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Abstract. Wrapping parallel programs or parallel numerical library functions 
into software components and using them as computation services in service-
oriented programming presents a method of delivering powerful computation 
capabilities of multi-processor supercomputers to the application developers 
who may only familiar with their desk-top or hand-held computing 
environment. These parallel computation services on computer clusters are 
used as ordinary software components on the desktop programming 
environment with their internal parallel or distributed characteristics hidden 
from the users. In order to use the parallel scientific computation applications 
and libraries as the software components conveniently in the development of 
new applications, a parallel computation service model and the runtime system 
that support this model on computer clusters are presented and some design 
and implementation issues are discussed in this article. 

1 Introduction 

Parallel and distributed computing on computer clusters is an effective way to speed 
up large-scale scientific computations. However, it is more difficult to build up 
applications on such environment than that on a sequential machine. A traditional 
way of developing a large application on such environment usually requires a great 
deal of tight collaboration between experts in computer architecture, algorithm 
design and application area and leads to a monolithic program. Although there are 
many successful sophisticated parallel scientific libraries and packages available 
such as PETSC [1, 2], SCALAPACK [3] and BLACS [4] for application developers,
it still requires the application developers to have certain degree of expertise in 
programming on such parallel/distributed computing environment. When using these 
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libraries, one usually needs to know how to initiate such environment in the code 
before using the library functions and know how to compile his/her own code with 
the libraries on the parallel computer and to start the application using some job and 
resource management tools. The debugging of parallel program on a computer 
cluster is even more difficult.  For those scientists and engineers who are not familiar 
with parallel/distributed programming on computer clusters, these difficulties could 
be a serious obstacle for development of applications requiring high performance 
computation. 

Service-oriented programming is a way to ease the difficulties mentioned. It 
separates the development of computation services components from the 
development of applications composed from the services. The development of 
computation services put the efforts on the design and implementation of algorithms 
of the services to make them efficient and reliable on their runtime environment, 
while the development of applications using selected services would focus the efforts 
on the business logic and the workflow of the applications. 

In this paper, THCORE, a component model and its runtime systems are 
introduced. It unifies the interface of components running on sequential and 
parallel/distributed computers. The implementation differences between the 
components on sequential and parallel/distributed machines are encapsulated inside 
the component and managed by the corresponding component runtime systems. In 
this model, application developers do not need to have knowledge of parallel 
programming but still could use the computation power of parallel computers. The 
parallel computation services implemented as the THCORE components are used to 
compose the application in the same way as other components. The well developed 
and frequently used mathematics libraries, legacy packages, and even applications 
could be wrapped into components to provide computation services for other 
applications. The detail of the parallel computational service model of THCORE and 
its runtime system on computer clusters are presented. 

The rest of the paper is organized as the following. An overview of THCORE 
and other related works are presented in section 2. The parallel computing service 
component model will be introduced in Section 3. The component runtime system 
for computer clusters is introduced and discussed in Section 4. In Section 5 the 
performance issues is discussed. Some experiment results that evaluate the overhead 
of componentization is shown. Related work will be mentioned in Section 6. The last 
section gives the conclusion and direction of future work. 

2 Overview of THCORE and Related Work 

THCORE is designed as a lightweight, efficient and reflective component platform 
for pervasive computing. It is written in C for the best performance and minimum 
memory footprint. Its component model adopts the component object model of 
Microsoft’s COM/DCOM with some new extensions to suit the pervasive computing 
environment that includes as well as embedded systems and high performance 
computer systems. THCORE supports the binary level interoperability protocol, 
transparent local/remote invocations as in COM/DCOM. It deploys a standard 
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runtime substrate that manages the execution context of components. For example, a 
component can be instantiated in different running spaces: it can be created in the 
same process of application for efficiency, or be created outside the application 
process for system isolation, or it could even be created on remote machine 
connected via network.  

Multi-level reflection is one of the new features brought into THCORE 
component model. It provides the access to both interface-level and component-level 
Meta data. Interface-level Meta data contains the definition of interfaces, functions 
and parameters. It provides the finest grain of self-description information of the 
system, and it is obtained by using the IMetaInterface interface of THCORE 
component. With the help of this, middleware can dynamically load components and 
invoke the method without generating accessing code. Component-level Meta data is 
used to describe a component’s requirement of execution context (such as hardware 
and OS requirement). The Meta data in this level also contains the information of the 
reliance of dependency that one component lies on others. Component-level Meta 
data can be accessed by ICompMetaInterface interface of THCORE component. This 
reflection feature is very useful in supporting adaptive programming.   

Some system services are provided for programming with THCORE model and 
platform, including event service, cache service and parallel computing service. 
Some THCORE related research projects have been reported. PURPLE [12, 13] is a 
component-based reflective middleware for pervasive computing which is built upon 
THCORE platform. It provides support for adaptive context-aware programming. 
The structural and functional modules that compose the middleware platform are 
THCORE components. THAOP [14] is a lightweight and flexible Aspect Oriented 
Programming Framework based on THCORE component platform. It provides 
support for component-level AOP. FT_THCORE [15] is a fault tolerant extension of 
THCORE specification and platform. It implements the easy component replication 
and voting strategy so that it supports N-Version Programming.  

As the applications in pervasive computing usually involve several different 
computation environments ranging from resource limited mobile/handheld devices to 
powerful multi-processor supercomputers, THCORE is design to provide the 
interoperability between computation components (services) on different 
environments. As it is lightweight, THCORE can be installed on the resource limited 
devices. The discussion of the extension on COM/DCOM for embedded devices will 
not be discussed in this paper. But, the model adopted from COM/DCOM may not 
be viable for the parallel program directly. There are two design issues need to be 
considered. First, we wish to hide parallel programming from the programming with 
THCORE. Second, we allow the services components to be implemented by parallel 
program and executed on parallel/distributed computer systems. The details of the 
design and implementation for the extension of component model for parallel 
computation services and the correspondent runtime system on the computer clusters 
are discussed in section 3 and 4.  

It is not a new topic to hide the parallel programming from the development of 
applications while the computation power from parallel programming is used for the 
execution of the application. Take Matlab for example. It is well known that Matlab 
is a convenient tool for engineering computation. It does not introduce explicit 
parallel computation concept into its programming. But it may need large amount of 
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computation power so much that the parallel computing may become necessary. 
Researchers have presented many methods to make parallel Matlab. A survey was 
performed [9] and 27 parallel MATLAB projects, such as MatPar, MatLab*P and so 
on are found through extensive web searching. The approaches to make MATLAB 
parallel are different: some compile MATLAB scripts into parallel native code; some 
provide a parallel backend to MATLAB, using MATLAB as a graphical front-end; 
and some others coordinate multiple MATLAB processes to work in parallel [10]. 
Take Matpar [5] for example. Matpar is a software program in C/S model that allows 
MATLAB users to take advantage of a parallel computer. Some calls to certain built-
in MATLAB functions are replaced with calls to Matpar functions on the client side. 
The code of Matpar function calls in turn initiates a session on a parallel computer. 
The parallel code uses parallel mathematical libraries to produce a solution that is 
sent back to the calling program. Because of the limitation of the model, Matpar is 
difficult to be reused to build other applications. And it is difficult for Matpar to deal 
with different software and hardware environment. As the compiler is special 
designed for Matpar and Matpar is based on some parallel mathematics libraries, it is 
quite difficult to expand the functions that Matpar is supporting. 

As a component model designed specifically for high performance computing, 
CCA (Common Component Architecture) [11] is better known in the HPC 
community. In CCA, components interact with each other and with a specific 
framework implementation through standard application programming interfaces 
(APIs). Each component can define its inputs and outputs by using a scientific 
interface definition language (SIDL); these definitions can be deposited in and 
retrieved from a repository by using a CCA Repository API. The goal of CCA is to 
gain abstractions that capture high-performance concepts in component architectures, 
which can enable more efficient interactions between SPMD programs. There are 
also tools associated with CCA to help with decomposition of legacy code into CCA 
components for reuse. Although the goal of CCA is also to foster the component-
oriented programming, there are two main differences from THCORE: the first is the 
user knowledge requirement. To use CCA, one needs to have certain knowledge in 
parallel programming. The second is in the way of component composition. CCA 
allows parallel component to be more tightly connected because the interface 
contains the information of “parallelism” while THCORE hide parallelism 
completely from the interface. Therefore, CCA is more suitable for the development 
of component based parallel applications while THCORE is better for the application 
deployed on the heterogeneous computing environment such as in pervasive 
computing scenarios. 

3 The Model of the Parallel Computation Services 

One of the characteristics of service-oriented programming is the separation of 
service interface from its implementation. A client requests a computation service by 
invoking its interface. The implementation of the computation service, whether in 
sequential or parallel program, is transparent to the user. To the client of the service, 
interface will take the input from the client and return the results of the computation 
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to the client all through one “port”. This matches with the way of human thinking 
and it is easy for implementation of business logic. On the other hand, single 
processor may not provide enough power for the computation so that multi-processor 
computers are introduced into the application. It is a common solution for the fast 
computation. In such case, we wish a service could be running on multi-processor 
machine. However, as the execution of a parallel program are quite different from 
that of a sequential program, the structure of a parallel service on a computer cluster 
is different from its counterpart on desktop computers and other hand-held devices. 

The design of the model for the parallel computation services on computer 
clusters takes two factors into consideration. First, a parallel program is most likely 
to have “sequential” entrance though more parameters may be required to start a 
parallel execution. By “sequential” entrance, we mean that the program has single 
starting point, and its input and output data are in a whole, rather than in the form of 
partitioned pieces. Therefore, it is viable to keep the interface of parallel computation 
services the same as the interface of other sequential computation services with a few 
extra parameters. In addition, all parallel computation service should have a main 
process/thread to act as a “driver” and entrance of the parallel program. It is 
responsible for partition, distribution and aggregation of data structures for parallel 
computation if necessary. Second, as the services are executed on multiprocessor 
computer systems, in general, the number of processors to be used should be 
specified in advance by someone in someway, and the mapping from program’s 
logic process to the physical processors needs to be performed. To run a parallel 
program, one needs to submit the job via job management tool such as PBS [16]. The 
number of processors and other execution parameters are submitted to the job 
manager system and the manager will arrange the resources for the execution. 

Fig. 1. Parallel Computation Service Model 

The model of parallel computation service is shown in Figure 1. A service is 
made of two parts: service deputy and service entity. The service deputy is a 
sequential code. It acts as if it is the implementation of the service to the client, but in 
fact, it is only a “driver” and a “wrapper” of the parallel computation program. The 
service entity is a parallel code that implements the computation function and will 
execute on parallel computers or computer clusters in our case. The service deputy 
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receives the request from the clients and analyses the request to generate the 
information for the creation of the parallel tasks of the computation function 
including the task partition, data partition and distribution, synchronization 
mechanism of the algorithm, etc. The service deputy itself does not implement any 
parallel computing. The service entity receives the information from the service 
deputy and implements the parallel computation function. The input data sent from 
the client is received by the service deputy and then forwarded to the service entity 
accordingly. On return, the output data of the service moves on the same path from 
opposite direction to the client. 

The course of making a parallel computation service is similar to that of making 
a normal component in THCORE except that the code of the parallel computation 
function has to be separated from the interface. It starts with the description of 
interface using IDL (interface definition language). The compiler of IDL will then 
generate the code of the interface. The interface provides an abstraction of its 
implementation and serves as the connection point between its client and the service 
it provides. In developing normal component, one could insert the code of the 
component function into the interface code. But in the parallel computation service 
case, the parallel computation function has to be separated. As the service deputy is 
actually only a “driver” and a “wrapper” of the parallel program, what contained in it 
is the information regarding the function identifiers, the code of creating multiple 
tasks and transferring data. Therefore, it can be generated by IDL compiler 
automatically as part of the interface code. Some sequential part of the parallel 
computation function, such as the pre/post processing steps, can be inserted into the 
interface code as the part of the service deputy if it is desired. The development of 
the service entity is similar to the development of a parallel program. The only 
difference is that the implementation of the parallel computation function has to be 
registered with the component runtime system as the interface. This is the result of 
the separation of sequential and parallel part of implementation. 

The limitation of this model is that it does not provide the parallel interface for 
the composition of parallel computation services. It can be seen that the data in and 
out from the service component are packed into one single stream while the internal 
presentation is distributed for the parallel/distributed computation. If two parallel 
computation services are requested consecutively, the output data of the first service 
will be redistributed when it is used as the input data of the second services even 
though both services have the same internal distribution of the data. The time spent 
in the data movement would cause a serious problem in performance. The 
performance issues will be discussed in section 5. 

4 The Service Runtime on Computer Clusters 

For supporting the execution of the parallel computation service on computer 
clusters described in the previous section, a service runtime system is designed and 
implemented. This runtime system should have the following functions: 

Service activation: As the same as the function of THCORE runtimes 
on desktop computers and handheld devices, it should provide runtime 
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support for the service. When a service interface is invoked by a client, the 
runtime system should be able to activate the code, including both service 
deputy and service entity, to run on the cluster. It serves as a service 
container and connects the deputy and entity parts of the service.  
Resource management: As the amount of computation in a service may 
vary with the input parameters, such as the problem size and accuracy of 
the solution, the resource of the cluster, such as the number of processors, 
may vary from execution to execution. As an advanced function, the 
system should have the capability to allocate and manage the resource 
efficiently. It should dispatch the computation task to the processors 
appropriately in order to make good use of all the processors in the cluster 
for load-balance and better efficiency. In some sense, the runtime system 
performs the function of job manager like PBS and bears more 
responsibility for the success of execution of a parallel computation 
service than the operating system of the machine. 

4.1 Architecture Overview 

Fig. 2. Architecture of the service runtime system on computer clusters 

The architecture of the runtime system for computer clusters is shown in Figure 2. In 
addition to the function of service activation, as THCORE runtime on desktops and 
handheld devices, it has a task manager module that performs the function of 
resource manager. It takes the information regarding the parallel computation 
characteristics of the service entity, such as the number of tasks to be created, from 
the service deputy, and then creates tasks and allocates the processors for the parallel 
tasks accordingly. When a client requests a parallel computation service by invokes 
its interface, the runtime system activated the interface code and the service deputy, a 
message of parallel computation task request is sent by the deputy to the task 
manager module of the runtime. The task manager parses and analyses the request, 
determines whether to accept this request or not, determines the number of processor 
to run the parallel tasks when the request is accepted, assigns processors to the tasks, 
and create a set of MPI [6, 7] processes on the processors for the execution of the 
parallel program of the service entity. The task manager is implemented as a MPI 
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process. It calls MPI library functions to create the MPI processes. The processes of 
the task receive the input data from the service entity directly, and send the 
computation result data back to the service deputy after the completion of the task. 
The processes of the parallel tasks will end themselves when the tasks are finished. 

Service runtime system is running on a computer cluster. All the communication 
and data transfer on it are implemented through socket provided by the operating 
system. The location of the service deputy, the parallel processes of the service entity 
and the task manager of the runtime on cluster nodes is flexible. They are not 
necessarily located on the same node of the cluster. In general, each node of the 
cluster would host only one process of the tasks because running more than one 
processes on a node may reduce the efficiency of the execution. 

4.2 Task Manager 

The task manager is the core of the runtime system. It is consisted of five parts: the 
message queue of parallel task request/completion, the interface manager, the task 
dispatcher, the task scheduler and a queue of the tasks to be schedules,. The interface 
manager takes the message of task request from the message queue, analyzes the 
message, and creates the task for the request accordingly. The task dispatcher 
determines the number of processes that should be created for the task and dispatches 
the task to appropriately selected processors. The task scheduler schedules of the 
tasks in the waiting task queue. The flow chart of the task manager is shown in 
Figure 3. 

Fig.3. Flow Chart of the Task Manager 

During the course of initialization, the message queue is set and a socket port 
associated with it is established to receive the message of task request from the 
service deputy and the message of task completion from task processes, a processor 
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table is created for the task dispatcher to record the status of the processors, and the 
task queue is created for the task scheduler. 

After initialization, the task manager takes a message from the queue if there is 
any. If the message is a task request from the service deputy, the interface manager is 
called to analyze the request. Then the task dispatcher is called to determines how 
many processors are wanted for this task according to the available information such 
as the computational complexity of the task, the total number of the processors in the 
cluster, the number of the available processors in the cluster, the length of the task 
queue and possibly some other information. If the number of the processors wanted 
for the task is less than the number of the currently available processors in the 
cluster, the execution of the task could start. The task dispatcher is called to start the 
task. Otherwise, the task will be inserted into the task queue. In the situation that the 
number of the processors wanted by is greater than the total number of processors in 
the cluster, such as when the problem size is too large, the task request would be 
refused and the rejection message will be send to the service deputy. 

The task dispatcher updates the processor table before it starts a computation 
task. Then it creates a set of processes to execute the parallel computation task. After 
the creation, the processes will communicate with the corresponding service deputy 
directly for the input data and start the computation. The task queue is handled by the 
task scheduler. A task in the task queue could be scheduled if there is enough 
number of processors available according to the processor table. If a task is 
scheduled, the task dispatcher is called to start it. The task will then be deleted from 
the queue. When a computation task is completed, a task completion message is sent 
to the task manager. On receiving the message, the task dispatcher updates the 
processor table. The task is finally accomplished at this point. 

4.3 The Processor Management Strategy 

The management of the computation and resources is the main concern of the 
runtime system design. The processors are the most important resource in the cluster. 
How to make the best use of the available processors is a question that designers of 
the runtime system must answer. Improving the efficiency of the processors and 
increasing the task throughput are the goal of the design of the resource management 
policy of the system. 

The design of the processor management strategy is different for the traditional 
batch job management tools on clusters. For the transparency of parallel 
implementation of a parallel computation service, the number of physical/logical 
processors wanted to run the service is determined by the runtime system at runtime, 
while in most batch job manager tools, the number of processors needed to run a 
program is usually set by the owner of the program at the time when the job is 
submitted. The number of the processors assigned for the task is determined by the 
system at runtime according to the size of the task and the capacity of the cluster. 
The size of a task is measured by the computation complexity provided by the 
service provider in the interface description and the size of the computation 
input/output data available when the service is requested. The capacity of the cluster 
is measured by rate of the number of the total processors and the number of the 
available processors in the cluster. Generally the number of processors wanted by a 
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task is determined at the time when the task request is generated. We allow it to be 
changed later when necessary. For example, when a node of the cluster is down, the 
previously determined number of processors wanted for some tasks has to be 
reduced. Meanwhile, when a computer node is added into the cluster, the number of 
processors determined for some tasks may be increased appropriately. 

When the number of available processors is large enough for more than one task 
in the queue, the selection of the task to be scheduled may influence the efficiency of 
the processors in the cluster. The policy for the scheduling is designed as the 
following: 

A. Priority scheduling is applied. The task priority is the most important 
factor for determining the execution order of tasks. No tasks with lower 
priority could be executed unless there is no tasks with higher priority 
could be scheduled. Each task has its priority set when created. The 
priority could be determined according to several factors, such as the 
client’s user ID, size of the task, even the time of task creation.  

B. When several tasks are of the same priority and number of available 
processors is large enough for any of them, the task that needs more 
processors should be scheduled prior to those tasks that need fewer 
processors. The goal of this policy is to make more processors busy and 
schedule the large sized task as early as possible. In this way, the 
possibility of large sized tasks staying in the queue for a long time waiting 
for available processors could be reduced. 

C. If several tasks have the same priority and need the same number of 
processors, the order them are scheduled to run is the same as the order 
they enter the queue. The task that is inserted into the queue earliest 
should be scheduled to run first.  

D. Dynamic priority is introduced into task scheduling. A task, which has 
been waiting for certain period of time, should have its priority increased. 
Otherwise, a large sized task with lower priority may be waiting for too 
long to be acceptable.  

The implementation of the design is currently undergoing. A prototype of the 
runtime for clusters is realized. On this prototype, some parallel computation 
services are developed for experiments. As the parallel libraries/packages are 
valuable legacies, we also developed some services by wrapping parallel mathematic 
library functions of PETSC. It is clear that the client of the parallel computation 
services does not need the knowledge of parallel programming. On the opposite, the 
developer of the services would appreciate greatly the knowledge and experiences of 
parallel programming. This is exactly one of the objectives of THCORE. 

5 Performance Issues and Experiments 

The performance of service runtime is important to the practices of service oriented 
software development. Compare to the monolithic program, the overhead of service 
oriented software comes from two main sources: additional code and data 
movement. Additional code is consisted of the code of service wrapper and the “glue 
code” that connects the service and its client. In our model of parallel computation 
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service, the code that connects the service deputy and service entity is considered as 
glue code as well. Data movement includes the movement between client and 
services and the movement inside the service between its deputy and entity. To 
evaluate the overhead of the proposed model and its runtime system, a simple 
experiment is conducted. 

A parallel computation service is implemented to offer the service of solving 
linear systems. A client program requests the service by invoking the parallel 
computation service. Timers are installed inside the program to measure the time that 
spent by different portions of the program. The experiment is carried out on a small 
cluster of 2 nodes. Each node has a 2.4G CPU and 512M memory. The nodes are 
connected by 100M LAN. The OS is linux-2.6.16 and the parallel programming 
environment is LAM-MPI 7.1.2. The parallel computation service is implemented 
using PETSC version 2.3.1. 

Following quantities are measured and the results are collected: 
1. Service invocation time (T1): The time cost by invoking a non-parallel 

component of THCORE. This time could vary by the location of the service 
execution. When the service is executed in the same process as its client, 
this time will be the smallest. It is about 0.0015 seconds in the experiment. 
This quantity shows the minimum overhead when connecting service and 
client in THCORE.  

2. Parallel service invocation time (T2): The time cost by invoking a parallel 
computation service only without data transferring and computation. It is 
about 0.4158 seconds. This quantity shows the minimum overhead when 
connecting a parallel computation service with its client. The big gap 
between T1 and T2 is from the additional work in activating additional 
processes and establishing the communication channels among the 
processors. 

3. Data movement time (T3): The time cost by invoking a parallel computing 
component with data transferring but no computing. When the input data is 
of the size of 16400 double precision numbers and the output data is of the 
size of 4000 double precision numbers, it is about 8.660 seconds. The 
quantity T3-T2 tells the overhead of data movement for this test problem. It 
is determined mainly by the speed (latency and bandwidth) of the 
interconnection network between the nodes of the cluster.  

4. Total overhead: We measure the total time of solving linear systems by 
invoking a parallel computation service (T4). It is about 59.020 seconds 
when using 2 nodes. It is about 104.625 seconds when using one node. As 
the comparison, we also measure the total time of solving the same problem 
using the same parallel functions from the library in a monolithic style of 
programming (T5). It is about 49.905 seconds when using 2 nodes and 
about 96.625 seconds using one node. The quantity T4-T5 gives the total 
overhead of service oriented programming in THCORE. 

From the experiment results, we know that the overhead is mainly consisted of 
the data transferring. As the scientific computation often has a large size of 
input/output data, the cost of transferring data may become dominant. We should 
reduce the time cost by transferring data to make better efficiency. Besides the 
improvement of interconnection network, to increase the service granularity is a way 
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to reduce the data traffic. It should also be pointed out that the increase in the 
granularity of a service may reduce the reusability of the service. 

During an invocation of a parallel computation service, the input data is sent 
from client to the service via interface and then distributed internally from the 
service deputy to the service entity and the output data is sent in the opposite 
direction back to the client. If all three parties could be located as close as possible, 
the efficiency could be increased. Considering the client is not located on the cluster, 
the possible location plans of the three parties are: 

1. The service deputy is located together with the client in the same process 
and the client invokes the service in the way as a local component. The data 
transferring between the client and the service deputy could be ignored and 
only the remote data transferring between the service deputy and the entity 
remains. 

2. The service deputy is located in a cluster node and the client invokes the 
service as a remote component. The data transfer will be the sum of the 
remote data transfer between the client and the service deputy and the 
remote data transfer among the nodes of the cluster.  

3. The service deputy is neither located with the client nor with the entity in 
the cluster. Although this is not practical, it is valid in THCORE. In this 
case, the data transferring is consisted of the remote data transfer between 
the client and the entity and the remote data transferring between the deputy 
and the entity using the external network, which cost the most. 

The first location plan is the most efficient. A mechanism to arrange the location 
of the parties may reduce the cost of data movement. To further reduce the data 
movement cost is an important issue of performance for the future work. 

6 Conclusion and Future Work 

This paper presents a parallel computation model for computer clusters and the 
design of its runtime system for supporting service-oriented programming on 
clusters. This model will bring the great convenience to the scientists and engineers 
who have to deal with large scientific computations but may not have enough 
experiences of parallel/distributed programming. A simplified prototype of the 
runtime system on cluster is realized for experiments. The preliminary experiments 
are conducted. The analysis of the results shows that the overhead of the service-
based program comparing to the conventional parallel program is mainly from to the 
data movement. The strategy of overhead reduction includes the trade-off between 
the granularity of services and their reusability and the proper arrangement of the 
location of the parties associated in the data movement. 

More study and further research efforts will be put in the investigation for 
efficient methods and tools to wrap the popular parallel libraries/packages into 
parallel computation services and the optimization of the performance of the runtime 
system. The future work will also include the study in the algorithms of resource 
management and the improvement of the quality of service of the runtime system. 
The coordination of the runtime system with the operating system of the cluster and 
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the batch job management software, such as PBS [16], to improve the performance 
of the applications and the throughput of the computer systems will be an interesting 
subject of the future research as well. 
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Q&A – Xiaoge Wang 

Questioner: William Gropp 
What sort of efficiency measurements are you considering (from the slide on 
challenges)? 

Xiaoge Wang 
One of the objectives of Grid technology is to make resources more 
available. Many people are using Grid to reduce the computation time. We 
have been looking at the total execution time as well. But according to our 
experiences, the overhead of service and data distribution over the 
infrastructure could be high. If it is not carefully considered, we may lower the 
resource efficiency when we try to reduce the execution time using Grid 
resources. So, certain measurements should be taken into consideration in 
doing resources management. But we have not yet make it clear what sort of 
measurements we will consider. 

Questioner: Mary Thomas 
Are there future plans to work with other user interfaces such as Matlab, 
portals, etc? 

Xiaoge Wang 
We have done some work on wrapping the THCORE components into Web 
services automatically using the information of the interface described in the 
IDL file. For work with other user interfaces, we have not yet done anything. 
Yes, it will be very interesting to see how it works with Matlab or other 
portals. 

Questioner: Masaaki Shimasaki 
You mentioned virtualization for security as a future challenge. Do you have 
any specific ideas or plans for it? 

Xiaoge Wang 
Isolating the users' working space from the system or the infrastructure is a 
way of providing a certain type of security. THCORE currently only provides 
isolation at the process level and at the physical machine level. In other 
words, we can now invoke the components in the same process, or in a 
different process or in a separate physical machine.  

Another way of isolation that we would like to investigate is to invoke the 
component on a virtual machine which could actually be running on the same 
physical machine. In this way, we may reduce the data transfer time and still 
maintain the same degree of isolation. In addition, we tried to use the cache 
to improve the performance of remote invocation, but it changed the degree 
of isolation of remote invocation of a component. Using virtualization such as 



Xen (http://www.cl.cam.ac.uk/research/srg/netos/xen/) may maintain the 
same degree of isolation but reach the goal of component cache. 

Questioner: Asim YarKhan 
Does THCORE need a client side stub for the services? How about static 
languages like C and Fortran? 

Xiaoge Wang 
Answer is Yes and No. If a client invokes a component to execute in the 
same process, then a stub is not required. It links to the component similar 
as using a dynamic link library or shared object. But if the client would like to 
invoke the component to run in a separate process or in a remote machine, 
then it will need a stub. In the case that client is a script, then the stub is 
dynamically generated using metadata. 

Questioner: Dennis Gannon 
How does your component architecture differ from CCA? How does your IDL 
differ from CCA's SIDL? 

Xiaoge Wang 
First of all, I do not have deep knowledge about CCA. I only read some 
tutorials and publications. So the comparison here is far from accurate or 
complete. At the design phase, we did look at CCA as I listed in the related 
work, and found that CCA is a model that takes care of all sorts of issues in 
parallel programming but it is not exactly what we need. I need to point out 
that, THCORE is a component model that was originally designed for 
component based software running on resource limited systems. It aims at 
independent development of components and an efficient way of putting 
components together through the interface to make an application. This 
mode allows the individual component to change its internal implementation 
without affecting the application. CCA considers more issues in putting 
parallel components together. 

Based of the above arguments, I may guess that there is quite a difference 
between these two IDLs in detail. But I do not have enough knowledge to 
make a fair complete comparison.  




