
Chapter 16

FILE SYSTEM JOURNAL FORENSICS

Christopher Swenson, Raquel Philhps and Sujeet Shenoi

Abstract Journaling is a relatively new feature of modern file systems that is not
yet exploited by most digital forensic tools. A file system journal caches
data to be written to the file system to ensure that it is not lost in the
event of a power loss or system malfunction. Analysis of journal data
can identify which files were overwritten recently. Indeed, under the
right circumstances, analyzing a file system journal can reveal deleted
files and previous versions of files without having to review the hex dump
of a drive. This paper discusses data recovery from ReiserFS and ext3,
two popular journaled file systems. It also describes a Java-based tool
for analyzing ext3 file system journals and recovering data pertaining
to overwritten and deleted files.

Keywords: File system forensics, journaling, ReiserFS, ext3

!• Introduction
Traditional computer forensics involves acquiring and analyzing file

system images. Most forensic tools exploit file system features to obtain
evidence. For example, the tools may find hidden or deleted data in
FAT, ext2 and NTFS file systems by examining the slack space and free
space, or by searching through the file system tree itself [3, 8].

Journaling is an advanced file system integrity feature [6, 10, 13]
that is not exploited by most digital forensic tools. This feature is em­
ployed in virtually all modern file systems, including NTFS (Windows
NT/2000/XP), HFSJ (Mac OS X), ext3 (Linux) and ReiserFS (Linux).

A file system journal works by caching some or all of the data writes
in a reserved portion of the disk before they are committed to the
file system. In the event of an unexpected power loss, malfunction or
other anomaly, the journal could be replayed to complete any unfin­
ished writes, preventing file system corruption due to incomplete write
operations. This also means that previous file writes are stored for lim-

Please use the following format when citing this chapter:

Swenson, C, Phillips, R., Shenoi, S., 2007, in IFIP International Federation for Information Processing, Volume 242,
Advances in Digital Forensics III; eds. P. Craiger and S Shenoi;(Boston: Springer), pp. 231-244.

232 ADVANCES IN DIGITAL FORENSICS III

ited periods of time in the journal, i.e., outside the normal file system.
Therefore, even if a file is overwritten or securely deleted, it may be
possible to recover the old contents by analyzing the journal. Indeed,
under the right circumstances, analyzing a file system journal can reveal
deleted files and previous versions of files without having to review the
hex dump of the entire drive.

This paper focuses on file system journal forensics, with particular
attention to the Reiser [9] and ext3 [12] journaled file systems. The
next two sections describe the structure and organization of the Reiser
(v. 3) and ext3 file systems, including their journaling features. Section
4 discusses how file system journals may be analyzed to recover data
about overwritten and deleted files; it also describes a Java-based tool
for ext3 journal data recovery and analysis. Section 5 highhghts the
experimental results obtained when searching ReiserFS and ext3 journals
for information about overwritten and deleted files. The final section
presents some concluding remarks.

Reserved (64K) Super Block

Data Blocks

Bi tmap Block Data Blocks

Bi tmap Block Data Blocks

Journal

Figure 1. ReiserFS block structure.

2. Reiser File System
This section describes the structure of the Reiser File System (Reis­

erFS), including its journaling feature [1, 9].

2.1 ReiserFS Structure
ReiserFS has a block structure with fixed-size blocks (usually 4,096

bytes). The ReiserFS block structure is shown in Figure 1.
The superblock is the first block of the ReiserFS structure. The struc­

ture of a superblock is presented in Table 1. Unlike some other file
systems (e.g., ext2), ReiserFS has only one copy of the superblock.

ReiserFS bitmap blocks are special blocks that identify used and un­
used blocks. Each bit in a bitmap block acts as a "used bit" for a single
block in the file system.

Swenson, Phillips & Shenoi 233

Table 1. Superblock structure 3.6.

Name Bytes Description

Block Count
Free Blocks
Root Block
Journal Information
Block Size
Object ID Max. Size
Object ID Current Size
State
Magic String
Hash Function
Tree Height
Bi tmap Number
Version
Reserved
Inode Generation

4
4
4

28
2
2
2
2

12
4
2
2
2
2
4

Number of blocks in file system
Number of unallocated blocks
Location of the root block
Various aspects of the journal
File system block size
Maximum size of the OIDs
Current size of the OIDs
Whether the partition is clean
ReIsEr2Fs
File name hash function
Height of file system B-tree
Number of bi tmap blocks
Version of the superblock
Reserved
Rebalancing count

Block Header Key 0 Key n Pointer 0 Pointer n

Figure 2. ReiserFS internal block contents.

ReiserFS has three types of data blocks: (i) unformatted data blocks,
(ii) internal blocks, and (iii) leaf blocks. An unformatted data block
contains raw data that corresponds to the contents of indirect files. An
internal block contains pointers to data in the file system B-tree [4].
Figure 2 shows the contents of an internal block (internal B-tree node).
A leaf block corresponds to the end node of the file system tree. It
contains statistics, information about directories and possibly data itself.

2.2 ReiserFS Journal
ReiserFS in Linux has a fixed-size journal consisting of 8,192 4,096-

byte blocks, plus a 4,096-byte header block, corresponding to a total
size of approximately 32 MB. Note that the journal is only supported
for 4,096-byte blocks. However, this is not a problem, as other block
sizes are never used.

234 ADVANCES IN DIGITAL FORENSICS III

The header block uses the first 12 bytes to keep track of which block
was last flushed and where to begin the next flush, as well as to mount
information. The remaining 4,084 bytes are reserved.

Transaction ID Length
Real Block

Address
Real Block

Address ?~ — 1
Magic Number

RelsErLB

Figure 3. Transaction description block for ReiserFS.

The remainder of the journal comprises a series of transactions in a
circular queue. Each transaction begins with a description block, iden­
tifying the transaction and providing half of a map that identifies where
to put the data blocks (Figure 3). This is followed by the actual data
blocks to be written.

A transaction is terminated by a final commit block that contains
the remaining portion of the block map and a digest of the transaction.
The structure is identical to the description block, except that the magic
number is replaced by a 16-byte digest.

3. Ext3 File System
The ext3 file system extends the earlier ext2 file system [2] by adding

a journahng feature [11, 12]. ExtS has rapidly become the most popular
journaled file system in Linux, and is usually the default choice for new
installations [5]. This section describes the structure and journahng
features of the ext3 file system.

3.1 Ext3 Structure
Ext3, hke ReiserFS, is based on a block structure. The block size is

the same throughout a single file system; depending on the file system
size, however, the default value is either 1,024 or 4,096 bytes. The first
1,024 bytes of an extS file system are always reserved. If the file system
contains the boot kernel, these bytes will hold boot information.

The extS superblock stores general file system information, e.g., name,
block size and the last time it was mounted. An ext3 file system has
one primary superblock, although backup copies may also be stored
throughout the file system. The primary copy begins at the 1,024*'̂
byte. Table 2 provides details about the ext3 superblock structure.

An extS file system maintains file metadata in data structures called
inodes. Inodes are stored in special blocks called inode tables. The
inodes are 256 bytes long by default.

Swenson, Phillips & Shenoi 235

Table 2. Ext3 superblock structure.

N a m e

Inode Count
Block Count
Blocks Reserved
Free Block Count
Free Inode Count
Group 0
Block Size
Fragment Size
Blocks per Block Grp.
Fragments per Block Grp.
Inodes per Block Grp.
Last Mount Time
Last Writ ten Time
Mount Information
Signature
File System State
Error Handling Method
Minor Version
Consistency Check
Creator OS
Major Version
Reserved Block UID/GID
First Inode
Inode Size
Block Grp. Loc. of Copy
Feature Flags
File System ID
Volume Name
Other Misc. Information
Journal Information
Orphan Inodes
Unused

B y t e s

4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
8
4
4
4
4
2
2

12
16
16
72
24
4

788

D e s c r i p t i o n

Total number of inodes in file system
Total number of blocks in file system
Reserved block count to prevent overfill
Number of unallocated blocks
Number of unallocated inodes
Block where first block group starts
Left shifts of 1024 to obtain block size
Left shifts of 1024 to obtain fragment size
Blocks in a typical block group
Fragment count in a typical block group
Inodes in a typical block group
Seconds from epoch to last mount t ime
Seconds from epoch to last write t ime
Total and max. mounts of file system
0xEF53
Clean, error, recovering orphan inodes
Continue, remount as read only, or panic
Original or dynamic
Last performed, interval
Linux, FreeBSD, etc.
Original or dynamic
UID/GID tha t can use reserved blocks
First non-reserved inode in file system
Size of inode in bytes
If backup copy, group of copy
Features of the file system
UUID of file system
OS's name for the volume
Misc.
UUID, metada ta inode, device
Head of orphan inode list
Unused bytes

Each inode structure can hold up to twelve direct pointers, corre­
sponding to the addresses of the file system blocks where the first twelve
blocks of the file are located. If the file is too large to fit into twelve blocks
(usually 12 KB or 48 KB), pointers are maintained to single, double and
triple indirect pointer blocks. A single indirect pointer is the address of
a file system block composed of all direct pointers. By extension, double
and triple indirect pointers point to file system blocks containing sin­
gle and double indirect pointers, respectively. Table 3 provides details
about the structure of an ext3 inode.

236 ADVANCES IN DIGITAL FORENSICS III

Table 3. Ext3 inode structure.

Name

File Mode
User ID
File Size
ACMD Times
Group ID
Link Count
Sector Count
Flags
Unused
Direct Pointers
Single Indirect Pointer
Double Indirect Pointer
Triple Indirect Pointer
Misc. Information
File Size
Fragment Information
Unused
User ID
Group ID
Unused

Bytes

2
2
4

16
2
2
4
4
4

48
4
4
4
8
4
9
2
2
2
2

Description

Permission flags and flle type
Lower 16 bits of user ID
Lower 32 bits of size in bytes
Most recent access, creation, mod., del. times
Lower 16 bits of group ID
Number of existing links to the file
Sector occupied by the file
Assorted flags
Unused bytes
12 direct pointers
1 single indirect pointer
1 double indirect pointer
1 triple indirect pointer
NFS gen. number, extended attribute block
Upper 32 bits of size in bytes
Address, count and size
Unused bytes
Upper 16 bits of user ID
Upper 16 bits of group ID
Unused bytes

Ext3 blocks are clustered into block groups. Block groups are de­
scribed in a block or set of blocks called the group descriptor table,
which always follows the superblock or a copy of the superblock. By de­
fault, an ext3 file system invokes a feature called a "sparse superblock,"
in which not every block group contains a copy of the superblock and
group descriptor table; however, if these are present, they are stored in
the first several blocks of the group. The number of block groups in a
file system depends on the size of a block and the total size of the file
system. The number of blocks in a block group is always eight times the
number of bytes in a block, and the inodes are distributed evenly among
the block groups.

Each block group contains two bitmap blocks, one for blocks and the
other for inodes. Each bit in a bitmap reflects the status of one of
the blocks or inodes in the group as allocated or unallocated. Blocks
and inodes corresponding to older versions of file content or of deleted
files, and those that have never been allocated are represented with a
0. Blocks and inodes that hold current file contents or metadata, and
those that are reserved by the file system are represented with a 1.

Swenson, Phillips & Shenoi 237

Table 4- Default journal sizes for ext3 file systems (up to 2 GB).

File System Size Block Size Journal Blocks Journal Size

< 2 M B
2 M B

32 MB
256 MB
512 MB
513 MB

1 GB
2 GB

1,024 B
1,024 B
1,024 B
1,024 B
1,024 B
4,096 B
4,096 B
4,096 B

0
1,024
4,096
8,192

16,384
4,096
8,192

16,384

0 MB
1 MB
4 M B
8 MB

16 MB
16 MB
32 MB
64 MB

3.2 Ext3 Journal
The size of the journal in an ext3 file system depends on the size of

the file system (Table 4). By default, only metadata is stored in the

journal.

Table 5. Ext3 journal superblock structure.

N a m e

Header
Block Size
Block Count
Start Block
First Transaction Sequence
First Transaction Block
Error Number
Features
Journal UUID
File System Count
Superblock Copy
Journal Blocks per Trans.
FS Blocks per Trans.
Unused
F S I D s

B y t e s

12
4
4
4
4
4
4

12
4
4
4
4
4

176
768

D e s c r i p t i o n

Signature (0xC03B3998), block type
Size of journal block in bytes
Number of blocks in journal
Block where journal s tarts
Sequence number of the first transaction
Journal block of first transaction
Information on errors
Features of the journal
Universally unique identifier of the journal
Number of file systems using journal
Location of superblock copy
Max. journal blocks per transaction
Max. FS blocks per transaction
Unused bytes
IDs of file systems using the journal

The first block in the journal always contains a special journal su­

perblock that has information specific to the journal (Table 5). Journal

entries are stored in a circular queue and each entry has one commit

block and at least one descriptor block (Table 6). The descriptor block

provides the sequence number of the transaction and the file system

blocks being stored. If the transaction involves more blocks than can be

Header
File System Block
Entry Flags
UUID

12
4
4

16

238 ADVANCES IN DIGITAL FORENSICS III

Table 6. Ext3 journal transaction descriptor block.

Name Bytes Description

Sig. (0xC03B3998), seq. num., block type
File system block where content will be written
Same UUID, last entry in descriptor block, etc.
Only exists if the SAME_UUID flag is not set

described in one descriptor block, another descriptor block is created to
accommodate the remaining blocks. The commit block appears only at
the end of the transaction.

When a file system is in the data journaling mode, new versions of
data are written to the journal before being written to disk. As with a
ReiserFS journal, an ext3 journal can provide a wealth of information
about the contents of old, deleted or modified files.

4. Recovering Data from Journals
A journal typically contains raw blocks that are to be written to the

hard disk. These blocks may be unformatted user data or possibly blocks
in the internal structure of the file system tree. Whenever a file is mod­
ified on the drive, the blocks containing raw data, either separately or
in the metadata itself, are rewritten along with the metadata. Using
the block map at the beginning of the journal can help determine which
blocks are associated with which files.

It is important to note that a journal contains more than just deleted
files. Previous versions of files can also be found as well as the nature
of their recent modifications. While MAC times convey only when a file
was modified, created or accessed, a journal tracks which parts of the
file were modified most recently.

The following subsections discuss data recovery from journals in the
Reiser and ext3 file systems, and a Java-based data recovery tool imple­
mented for the ext3 file system.

4.1 ReiserFS Data Recovery

ReiserFS has a standard journal size of 32 MB, enough for enormous
amounts of data, including documents, images and other items. Deleting
a file in ReiserFS, even with a secure deletion utility likely would not
purge the journal (this, of course, depends on how the utility operates).

Transactions in ReiserFS contain entire blocks of data to be written
to the hard drive, serving as a cache for the computer. Furthermore,

Swenson, Phillips & Shenoi 239

transactions held in the cache are not deleted until it is overloaded,
upon which time the oldest items in the circular queue structure are
overwritten. Thus, transactions may be present for quite a while, and
will likely contain copies of the most recent data.

A ReiserFS journal may also contain evidence that a file was deleted
and overwritten. This evidence usually manifests itself as large blocks
of data (used for overwriting) that have suspicious patterns, e.g., all Os
or Is.

4.2 Ext3 Data Recovery
In an ext3 file system with default journal settings, only changes to

metadata are logged in the journal. For example, when a file is edited,
the blocks logged in the journal are the primary group descriptor table,
the inode of the directory entry and the directory entry of the directory
that contains the file, the inode of the file, and the inode and data
bitmaps of the file's block group.

In the data journaling mode, all non-journal blocks are logged when
modified. Therefore, when a file is edited, all the metadata are logged
along with the new file content. While this metadata can be very useful
from the point of view of data recovery, only the data blocks stored in
the journal are considered for our purposes. To enable the journaling
of all the data, it is necessary to mount the file system with the option
data= j o u r n a l (in Linux).

We have implemented a Java-based tool that analyzes extS journals
for information about modified, deleted and overwritten files, as well as
earlier versions of files. The data recovery tool uses a F i l e lnpu tS t r eam
object to open a file system that is passed as a command line argument
and it reads the file byte by byte. Upon opening the file, information
is extracted from the superblock (number of inodes, number of blocks,
block size, and address of the journal inode) and stored for future use.

Based on the information stored in the journal inode, an array of
JournalBlock objects is used to hold information about each journal
block. The journal superblock is then searched to determine if each
block is a descriptor, commit or data block; information about the data
blocks is filled in from the data in the descriptor blocks. After this
step, with the exception of entries that have had their descriptor entries
overwritten, the tool discerns the type of entry of each journal block, its
file system address, the sequence of which it was a part, if it was a data
entry, and the file system block of which it was a copy.

Next, the tool determines whether or not each block might contain
deleted content. This is accomplished by checking to see if each block was

240 ADVANCES IN DIGITAL FORENSICS III

mount -o loop -t reiserfs image /mnt/image
echo -e "I am writing this to tell you of secret, evil plans.\n\n\

Dr. Villain\n" » /mnt/image/home/secret.txt

umount /mnt/image

mount -0 loop -t reiserfs image /mnt/image

dd if=/dev/zero of=/mnt/image/home/secret.txt bs=l count=128

rm -rf /mnt/image/home/secret.txt
umount /mnt/image

Figure 4- Script for creating, overwriting and deleting files.

a non-empty data block that was no longer in use according to the data
bitmap or if the content held in the journal version of the block differed
from the current version. If a block satisfies one of these conditions, the
tool uses a FileOuputStream to write a string of header information
about the block, including its file system address, the block of which it
was an older version and which condition it met, along with the contents
of the block.

5. Data Recovery Experiments

Experiments were performed on the Reiser and ext3 file systems to
evaluate the feasibility of searching file system journals.

5.1 ReiserFS Data Recovery

A sample file system of 384 MB was created and seeded with approx­
imately 71 MB of data using a blank file system and adding in a base
Gentoo Linux 2005.1-rl Stage 1 x86 instah file set. Next the script in
Figure 4 was run to create a file, overwrite it and delete it. The test
system was a Gentoo Linux box running a patched 2.6.12 (with the
gentoo- r9 patch set) kernel using ReiserFS version 3.6.

Existing forensic tools are unable to recover file data without review­
ing the hex dump of the entire drive. However, by examining the hex
dump of the file system journal in blocks 18-8211, our data recovery tool
is able to discern that the contents of the file are present in block 1407
- even though the data was overwritten with zeros (Figure 5).

Note that the block containing the directory entry is stored in the
nearby journal block 1409 (Figure 6). Our data recovery tool uses this
type of information to dissect journal blocks when searching for deleted
or modified files.

file:///n/n/

Swenson, Phillips & Shenoi 241

0057f710
0057f800
0057f810
0057f820
0057f830
0057f840
0057f850

7f
20
20
72
Oa
00
00

26
77
74
65
Oa
00
00

el
72
65
74
44
00
00

43
69
6c
2c
72
00
00

00
74
6c
20
20
a4
00

00
69
20
65
56
81
00

00
6e
79
76
69
00
00

00
67
6f
69
6c
00
00

00
20
75
6c
6c
01
00

00
74
20
20
61
00
00

00
68
6f
70
69
00
00

00
69
66
6c
6e
00
00

49
73
20
61
Oa
42
7d

20 61
20 74
73 65
6e 73
Oa 00
00 00
00 ed

6d
6f
63
2e
00
00
43

.&.C I ami
writing this tol
tell you of seel
ret, evil plans.I
. .Dr Villain 1

B...I
}..CI

Figure 5. Hex dump of ReiserFS journal block 1407.

005816d0 50 00 04 00 80 a9 8a 78
005816eO 40 00 04 00 73 65 63 72
005816f0 00 00 00 00 2e 6b 65 65
00581700 00 00 00 00 2e 00 00 00

be 29 00 00 c2 29 00 00 |P x.)...)..I
65 74 2e 74 78 74 00 00 |S...secret.txt..I
70 00 00 00 2e 2e 00 00 I keep I
00 00 00 00 ed 41 00 00 I A . . I

Figure 6. Hex dump of ReiserFS journal block 1409.

We wrote a tool to display the contents of a ReiserFS partition and
verify deletes. Figure 7(a) shows a file (s e c r e t . t x t) in the /home di­
rectory before deletion. Figure 7(b) shows the directory after the file is
deleted.

The size of the journal (32 MB) precludes the abihty to look too
far back in the past. Specifically, when more than 32 MB of data is
written to a ReiserFS Linux file system, all previously-written data is
not recoverable.

Several types of file deletions have the side effect of flushing the jour­
nal. For example, using a standard technique (e.g., issuing the command
dd i f= /dev /ze ro) to zero a file before deleting it will push a number of
blocks containing only zeros into the journal. If a file of size greater than
32 MB is deleted in such a manner, the journal would contain practically
nothing else.

Most secure deletion programs bypass an operating system's journal-
ing constructs and directly read from or write to the hard disk. Curi­
ously, the act of bypassing the operating system has the effect of leaving
more evidence in the journal.

5.2 Ext3 Data Recovery

Data recovery in an ext3 file system was tested using a 400 MB file
system created with an 8 MB journal. The test set used for ext3 was
identical to the one use for ReiserFS, except that the mount command
was changed to:

mount -o loop,data=journal -t ext3 image /mnt/image

242 ADVANCES IN DIGITAL FORENSICS III

(a) Before deletion (b) After deletion

Figure 7. Contents of /home directory.

The data recovery tool searched through the ext3 journal looking for
possibly deleted file content. First, it determined which file system block
the journal block had originally been a part of by examining the descrip­
tor blocks and whether or not that block was a data block. The tool
then dumped the contents of the block into an output file if the data
allocation bit of the associated file system block was 0 or if the content
was different from the current content of the file system block.

The tool was able to recover data even when files were overwritten and
deleted. In the experiments, note that that the old file content is stored
in journal block 7903 and the old directory entry is stored in journal
block 7901. Figure 8 shows that the overwritten data is recoverable
from the journal.

6. Conclusions
Because a file system journal caches data about file writes, analyzing

the journal can provide valuable information about earlier versions of
files. Under the right circumstances, a journal reveals information about
deleted files and previous versions of files without having to review the
hex dump of the drive. A journal may also yield evidence about files
that are overwritten or removed by a secure deletion utility.

Swenson, Phillips & Shenoi 243

08c6000
08c6010
08C6020
08C6030

08c6040

08c58d0
08c5BeO
08c58f0

49 20 61 6d 20 77 72 69
73 20 74 6f 20 74 65 6c
20 73 65 63 72 65 74 2c
61 6e 73 2e Oa Oa 44 72

6e Oa 00 00 00 00 00 00

68 6f 6d 65 01 88 01 00
01 10 00 00 20 03 Oa 01
78 74 00 00 00 00 00 00

74 69 6e 67 20 74 68 69
6c 20 79 6f 75 20 6f 66
20 65 76 69 6c 20 70 6c

2e 20 56 69 6c 6c 61 69
00 00 00 00 00 00 00 00

Oc 00 03 02 73 79 73 00
73 65 63 72 65 74 2e 74
00 00 00 00 00 00 00 00

II am writing thiI

1s to tell you of 1
1 secret, evil pi 1
lans...Dr. VillaiI

In 1

1 secret. 11
1 xt 1

Figure 8. Hex dump of ext3 journal.

Despite the importance of a journal as an evidence container, few, if
any, digital forensic tools consider journaled data during evidence recov­
ery. Our Java-based tool demonstrates the feasibihty of recovering data
from ext3 journals, and the experimental results obtained for the Reiser
and extS file systems are very promising.

Future work should focus on analyzing journals in NTFS and HFSJ,
the default file systems for newer versions of Windows and Mac OS X,
respectively. NTFS is similar to ReiserFS; moreover, NTFS's variable-
sized journal feature removes certain hmitations to data recovery im­
posed by ReiserFS [7]. However, neither NTFS nor HFSJ is as well
documented as ReiserFS and extS. Consequently, the tasks of develop­
ing forensically-sound journal data recovery and analysis tools for these
file systems would be much more difficult.

File system journals contain valuable evidence pertaining to cases
ranging from child pornography and software piracy to financial fraud
and network intrusions. Digital forensic investigators should be aware
of the data cached in file system journals and its use in digital inves­
tigations. Meanwhile, the digital forensics research community should
focus its efforts on file system journal forensics and develop novel journal
data extraction and analysis techniques that could be implemented in
the next generation of computer forensic tools.

References

[1] F. Buchholz, The structure of the Reiser file system (homes.cerias
.purdue.edu/~florian/reiser/reiserfs.php).

[2] R. Card, T. Ts'o and S. Tweedie, Design and implementation of
the Second Extended File System, Proceedings of the First Dutch
International Symposium on Linux (web.mit.edu/tytso/www/linux
/ext2intro.html), 1994.

http://purdue.edu/~florian/reiser/reiserfs.php
http://web.mit.edu/tytso/www/linux

244 ADVANCES IN DIGITAL FORENSICS III

[3] B. Carrier, File System Forensic Analysis, Addison-Wesley, Craw-

fordsville, Indiana, 2005.

[4] T. Gormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2001.

[5] Fedora Project Board, Fedora Core (fedoraproject.org).

[6] G. Ganger and Y. Patt, Soft Updates: A Solution to the Metadata
Update Problem in File Systems, Technical Report CSE-TR-254-95,
Computer Science and Engineering Division, University of Michi­
gan, Ann Arbor, Michigan, 1995.

[7] NTFS.com, Data integrity and recoverability with NTFS
(www.ntfs.com/data-integrity.htm).

[8] S. Piper, M. Davis, G. Manes and S. Shenoi, Detecting misuse in re­
served portions of ext2/3 file systems, in Advances in Digital Foren-
sics, M. Pollitt and S. Shenoi (Eds.), Springer, New York, pp. 245-
256, 2005.

[9] H. Reiser, ReiserFS v3 whitepaper (www.namesys.com/XOreiserfs
.html), 2002.

[10] M. Rosenblum and J. Ousterhout,The design and implementation
of a log-structured file system, ACM Transactions on Computer
Systems, vol. 10(1), pp. 26-52, 1992.

[11] S. Tweedie, Journaling the Linux ext2fs filesystem, presented at
the Fourth Annual Linux Expo (jamesthornton.com/hotlist/linux-
filesystems/ext3-journal-design.pdf), 1998.

[12] S. Tweedie, Ext3: Journahng filesystem (olstrans.sourceforge.net
/release/OLS2000-ext3/OLS 2000-ext3.html), July 20, 2000.

[13] U. Vahaha, C. Gray and D. Ting, Metadata logging in an NFS
server. Proceedings of the US ENIX Technical Conference on Unix
and Advanced Computing Systems, pp. 265-276, 1995.

http://fedoraproject.org
http://NTFS.com
http://www.ntfs.com/data-integrity.htm
http://www.namesys.com/XOreiserfs
http://jamesthornton.com/hotlist/linux-
http://olstrans.sourceforge.net

