
Chapter 16 

FILE SYSTEM JOURNAL FORENSICS 

Christopher Swenson, Raquel Philhps and Sujeet Shenoi 

Abstract Journaling is a relatively new feature of modern file systems that is not 
yet exploited by most digital forensic tools. A file system journal caches 
data to be written to the file system to ensure that it is not lost in the 
event of a power loss or system malfunction. Analysis of journal data 
can identify which files were overwritten recently. Indeed, under the 
right circumstances, analyzing a file system journal can reveal deleted 
files and previous versions of files without having to review the hex dump 
of a drive. This paper discusses data recovery from ReiserFS and ext3, 
two popular journaled file systems. It also describes a Java-based tool 
for analyzing ext3 file system journals and recovering data pertaining 
to overwritten and deleted files. 
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!• Introduction 
Traditional computer forensics involves acquiring and analyzing file 

system images. Most forensic tools exploit file system features to obtain 
evidence. For example, the tools may find hidden or deleted data in 
FAT, ext2 and NTFS file systems by examining the slack space and free 
space, or by searching through the file system tree itself [3, 8]. 

Journaling is an advanced file system integrity feature [6, 10, 13] 
that is not exploited by most digital forensic tools. This feature is em­
ployed in virtually all modern file systems, including NTFS (Windows 
NT/2000/XP), HFSJ (Mac OS X), ext3 (Linux) and ReiserFS (Linux). 

A file system journal works by caching some or all of the data writes 
in a reserved portion of the disk before they are committed to the 
file system. In the event of an unexpected power loss, malfunction or 
other anomaly, the journal could be replayed to complete any unfin­
ished writes, preventing file system corruption due to incomplete write 
operations. This also means that previous file writes are stored for lim-
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ited periods of time in the journal, i.e., outside the normal file system. 
Therefore, even if a file is overwritten or securely deleted, it may be 
possible to recover the old contents by analyzing the journal. Indeed, 
under the right circumstances, analyzing a file system journal can reveal 
deleted files and previous versions of files without having to review the 
hex dump of the entire drive. 

This paper focuses on file system journal forensics, with particular 
attention to the Reiser [9] and ext3 [12] journaled file systems. The 
next two sections describe the structure and organization of the Reiser 
(v. 3) and ext3 file systems, including their journaling features. Section 
4 discusses how file system journals may be analyzed to recover data 
about overwritten and deleted files; it also describes a Java-based tool 
for ext3 journal data recovery and analysis. Section 5 highhghts the 
experimental results obtained when searching ReiserFS and ext3 journals 
for information about overwritten and deleted files. The final section 
presents some concluding remarks. 

Reserved (64K) Super Block 

Data Blocks 

Bi tmap Block Data Blocks 

Bi tmap Block Data Blocks 

Journal 

Figure 1. ReiserFS block structure. 

2. Reiser File System 
This section describes the structure of the Reiser File System (Reis­

erFS), including its journaling feature [1, 9]. 

2.1 ReiserFS Structure 
ReiserFS has a block structure with fixed-size blocks (usually 4,096 

bytes). The ReiserFS block structure is shown in Figure 1. 
The superblock is the first block of the ReiserFS structure. The struc­

ture of a superblock is presented in Table 1. Unlike some other file 
systems (e.g., ext2), ReiserFS has only one copy of the superblock. 

ReiserFS bitmap blocks are special blocks that identify used and un­
used blocks. Each bit in a bitmap block acts as a "used bit" for a single 
block in the file system. 
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Table 1. Superblock structure 3.6. 

Name Bytes Description 

Block Count 
Free Blocks 
Root Block 
Journal Information 
Block Size 
Object ID Max. Size 
Object ID Current Size 
State 
Magic String 
Hash Function 
Tree Height 
Bi tmap Number 
Version 
Reserved 
Inode Generation 

4 
4 
4 

28 
2 
2 
2 
2 

12 
4 
2 
2 
2 
2 
4 

Number of blocks in file system 
Number of unallocated blocks 
Location of the root block 
Various aspects of the journal 
File system block size 
Maximum size of the OIDs 
Current size of the OIDs 
Whether the partition is clean 
ReIsEr2Fs 
File name hash function 
Height of file system B-tree 
Number of bi tmap blocks 
Version of the superblock 
Reserved 
Rebalancing count 

Block Header Key 0 Key n Pointer 0 Pointer n 

Figure 2. ReiserFS internal block contents. 

ReiserFS has three types of data blocks: (i) unformatted data blocks, 
(ii) internal blocks, and (iii) leaf blocks. An unformatted data block 
contains raw data that corresponds to the contents of indirect files. An 
internal block contains pointers to data in the file system B-tree [4]. 
Figure 2 shows the contents of an internal block (internal B-tree node). 
A leaf block corresponds to the end node of the file system tree. It 
contains statistics, information about directories and possibly data itself. 

2.2 ReiserFS Journal 
ReiserFS in Linux has a fixed-size journal consisting of 8,192 4,096-

byte blocks, plus a 4,096-byte header block, corresponding to a total 
size of approximately 32 MB. Note that the journal is only supported 
for 4,096-byte blocks. However, this is not a problem, as other block 
sizes are never used. 
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The header block uses the first 12 bytes to keep track of which block 
was last flushed and where to begin the next flush, as well as to mount 
information. The remaining 4,084 bytes are reserved. 

Transaction ID Length 
Real Block 

Address 
Real Block 

Address ?~ — 1 
Magic Number 

RelsErLB 

Figure 3. Transaction description block for ReiserFS. 

The remainder of the journal comprises a series of transactions in a 
circular queue. Each transaction begins with a description block, iden­
tifying the transaction and providing half of a map that identifies where 
to put the data blocks (Figure 3). This is followed by the actual data 
blocks to be written. 

A transaction is terminated by a final commit block that contains 
the remaining portion of the block map and a digest of the transaction. 
The structure is identical to the description block, except that the magic 
number is replaced by a 16-byte digest. 

3. Ext3 File System 
The ext3 file system extends the earlier ext2 file system [2] by adding 

a journahng feature [11, 12]. ExtS has rapidly become the most popular 
journaled file system in Linux, and is usually the default choice for new 
installations [5]. This section describes the structure and journahng 
features of the ext3 file system. 

3.1 Ext3 Structure 
Ext3, hke ReiserFS, is based on a block structure. The block size is 

the same throughout a single file system; depending on the file system 
size, however, the default value is either 1,024 or 4,096 bytes. The first 
1,024 bytes of an extS file system are always reserved. If the file system 
contains the boot kernel, these bytes will hold boot information. 

The extS superblock stores general file system information, e.g., name, 
block size and the last time it was mounted. An ext3 file system has 
one primary superblock, although backup copies may also be stored 
throughout the file system. The primary copy begins at the 1,024*'̂  
byte. Table 2 provides details about the ext3 superblock structure. 

An extS file system maintains file metadata in data structures called 
inodes. Inodes are stored in special blocks called inode tables. The 
inodes are 256 bytes long by default. 
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Table 2. Ext3 superblock structure. 

N a m e 

Inode Count 
Block Count 
Blocks Reserved 
Free Block Count 
Free Inode Count 
Group 0 
Block Size 
Fragment Size 
Blocks per Block Grp. 
Fragments per Block Grp. 
Inodes per Block Grp. 
Last Mount Time 
Last Writ ten Time 
Mount Information 
Signature 
File System State 
Error Handling Method 
Minor Version 
Consistency Check 
Creator OS 
Major Version 
Reserved Block UID/GID 
First Inode 
Inode Size 
Block Grp. Loc. of Copy 
Feature Flags 
File System ID 
Volume Name 
Other Misc. Information 
Journal Information 
Orphan Inodes 
Unused 

B y t e s 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
8 
4 
4 
4 
4 
2 
2 

12 
16 
16 
72 
24 
4 

788 

D e s c r i p t i o n 

Total number of inodes in file system 
Total number of blocks in file system 
Reserved block count to prevent overfill 
Number of unallocated blocks 
Number of unallocated inodes 
Block where first block group starts 
Left shifts of 1024 to obtain block size 
Left shifts of 1024 to obtain fragment size 
Blocks in a typical block group 
Fragment count in a typical block group 
Inodes in a typical block group 
Seconds from epoch to last mount t ime 
Seconds from epoch to last write t ime 
Total and max. mounts of file system 
0xEF53 
Clean, error, recovering orphan inodes 
Continue, remount as read only, or panic 
Original or dynamic 
Last performed, interval 
Linux, FreeBSD, etc. 
Original or dynamic 
UID/GID tha t can use reserved blocks 
First non-reserved inode in file system 
Size of inode in bytes 
If backup copy, group of copy 
Features of the file system 
UUID of file system 
OS's name for the volume 
Misc. 
UUID, metada ta inode, device 
Head of orphan inode list 
Unused bytes 

Each inode structure can hold up to twelve direct pointers, corre­
sponding to the addresses of the file system blocks where the first twelve 
blocks of the file are located. If the file is too large to fit into twelve blocks 
(usually 12 KB or 48 KB), pointers are maintained to single, double and 
triple indirect pointer blocks. A single indirect pointer is the address of 
a file system block composed of all direct pointers. By extension, double 
and triple indirect pointers point to file system blocks containing sin­
gle and double indirect pointers, respectively. Table 3 provides details 
about the structure of an ext3 inode. 
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Table 3. Ext3 inode structure. 

Name 

File Mode 
User ID 
File Size 
ACMD Times 
Group ID 
Link Count 
Sector Count 
Flags 
Unused 
Direct Pointers 
Single Indirect Pointer 
Double Indirect Pointer 
Triple Indirect Pointer 
Misc. Information 
File Size 
Fragment Information 
Unused 
User ID 
Group ID 
Unused 

Bytes 

2 
2 
4 

16 
2 
2 
4 
4 
4 

48 
4 
4 
4 
8 
4 
9 
2 
2 
2 
2 

Description 

Permission flags and flle type 
Lower 16 bits of user ID 
Lower 32 bits of size in bytes 
Most recent access, creation, mod., del. times 
Lower 16 bits of group ID 
Number of existing links to the file 
Sector occupied by the file 
Assorted flags 
Unused bytes 
12 direct pointers 
1 single indirect pointer 
1 double indirect pointer 
1 triple indirect pointer 
NFS gen. number, extended attribute block 
Upper 32 bits of size in bytes 
Address, count and size 
Unused bytes 
Upper 16 bits of user ID 
Upper 16 bits of group ID 
Unused bytes 

Ext3 blocks are clustered into block groups. Block groups are de­
scribed in a block or set of blocks called the group descriptor table, 
which always follows the superblock or a copy of the superblock. By de­
fault, an ext3 file system invokes a feature called a "sparse superblock," 
in which not every block group contains a copy of the superblock and 
group descriptor table; however, if these are present, they are stored in 
the first several blocks of the group. The number of block groups in a 
file system depends on the size of a block and the total size of the file 
system. The number of blocks in a block group is always eight times the 
number of bytes in a block, and the inodes are distributed evenly among 
the block groups. 

Each block group contains two bitmap blocks, one for blocks and the 
other for inodes. Each bit in a bitmap reflects the status of one of 
the blocks or inodes in the group as allocated or unallocated. Blocks 
and inodes corresponding to older versions of file content or of deleted 
files, and those that have never been allocated are represented with a 
0. Blocks and inodes that hold current file contents or metadata, and 
those that are reserved by the file system are represented with a 1. 
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Table 4- Default journal sizes for ext3 file systems (up to 2 GB). 

File System Size Block Size Journal Blocks Journal Size 

< 2 M B 
2 M B 

32 MB 
256 MB 
512 MB 
513 MB 

1 GB 
2 GB 

1,024 B 
1,024 B 
1,024 B 
1,024 B 
1,024 B 
4,096 B 
4,096 B 
4,096 B 

0 
1,024 
4,096 
8,192 

16,384 
4,096 
8,192 

16,384 

0 MB 
1 MB 
4 M B 
8 MB 

16 MB 
16 MB 
32 MB 
64 MB 

3.2 Ext3 Journal 
The size of the journal in an ext3 file system depends on the size of 

the file system (Table 4). By default, only metadata is stored in the 

journal. 

Table 5. Ext3 journal superblock structure. 

N a m e 

Header 
Block Size 
Block Count 
Start Block 
First Transaction Sequence 
First Transaction Block 
Error Number 
Features 
Journal UUID 
File System Count 
Superblock Copy 
Journal Blocks per Trans. 
FS Blocks per Trans. 
Unused 
F S I D s 

B y t e s 

12 
4 
4 
4 
4 
4 
4 

12 
4 
4 
4 
4 
4 

176 
768 

D e s c r i p t i o n 

Signature (0xC03B3998), block type 
Size of journal block in bytes 
Number of blocks in journal 
Block where journal s tarts 
Sequence number of the first transaction 
Journal block of first transaction 
Information on errors 
Features of the journal 
Universally unique identifier of the journal 
Number of file systems using journal 
Location of superblock copy 
Max. journal blocks per transaction 
Max. FS blocks per transaction 
Unused bytes 
IDs of file systems using the journal 

The first block in the journal always contains a special journal su­

perblock that has information specific to the journal (Table 5). Journal 

entries are stored in a circular queue and each entry has one commit 

block and at least one descriptor block (Table 6). The descriptor block 

provides the sequence number of the transaction and the file system 

blocks being stored. If the transaction involves more blocks than can be 



Header 
File System Block 
Entry Flags 
UUID 

12 
4 
4 

16 
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Table 6. Ext3 journal transaction descriptor block. 

Name Bytes Description 

Sig. (0xC03B3998), seq. num., block type 
File system block where content will be written 
Same UUID, last entry in descriptor block, etc. 
Only exists if the SAME_UUID flag is not set 

described in one descriptor block, another descriptor block is created to 
accommodate the remaining blocks. The commit block appears only at 
the end of the transaction. 

When a file system is in the data journaling mode, new versions of 
data are written to the journal before being written to disk. As with a 
ReiserFS journal, an ext3 journal can provide a wealth of information 
about the contents of old, deleted or modified files. 

4. Recovering Data from Journals 
A journal typically contains raw blocks that are to be written to the 

hard disk. These blocks may be unformatted user data or possibly blocks 
in the internal structure of the file system tree. Whenever a file is mod­
ified on the drive, the blocks containing raw data, either separately or 
in the metadata itself, are rewritten along with the metadata. Using 
the block map at the beginning of the journal can help determine which 
blocks are associated with which files. 

It is important to note that a journal contains more than just deleted 
files. Previous versions of files can also be found as well as the nature 
of their recent modifications. While MAC times convey only when a file 
was modified, created or accessed, a journal tracks which parts of the 
file were modified most recently. 

The following subsections discuss data recovery from journals in the 
Reiser and ext3 file systems, and a Java-based data recovery tool imple­
mented for the ext3 file system. 

4.1 ReiserFS Data Recovery 

ReiserFS has a standard journal size of 32 MB, enough for enormous 
amounts of data, including documents, images and other items. Deleting 
a file in ReiserFS, even with a secure deletion utility likely would not 
purge the journal (this, of course, depends on how the utility operates). 

Transactions in ReiserFS contain entire blocks of data to be written 
to the hard drive, serving as a cache for the computer. Furthermore, 
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transactions held in the cache are not deleted until it is overloaded, 
upon which time the oldest items in the circular queue structure are 
overwritten. Thus, transactions may be present for quite a while, and 
will likely contain copies of the most recent data. 

A ReiserFS journal may also contain evidence that a file was deleted 
and overwritten. This evidence usually manifests itself as large blocks 
of data (used for overwriting) that have suspicious patterns, e.g., all Os 
or Is. 

4.2 Ext3 Data Recovery 
In an ext3 file system with default journal settings, only changes to 

metadata are logged in the journal. For example, when a file is edited, 
the blocks logged in the journal are the primary group descriptor table, 
the inode of the directory entry and the directory entry of the directory 
that contains the file, the inode of the file, and the inode and data 
bitmaps of the file's block group. 

In the data journaling mode, all non-journal blocks are logged when 
modified. Therefore, when a file is edited, all the metadata are logged 
along with the new file content. While this metadata can be very useful 
from the point of view of data recovery, only the data blocks stored in 
the journal are considered for our purposes. To enable the journaling 
of all the data, it is necessary to mount the file system with the option 
data= j o u r n a l (in Linux). 

We have implemented a Java-based tool that analyzes extS journals 
for information about modified, deleted and overwritten files, as well as 
earlier versions of files. The data recovery tool uses a F i l e lnpu tS t r eam 
object to open a file system that is passed as a command line argument 
and it reads the file byte by byte. Upon opening the file, information 
is extracted from the superblock (number of inodes, number of blocks, 
block size, and address of the journal inode) and stored for future use. 

Based on the information stored in the journal inode, an array of 
JournalBlock objects is used to hold information about each journal 
block. The journal superblock is then searched to determine if each 
block is a descriptor, commit or data block; information about the data 
blocks is filled in from the data in the descriptor blocks. After this 
step, with the exception of entries that have had their descriptor entries 
overwritten, the tool discerns the type of entry of each journal block, its 
file system address, the sequence of which it was a part, if it was a data 
entry, and the file system block of which it was a copy. 

Next, the tool determines whether or not each block might contain 
deleted content. This is accomplished by checking to see if each block was 
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mount -o loop -t reiserfs image /mnt/image 
echo -e "I am writing this to tell you of secret, evil plans.\n\n\ 

Dr. Villain\n" » /mnt/image/home/secret.txt 

umount /mnt/image 

mount -0 loop -t reiserfs image /mnt/image 

dd if=/dev/zero of=/mnt/image/home/secret.txt bs=l count=128 

rm -rf /mnt/image/home/secret.txt 
umount /mnt/image 

Figure 4- Script for creating, overwriting and deleting files. 

a non-empty data block that was no longer in use according to the data 
bitmap or if the content held in the journal version of the block differed 
from the current version. If a block satisfies one of these conditions, the 
tool uses a FileOuputStream to write a string of header information 
about the block, including its file system address, the block of which it 
was an older version and which condition it met, along with the contents 
of the block. 

5. Data Recovery Experiments 

Experiments were performed on the Reiser and ext3 file systems to 
evaluate the feasibility of searching file system journals. 

5.1 ReiserFS Data Recovery 

A sample file system of 384 MB was created and seeded with approx­
imately 71 MB of data using a blank file system and adding in a base 
Gentoo Linux 2005.1-rl Stage 1 x86 instah file set. Next the script in 
Figure 4 was run to create a file, overwrite it and delete it. The test 
system was a Gentoo Linux box running a patched 2.6.12 (with the 
gentoo- r9 patch set) kernel using ReiserFS version 3.6. 

Existing forensic tools are unable to recover file data without review­
ing the hex dump of the entire drive. However, by examining the hex 
dump of the file system journal in blocks 18-8211, our data recovery tool 
is able to discern that the contents of the file are present in block 1407 
- even though the data was overwritten with zeros (Figure 5). 

Note that the block containing the directory entry is stored in the 
nearby journal block 1409 (Figure 6). Our data recovery tool uses this 
type of information to dissect journal blocks when searching for deleted 
or modified files. 

file:///n/n/
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0057f710 
0057f800 
0057f810 
0057f820 
0057f830 
0057f840 
0057f850 

7f 
20 
20 
72 
Oa 
00 
00 

26 
77 
74 
65 
Oa 
00 
00 

el 
72 
65 
74 
44 
00 
00 

43 
69 
6c 
2c 
72 
00 
00 

00 
74 
6c 
20 
20 
a4 
00 

00 
69 
20 
65 
56 
81 
00 

00 
6e 
79 
76 
69 
00 
00 

00 
67 
6f 
69 
6c 
00 
00 

00 
20 
75 
6c 
6c 
01 
00 

00 
74 
20 
20 
61 
00 
00 

00 
68 
6f 
70 
69 
00 
00 

00 
69 
66 
6c 
6e 
00 
00 

49 
73 
20 
61 
Oa 
42 
7d 

20 61 
20 74 
73 65 
6e 73 
Oa 00 
00 00 
00 ed 

6d 
6f 
63 
2e 
00 
00 
43 

.&.C I ami 
writing this tol 
tell you of seel 
ret, evil plans.I 
. .Dr Villain 1 

B...I 
}..CI 

Figure 5. Hex dump of ReiserFS journal block 1407. 

005816d0 50 00 04 00 80 a9 8a 78 
005816eO 40 00 04 00 73 65 63 72 
005816f0 00 00 00 00 2e 6b 65 65 
00581700 00 00 00 00 2e 00 00 00 

be 29 00 00 c2 29 00 00 |P x.)...)..I 
65 74 2e 74 78 74 00 00 |S...secret.txt..I 
70 00 00 00 2e 2e 00 00 I keep I 
00 00 00 00 ed 41 00 00 I A . . I 

Figure 6. Hex dump of ReiserFS journal block 1409. 

We wrote a tool to display the contents of a ReiserFS partition and 
verify deletes. Figure 7(a) shows a file ( s e c r e t . t x t ) in the /home di­
rectory before deletion. Figure 7(b) shows the directory after the file is 
deleted. 

The size of the journal (32 MB) precludes the abihty to look too 
far back in the past. Specifically, when more than 32 MB of data is 
written to a ReiserFS Linux file system, all previously-written data is 
not recoverable. 

Several types of file deletions have the side effect of flushing the jour­
nal. For example, using a standard technique (e.g., issuing the command 
dd i f= /dev /ze ro ) to zero a file before deleting it will push a number of 
blocks containing only zeros into the journal. If a file of size greater than 
32 MB is deleted in such a manner, the journal would contain practically 
nothing else. 

Most secure deletion programs bypass an operating system's journal-
ing constructs and directly read from or write to the hard disk. Curi­
ously, the act of bypassing the operating system has the effect of leaving 
more evidence in the journal. 

5.2 Ext3 Data Recovery 

Data recovery in an ext3 file system was tested using a 400 MB file 
system created with an 8 MB journal. The test set used for ext3 was 
identical to the one use for ReiserFS, except that the mount command 
was changed to: 

mount -o loop,data=journal -t ext3 image /mnt/image 
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(a) Before deletion (b) After deletion 

Figure 7. Contents of /home directory. 

The data recovery tool searched through the ext3 journal looking for 
possibly deleted file content. First, it determined which file system block 
the journal block had originally been a part of by examining the descrip­
tor blocks and whether or not that block was a data block. The tool 
then dumped the contents of the block into an output file if the data 
allocation bit of the associated file system block was 0 or if the content 
was different from the current content of the file system block. 

The tool was able to recover data even when files were overwritten and 
deleted. In the experiments, note that that the old file content is stored 
in journal block 7903 and the old directory entry is stored in journal 
block 7901. Figure 8 shows that the overwritten data is recoverable 
from the journal. 

6. Conclusions 
Because a file system journal caches data about file writes, analyzing 

the journal can provide valuable information about earlier versions of 
files. Under the right circumstances, a journal reveals information about 
deleted files and previous versions of files without having to review the 
hex dump of the drive. A journal may also yield evidence about files 
that are overwritten or removed by a secure deletion utility. 
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08c6000 
08c6010 
08C6020 
08C6030 

08c6040 

08c58d0 
08c5BeO 
08c58f0 

49 20 61 6d 20 77 72 69 
73 20 74 6f 20 74 65 6c 
20 73 65 63 72 65 74 2c 
61 6e 73 2e Oa Oa 44 72 

6e Oa 00 00 00 00 00 00 

68 6f 6d 65 01 88 01 00 
01 10 00 00 20 03 Oa 01 
78 74 00 00 00 00 00 00 

74 69 6e 67 20 74 68 69 
6c 20 79 6f 75 20 6f 66 
20 65 76 69 6c 20 70 6c 

2e 20 56 69 6c 6c 61 69 
00 00 00 00 00 00 00 00 

Oc 00 03 02 73 79 73 00 
73 65 63 72 65 74 2e 74 
00 00 00 00 00 00 00 00 

II am writing thiI 

1s to tell you of 1 
1 secret, evil pi 1 
lans...Dr. VillaiI 

In 1 

1 secret. 11 
1 xt 1 

Figure 8. Hex dump of ext3 journal. 

Despite the importance of a journal as an evidence container, few, if 
any, digital forensic tools consider journaled data during evidence recov­
ery. Our Java-based tool demonstrates the feasibihty of recovering data 
from ext3 journals, and the experimental results obtained for the Reiser 
and extS file systems are very promising. 

Future work should focus on analyzing journals in NTFS and HFSJ, 
the default file systems for newer versions of Windows and Mac OS X, 
respectively. NTFS is similar to ReiserFS; moreover, NTFS's variable-
sized journal feature removes certain hmitations to data recovery im­
posed by ReiserFS [7]. However, neither NTFS nor HFSJ is as well 
documented as ReiserFS and extS. Consequently, the tasks of develop­
ing forensically-sound journal data recovery and analysis tools for these 
file systems would be much more difficult. 

File system journals contain valuable evidence pertaining to cases 
ranging from child pornography and software piracy to financial fraud 
and network intrusions. Digital forensic investigators should be aware 
of the data cached in file system journals and its use in digital inves­
tigations. Meanwhile, the digital forensics research community should 
focus its efforts on file system journal forensics and develop novel journal 
data extraction and analysis techniques that could be implemented in 
the next generation of computer forensic tools. 
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