
Design of Trusted Systems
with Reusable Collaboration Models

Peter Herrmann and Frank Alexander Kraemer

Norwegian University of Science and Technology (NTNU)
Telematics Department, 7491 Trondheim, Norway
herrmannQitem.ntnu.no, kraemerQitem.ntnu.no

A b s t r a c t . We describe the application of our collaboration-oriented
software engineering approach to the design of trust-aware systems. In
this model-based technique, a specification does not describe a physical
system component but the collaboration between various components
which achieve system functions by cooperation. A system model is com­
posed from these collaboration specifications. By a set of transforma­
tions, executable code can be automatically generated. As a modeling
language, we use UML 2.0 collaborations and activities, for which we
defined a semantics based on temporal logic. Thus, formal refinement
and property proofs can be provided by applying model checkers as
well. We consider our approach to be well-suited for the development of
trust-based systems since the trust relations between different parties
can be nicely modeled by the collaborations. This ability facilitates also
a tight cooperation between trust management and software engineering
experts which are both needed to create scalable trust-aware applica­
tions. The engineering approach is introduced by means of an electronic
auction system executing different policies which are guided by the mu­
tual trust of its principals. While the approach can be used for various
trust models, we apply J0sang's Subjective Logic in the example.

1 Introduction

Since the tu rn of the millenium, the management of t rus t has gained more
and more momentum. While this field is inherently multi-disciplinary and re­
searchers from psychology, sociology, philosophy, law and economics work on
t rust issues for many years, computer science seems to be the driving force be­
hind the current advances. An important reason for tha t is the matur ing of the
internet-based consumer commerce [1]. The acceptance of e-commerce services
depends directly on the t rust the different parties involved in it can build up in
each other. In the internet, however, commerce partners are often unknown, live
in another country with a different legal system, and are selected on an ad hoc
basis guided by the best offer. Therefore, tradit ional t rust building mechanisms
like personal experience, recommendations by friends, or the general reputa­
tion "in town" cannot be used in the same way as in traditional commerce.
The t rust management community s tar ted to overcome this deficiency by de-

Please use the following format when citing this chapter:

Herrmann, P. and Kraemer, F. A., 2007, in IFIP International Federation for Information Processing, Volume 238, Trust
Management, eds. Etalle, S., Marsh, S., (Boston: Springer), pp. 317-332.

318 Peter Herrmann and Frank Alexander Kraemer

veloping trust models consisting of both representations for trust in computers
and related mechanisms specifying the building of trust. Some of these models
describe trust in a more general way from either a mathematical-philosophical
perspective (e.g., [2, 3]) or from a sociological-cognitive view (e.g., [4, 5]). Other
approaches are devoted to realize trust building mechanisms which take the
practical limits of computer systems and networks into account [6, 7, 8, 9, 10].

The invention of computer-readable trust mechanisms facilitates the design
of applications incorporating trust. Most approaches enhance or replace tradi­
tional security mechanisms at points where they are not suitable for modern
ad hoc-networks. In particular, a number of solutions were developed for access
control of both peer-to-peer networks [11, 12, 13] and business processes for
web services [14, 15, 16] while other tools approach authorization [17], authen­
tication and identity management [18] as well as privacy [19]. A second field of
application design is devoted to federate systems combined of separate partners
and, in particular, to determine the kind of mutual protection of the part­
ners. Here, a wide field starting at security-protecting routing algorithms [20]
via the formation of virtual organizations [21] to the trust-based protection of
component-structured software [22, 23] and the protection of collaborations of
pervasive devices [24] is covered. It does not require prophetic skills to expect
that there will be a lot more trust-encompassing systems to come in various
application domains.

As the design of trust-based systems can be quite complex, it has to incorpo­
rate typical software engineering techniques. The application of these techniques
is usually so difficult that experienced software engineers are required. Thus,
to develop a trust-aware system, we need experts both for the trust manage­
ment and for software engineering who have to cooperate very closely since the
trust management functions of a system are tightly interwoven with the rest
of the system logic. Ideally, the trust management developer should be able to
integrate trust models into a system design process without necessarily under­
standing the full application logic, while the software designer should be capable
to make the general software engineering decisions without comprehending the
complete functionality of the underlying trust management model.

We consider our software engineering approach based on collaboration-orien­
ted formal system models [25] as a solution to this problem. Most modeling tech­
niques combine system specifications from models specifying a separate physical
software component each. In contrast, in our technique a specification building
block describes a partial system functionality which is provided by the joint
effort of several components cooperating with each other. Every component
taking part in a collaboration is represented in the form of a so-called collabo­
ration role. The behavior models of collaborations specify both the interactions
between the collaboration roles as well as local behavior of collaboration roles
needed to provide the modeled functionality. Collaborations may be composed
with each other to more comprehensive collaborations by means of collaboration
uses. Thus, hierarchical system models are possible.

Design of Trusted Systems with Reusable Collaboration Models 319

/ ' b p : Bid Ftjf
*̂ ^̂ Product^x'

a: Auctipn
House ^;^^ op: Oer ^̂
mediator *ŝ P r o d u C t ^

b: Buyefe^
^ J

^ . ' " t s : T r u s t i ^ d s e l l e r

Sale y s: Sellfer

x̂̂ Ret r ieval '
^ ' ' s t r : frlrsf
^^ Ret r ieval '

/ b r e : Repoxt
\ Experienqe

r s : Reputatb-on ^^'sre: Repo!̂ "
System \ \^ Experienge

Fig. 1. Collaboration of the Trusted Auction System

As an example, we depict in Fig. 1 the collaboration uses of the highest
hierarchical level to model a trusted electronic auction system which will be
introduced in detail in sections 3 and 4. The system specifies an automatic
internet-based auction system which could, for instance, be built upon the web
services offered by eBay. From a trust management perspective, the major prob­
lem of such a system is the sale between the winning buyer and the seller af­
ter the auction since the reluctance of one party to pay resp. to deliver the
product may cause damage to the other side. As a solution, we provide a trust-
encompassing application based on a reputation system (e.g., the eBay feedback
forum). According to their mutual trust, both parties can decide how to carry
out the sale. As a consequence, the example system incorporates four major
components: the winning buyer, the seller, the reputation system and the auc­
tion house. Its functionality is expressed by means of seven collaboration uses
depicted in Fig. 1. The collaboration use 6 r̂ models the access to the reputation
system by the buyer in order to retrieve the current trust of the community in
the seller. We will see in Sect. 4 that this retrieval is done before bidding for
the product. Likewise, the collaboration use str describes the retrieval of the
buyer's trust value by the seller which takes place after the auction. According
to the mutual trust, the buyer and seller perform the sale which is modeled by
ts. Indeed, this collaboration is a composition from more basic collaborations
specifying four different modes which depend on the trust of the participants in
each other. After finishing the sale, both parties report their mutual experiences
to the reputation system which is expressed by the collaboration uses hre and
sre. The remaining collaboration uses op and hp describe the offering of goods
by the seller and the bidding of the buyer. As these collaboration uses are not
relevant from a trust management perspective, they are not discussed further.

Fig. 1 is a collaboration in the popular graphical modeling language UML 2.0
(Unified Modeling Language [26, 27]). These diagrams are used to describe
the basic structure of a collaboration (i.e., the collaboration uses forming it
and the relation between the roles of the collaboration uses and those of the
comprehensive collaboration). To specify the behavior of the collaborations and

320 Peter Herrmann and Prank Alexander Kraemer

the logic combining collaboration uses is described by UML activities which are
introduced in Sect. 3.

As trust relations are inherently collaborative and always comprise at
least a trustor and a trustee, we consider the collaboration-oriented speci­
fication style very helpful to develop trust-based systems. The reduction of
systems to sub-functionalities supports their understanding to a high degree
(cf. [25, 28, 29, 30]). As discussed in Sect. 2, we consider this property useful to
provide trust management experts and software developers with a fundament
for tightly interwoven cooperation. In addition, the model structure enables a
higher reuse of collaborations. In many distributed application domains, the
system components cooperate with each other by means of a relatively small
number of recurrent sub-functionalities which can be specified once and there­
after stored in a library. System developers can create their specifications in a
relatively simple way by selecting collaborations from the library, instantiating
them, and composing them to a system description. In our example, btr^ str^
bre, and sre are instantiations of the collaborations Trust Retrieval resp. Re­
port Experience which are suitable building blocks to create applications using
reputation systems.

By means of an algorithm [31], we can automatically transform the collabo­
ration-oriented models into executable state machines from which in a second
step executable code can be generated [32]. Moreover, we currently develop a
transformation to TLA"^ [33], the input syntax of the model checker TLC [34]
which facilitates formal proofs of system properties. This will be further dis­
cussed in Sect. 5. Before that, we discuss in Sect. 2 the benefit of our approach
for the generation of trust management-based systems. Thereafter, the speci­
fication of collaborations by UML collaboration diagrams and activities is in­
troduced by means of the trusted auction example in Sect. 3. The coupling of
collaboration uses to more comprehensive collaborations is outlined in Sect. 4.

2 Trust Management Aspects

In recent years, numerous definitions for trust have been published. A significant
one was introduced by J0sang [35] who distinguishes between trust in humans
and trust in computers. He calls humans as well as organizations formed by
humans with a free will passionate entities. In contrast, computers and other
entities without a free will are named rational entities. Trust in a passionate
entity is defined as Hhe belief that it will behave without malicious intent"
while trust in a rational entity is "the belief that it will resist attacks from
malicious agents" [35]. Both definitions have in common that a trustor can
only be a passionate entity since trust needs a free will. Nevertheless, in specific
application domains both the building of trust and its deployment selecting
diflPerent policies to deal with the trustee is so rational that it can be handed
over to a computer. A good example is the decision making process of banks
whether to provide loans or not. A bank's behavior is basically guided by its

Design of Trusted Systems with Reusable Collaboration Models 321

trust in a debtor that he will be able to pay back a loan. To build this trust,
typical mechanisms as the debtor's behavior in previous cases (i.e., the debtor's
reputation) are taken into account and the decision is made according to fixed
policies. These policies can be implemented on a computer as already applied
in some banks.

For the representation of trust one can apply trust values. For instance,
J0sang introduces so-called opinion triangles [2, 36]. These are effectively triples
of probability values, the sum of which is always 1. Two of these values describe
the belief resp. disbelief in the trustee while the third one states the uncertainty
based on missing knowledge on the trustee. The building of trust is, in conse­
quence, described by traces of changing trust values. In between, a lot of trust
models were developed which are suited for computers (cf. [2, 5, 6, 7, 8, 9, 10]).
The utilization of trust in dealing with a trustee can also be realized on a com­
puter by defining trust-related policies. The actual policy can then be selected
based on the current trust value.

Our collaboration-oriented software development approach is well-suited to
model the mechanisms used to describe the building of trust. A collaboration
is appropriate to describe the various functions of a trust model since every
function affects more than one partner. Moreover, the collaborations can be
used as building blocks for trust-encompassing applications. For instance, the
collaborations Trust Retrieval and Report Experience used in the trusted auc­
tion model (see Fig. 1) describe the two aspects typically used in dealing with a
reputation system, i.e., the decision about how to deal with the trustee depend­
ing on its current trust value as well as improving the trustee's assessment by
sending the reputation system a positive or negative experience report. Similar
collaborations can be defined to model other trust gaining mechanisms such as
considering one's own experience or the recommendation by third parties. In
addition, to support the design of more complex trust building mechanisms,
one can add building blocks enabling the combination of different trust values.

The method is also useful to simplify the cooperation between the trust
management experts and the software engineers. A trust expert can specify
the trust building functions of the system on its own by utilizing collaborations
from a library. The outcome will be a set of collaboration uses that the software
engineers can integrate into the overall system model without fully understand­
ing their internal behavior. The engineers only need to recognize that different
trust-based policies are possible but not the steps to decide which actual policy
should be used.

Somehow more difficult is the support of the cooperation between the two
expert groups in modeling the enforcement of the different trust policies. Here,
aspects of the general application functionality and special trust-related prop­
erties have to be combined. This can be achieved by a twofold proceeding. First,
characteristic trust-based functions may be used to enforce policies. These func­
tions can also be modeled by collaborations and used in several system models.
For instance, a sale between two parties with a low degree of trust in each other
can be performed by including a trusted third party which mediates the sale

322 Peter Herrmann and Prank Alexander Kraemer

by guaranteeing that a buyer cannot receive the product before sending the
money, while the seller must send the product before receiving the payment.
It is easy to model this as a collaboration which can be used by the software
engineer without understanding the exact functionality (see also Sect. 4).

Second, the trust expert can inform the software engineer about trust-related
functionalities the application has to follow. For instance, a requirement of the
trusted sale should be that the buyer only issues the money transfer to the
seller without having evidence of receiving the product in time if her trust
in the seller is high. The software engineer considers these properties in the
system development. Afterwards, the trust expert can check that the system
complies with the properties by, for instance, proving them with the model
checker TLC [34]. In the following, we will clarify how trust-based systems like
the trusted auction example can be developed using the collaboration-oriented
specification style.

3 Activity-Based Collaboration Models

As depicted in Fig. 1, we use UML collaborations to specify the overall structure
of system models composed from collaboration uses. In particular, a collabora­
tion describes the different components forming a system and the assignment
of the roles of the collaboration uses to the components. To model the behav­
ior of a collaboration, UML offers various diagram types like state machines,
sequence diagrams, and activities [27]. We decided to use activities mainly for
two reasons: First, activities are based on Petri Nets and specify behavior as
flows of tokens passing nodes and edges of a graph. This proved to represent
flows of behavior quite naturally and is therefore easy to understand (cf. [25]).
Second, activities are self-contained. Sequence diagrams, for instance, typically
describe in one diagram only a set of system scenarios rather than the complete
behavior. In contrast, activities facilitate the specification of the full behavior
of a collaboration within one diagram.

A typical example for an activity is Trust Retrieval which models the be­
havior of the collaborations btr and str in the trusted auction example^ (see
Fig. 1). It is listed on the left side of Fig. 2 and describes the access of a caller
to a reputation system in order to retrieve a trustee's reputation. Moreover, it
models the decision about a certain level of trust which may lead to different
trust policies. Since the collaboration comprises two different roles, the client
of the reputation system and the reputation system itself, we use two activity
partitions in the diagram which are named by the role identifiers. The interface
of the collaboration to its environment is located at the activity partition of the
client and consists of three output pins each describing a certain level of trust'^.

^ We use J0sang's approach [2, 37] to specify trust and trust building in the example
but could adopt the specifications easily to other trust models.

^ As these output pins are mutual exclusive, they belong to different parameter sets
shown by the additional box around them.

Design of Trusted Systems with Reusable Collaboration Models 323

get t ruat
v a l u ^

hiqJE

IOVJE
t r u d ^

t r u d ^

Trust Re t r i eva l
c l i e n t

e v a l u a t e
t r u s t va

fv&MaxthreV

1
t-uSMaxthres^
t v > M i n t h r e s

e l s e

î

r e p u t a t i o n s y s

•
r e t r i e v ^

t r u s t v a l u e

J

p o s i t i]
repose

nega t i f f
repo^il

confirm j—j
reportg4

Report Experience
reputation system

add positij/e

report

add negative

report

n

Fig. 2. Activities Trust Retrieval and Report Experience

The behavior of the activity is described by a token flow which is started
at the input node in the partition of the cHent. It passes a token from the
client via the partition border to the reputation system. The token contains an
identifier of the trustee which is computed in the call operation action retrieve
trust value. This call operation action contains the logic to access the number
of good and bad experiences with the trustee and to generate the current trust
value. The trust value is thereafter forwarded back to the caller and evaluated
in the call operation action evaluate trust value (i.e., the trust value is copied
to the auxiliary collaboration variable tv). Thereafter, the token proceeds to a
decision node (o) from which it branches to one of three edges. The branching is
guided by the conditions of the decision node, which depend on two thresholds.
Finally, the token is forwarded to the activity environment via one of the output
pins high trust, low trust, or no trust. By passing one of the output pins, the
overall activity is terminated. A trust management expert can instantiate Trust
Retrieval simply by defining suitable thresholds.

Activity Report Experience (on the right side of Fig. 2) models the report
of positive or negative experiences with a trustee to the reputation system
adjusting the trustee's reputation. It is started with a token passing one of
the input pins positive report or negative report. The tokens are forwarded to
the reputation system which adapts the trustee's data base entry in the call
operation actions. The edges leaving the two call operation actions lead to
a merge node (o) that merges its incoming flows by forwarding all incoming
tokens to the only outgoing edge. In this way, after registering either a positive
or negative report, the token is passed back to the client's output pin confirm
report describing the confirmation of the experience report.

The activity Mediated Sale introduced in Fig. 3 expresses a functionality
with several parallel flows. As discussed before, a mediator acts here as a trusted
third party which assures a fair sale by collecting the payment and the product
which are delivered to their recipients not before both are received by the me­
diator. The activity consists of three partitions for the buyer, the seller and the
mediator. It is started by two separate tokens arriving from the buyer through
the input pin send payment and from the seller via send product. The token
from the buyer heads to the fork node / i . In a fork node every incoming token
is reproduced and one copy is sent via every outgoing edge. One of the tokens

324 Peter Herrmann and Prank Alexander Kraemer

b u y e r
send! , . ,

paymenq t-^|ReqPayM)>|

f l
d e l i v d r y

confirmeq

Fig. 3. Activity Mediated Sale

leaving / i reaches the send action ReqPayM. We use send actions to model the
transfer of signals to external applications which are not an inherent part of
the modeled application. For instance, the accounting unit of the buyer is an
example of an external system which is notified by ReqPayM to issue the pay­
ment to the mediator. The other token leaving / i is forwarded to the mediator
which is notified thereby about the start of the payment. Likewise, the seller
calls its delivery unit to send the product to the mediator which is expressed by
the send action RegDelM and notifies the mediator as well. When the payment
arrives at the mediator, it is notified by its accounting unit using the receive
action CnfPayM while CnfDelS reports the reception of the product. Similar
to send actions, we use receive actions to model incoming signals from the en­
vironment. All tokens coming from the two receive actions and from the buyer
resp. seller lead to the join node^ ji. A fiow may only leave a join if tokens have
arrived on all of its incoming edges. During the execution of the join, all but
one token are removed and the remaining token leaves it via its outgoing edge.
The token leaving j i continues to the fork /a from which both deliveries to the
final recipients and the notifications are issued. Thus, by the combination of ji
and /s we guarantee that deliveries are only carried out if both the payment
and the product have arrived at the mediator.

The notification for the buyer heads to the join node J2 and can only be
forwarded if the buyer's delivery unit reports the product's reception which
is specified by the receive action CnfDelM. The token passing J2 leaves the
activity via the output pin delivery confirmed. Likewise, the seller sends a con­
firmation of the payment via payment confirmed after receiving the money. As
the two activities introduced above. Mediated Sale can be provided by the trust
management expert. The only necessary cooperation with the software engineer
is to agree about the formats of the transmissions with the various accounting
and delivery units.

UML uses identical symbols for join and fork nodes. They can be distinguished by
the number of incoming and outgoing edges. Pork nodes have exactly one incoming
edge while join nodes have exactly one outgoing edge.

Design of Trusted Systems with Reusable Collaboration Models 325

Fig. 4. Activity Trusted Sale

4 Coupling Activities

Activities are especially powerful for the composition of behaviors from exist­
ing ones. This is done by means of call behavior actions that refer to other
activities. The events of the activities may be coupled using all kinds of control
nodes and edges, so that arbitrary dependencies between the sub-activities may
be described. As activities are used in our approach to describe the behavior of
collaborations, this technique is applied to compose the collaborations behav-
iorally (while the UML collaboration in Fig. 1 shows the structural aspect of
this composition.) An example of a composed activity is Trusted Sale in Fig. 4
which is composed from the call behavior actions ms and pc referring to the
behavior of subordinate activities (resp. collaborations).

Trusted Sale describes the functionality of selling a product between a buyer
and a seller after finishing an auction. The two parties in the sale may either
have a high or a low degree of trust in the other one, which is modeled by the
two input pins in both the buyer and the seller partition. If the buyer has a
high degree of trust in the seller, she is willing to send the payment immediately
without waiting for the partner. That is described by the send action ReqPayS
to which a token is forwarded directly after entering the activity via buy trusted.
By this send action, the accounting unit of the buyer is notified to start the
payment to the seller. Likewise, the seller is ready to send the product to the
buyer immediately if he has a high level of trust which is expressed by the flow
to the send action ReqDelB.

Since both parties may either have high or low trust in each other, four
diflFerent trust relations between the two parties are possible and for each one a
separate sale policy is defined. Nevertheless, to decide about a sale policy, both
parties have to know the partner's trust in themselves. As a mutual distributed
combination of policies is a quite common function in many networked systems,
we have a collaboration and a corresponding activity 2x 2 Policy Combination

326 Peter Herrmann and Frank Alexander Kraemer

available from our general pa t te rn library which can be applied here in the
form of the call behavior action pc. This activity has two input pins and four
output pins on each side. The two parties define the selected input policy by
transferring a token via the corresponding input pin which causes the delivery of
tokens through those output pins describing the combination of the two policies
(e.g., if the buyer sends a token via input pin ht (for buy trusted) and the seller
via sn (for sell non-trusted)^ the tokens will eventually arrive at the output pins
bt,sn). The input nodes of Trusted Sale are connected with the corresponding
ones of pc and its output pins can be used as the start ing points to model the
four sale policies {bt,st; bt,sn; bn,st; bn,sn):

- If bo th partners have a high degree of mutual t rust {bt,st)^ they simply send
the payment resp. the product without waiting for the other. Each partner
completes the sale after the delivery has arrived. As the payment has already
been started, the buyer has to wait for a token arriving via output pin bt,st
in join j i for the delivery of the product. The reception of the product is
described by the accept signal action ConfDelS forwarding a token to j i as
well^. Thus, j i can be triggered and a token leaves the activity Trusted Sale
via the output pin delivery confirmed which specifies the completion of the
sale on the buyer 's side. The behavior in the part i t ion of the seller is similar.

- If the buyer has only a low trust in the seller but the seller a high one in the
buyer (bn,st), we use a policy in which the seller transfers the product first
and the buyer initiates the payment not before receiving the product . Thus,
the buyer does not send the payment initially, but waits for the delivery of
the product which is expressed by the token in join J2- After the delivery
is notified as modeled by a token heading from ConfDelS to J2, the buyer
initiates the payment, which is described by the send action ReqPayS, and
finishes the sale. The handling of this policy on the seller's side is identical
to the first one since it behaves similarly in both policies.

- If the buyer has a high degree of t rust in the seller which, however, t rusts the
buyer only lowly {bt,sn)^ we use the reciprocal policy to tha t listed above.
Here, the seller does not send the product before receiving the payment. As
the effective behavior for the buyer is the same as for the policy {bt,st), the
fiow from bt,sn is simply merged into the behavior for bt,st.

- If both partners have a low degree of t rus t in each other (bn,sn)^ they decide
to rely on a mediator. This can be modeled by applying the activity Mediated
Sale introduced in Sect. 3. The pins bn^sn are simply connected with the input
pins of Mediated Sale and its output pins with the output pins of Trusted Sale.

When one of the partners cheats by not sending anything, the activity is not
finished correctly but stops somewhere. We will see below tha t this case leads
to a negative rat ing of the partner.

The activity Trusted Sale exemplifies the interplay between both expert
groups. The t rust management expert provides the software engineer with the

^ The token leaving ConfDelS is stored in a so-called waiting node (• , cf. [31]) which
forwards it to join j i or J2 depending on which join can be executed first.

Design of Trusted Systems with Reusable Collaboration Models 327

Fig. 5. Activity Trusted Auction

activity Mediated Sale and describes the four sale policies. Based on this in­
formation, the software engineer accomplishes the overall model of the trusted
sale which can be added to the library of building blocks for trusted systems
facilitating a later usage in other applications.

The last activity introduced here is Trusted Auction depicted in Fig. 5 which
describes the behavior of the overall system. The collaboration uses it is com­
posed of (see Fig. 1) are represented by the call behavior actions btr, str^ bre, sre,
and ts. While an electronic auction encompasses an arbitrary number of buyers
and sellers, we laid out the activity in a way that only the relation between
exactly one buyer and one seller is modeled by the activity. In consequence, the
whole application is described by multiple instances of Trusted Auction. For the
sake of brevity, we omitted the part in which the seller registers the product
since that is not relevant for trust management. Thus, the activity is started
by the buyer, who becomes active if she finds an interesting product. This is
expressed by the initial node ii from which, at first, the trust level of the seller
is retrieved by accessing btr. If the reputation of the seller is so bad that there is
almost no trust, the buyer decides not to bid and the activity is terminated by a
final node (#) . If the buyer trusts the seller to at least some degree, she makes
a bid^ which is modeled by the send action MakeBid and waits in the receive
node WinBid for the end of the bidding. If the bid is not sufficient, a token
is received via the accept signal action LoseBid and the activity is terminated
since no further action is necessary. If the bid won, a token leaves WinBid and

For brevity, we assume that a buyer makes only one bid in an auction.

328 Peter Herrmann and Prank Alexander Kraemer

the trusted sale is started by forwarding a token to ts. Moreover, the instance
bto of activity Timeliness Observer is started. It specifies a timeout process to
detect late deliveries of the product which will be discussed below.

On the seller's side, a flow is started after the auction is finished which is
expressed by EndBid. Thereafter, the reputation of the buyer is retrieved in
str and the trusted sale is started as well. Due to the nature of an electronic
auction system, the seller has to start the sale process even if he does not trust
the buyer at all. Furthermore, sto is initiated starting a timer as well. In the
case of a timeout, a token leaves the output pin timeout immediately, meaning
that the payment did not arrive in due time, and via sre a negative report on
the buyer is sent to the reputation system. The confirmation is forwarded to the
join node j i used to synchronize the activity termination in the seller partition.
If the payment is confirmed, a token proceeds from ts to sto. If this confirmation
arrives at sto after the timeout, a token is issued at the output pin late which is
forwarded to ji. If the negative report was already confirmed, ji can fire which
notifies the buyer's side that the seller can accept to terminate the activity.
If the payment confirmation arrives in time, a token leaves the output pin in-
Time of sto^ issuing a positive report about the buyer. In addition, a token is
forwarded to ji such that the buyer can be notified about the readiness for
termination after the experience report was confirmed.

The behavior after finishing the sale on the buyer's side is similar except
for the decision di. We assume that the delivery unit of the buyer attaches
information to the token sent to the activity Trusted Sale describing if the
quality of the product is suflScient. In that case, a positive report is triggered
while a bad condition of the product leads to a negative report. The join J2 can
only be executed if the delivery of the product was confirmed, the report about
the seller was attested and the seller reported that it is ready to terminate. The
execution of j2 causes the termination of the activity.

As in the activity Trusted Sale, this activity can be developed combining the
competence of the two expert groups. The trust management expert delivers
the activities describing the access to the reputation system as well as some
policies defining, for instance, which reports have to be issued to the reputation
system under which circumstances. This provides the software engineer with the
sufficient knowledge to develop the behavioral model specified by the activity.

5 Implementation and Verification

The fact that activities render a complete system behavior facilitates automatic
generation of code from the collaboration-oriented model which is performed in
a series of steps: At first, we apply the algorithm introduced in [31] which trans­
forms the activities into a set of UML state machines each describing a system
component. As we defined both the semantics of the activities and the state
machines based on the compositional Temporal Logic of Actions (cTLA) [38],
the correctness of the transformation could be verified by a cTLA refinement

Design of Trusted Systems with Reusable Collaboration Models 329

proof sketch (cf. [31]). For our example, the algorithm in its current version
creates separate state machines modeling the behavior of the buyer, the seller,
the reputation system and the auction house acting as mediator. Due to the
varying complexity of the four components, the state machines have a quite
different size. Since the behavior of the reputation system is stateless, its state
machine consists only of one control state and three transitions modeling the
retrieval of trust values as well as the addition of positive and negative experi­
ence report. In contrast, the state machine of the mediator consists of 15 control
states, while that of the buyer models the most complex functionality using 64
control states.

The state machines have a special "executable" form in which, except for
the initialization, all transitions are triggered by incoming signals from the en­
vironment or from local timers. Since, in addition, the enabling condition of a
transition depends only on the control state of the state machine but not on its
auxiliary variables, very efficient executable code can be generated. This kind of
code generator has been built for nearly 30 years now (see, for instance, [39, 40]).
To implement our example, we used a generator creating Java code which is
executed on the middleware platform JavaPrame [41]. During testing the ap­
plication, we could not detect any significant overhead. The application of the
code generators, the related middleware platforms, and a cTLA-based correct­
ness proof are described in [32].

The trust expert can check if the produced collaboration-oriented model
fulfills the trust-related properties passed to the software engineer by applying
an animation tool. Moreover, due to defining the semantics of the activities by
cTLA, formal refinement and invariant proofs are also facilitated. For instance,
the property that the buyer may only start a payment to the seller immediately
if she has high trust in him can be expressed by an invariant. This excludes a
state in which (1) the trust level is low, (2) the payment was already sent to the
seller and (3) the product is not yet delivered. By a cTLA proof, one can verify
that the cTLA formula specifying the activity Trusted Sale always fulfills the
invariant. In the context of trusted systems, this kind of proof was introduced
in [42]. We currently develop a tool transforming activities directly into the
input syntax TLA"^ [33] of the model checker TLC [34] carrying out the proofs
automatically. Of course, model checkers are subject to the state space explosion
problem. Thus, the number of states to be inspected in a scalable system can be
too large to be handled by the checker. cTLA, however, supports a coupling style
reflecting the activity combinations in a quite natural way. For each activity,
a separate cTLA model is created and, in a proof, only those models realizing
the verified property need to be considered. For instance, to prove the invariant
listed above, only the states of the cTLA model representing the activity Trusted
Sale must be checked. This quality of cTLA makes our approach not only well-
suited for the design and implementation of realistic trust-based systems but
also enables formal property proofs in a relatively user-friendly way.

330 Peter Herrmann and Prank Alexander Kraemer

6 Concluding Remarks

In this paper we introduced our collaboration-oriented software development
approach which facilitates system modeling by specifying the various cooper­
ations between the system components separately. We consider the approach
well-suited for the design of trust-aware systems since t rust relations between
principals can be directly modeled as collaborations. This property enables the
tight cooperation of t rust management experts and software engineers with­
out aflFording a too close insight in the competence of the other expert group.
The collaboration-oriented development approach is supported by the Research
Council of Norway (RCN) tha t approved the research and development project
ISIS (Infrastructure for Integrated Services). ISIS is mainly devoted to the
creation of a tool set supporting the suitable design of collaboration-oriented
systems. Moreover, we want to combine the methodologies of collaboration-
oriented software design and security protocol composition. As a result of this
project, we expect methods facilitating the engineering and deployment of se­
cure and trust-aware distributed systems. The work presented above is consid­
ered as a major cornerstone for these research goals.

References

1. Cheskin Research and Studio Archetype/Sapient, eCommerce Trust Study (1999).
2. A. J0sang, A Logic for Uncertain Probabilities, International Journal of Uncer­

tainty, Fuzziness and Knowledge-Based Systems 9, 279-311 (2001).
3. A.J.I. Jones and B.S. Firozabadi, On the Characterisation of a Trusting Agent

— Aspects of a Formal Approach, in: Trust and Deception in Virtual Societies,
edited by C. Castelfranchi and Y.H. Tan (Kluwer Academic Publishers, 2001),
pp. 157-168.

4. R. Falcone and C. Castelfranchi, Social Trust: A Cognitive Approach, in: Trust
and Deception in Virtual Societies, edited by C. Castelfranchi and Y.H. Tan
(Kluwer Academic Publishers, 2001), pp. 55-90.

5. N. Mezzetti, A Socially Inspired Reputation Model, in: 1st European Workshop
on Public Key Infrastructure (EuroPKI 2004), Samos, edited by S.K. Katsikas,
S. Gritzalis and J. Lopez, LNCS 3093 (Springer-Verlag, 2004), pp. 191-204.

6. M. Blaze, J. Feigenbaum, and J. Lacy, Decentralized Trust Management, in: Proc.
17th Symposium on Security and Privacy, Oakland (IEEE Computer, 1996), pp.
164-173.

7. T. Grandison and M. Sloman, Specifying and Analysing Trust for Internet Ap­
plications, in: Proc. 2nd IFIP Conference on E-Commerce, E-Business Sz E-
Government (I3E), Lisbon (Kluwer Academic, 2002), pp. 145-157.

8. A. Abdul-Rahman and S. Hailes, Supporting Trust in Virtual Communities,
in: Proc. 33rd Hawaii International Conference, Volume 6., Maui, Hawaii (IEEE
Computer, 2000).

9. K. Aberer and Z. Despotovic, Managing Trust in a Peer-2-Peer Information
System, in: Proc. 10th International Conference on Information and Knowledge
Management (CIKM'Ol), New York, edited by H. Paques et al. (ACM Press,
2001), pp. 310-317.

Design of Trusted Systems with Reusable Collaboration Models 331

10. F. Azzedin and M. Maheswaran, A TrustBrokering System and Its Application to
Resource Management in Public-Resource Grids, in: Proc. 18th International Par­
allel and Distributed Processing Symposium (IPDPS'04), Santa Fe (IEEE Com­
puter, 2004).

11. L. Xiong and L. Liu, Building Trust in Decentralized Peer-to-Peer Electronic
Communities, in: Proc. 5th International Conference on Electronic Commerce
Research (ICECR-5), Dallas (ATSMA, 2002).

12. S.D. Kamvar, M.T., Schlosser, and H. Garcia-MoUna, The EigenTrust Algorithm
for Reputation Management in P2P Networks, in: Proc. 12th International World
Wide Web Conference, Budapest (ACM Press, 2003).

13. D. Ingram, An Evidence Based Architecture for Efficient, Attack-Resistant Com­
putational Trust Dissemination in Peer-to-Peer Networks, in: Proc. 3rd Inter­
national Conference on Trust Management, Paris, edited by P. Herrmann et al.,
LNCS 3477 (Springer-Verlag, 2005), pp. 273-288.

14. P. Bonatti and P. Samarati, A Unified Framework for Regulating Access and In­
formation Release on the Web, Journal of Computer Security 10 241-272 (2002).

15. T. Yu, M. Winslett, and K.E. Seamons, Supporting Structured Credentials and
Sensitive Policies through Interoperable Strategies for Automated Trust Negoti­
ation, ACM Transactions on Information and System Security 6 1-42 (2003).

16. H. Koshutanski and F. Massacci, Interactive Access Control for Web Services, in:
Proc. 19th IFIP Information Security Conference (SEC 2004), Toulouse (Kluwer
Academic, 2004), pp. 151-166.

17. A.J. Lee, M. Winslett, J. Basney, and V. Welch, Traust: A Trust Negotiation
Based Authorization Service, in: Proc. 4th International Conference on Trust
Management, Pisa, edited by K. St0len et al., LNCS 3986 (Springer-Verlag, 2006),
pp. 458-462.

18. S. Pearson and M.C. Mont, Provision of Trusted Identity Management Using
Trust Credentials, in: Proc. 4th International Conference on Trust Management,
Pisa, edited by K. St0len et al., LNCS 3986 (Springer-Verlag, 2006), pp. 267-282.

19. S. Pearson, Trusted Computing: Strengths, Weaknesses and Further Opportu­
nities for Enhancing Privacy, in: Proc. 3rd International Conference on Trust
Management, Paris, edited by P. Herrmann et al., LNCS 3477 (Springer-Verlag,
2005), pp. 305-320.

20. C D . Jensen and P. O Connell, Trust-Based Route Selection in Dynamic Source
Routing, in: Proc. 4th International Conference on Trust Management, Pisa,
edited by K. St0len et al., LNCS 3986 (Springer-Verlag, 2006), pp. 150-163.

21. F. Kerschbaum, J. Haller, Y. Karabulut, and P. Robinson, PathTrust: A Trust-
Based Reputation Service for Virtual Organization Formation, in: Proc. 4th
International Conference on Trust Management, Pisa, edited by K. St0len et al.,
LNCS 3986 (Springer-Verlag, 2006), pp. 193-205.

22. P. Herrmann, Trust-Based Protection of Software Component Users and De­
signers, in: Proc. 1st International Conference on Trust Management, Heraklion,
edited by P. Nixon and S. Terzis, S., LNCS 2692 (Springer-Verlag, 2003), pp.
75-90.

23. G. Lenzini, A. TokmakofF, and J. Muskens, Managing Trustworthiness in
Component-Based Embedded Systems, in: Proc. 2nd International Workshop
on Security and Trust Management, Hamburg (2006).

24. D. Querela, S. Hailes, and L. Capra, B- Trust: Bayesian Trust Framework for
Pervasive Computing, in: Proc. 4th International Conference on Trust Manage-

332 Peter Herrmann and Frank Alexander Kraemer

ment, Pisa, edited by K. St0len et al., LNCS 3986 (Springer-Verlag, 2006), pp.
298-312.

25. F.A. Kraemer and P. Herrmann, Service Specification by Composition of Collab­
orations — An Example, in: 2nd International Workshop on Service Composition
(Sercomp), Hong Kong (IEEE Computer, 2006).

26. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide (Addison-Wesley, 1999).

27. Object Management Group, Unified Modeling Language: Superstructure (2006).
28. R.T. Sanders, H.N. Castejon, F.A. Kraemer, and R. Braek, Using UML 2.0 Col­

laborations for Compositional Service Specification, in: ACM / IEEE 8th Interna­
tional Conference on Model Driven Engineering Languages and Systems (2005).

29. J.E.Y. Rosseb0 and R. Braek, Towards a Framework of Authentication and Au­
thorization Patterns for Ensuring Availability in Service Composition, in: Proc.
1st International Conference on Availability, Reliability and Security (ARES'06)
(IEEE Computer, 2006), pp. 206-215.

30. H.N. Castejon and R. Braek, A Collaboration-based Approach to Service Specifi­
cation and Detection of Implied Scenarios, in: ICSE's 5th Workshop on Scenarios
and State Machines: Models, Algorithms and Tools (SCESM'06) (2006).

31. F.A. Kraemer and P. Herrmann, Transforming Collaborative Service Specifica­
tions into Efficiently Executable State Machines, to appear in: Electronic Com­
munications of the EASST (2007).

32. F.A. Kraemer, P. Herrmann, and R. Braek, Ahgning UML 2.0 State Machines and
Temporal Logic for the Efficient Execution of Services, in: Proc. 8th International
Symposium on Distributed Objects and Applications (DOA), Montpellier, edited
by R. Meersmann and Z. Tari, LNCS 4276 (Springer-Ver lag, 2006), pp. 1613-1632.

33. L. Lamport, Specifying Systems (Addison-Wesley, 2002).
34. Y. Yu, P. Manolios, and L. Lamport, Model Checking TLA"^ Specifications, in:

Correct Hardware Design and Verification Methods (CHARME '99), edited by L.
Pierre and T. Kropf, LNCS 1703, (Springer-Ver lag, 1999), pp. 54-66.

35. A. J0sang, The right type of trust for distributed systems, in: Proc. UCLA
conference on New security paradigms workshops. Lake Arrowhead (ACM Press,
1996), pp. 119-131.

36. A. J0sang, An Algebra for Assessing Trust in Certification Chains, in: Proc.
Network and Distributed Systems Security Symposium (NDSS'99), edited by J.
Kochmar (The Internet Society, 1999).

37. A. J0sang and S.J. Knapskog, A Metric for Trusted Systems, in: Proc. 21st
National Security Conference (NSA, 1998).

38. P. Herrmann and H. Krumm, A Framework for Modeling Transfer Protocols,
Computer Networks 34, 317-337 (2000).

39. R. Braek, Unified System ModeUing and Implementation, in: International Switch­
ing Symposium, Paris (1979), pp. 1180-1187.

40. R. Braek, J. Gorman, 0 . Haugen, G. Melby, B. M0ller-Pedersen, and R.T. Sanders,
Quality by Construction Exemplified by TIMe — The Integrated Methodology,
Telektronikk 95, 73-82 (1997).

41. 0 . Haugen and B. M0ller-Pedersen, JavaFrame — Framework for Java Enabled
ModeUing, in: Proc. Ericsson Conference on Software Engineering, Stockholm,
(Ericsson, 2000).

42. P. Herrmann, Temporal Logic-Based Specification and Verification of Trust Mod­
els, in: Proc. 4th International Conference on Trust Management, Pisa, edited by
K. St0len et al., LNCS 3986 (Springer-Verlag, 2006), pp. 105-119.

