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Summary. We describe two techniques for reducing the effectiveness of sybil attacks, in 
which an attacker uses a large number of fake user accounts to increase his reputation. The 
first technique uses a novel transformation of the ranks returned by the PageRank system. 
This transformation not only reduces susceptibility to sybil attacks but also provides an in­
tuitive and easily interpreted reputation score. The second technique, called RAW, eliminates 
remaining vulnerabilities and allows full personalization of reputations, a necessary condition 
for a sybilproof reputation system. 

1 Introduction 

Reputation systems are a key component of many large peer-to-peer and distributed 
applications, such as online markets, file sharing systems, and ad hoc networks. As 
these networks grow in size and importance, the value of a high reputation will also 
increase. While most users build their reputation through consistent, honest behav­
ior, there will always be some who will attempt to manipulate the system to extract 
maximum benefit with minimum effort and expense. One common technique for 
gaming reputation systems is the sybil attack, which exploits the fact that most on­
line applications allow the inexpensive creation of new identities. A nefarious user 
can easily manufacture an army of fake user accounts, the sybils, and exploit them 
to increase his reputation by engaging in bogus transactions and leaving undeserved 
positive feedback. 

One proposed solution is to enforce a one-to-one correspondence between online 
pseudonyms and real people using a third party service created to guarantee the au­
thenticity of pseudonyms. [8] To date, no such services have been created, and few 
sites implement any sort of rigorous identity screening when creating an account. 

An alternative solution is to use economic effects to control the creation of sybils. 
If we attach a cost to creating user accounts and conducting transactions, it may be 
possible to render both sybil attacks and fake transactions between real users uneco­
nomical. Bhattacharjee and Goel [2] derive the conditions necessary for a transaction 
fee to prevent fake feedbacks. It remains unclear, though, whether the fees needed to 
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prevent bad behavior will be low enough so as not to discourage legitimate partici­
pation in the system. A related approach [14] makes users pay a computational cost 
or pass a CAPTCHA when creating an account in order to foil automated attempts 
to register hundreds of accounts. 

If we cannot stop people from creating sybil users, then the best defense is to de­
tect them, so that we can discount reputation information coming from sybil sources. 
A recent result [4] proved that any system where reputation is symmetric (i.e. where 
reputations are invariant under relabeling of nodes) is theoretically vulnerable to 
sybil attacks. Feldman et al. [6] demonstrate a scheme that uses maximum flow to 
form reputations in a simulated file sharing network, which is non-symmetric and 
effectively resists sybil attacks. Unfortunately, computing maximum flow is expen­
sive: the fastest general algorithm requires 0{nm\og{ii?/m)) time for a n-vertex, 
m-edge graph. [10] The amortized constant time approximate algorithm of [6] lim­
its the total number of iterations of the 0{n^) preflow-push algorithm [9], but they 
present no evidence that this approach will scale effectively to web scale networks. 

The EigenTrust system [11] applies the well-known PageRank [12] algorithm 
to the problem of trust and reputation in peer-to-peer systems. EigenTrust's authors 
claim it to be resistant to not just sybils but also to collusion by otherwise legitimate 
users. We show in Section 2 that these claims are false and show several mechanisms 
for using sybils to attack EigenTrust. 

We then describe a novel transformation of EigenTrust, Relative Rank, that real­
izes two important goals. First, it returns reputation metrics suitable for peer-to-peer 
markets, where both parties need to simultaneously make a decision to interact or not 
based on the other's reputation. Second, the reputations returned by Relative Rank 
resist sybil attacks. 

Finally, we propose a new algorithm, RAW, that replaces PageRank within the 
Relative Rank framework. We prove that RAW combined with Relative Rank is se­
cure against one main class of sybil attack and also provide a strong bound the ef­
fectiveness of the other type. Furthermore, RAW is fully personalizable: it can easily 
return reputations that are specific to the querying user. RAW is thus able to meet 
the conditions set forward by [4] as a necessary condition for a sybilproof reputation 
algorithm. 

2 PageRank as a Reputation System 

In order to understand the extensions to PageRank that confer sybil resistance, we 
must first look at the PageRank algorithm itself. This section serves as a brief sum­
mary of PageRank and of EigenTrust, an application of PageRank as a reputation 
system. For more details on these algorithms, we refer the interested reader to the 
original PageRank [12] and EigenTrust [11] papers. 
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2.1 The PageRank Algorithm 

Let G — {E^ V) be a directed graph where every vertex has at least one out­
going edge^ Let 5, the start set, be a vector of length \V\ with | |5| |i = 1, 
which defines a distribution across V. Let ^ be a [Fl x \V\ matrix with each el­
ement aij = l/ |succ(j)| if there is a link from j to i and 0 otherwise, where 
succ(z) = {j\{i,j) G E}, The matrix A is thus a stochastic matrix that represents 
the link structure of G. 

Define the random walk process {Xt}t=i...oo on G with constant damping factor 
c G ( 0 , l ) : 

L Fv{Xo=i} = Si 
2. With probability c, take a step such that Pr{Xt+i = i\Xt = j} = aij. 
3. Otherwise, restart at a random node: Pr{Xt+i = i} = Si. 

The process {Xt}t=i...oo is an irreducible, aperiodic, persistent Markov process 
with a finite state. By the Perron-Frobenius theorem, the process's stationary dis­
tribution, R, is the first eigenvector of the matrix (1 — c)5 x 1 + cA, and can be 
computed with a simple iterative algorithm. 

Definition 1. Ri is the rank or PageRank score of node i. 

Details of the PageRank algorithm and its applications to web search can be 
found in [12]. 

EigenTrust [11] uses PageRank as a reputation system for peer-to-peer file shar­
ing networks. While web links are binary (either a link is present or it is not), trust 
relationships are described using a range of values, both positive and negative. When 
constructing the A matrix, EigenTrust therefore uses a more complex normalization 
procedure. A user i defines his satisfaction with user j , Sij as: 

Sij — sat(i, j ) — unsat(i, j ) 

where sat(z, j ) and unsat(2, j) represent respectively the number of satisfactory and 
unsatisfactory interactions that user i has had with user j . The elements of the A 
matrix are defined by: 

max(5ij ,0) 

Two important consequences of this normalization process are (1) that the random 
walk now chooses an outgoing Hnk with probability proportional to the user's satis­
faction instead of uniformly and (2) that negative satisfaction ratings are essentially 
discarded: negative trust is treated the same as no trust. 

The creators of EigenTrust propose two decision procedures to use when apply­
ing this reputation information. In the first procedure, the user always picks the part­
ner who has the highest EigenTrust score. In the second, the user chooses randomly 
with probability proportional to the potential partners' scores. 

^ In real networks, some nodes may not have outgoing links. There are several possible so­
lutions to this problem: we could trim out nodes that link to no one, or we could add a link 
from a node to all the start set nodes. In our implementation, we do the latter. 
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2.2 Problems with EigenTrust 

Despite the optimistic claims in [11], EigenTrust has a number of problems as a 
reputation algorithm for peer-to-peer markets: 

EigenTrust is vulnerable to collusion and sybils. While [11] claim to demon­
strate that EigenTrust is robust to collusion, their evaluation is flawed. Consider the 
simple collusion scenario where a set of users all agree to form a "feedback clique:" 
they each leave a maximally positive rating for all other members of the clique. 
Under such an attack, our tests have shown that each member's rank increases. Fur­
thermore, even a single user can construct a network of sybils that will increase his 
rank as shown in the next section. 

EigenTrust does not have a clear decision procedure. In peer-to-peer markets, 
users need to be able to look at a potential partner's reputation and decide whether to 
interact or not. EigenTrust scores are more or less a measure of the degree to which a 
node is "linked in" to the rest of the graph, and this score grows roughly linearly with 
the number of transactions. Consequently, the decision procedures proposed by [11] 
are flawed: they tend to select more experienced, but not necessary more trustworthy, 
partners. 

EigenTrust does not use negative feedback. Most online markets allow both 
positive and negative feedback. EigenTrust's strategy of discarding this negative in­
formation is sub-optimal. Because EigenTrust scores grow linearly with the number 
of positive links and ignore the negative ones, a user with a fairly high rate of negative 
feedback can still see unbounded grown in his EigenTrust score. 

EigenTrust is vulnerable to attacks by users in the start set. The vertices with 
positive probability in the start set distribution fill a special role in PageRank-like 
algorithms. As the starting point for the random walk, these nodes are the source of 
all authority in the graph. In classical implementations of PageRank, this start set 
contains all top level domains, weighted uniformly. In EigenTrust, the start set is a 
set of "trustworthy" nodes established by the management of the reputation system. 
In both cases, this start set remains the same for all queries, resulting in a symmetric 
reputation function, which is provably not sybilproof [4]. While the cost of top-level 
domains [5] and careful selection of trustworthy nodes in EigenTrust can raise the 
cost and reduce the effectiveness of sybil attacks, they cannot be eliminated. Further­
more, the power wielded by start set members is an invitation for corruption. 

Fortunately, none of these pitfalls is insurmountable. We spend the remainder of 
this report examining these weaknesses and their solutions in detail. 

3 Sybil Attacks 

Broadly speaking, there are two ways in which sybils can be helpful: the attacker 
can use use them to increase his own reputation or he can use a sybil, rather than 
his main identity, to conduct transactions with other users. We concentrate first on 
attacks designed to increase the attacker's reputation. With PageRank or EigenTrust, 
if an attacker can alter the random walk process to increase the amount of time it 
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spends at his node, then he can increase his rank. We assume that the only way an 
attacker can affect the random walk is by engaging in fake transactions with sybils, 
thus adding links among his main node and the sybils. It is also possible to use the 
sybils to engage in transactions with other users, but this tactic is counter-productive 
if the attacker's goal is to increase his main node's reputation: 

Proposition 1. Let G = (E", V) be the trust graph excluding the attacker node and 
all its sybils. Let Ga = (Ea^Va) be the graph of the attacker node Va G Va and its 
sybils {SQ, . . . , Sn} C K- Let Gc = {Ec, Vc) be the complete graph with Vc = 
V[JVaandEc = EUEaU {{ij) :ieVJ e Va}. 

The rank of the attacker Va is maximized when all edges (i^j) between nodes in 
G and nodes in Ga are connected to Va-

Proof (informal). Consider incoming edges (i, j ) where i e V and j e K- If 
j = Va, then on each transit of (i, j ) , the random walk will visit Va, increasing 
its rank. However, if j =^ Va, then the probability that the random walk visits Va after 
transiting (i, j ) is strictly less than one. So, to maximize its rank, an attacker would 
want to have edges incoming from G to Ga to go to his main node, not one of the 
sybils. 

Outgoing edges (i, j ) , where i e Va and j e V, fall under a similar argument. 
If 2 = Va, then all random walks exiting Ga must first visit Va increasing its rank. If 
i ^ Va, then it is possible for a random walk to exit Ga without visiting Va. So to 
maximize its rank, the attacker should have all outgoing edges connected to Va. 

A more formal proof of this result can be found in [3]. 

3.1 Attack Types 

While Proposition 1 shows that an attacker cannot increase his reputation through 
cleverly choosing sybils to engage in transactions, it is nevertheless possible to en­
gineer a network of sybils that increases the attacker's score. Informally, a node's 
EigenTrust score is the ratio of visits to the node to the total number of steps in the 
process, so there are two strategies for increasing it: increase the number of visits to 
the node or make fewer visits to other nodes. 

A Type I attack uses sybils to redirect the random walk back at the attacker's 
node, increasing the number of visits to it. A simple configuration that implements 
this attack creates Â  sybils and adds both in- and outgoing links between each sybil 
and the attacker. Provided the attacker has no other outgoing links (or Â  is much 
larger than the number of outgoing links), once the process enters the sybil network, 
it will spend approximately half its time visiting the attacker until it resets to a new 
start set node. 

In the Type II attack, the attacker links to each sybil but does not link back to his 
main node: each sybil is a dead end. This attack forces the process to restart at a start 
set node more frequently, preventing visits to nodes outside the sybil network. Sybils 
are not strictly necessary in this attack: an attacker with no outgoing links at all also 
achieves the same end. However, if the attacker has outlinks to non-sybil nodes, he 
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Fig. 1: Effectiveness sybil attacks against the EigenTrust reputation system. 

will need a significantly larger number of links to dead-end sybils to cause a high 
restart probability. While forcing a reset of the process does prevent visits to other 
nodes after it sees the attacker, the low probability of returning to the attacker render 
it unclear whether this attack is of much use. In practice, we have seen little benefit 
to using this attack, but we include it for completeness. 

The Type III attack, which uses the same network topology as the Type 11 attack, 
has a different goal. Instead of increasing the attacker's reputation, the purpose of 
this attack is to create sybils with high reputations that can then be spent engaging 
in uncooperative behavior without affecting the attacker's primary reputation. Once 
a negative feedback diminishes a sybil's reputation, the attacker simply discards it. 

3.2 EigenTrust is not Sybilproof 

To investigate the effect of these three sybil attacks on the EigenTrust algorithm, 
we implemented them in our marketplace simulator (described in detail in [13]). We 
measure the effectiveness of the first two attack types by looking at the percentage 
change in reputation. For the Type III attack, we simply look at the mean reputation 
of the created sybils. For each test, we ran 10 independent simulations, each with 10 
attackers with the final results obtained by taking the mean of all 100 attackers. 

Figure 1 shows the results of this test. The Type I attack is clearly effective: even 
a single sybil causes a measurable increase in reputation and 50 sybils allows the 
attacker to more than double his reputation. The effectiveness of this attack strictly 
increases with the number of sybils, although the incremental benefit is less with 
more sybils. The attack is roughly equally effective whether the attacker belongs to 
the start set or not; however, the members of the start set begin with much higher 
reputations, so the absolute increase is greater. 

The Type II attack (Figure lb) is not effective at all, with sybils causing a de­
crease in reputation at all levels. It is slightly less ineffective if the attacker is a 
member of the start set, since the chances of returning to the attacker after restarting 
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a random walk is much higher. While of some theoretical interest, this attack does 
not appear to be of much concern for practical systems. 

It is difficult to evaluate the effectiveness of the third attack (see Figure 6 below) 
because, as we discussed in Section 2.2, it is unclear exactly what constitutes a good 
or bad reputation under EigenTrust. However, sybils do receive a positive reputation, 
though more sybils means each sybil's reputation is slightly lower. More troubling 
is that the reputations of sybils created by a start set member are, on average, nine 
times higher than those created by a non-member. Since the configuration of sybils 
in the Type III attack is identical to that of the Type 11 attack, we note that a start set 
member can trade off a small (roughly 5%) decrease in his main identity's reputation 
in order to create an army of relatively high reputation sybils. 

4 Relative Rank: PageRank for Markets 

We now introduce our technique of Relative Rank, a transformation of EigenTrust 
scores with several desirable properties: 

• Relative Rank has a clear decision procedure. Honest users, regardless of their 
experience, receive high Relative Rank scores, while dishonest ones receive low 
scores, permitting users to use a simple constant threshold. 

• Relative Rank uses negative feedback. A user with a steady rate of bad behavior 
will have a lower Relative Rank than one whose behavior is consistently honest. 

• Relative Rank resists sybil attacks. For users that are not members of the start 
set. Relative Rank does not increase with either Type I or Type II sybil attacks. 
Furthermore, the sybils created in a Type III attack have reputation too low to 
reliably engage in transactions on the attacker's behalf. 

4.1 Relative Rank Defined 

The original motivation for Relative Rank was to transform PageRank into a repu­
tation system suitable for use in peer-to-peer markets. In typical markets, potential 
buyers and sellers examine each others' reputations and try to decide whether or not 
it is safe to interact. In systems like Percent Positive Feedback, used by eBay, a high 
reputation corresponds to a high estimated success rate, allowing users to apply a 
simple threshold when deciding whether or not to interact. 

Under EigenTrust, a user's score increases with the number of positive feedbacks 
received, not with the success rate of the user. Additionally, users in the start set begin 
with much higher rank than non-members. However, enlarging the start set to include 
all users allows a new, trivial sybil attack. [5] 

Figure 2 plots EigenTrust score against the number of transactions for all users 
in two simulated markets. In the first market, we use a bimodal distribution of agent 
honesty:^ 95% of users are honest and behave honestly an average of 98% of the 

^ We use the term "honesty" as a shorthand for "probability of acceptable performance." As 
suggested by [1], we do not try to assess user motivation or make a distinction between 
incompetence and malice. 
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Fig. 2: EigenTrust score vs. number of transactions for all users in two simulated markets. 

time. The remainder average honest behavior only 2% of the time. We believe that 
this distribution captures the essence of real networks where users tend to either play 
by rules or cheat all the time, and not use some mixed strategy. The overall mean 
honesty in this market is 93.2%. In the second market, user honesties are distributed 
uniformly. Honest users are those that behave honestly at least as often as the mean. 

Examining Figure 2a, we see four major regimes: 

1. Honest agents whose rank follow a line with positive slope and intercept 0.0015 
2. Honest agents whose rank follow a line with positive slope and intercept 0 
3. Dishonest agents whose rank lies around 0.0015, regardless of experience 
4. Dishonest agents whose rank lies around 0, regardless of experience 

Similar patterns exist in the uniformly honest market (Figure 2b) as well. 
Encouragingly, the rank of dishonest agents behaves differently than that of hon­

est ones. However, it is clear that a simple threshold won't work very well: a thresh­
old less than 0.0015 will miss many dishonest users, while one much greater than 0 
will classify a large number of honest agents incorrectly. Groups 1 and 3 represent 
users that belong to the start set and the other groups consist of non-members. How­
ever, even if we divide the users based on start set membership, any threshold we set 
will likely exclude a large portion of users with low experience. 

If we plot only users of a fixed level of honesty, we observe that the plotted points 
roughly follow a ray beginning at the origin (or at (0,0.0015) for start set members) 
and extending into the first quadrant. The angle this ray forms with the x axis is 
proportional the user's honesty. This observation forms intuition behind the Relative 
Rank algorithm: 

1. Run EigenTrust. 
2. Separate start set members from other users. 
3. For each feedback count /c, including both positive and negative feedback, find 

the non-start-set user ik that has the highest observed rank, fi^ among users who 
have received k feedbacks. 
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Fig. 3: Relative Rank versus number of transactions in the two example markets. 

4. Fit a line to the pairs (A:, r^^) and obtain a slope, Pg, and intercept, a^. 
5. Repeat steps 3 and 4 for start set members to obtain a separate intercept and 

slope, as and/35. 

For a non-start-set user i with k feedbacks, define the Relative Rank score as: 

Si = 
as 

Psk 

The same definition holds for start set members, except that as and Ps are used. 
Similar plots of Relative Rank versus number of transactions for the two example 

markets can be found in Figure 3. Clearly, a simple linear separation between honest 
and dishonest users appears to be a good approach in both of these markets. 

4.2 Reputation System Performance 

Before we look at its performance with sybils, we examine how well Relative Rank 
serves as a reputation metric. Certainly, the ability to resist sybils is moot if the 
system cannot sort out good users from bad. 

Figure 4a presents a ROC curve that illustrates the trade-off between detecting 
dishonest users and incorrectly labeling honest users as dishonest when using Rela­
tive Rank with a simple fixed threshold in our two example markets. The area under 
this curve is considered a good non-parametric estimation of a classification algo­
rithm's performance, with an ideal system having area 1. For Relative Rank, the area 
under the curve is .9306 for the market with uniform honesty and .9212 for the mar­
ket with a bimodal honesty distribution. In both cases, we define an honest user as 
one whose rate of successful transactions is equal or greater to the mean. If we relax 
this definition somewhat so that an honest user is one that behaves correctly 90% of 
the time, the area under the curve for the bimodal market increases to 0.996. 

In Figure 4b, we measure the transaction success rate (the percentage of trans­
actions where both parties behave honestly) in the example markets. We compared 
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Fig. 4: Performance of the Relative Rank algorithm in our example markets. Error bars in (b) 
indicate standard deviation across ten trials. 

the market's performance with several different interaction thresholds (the minimum 
reputation an agent must have before being allowed to interact). Even with a rela­
tively low interaction threshold, Relative Rank was able to roughly halve the number 
of failed transactions in both markets. 

Relative Rank nearly perfectly separates the two modes in the bimodal market: 
with a threshold of 0 (all users always interact) the observed transaction success rate 
was .866, very close to the expected rate of .869. However, with Relative Rank and a 
moderate positive threshold (0.4-0.6), the success rate increased to .956, just slightly 
less than the .960 rate expected if only the honest users were permitted to operate. 
However, Relative Rank seems less capable of making fine discrimination between 
agent honesties: increasing the threshold further does not provide a significant bene­
fit. This is not unexpected: with roughly equal honesty and experience, there will be 
some variation in users' Relative Rank scores depending on the local topology of the 
graph in which they operate. We do not view this as a problem — there is ample evi­
dence that suggests that a bimodal distribution of users with a mostly honest majority 
and a dishonest minority is a reasonable model of real user behavior. Furthermore, it 
is exactly this sensitivity to graph structure that gives Relative Rank its resistance to 
sybil attacks. 

4.3 Relative Rank and Sybils 

Now that we have established that Relative Rank is a useful reputation algorithm for 
peer-to-peer markets, we examine its behavior under the three sybil attack scenarios 
described in Section 3.1. The results of this experiment are shown in Figure 5. Com­
paring these graphs with the results for EigenTrust (Figure 1), we see that Relative 
Rank is significantly more resistant to sybil attacks. 

The Type I attack (Figure 5a) is completely ineffective for users that do not be­
long to that start set but remains a viable means for start set members to increase 
their reputations. The Type II attack (Figure 5b) is, once again, more or less useless: 
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in the bimodal example market. 
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Fig. 6: Performance of (a) EigenTrust and (b) Relative Rank under the Type HI attack. 

nearly all attackers see their Relative Rank fall with sybils. One exception is for start 
set nodes with only one sybil, which gives a very small reputation increase, but this 
small increase is of little practical benefit to the attacker. 

Since, unlike EigenTrust, we have an interaction decision procedure for Relative 
Rank, we can analyze the impact of the Type III attack (Figure 6b) more thoroughly. 
The results of the previous section suggest that a good interaction threshold for this 
example market is around 0.5. All of the sybils created by non-start set users are thus 
useless: their reputation is below the interaction threshold, so it is unlikely that the 
attacker can use them to engage in any transactions. 

However, sybils created by start set members have very high reputations. If used 
to commit fraudulent transactions, / negative feedbacks will reduce a sybil's Relative 
Rank by a factor of 1 / / . An attacker can thus create a large number of sybils with 
only minimal effect on his main identity's reputation and conduct a large number of 
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fraudulent transactions (e.g. approximately 3 transactions per sybil with 25 sybils) 
before the sybils' reputations are expended. 

While initially envisioned as merely a way of adapting EigenTrust to peer-to-
peer markets, Relative Rank had the unexpected benefit of increased resistance to 
sybil attacks, at least by attackers that do not belong to the start set. However, it 
is still vulnerable to abuse by start set members. We also cannot prove this sybil 
resistance: it appears to be generally true, but may simply be an artifact of our choice 
of simulation parameters. 

5 The RAW Algorithm 

To address the few remaining concerns with Relative Rank, we introduce RAW, a 
PageRank-like algorithm with two important properties: 

1. Provable immunity to Type I attacks and a provable bound on the effectiveness 
of Type II sybil attacks. 

2. Asymmetric, personalized reputations, which render attacks that rely on start set 
membership ineffective. 

RAW does not replace Relative Rank; rather, it replaces the PageRank implemen­
tation within the core of the Relative Rank framework. The combination of RAW 
with Relative Rank achieves our goal of a highly sybil resistant reputation system 
for peer-to-peer markets. 

5.1 Definition of the RAW Algorithm 

The setup for RAW is the same as for PageRank: we have a directed graph, 
G = {E, V), representing the users and their trust relations as well as a start set, 
S and constant damping factor, c e (0,1). The RAW process, {(X^, Ht)}t=i...oo is 
a random walk on the graph that proceeds according to the following rules: 

1. Ho = 0,FT{Xo = i} = Si. 
2. With probability c, set ii^t+i = HtU {Xt} and take a step such that Fr{Xt-\-i = 

i\i eHt} = 0 and Pr{Xt+i = i\Xt = jj ^ Ht} = aij/ EfcGsuccO)\/ft+i ^^J' 
3. Otherwise, JTt+i = 0 and Pr{Xt+i = i} = Si. 

Definition 2. If R is the length \V\ vector describing the stationary distribution of 
Xt in the process {{Xt,Ht)}t=i...oo defined above, then Ri is the RAW score of 
node i. 

This process is very similar to the one used to define PageRank with one impor­
tant difference: the process cannot visit the same node more than once between resets 
to a random start set node. This property is the key to RAW's sybil resistance. No 
configuration of edges can cause the process to revisit a node, so the Type I attack is 
impossible by definition. 

RAW behaves very similarly to PageRank in the absence of Sybils and can be 
used as a "drop-in" replacement in EigenTrust, Relative Rank, or any other system 
that uses PageRank. 
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5.2 Implementation and Personalization 

The addition of history obviously renders the RAW process non-Markov, so simple 
close-form or iterative formulations of its stationary distribution are not readily ap­
parent. For the experiments in this paper, we use a Monte Carlo implementation that 
directly simulates the random walk process. 

For deployment in a web-scale marketplace, it will be necessary to efficiently 
scale up this implementation from thousands to millions of nodes. Similar techniques 
have been proposed for Personalized PageRank web search systems [7], and these 
systems can be readily adapted to computing RAW scores instead. 

A key benefit of this implementation of RAW is that it can be fully personal­
ized. To accomplish this, we create a collection of start sets, each with only a single 
member. We then run the Monte Carlo simulation of the RAW random walk to build 
a "fingerprint" of ranks for that user — in essence the RAW scores using just that 
single node as the start set. These fingerprints are stored in a database for easy access. 

At query time, the user chooses which nodes to include in the start set and looks 
up the RAW scores of the target in the fingerprint database. The user then constructs a 
personalized RAW score by taking the (optionally weighted) average of the queried 
fingerprint values. In this way, the user creates the start set dynamically for each 
query. A proposition in [7] proves that a start set built up in this fashion is equivalent 
to a start set chosen in the standard way. 

In a practical system, the market administration will want to build a fingerprint 
database large enough to offer a user a wide choice of start set nodes, yet small 
enough to make the Monte Carlo RAW calculation tractable. Users then choose 
unique subsets of this "meta-start set" for individual queries. Provided the meta-start 
set is large enough, a user will be able to find a sufficiently large start set that does 
not include either the node whose reputation is being queried or any of its immediate 
neighbors, drastically reducing the effectiveness of sybil attacks that rely on start set 
membership or proximity. 

5.3 RAW and Sybils 

The proof of RAW's immunity to Type I attacks is by definition: RAW prohibits 
multiple visits to the same vertex between resets to a start set node, so any configu­
ration of sybils that attempts such a redirection will fail. Obviously, this immunity to 
Type I attacks also carries over to RAW Relative Rank: feedback from sybils cannot 
increase the RAW score, but it does increase the feedback count, thus decreasing 
Relative Rank score. 

Type II attacks are theoretically possible against RAW; however, we can prove a 
tight bound on their effectiveness. 

Proposition 2. Let ri be the RAW rank of a user, z, without any sybils and let r[ be 
the RAW rank of the same user after creating sybils in a Type II configuration. If 
c is the chosen damping factor, then the effectiveness of the attack is bounded by 
E[r'/r]<{l-c^)-\ 
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Proof. We consider the worst case: there is a single start set node, s, that is the 
source of all random walks. It is connected directly to i and to no other nodes. This 
configuration maximizes the number of visits to i, because i lies along the path of all 
walks of length 2 or more. The attacker has connections to n non-sybil nodes. 

The expected number of visits to i on each walk is simply the damping factor c. 
The expected walk length given a visit to i is 1 -f c+c^(l-f-/), where I is the expected 
length of a random walk in the non-sybil portion of the graph. So, the expected rank 
of i without sybils is: 

When i creates m sybils in a type II configuration, the walk transitions from i to 
a sybil with probability m/{m + n), so the expected rank with sybils is: 

Efr'l = 

If we take the limit as m ^ oo, we get that: 

^ r ^ 1 -h c -h c2 

If the random walk never hits a dead end, then E[l] = c/{l — c). Because dead ends 
are possible, E[/] is strictly less than this value. Making this substitution for I gives 
us our bound. 

For the choice of c = 0.85 used in our experiments, the maximum increase in 
reputation with an attack of this type is approximately 2.6. We can also solve the 
above equation for c given a desired bound on r^/r. 

In practice, attacks of this form are even less effective because there are many 
start set nodes, making the probability of returning to the attacker extremely low. 
Furthermore, with personalization, the membership of the start set can change arbi­
trarily often, making it essentially impossible to consistently gain a practical increase 
in reputation. 

5.4 Results 

Figure 7a plots the transaction success rate against the interaction threshold for RAW 
Relative Rank in our simulated market. Compared to standard Relative Rank (Fig­
ure 1), there are few differences. Both systems are about equally effective at prevent­
ing failing transactions. However, the RAW version experiences a slight reduction 
in transaction success with high (> 0.8) interaction thresholds, due to higher score 
variances introduced by the Monte Carlo implementation. Once again, a moderate 
interaction threshold of around 0.5-0.7 makes the best trade-off between preventing 
failed transactions and not deactivating too many honest agents. 

Performance with sybils (Figure 7b) is as predicted by theory. Neither Type I 
nor Type II sybil attacks achieve any practical measure of success in increasing the 
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Fig. 7: Evaluation of RAW Relative Ranks used as a reputation system. 

attacker's RAW Relative Rank. Sybils created in a Type III attack have RAW relative 
ranks in the 0.25-0.35 range, similar to what we saw with standard Relative Rank for 
non-start set members. However, with RAW Relative Rank, the "start set" disappears 
as a concept, so it is not possible for an attacker to exploit his start set membership 
to launch a successful Type III attack. 

6 Conclusion 

In this report, we presented two techniques that make considerable progress towards 
the goal of a fully robust reputation system for peer-to-peer markets. The Relative 
Rank algorithm takes the widely studied PageRank algorithm and adapts it for use 
as a marketplace reputation system. It transforms users' EigenTrust scores, which 
are dependent on their experience level, into a reputation metric that can be easily 
thresholded against for making trust decisions. Furthermore, it incorporates negative 
feedback so that users must maintain a high degree of honesty in order to be judged 
worthy of interacting. Finally, Relative Rank is more resistant to sybil attacks than 
PageRank: for non-start set users, all three of the sybil attacks we identified fail. 

The RAW algorithm replaces PageRank within the Relative Rank framework re­
sulting in several key benefits. Unlike PageRank, RAW is, by definition, invulnerable 
to Type I sybil attacks. Type II attack success can be bounded, and in practice is far 
lower than even the bound suggests. Finally, RAW is completely personalized: the 
querier can choose the start set, so reputations are asymmetric. Combined with Rel­
ative Rank, RAW becomes a reputation algorithm with a simple decision procedure 
for peer-to-peer markets, resistance to all three classes of sybil attacks, and no op­
portunity for corruption by start set members. 
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