoni and Iris Reinhartz-Berger

same process or product fragment in different contexts, raising consistency
issues that must be handled. Furthermore, at the current stage, the situational
cataloguing capabilities of the approach are limited to the application domain
and the relevant design activities only.

5 A domain engineering-based approach for fragment
representation

As discussed in the previous section, the main limitations of existing method
representation approaches are in their user accessibility and comprehensibility,
their situational cataloguing abilities, and their ability to constrain the structure
and behavior of fragments in order to support a smooth transition to the
successive situational method engineering activities (mainly assembling and
customization). In order to overcome these limitations, we propose a holistic,
visual, domain engineering-based approach for managing, representing,
retrieving, customizing, and integrating method fragments in order to create new
methodologies that best suit a situation at hand. The fragment representation part
of this approach provides the ability to express different types of methodologies
and their fragments, their associated characteristics and values, their pre- and
post-conditions, and other fragment-related requirements, such as mandatory
participants, recommended (optional) participants, triggers, etc. This is done by
using a domain engineering approach called Application-based DOmain
Modeling (ADOM) and the standard notation of UML 2.0 [0].

Domain engineering [0] is a software engineering discipline concerned with
building reusable assets and components that fit to a family of applications,
termed a domain. The purpose of domain engineering is to identify, model,
construct, catalog, and disseminate a set of software artifacts that can be applied
to existing and future software in a particular application domain. As such, it is
an important type of software reuse, knowledge representation, and validation.
ADOM [0, 0] is a particular domain engineering approach perceiving that
applications and domains are similar in many aspects, thus it enables modeling
domains with regular software engineering techniques. The application models
use domain models mainly for creation (instantiation, reuse) and validation
purposes. ADOM is based on a three layered architecture: application, domain,
and language. The application layer consists of models of particular applications,
including their structure and behavior. The language layer includes meta-models
of modeling languages, such as UML. The intermediate domain layer consists of
specifications of various domains (i.e., application families). These
specifications describe the commonality as well as the variability allowed among
applications in the domain. The ADOM approach further enforces constraints
among the different layers; in particular, the domain layer enforces constraints
on the application layer, while the language layer enforces constraints on both
domain and application layers.

ADOM is a quite general architecture and can be applied to different modeling
languages that support element classification. ADOM-UML, in which ADOM is
used in combination with UML 2.0 [0], was chosen in this context due to the
familiarity and establishment of UML in the software development area.

Representation of Method Fragments: A Comparative Study 139

5.1 ADOM-UML

In ADOM-UML, UML stereotypes are used both for classifying application
elements according to their relevant domain elements and for specifying the
allowed variability among applications in the domain.

In the /anguage layer, a new stereotype of the form <<multiplicity min=m
max = n>> is defined in order to represent how many times, constrained by the
lowest and upper most multiplicity boundaries, a model element of this type can
appear in a specific context'.

In the domain layer the main concepts of the domain and the relations among
them are specified using UML. The allowed variability within the domain is also
specified in this layer by attaching multiplicity stereotypes to the various domain
concepts and by adding additional logical constraints (such as "or" to denote
variations and "xor" to denote alternatives).

In the application layer, the stereotype mechanism is used in order to classify
the application elements according to the pre-defined domain elements. The
classified application elements are required to fulfill the constraints induced by
their classifying domain elements at the domain layer. In addition, the ADOM
approach allows adding to application models non-classified elements which are
specific to the application at hand and, hence, do not appear in the domain
model. These additions are allowed as long as they do not violate the domain
constraints.

5.2 Representing and cataloguing fragments in ADOM-UML

The structure and guidelines of fragments are described within the domain layer
of ADOM, while their instantiations, which specify particular situational
methodologies, are defined in the application layer. In these two layers, process
and product fragments are respectively described by UML activity and class
diagrams, while the lowest (simple, atomic) fragments may link to Web pages,
similar to those exist in the OPF repository. The dependencies among process
and product fragments can be concluded from the consistency constraints
required to be maintained between the relevant class and activity diagrams in
UML (e.g., the classes of object nodes that appear in the activity diagrams have
to be described in the class diagrams). Furthermore, the different features that
characterize each fragment are represented and associated to the fragment
models as UML templates, i.e., parameterized elements that can be used to
generate other model elements using binding relationships. The exact lists of
features that characterize the different types of fragments can be derived from
works that were done in the area of situational method engineering, such as [0,
0], and from practitioners.

Figure 3 and Figure 4 respectively exemplify process and product fragments
taken from RUP [0]. Figure 3 describes the "extract requirements" process

! For clarity purposes, we defined four commonly used multiplicity groups on top of this stereotype:
<<optional many>>, where min=0 and max=unbounded, <<optional single>>, where min=0 and
max=1, <<mandatory many>>, where min=1 and max=unbounded, and <<mandatory single>>,
where min=max=1.

140 Anat Aharoni and Iris Reinhartz-Berger

fragment, including its optional inputs, required participants, expected

deliverables, skeletal steps and flow of control®.

<<WOrKNow fragments>
<<0ptional manys> Extractreq - .
Waich o <<Mandatory manys» << LFtlur:aI(;narny-”
clentiniial <<WOIKNOW stepss <<byprogucts=
n
Informatien - obtain an initial understanding of the domain > LID :301
—f -

<<mandatory manys> |
ccparticipantss .

client

v

-
<<Mandalory marys> J

<<WOIKIOw steps>>

. ¥
-~
-
/./
- draw up an initial set of requirem ents

camandstory manyss
<onori tow step s
fYes)

Delimiting the scope

Arefthe requirement
salisfactony
\

of the proposed project J.'
L

<<Mandatony mamy's: semandalory manyss
<<participants» ® <oWOrKIIOW o>
future user Refine the requirements artifact

<<participants>
team member

<<mandatory manys>

<<Manaatory manys:),_’.

<<WOTKNow stepss>
refine the set

[“mandanr\; manys>
of requirements

<<wondlow steps>
obtain @ deeper understanding
of the domain

> <<mandatory singless
<<artifactss
requirement document
[intia]

|
f

(b) <SITUATION_CHARACTERISTICS fragmentType=<<process>>
fragmentName=<<cxtract requirements>> >
<PROJECT_CHARACTERISTICS>
<APPLICATION_DOMAIN>AII</APPLICATION_DOMAIN>
<PROJECT_SIZE>greater or equal 2 sub systems</ PROJECT_SIZE >
<FLEXIBILITY TO CHANGES>low</ FLEXIBILITY TO CHANGES >

</ PROJECT_CHARACTERISTICS>
<METHOD_CHARACTERISTICS>
<SOURCE_METHOD>RUP</ SOURCE_METHOD >
<DEVELOPMENT _ACTIVITY>requirements
</DEVELOPMENT_ACTIVITY>
<PRE-ACTIVITIES>signed contract</ SOURCE_METHOD >

</ METHOD_CHARACTERISTICS>
</SITUATION_CHARACTERISTICS

Figure 3. (a) A description of the "extract requirements" process fragment of RUP in the
ADOM-UML-based approach. (b) Its associated characterization file.

Figure 4 describes the "requirement document", which is an artifact that may
be produced by the "extract requirements" fragment or another process fragment.
The fragment model constrains the general structure of a requirement document,
including its possible variability, without referring to its production way. A
requirement document, for example, may relate to several business models and
business domain glossaries, which are also types of artifacts. Figure 4 also
specifies, using UML templates, the situations in which usage of the

Note that UML cnables associating separated icons to the various stercotypes in order to help
differentiate among them (e.g. humans vs. deliverables). However, in this paper, we preferred
using the full (meaningful) stereotype labels so that readers who are not familiar with ADOM
will easily understand the models.

Representation of Method Fragments: A Comparative Study 141

"requirement document" product fragment is desirable: the project life cycle is at
least one year, the project size is at least two sub systems, and the flexibility to
change is low. As this description might become long and embedding it within
the graphics may badly affect the comprehensibility of the diagram, we also
support the possibility to define the situations to which the fragment is suitable
in a separate XML or SGML file. Figure 3 (b) exemplifies such a
characterization file for the “extract requirements” process fragment.

<<optional many>>
<<optional manys»

. <<artifact>x»
<<mandatory many>> <<artifact>> R
. . business domain glossary
<<participant>> business model
team member <<0optional many>x>
- kluiia - ke <optional manys» = Dprelates >
- << >
<<mandatory singlex» <<idertifier>> -participantiD ... <erBlatestoys oo oo oo oo SERE
- projectLifeCycle = greater or equal 1year
Y based on |ProjectSize = greater or equal 2 sub systems |
dat MexibiltyToChanges =low |
<<Mmandatory many>> <<artifact>>

<<is responsible on>> requirem ent docum ent
manages - -
<<mandatory single>»> <<idertifier>> -documentiD

<<mandatory single>» <<informationDate>> -creationDate

<<mandatory manysx> !
<<participants» <<mandatory many>> <<informationDate> > -updateDate
manager <<optional many>> <<highLevelDescription>> -comment
<<optional singles> <<participantinfo>> -rank
<mandatory manys»
<<mandatory many>> <<mandatory many=>
<<participant>> <<artifactElement>>
system analyst _ E— '3'1""9_"‘9"‘
<<mandatory singles> <<identifier> -requirementiD

<<optional single>> <<participantinfo>> -role jty singles> <<elementinformations> -description
<<mandatory singles> <<elementinformations> -type : {functionalnon-functional}
<mandatory many>> <<mandatory singles> <<elementinformations> -priority : numeric

<<is responsible on>»> <<optional many>> <<elementinformation>> -requestingUser : FutureUser
works on

Figure 4. A description of the "requirement document" product fragment of RUP in the
ADOM-UML-based approach

<« optional manya:»
, refate ta

product fragment
<zmandatary single s -identifier
<<optional many:.> -infarmationDate
<<optional manys -highLevelDescription

<<mandatory manys> Lr Ar

is respansible on <<Mmandatory manys» «~optional many:»>
[artifact by product
<zmandatory manys:x»
participant ?
~:»::n1aﬁdatomr singlas —idgmifier c<mandatary manys=
tional many:» -participantinfo

artifactElement
<«mandatory singles» -identifier
<emandatory many:> -slementinfarmation

<<mandatary manys:»
is responsiblz on

Figure 5. A description of an artifact, which is a specialization of a product
fragment, in the ADOM-UML-based approach

Note that all the stereotypes that are used in these diagrams, except from the
multiplicity stereotypes discussed earlier, are meaningful concepts in the
situational method engineering area. Hence, they can (and may) be generalized
and constrained, so that the particular method fragments will be specified in a
uniform way. These specifications can be done within ADOM-UML as more

142 Anat Aharoni and Iris Reinhartz-Berger

general domain models. Figure 5, for example, presents a partial model of an
artifact. As can be seen, this meta-model is in yet a more abstract level than the
fragment models depicted in Figure 3 and Figure 4, allowing its usage for
different kinds of artifacts, e.g., business models and domain glossaries.
However, note that the model given in Figure 4 uses the stereotypes defined in
Figure 5 and fulfills all the constraints imposed by this figure.

5.3 Analyzing the ADOM-UML-based approach according to the
evaluation criteria

Analyzing our fragment representation approach according to the seven
aforementioned criteria raises some strengths and limitations that are discussed
here and summarized in the appendix, along a comparison with the other
fragment representation approaches.

Referring to expressiveness, the ADOM-UML-based approach represents
both process and product fragments in different granularity levels. The abilities
to zoom into activities and to decompose classes in UML are employed in order
to specify particular fragments to the required level of details without losing the
"big picture" of the fragment as a whole. Furthermore, our approach enables
refining the fragment types, such as artifacts and workflow fragments, and
representing them in domain models in order to capture the relevant knowledge
and to formally constrain the creation of specific fragments of those types. The
separation of fragments into different specifications (sometimes expressed by
different diagram types) enables using the same fragment in several contexts,
e.g., a product that is used by two processes, while preserving autonomy of each
part. However, as the fragments might become very complex, this approach also
has to deal with visibility problems in the diagrams, both in developing the
models and in understanding them. Separating a specification into several
diagrams some of which are more specific views of the others is one way to
tackle this obstacle.

Regarding consistency, the ADOM-UML-based approach allows a fragment
to be (re)used in different contexts by different operations and enables managing
separated fragment versions according to specific situations. Furthermore, it
enables preserving references from derived fragments to their source ones,
helping easily identify the reused vs. new fragments, original vs. customized
fragments, and the gluing and transformation fragments. In general, the approach
provides full support for reuse and composition operators. However, it inherits
from UML consistency problems among its diagram types [0].

As for situational cataloguing, the ADOM-UML-based approach supports
comprehensive and dynamic definition of organizational, human-related, and
project-related characteristics, which can be associated to the different fragments
and fragment types using UML templates or associated XML files. These
features may be used latter for retrieving and assembling the fragments.

Referring to formalism, the ADOM-UML-based approach is visual and semi-
formal. However, since it applies the well-known modeling language UML, its
accessibility to different types of users, such as developers or managers with
technical background, is increased over other more formal fragment
representation approaches. As noted, the approach accessibility is important for
increasing the probability of using the resultant situational methodologies and

Representation of Method Fragments: A Comparative Study 143

for making the process of learning and using the fragment representation method
easy (earlier referred to as the comprehensibility criterion).

Regarding adaptability and flexibility to changes, the ADOM-UML-based
approach enables all its fragment types to be specialized, adapted, and
customized. These operations create new fragments that can be modified as
requested by allowing specification of gluing and transformation fragments,
customization parts, etc., but without violating the core constraints of the
fragment types and of the fragments from which they were derived.

Regarding connectivity, the uniform representation of all fragments in the
ADOM-UML-based approach enables assembling and connecting fragments that
are derived from different source methodologies as long as their pre- and post-
conditions fit. Even if they do not exactly fit, the approach allows defining
transformation and gluing fragments that help create complete and consecutive
situational methodologies.

6 Conclusions and future work

As there is no (and probably will not be) a single universally applicable
methodology, the importance of situational method engineering and fragment
representation approaches has been increased. In this paper, we listed seven
important criteria for evaluating and comparing fragment representation
approaches, used them for analyzing the benefits and limitations of three known
approaches, and proposed a new approach that aims at overcoming the
shortcomings and offering some additional benefits. In the new ADOM-UML-
based approach, the fragments are generalized and specified in a domain layer,
while the situational methodologies, which assemble and customize the relevant,
retrieved fragments, are specified and modeled in the application layer. Due to
space limitations, we have not exemplified here a situational methodology, but
such an example can be found at [0] along with a description of the supporting
CASE tool. Fragment types are also generalized in ADOM as more abstract
domain models that guide and constrain the creation of particular fragments of
those types. We used UML class and activity diagrams in order to be able to
express both product and process fragments and to maintain their consistency.
Our comparative analysis shows that the ADOM-UML-based approach supports
comprehensive and dynamic definition of characteristics and situational
cataloguing information; it better guides the creation of different types of
fragments; it is accessible to both method engineers and other potential
stakeholders; and it may enable a smooth transition to the successive situational
method engineering activities (mainly assembling and customization) by
constraining and guiding fragment creation.

As for the future, we plan to elaborate the evaluation criteria to other
situational method engineering activities, as well as to show how our extended
ADOM-based approach supports these activities in a semi-automatic manner.

References

1. Aydin MN, Harmsen F. Making a Method Work for a Project Situation in the
Context of CMM. LNCS 2559, Springer, pp. 158-171, 2002.

2. Brinkkemper, S. Method Engineering: Engineering of information systems
development methods and tools. Information and Software Technology, 38(4), pp.
275-280, 1996.

144 Anat Aharoni and Iris Reinhartz-Berger

3. Brinkkemper, S. Saeki, M., Harmsen, F. Meta-modelling based assembly
techniques for situational method engineering. Information Systems, 24(3), pp.
209-228. 1999.

4. Bryan, M. SGML - An Author's Guide to the Standard Generalized Markup
Language. Addison-Wesley publishers Ltd., 1995.

5. Carnegie Mellon Software Engineering Institute. Domain Engineering: A Model-
Based Approach, http://www.sei.cmu.edu/domain-engineering , 2002.

6. Extreme Programming Web Site, Extreme Programming: A gentle introduction,
http://www .extremeprogramming.org, 2006.

7. IBM, Rational Unified Process, http://www-306.ibm.com/software/awdtools/rup/

8. Krogstie, J. and Arnesen, S. Assessing Enterprise Modeling Languages using a
Generic Quality Framework. In J. Krogstie, K. Siau, & T. Halpin, (Eds.),
Information Modeling Methods and Methodologies, Idea Group, pp. 63-79, 2005.

9. Krogstie, J., Lindland, O.I., and Sindre, G. Defining Quality Aspects for
Conceptual Models. In E. D. Falkenberg, W. Hesse, & A. Olive (Eds.), Proceedings
of the IFIP8.1 working conference on Information Systems Concepts (ISCO3):
Towards a consolidation of views, pp. 216-231, 1995.

10. Malouin, J.L., Landry, M. The mirage of universal methods in system design.
Journal of applied systems analysis, 10, pp. 47-62, 1983.

11. Mirbel, I. Rethinking ISD methods: Fitting project team members profiles. I3S
technical report I3S/RR-2004-13-FR, 2004. Available from
http://www.i3s.unice.fr/~mirbel/publis/im-isd-04.pdf.

12. Mirbel, L, Method chunk federation. Available at
http://www.i3s.unice.fr/~mh/RR/2006/RR-06.04-1. MIRBEL.pdf, 2006.

13. OMG, "Unified Modeling Language: Superstructure”, Version 2.0, 2005,
http://www.omg.org/docs/formal/05-07-04.pdf

14. OPEN Process Framework (OPF) Web Site. http://www.opfro.org/.

15. Ralyté, J., Deneckere, R., Rolland, C., Towards a generic model for situational
method engineering, CAiISE 2003, LNCS 2681, pp. 95-110, 2003.

16. Reinhartz-Berger, 1. Conceptual Modeling of Structure and Behavior with UML —
The Top Level Object-Oriented Framework (TLOOF) Approach, 24" International
Conference on Conceptual Modeling (ER'2005), LNCS 3716, 1-15, 2005.

17. Reinhartz-Berger, I. and Aharoni, A. Representation of Method Fragments: A
Domain Engineering Approach. Accepted to the EMMSAD'07 workshop in
conjunction with CAiSE'07, 2007.

19. Reinhartz-Berger, 1., Sturm, A. Behavioral Domain Analysis — The Application-
based Domain Modeling Approach, UML'2004, LNCS 3273, pp. 410-424, 2004.
20. Rolland, C., Plihon, V., Ralyté, J., Specifying the reuse context of scenario method

chunks, Proceedings of the CAISE'98, LNCS 1413, Springer, pp. 191, 1998.

21. Schach, S. R. An Introduction to Object-Oriented Analysis and Design with UML
and the Unified Process. McGraw-Hill/Irwin, pp. 56, 2004.

22. Sturm, A., Reinhartz-Berger, 1., Applying the Application-based Domain Modeling
Approach to UML Structural Views, ER'2004, LNCS 3288, pp. 766-779, 2004.

23.Wistrand, K. Karlsson, F. Method Components — Rationale Revealed. Proceedings
of the CAiSE 04, LNCS 3084, Springer, pp. 189-201, 2004.

24.Weerd, 1. Brinkkemper, S., Souer, J., Versendaal, J. A situational implementation
method for web-based content management system-application: method
engineering and validation in practice. Software process: improvement and practice
11(5): 521-538, 2006.

Representation of Method Fragments: A Comparative Study

145

Appendix: The main outcomes from the comparative analysis
of the four fragment representation approaches

Criterion | Weerd et al. [0] OPF [0] Rolland etal. | ADOM-UML-
[0] based approach
Product and Product and Method Product and process
process fragments process chunks; fragments; different
" and the relations fragments; different granularity levels;
§ among them; dlfferentv granularity supports branching,
g different granularity levels; looping and
7 granularity levels; levels; does not supports concurrency;
[unordered formally support branching and | preserves references
& activities and three | controlling loops to original
H types of concepts constructs fragments
Does not support Does not support | Each fragment | Full support for
reuse & assembly evolution tracing | can be reused reuse and
c:f operations, only while composition
2 the overall route aggregating operations
g maps contributes fragments
5] to prevent from
© inconsistencies
A visual, semi- A structured A semi A visual, semi-
g formal UML-based | hierarchy of Web | structured, formal UML- based
= language; Some pages integrated markup language; fragment
é unique adjustments | into a visual language types are specified
2 are introduced meta-model (SGML) by domain models
Limited to 7 No explicit Limited to 2 Supports dynamic
e characteristics that | support characteristics: | lists of
s g refer to the application characteristics
g %0 organization, the domain and according to the
5 s technique and the design activity | fragment types
@n S context
Supports Provides only Supports Supports
fy customization of construction and parameters specialization,
g ;'; w | the process-data usage guidelines adaptation, and
2 '5 g0 | diagrams and the customization of
E‘ &= & | route maps are fragments
S 2 o | flexibleto
< & 2 situational changes
Only the unique The repository The visual part | The used language
2 adjustments to structure helps facilitates is familiar to the
5 UML have to be learn and use the fragment different
g’ studied and fragments; usage and stakeholders,
2 comprehend provides learning; does | including method
g information on not support and software
g stakeholders’ stakeholders’ engineers
@] involvement involvement
Does not include Does not provide | Does not Supports

Connectivity

any rules for
connecting
fragments; the
route maps support
assembling of
fragments

rules or
guidelines for
connecting
fragments

provide rules
or guidelines
for connecting
fragments

customizing and
assembling of
fragments, as well
as specification of
transformation and
gluing fragments

