
16 THE IMPACT OF METHODS AND
TECHNIQUES ON OUTCOMES FROM AGILE

SOFTWARE DEVELOPMENT PROJECTS

David Parsons
Hokyoung Ryu

Ramesh Lai
Massey University, Albany

Auckland, New Zealand

A b s t r S C t Agile software development methods have become increasingly popular since

the late 1990s, and may offer improved outcomes for software development
projects when compared to more traditional approaches. However there has
previously been little published empirical evidence to either prove or disprove
this assertion. A survey carried out in March 2006 gathered responses from
a large number of software development professionals who were using many
different methods, both traditional and agile. A statistical analysis of this data
reveals that agile methods do indeed improve outcomes from software
development projects in terms of quality, satisfaction, and productivity, without
a significant increase in cost. However, adoption of methods appears to
involve a high degree of adaptivity, with many methods being used in com­
bination and sets of techniques being adopted on an ad hoc basis. In this con­
text, our analysis suggests that choosing specific combinations of methods can
be particularly beneficial. However, we also find that successful adoption of
an agile method is to some extent dependent on rigorous integration of certain
core techniques.

Keywords Agile method, technique, software development

Please use the jbUowingjbrmat when citing this chapter:

Parsons, D., Ryu, H., and Lai, R., 2007, in IFIP International Federation for Information Processing, Volume
235, Organizational Dynamics of Technology-Based Innovation: Diversifying the Research Agenda, eds.
McMaster, T., Wastell, D., Femeley, E., and DeGross, J. (Boston: Springer), pp. 235-249.

236 Part 3: Software Process Improvement

1 INTRODUCTION

This paper provides some statistical analyses of a data set originally gathered using an
online survey to determine the level of adoption of agile approaches by software
development organizations. The survey, carried out in March 2006 by Scott Ambler,
used mailing lists from both Dr. Dobb 's Journal and Software Development magazine.
A summary article was subsequently published on-line in September 2006 (Ambler,
2006c), and the raw data was made available for public access (Ambler 2006a). In this
paper we view the original data from a number of new perspectives to explore some
important questions about the effects of some key variables on the outcomes of software
development projects. We begin by looking at previous studies that relate to the adoption
and adaptation of agile methods and techniques. We then introduce the data set and
methodology that we have used in this study. This is followed by an analysis of the data,
from which we draw some conclusions and propose some further work.

2 AGILE METHODS AND TECHNIQUES

The mid-1990s saw the emergence of a set of informal analysis and design approaches
known as agile methods (Highsmith 2002). While proponents of agile methods claim
software development improvements, there is little empirical evidence to back this claim
even though "agilists" emphasize that benefits would be experienced if these methods
and practices were used (Anderson 2004).

2.1 Adopting and Adapting Agile IVIethods

Although agile methods tend to be quite prescriptive about the practices that they do or
do not include, there is some information suggesting that methods and techniques are
being adopted in a somewhat piecemeal manner (Aveling 2004; El Emam 2003;
Hussman 2006). This is not inconsistent with the intent of these methods, since it is
recognized that each software development project differs in its scale, scope, and tech­
nical challenges. Therefore agile methods encourage the chosen approach to be adapted
to counter the various development conditions that apply to a particular development
project (Keenan 2004; Misic 2006). Integrating any new practice or software develop­
ment process requires method tailoring to integrate it with existing processes and to
match the organizational environment (Lindvall et al. 2004; Sfetsos et al. 2006).
Sometimes it is necessary to stage the introduction of certain techniques because of
dependencies between them (Beck and Andres 2005), while some authors propose
extensions to certain methods to compensate for what they regard as their limitations.
For example Stephens and Rosenberg (2003, p. 380) describe eXtreme Programming as
an "anorexic process without effective contingency plans" and suggest a significant
refactoring of the method. Others suggest that combining multiple agile methods may
be more effective than using one method alone (Beedle 2006; Mar and Schwaber 2002).
Choosing an appropriate method may also be problematical in practice. Datta (2006)
proposes a framework known as the Agility Measurement Index (AMI) which can be

Parsons et a I./Agile Software Development Projects 237

used to determine the appropriateness of an agile method for a particular software
development project, while Domingues et al. (2006) suggest a suitability filter for
selecting specifically from agile methods. However, most software development teams
do not have the depth of knowledge and skills to pick and choose different methods for
different projects. The normal practice for software development is to adopt the most
convenient or familiar method and then evaluate and improve it as it is being used to
develop applications and systems. The implication of these issues is that methods may
be adopted in ways that lead to extensive tailoring. This tailoring is likely to mean
variations in the numbers and types of techniques adopted regardless of the label used to
describe the umbrella agile method, or methods.

2.2 Choosing and Using Agile Techniques

Previous research has indicated that the selection of agile techniques within a method
may be influenced not only by their perceived benefits but also by a range of problems
and difficulties that certain techniques bring with them. A study by Sfetsos et al. (2006)
identified pair programming and test-driven development to be the most significant
success factors in outcomes from agile development, but noted that companies found
problems adopting some other techniques such as common code ownership, on-site
customer, 40-hour week, and metaphor. In contrast, Grossman et al. (2003) suggested
that test-driven development was the most difficult and risky technique to adopt, as did
a set of experiments at three different locations by George and Williams (2003). While
many studies have highlighted the benefits of test-driven development, including defect
reduction (Williams et al. 2003), a better testing process (Dustin et al. 1999) and higher
quality (Bhat and Nagappan 2006), there are also some suggested drawbacks, such as a
slower overall process (Bhat and Nagappan 2006; Canfora et al. 2006). Indeed some
have suggested that this technique does not even, in fact, improve code quality (MuUer
and Hagner 2002). Further studies suggest that test driven development is not the only
problematic technique. Others include simple design, pair programming, customer tests,
and collective code ownership (George and Williams 2003; Misic 2006). Paige et al.
(2005) discuss some negative issues relating to increments, pair programming, and
customer feedback in the context of building high-integrity systems (HIS). These studies
show that there are many social, organizational, and technical factors that may influence
why an agile technique may or may not be used by a particular software development
team. This may explain why agile methods are not always adopted in full, but rather that
certain techniques are adopted and methods are adapted.

Clearly, adopting an agile method in practice is not simply a case of taking a single
method off the shelf and adopting its practices. Rather, it involves a process of selection
and adaptivity. Given that practitioners are adopting various combinations of methods
and techniques, the question that we try to address in this paper is which methods and
techniques appear to provide the best outcomes. In the ongoing debate about the wisdom
or otherwise of embracing agile methods (Boehm 2002; Nerur et al. 2005), empirical
evidence such as the survey data used in this paper can make a valuable contribution to
our understanding and assist software developers in building an appropriate methodology
from the various agile methods and techniques on offer.

238 Part 3: Software Process Improvement

3 THE AGILE ADOPTION SURVEY DATA

The data set used in this paper was made available by Scott Ambler (2006a) and is based
on an on-line survey. The Ambler survey repeated, with some changes, a similar survey
carried out by Shine Technologies (2003). This original survey had only 131 respondents
but Ambler's survey had 4,235 respondents.

Perhaps the most important aspect of both questionnaires is the four questions
relating to the outcomes of software development projects, namely; productivity, system
quality, cost, and stakeholder satisfaction. Ambler (2006c) endeavored to improve the
original Shine survey in a number of ways. One important difference is that some Likert
scale responses also included "I don't know" as a response for the four questions that
related to outcomes, making it possible to discount these responses from our analyses.
What is most interesting about the Ambler survey is that it introduced questions about
the agile techniques that were being adopted, making it possible to do some analysis of
which techniques were actually being used within the various methods. It also made it
possible to see if the use of certain practices could be correlated with certain outcomes.
In this paper, to explore the relationship between outcomes and agile methods and
techniques, we focus on the outcomes as dependent variables, with the use of methods
and techniques as independent variables.

In his original article. Ambler (2006c) drew some preliminary conclusions from the
data. For instance, there was a correlation between knowledge of agile development and
outcomes, so that the respondents who were more knowledgeable about agile approaches
claimed to have better quality, productivity and satisfaction than those who were not. He
also concluded that organization size was not a statistically significant factor in the levels
of outcome attained from agile approaches. The most significant result claimed was that
adoption of agile methods increases quality, productivity, and satisfaction, and that
"adoption of agile processes has clearly been a resounding success" (Ambler 2006c,
p. 3),

We do not intend to replicate all of these analyses in this paper, but prefer to explore
additional features of the data. Ambler (2006c) did not attempt to provide a deeper
analysis of any of the key variables that may have effects on the adoption of agile
methods. This gave us an opportunity to mine the data set for some further insights into
the effects of adopting agile methods and techniques, which is the main concern of this
paper.

Looking at the data, we noted that many organizations are using more than one agile
method. In fact nearly 16 percent of the respondents claimed to be using multiple
methods, in some cases as many as seven (Table 1). This raised an obvious question
about whether there is any benefit in adopting multiple methods for agile development.

We also noted that techniques and methods did not seem to be consistently used as
one might expect with, in many cases, a lack of correlation between the stated use of a
method and actual use of techniques that would normally be associated with that method.
In other words, there were no consistent patterns between the stated methodology and the
techniques actually being used. The 12 techniques included in the survey, and the
number of respondents reporting their use, is shown in Table 2.

The lack of correlation between specific techniques and methods in practice led us
to question: What is the underlying relationship between a methodology and a set of
techniques?

Parsons et al./Agile Software Development Projects 239

Table 1. The Numbers of Agile
by the Survey Respondents

Number of Methods Used

No agile methods

One agile method

Two agile methods

Three or more methods

Total

Methods Reported as Being Used

Number of
Respondents

2541

1019

500

175

4235

Percentage of i
Respondents

59.99%

24.06%

11.80%

4.15% 1

100%

Table 2. The Numbers of Agile Techniques Reported «
by the Survey Respondents

Techniques

Active stakeholder participation

Agile model driven development

Code refactoring

Code regression testing

Colocation

Common coding guidelines

Continuous integration

Database refactoring

1 Database regression testing

Pair programming

Single sourcing

1 Test driven design

Number of
Respondents

938

260

1467

1383

447

1595

1113

416

407

587

241

959

3S Being Used

Percentage of
Respondents

22.15%

6.14%

34.64%

32.66%

10.55%

37.66%

26.28%

9.82%)

9.61%

13.86%

5.69%

22.64%

Given the data set provided, we were able to propose some initial, broad research
questions that might be answered by this data. These research questions were

Does the use of agile methods have a positive effect on outcomes (i.e., cost, produc­
tivity, quality, and satisfaction)?
What are the most effective agile methods?
What are the most effective agile techniques?

The following sections detail how these questions were addressed, using statistical
analyses, in order to try to identify the most important success factors in agile develop­
ment.

240 Part 3: Software Process Improvement

4 DATA ANALYSIS

We performed quantitative analyses of parts of the data set. To do this, the original data
was re-coded and analyzed using SPSS (version 13.0). It was originally planned to use
an analysis of variance, but Levene's test for heterogeneity of variance was found to be
significant in most of the following analyses, suggesting that the data were not in fact
suitable for analysis of variance. It would have been possible to transform the data but
this would have made it difficult to interpret. For these reasons, the simple solution of
using nonparametric analyses was adopted.

Several notes about the data set itself are needed here. First, the "don't know"
responses from the original data have been regarded as "missing values" in the analysis.
As a consequence, there are variations in the sample sizes in each analysis. Second, there
were very small sample sizes for some responses, for example the dynamic systems
development method (DSDM) was being used by only a handful of respondents. Finally,
as mentioned above, quite a few respondents were using more than one agile method and
various combinations of techniques (see Tables 1 and 2), so it is not straightforward to
separate out the effects of a particular method or technique. For this reason, we chose
to analyze both methods and techniques separately, and then if a particular agile method
appeared to be the most effective, we planned to investigate the relationship between the
method and the appropriate techniques in depth.

4.1 Question 1: Does the Use of Agile Methods
Have a Positive Effect on Outcomes?

The first question we addressed in our analysis was whether the adoption of agile
methods for software development might lead to better outcomes (i.e., in cost, produc­
tivity, quality, and satisfaction), as much of the literature on agile development has
claimed. To do this we first explored the four outcomes, contrasting the non-agile
method user group with the agile user group. The results of this analysis are shown in
Table 3.

The results seem to indicate a positive response for the agile methods the respon­
dents have employed. That is, all the three performance-related outcomes (i.e., produc­
tivity, quality, and satisfaction) indicate the benefits of agile methods, while there seems
to be no great difference with regard to cost.

Table 3. The Effect o1

No agile methods

Agile methods

Mann-Whitney U test

F Using an Agile Methodology^
Cost

3.01 (0.62)

3.05 (0.89)

n.s.

Productivity

3.40(0.70)

3.88(0.79)

p<.01

Quality

3.55 (0.74)

4.02 (0.77)

p<.01

Satisfaction

3.40(0.70)

3.95(0.79)

p<.01
Mean (s.d.) (min: 1 - much lower, max: 5 - much higher)

Parsons et al./Agile Software Development Projects 241

Table 4. Outcomes Dependent on the Number of

1 One agile method

Two agile methods

More than two agile
1 methods

Cost
3.03 (0.85)

3.06(0.92)

3.12(1.03)

Productivity

3.83 (0.78)

3.92 (0.77)

4.01 (0.86)

Agile Methods Used^
Quality

3.98 (0.76)

4.06 (0.76)

4.14(0.80)

Satisfaction

3.89(0.75)

3.98(0.82)

4.14(0.84)

"̂ Mean (s.d.)

This observation has been confirmed by the Mann-Whitney U test as shown in the
bottom row of Table 3. Only the difference in the cost factor was not found to be statis­
tically significant, supporting the interpretation given above.

Following on from this, a subsequent analysis was performed to identify what agile
methods seem to be the most effective. To do this, we have to look at the data set with
care. In many cases, the agile method user group reported that they used more than one
agile method, so some developers are combining several agile development methods,
either in different projects or within the same project. Therefore, to explore which agile
methods are the most effective, we first investigated if any combinative use of agile
methods (or, at least, employing more than one agile method) can have an effect on the
four outcomes. The number of methods the respondents were using varied in the original
data set, ranging from one to seven. However, to allow the sample size to be meaningful
for statistical analysis, three classifications were considered: using one agile method,
using two agile methods, and using more than two agile methods. Our results are sum­
marized in Table 4.

In terms of the three performance-related outcomes (i.e., productivity, quality, and
satisfaction), as shown in Table 4, it appears to be better to use more than two agile
methods (mean 4.01 for productivity, 4.14 for quality, and 4.14 for satisfaction). How­
ever, further pair wise Mann-Whitney tests (at the level of p < .05) revealed that while
using two agile methods rated higher than using only one method, there appeared to be
no significant further advantage in increasing the number of methods used beyond two.

4.2 Question 2: What Are the Most Effective Agile IVIethods?

Following on the result described above (i.e., that combining two agile methods might
be beneficial in agile software development), we continued to analyze the results for
adopting combinations of two agile methods. It was intended to see if any specific pair
of methods could deliver better outcomes than the others. There were 24 different
method pairs identified in the original data set, but many of these pairs were being
adopted by a very small number of respondents, which took them beyond the scope of
our data analysis. Figure 1 shows the 11 most commonly used pairs of agile methods,
where more than 10 respondents reported using these pairs. However, only the most
popular 6 pairs (with over 20 respondents) were considered in our analysis.

For this data, we applied the same nonparametric analysis (i.e., pairwise Mann-
Whitney U tests) as we did with the previous set. The results of this analysis are shown
in Table 5. In terms of both quality and productivity, there was a significant difference

242 Part 3: Software Process Improvement

Agile Method Pairs

Agile Urafied Pro(»ss and extreme Proaranrvnna p H H H H H I

Feature Driven Development and Scrun p H H H

Agile Unified Process and Feature Driven Develooment • • • p i

Agile Unified Process and Scmm wtM

Crystal Clear and extreme Programming H | |

extreme Programming and Other M i

Agile Microsoft Sohilions FramevMxk and Feature Driven L w
Development ^ "

Crystal Clear and Feature Driven Developmert H j

i

i
!
1

i
i

j

0 20 40 60 80 100 120 140 160 1

Figure 1. The Most Commonly Used Pairs of Agile Methods

Table 5. Outcomes for the Six Most Commonly Used Pairs
of Agile Methods^

XP/FDD
XP/SCRUM
XP/AGILEUP
XP/AGILE MSF
FDD/SCRUM

1 FDD/AGILE UP

Cost
3.02 (0.89)
2.91 (1.04)
3.26(0.75)
3.17(0.95)
3.15(0.88)
3.00(0.66)

Productivity

3.87 (0.70)

4.10(0.80)

3.87 (0.80)

3.56 (0.82)

4.00 (0.69)

4.04 (0.55)

Quality

4.10(0.75)

4.30 (0.68)

3.82 (0.94)

3.78 (0.87)

3.91 (0.53)

4.00 (0.78)

Satisfaction |

4.03 (0.77)

4.05 (0.86)

3.97(0.74)

3.82 (0.73)

4.29 (0.78)

3.79 (0.72)

'Mean (s.d.)

between the eXtreme Programming/Scrum combination and all the other pairs of
methods. However there was no significant difference in either cost or satisfaction. This
clearly tells us that the eXtreme Programming/Scrum combination is a good pairing of
methods to adopt.

This result can be seen to make some sense in that eXtreme Programming (XP) is
very much oriented towards technology based practices and programmer activity. In con­
trast, Scrum is more focused on agile project management aspects (Abrahamsson et al.
2002). In addition, Scrum is explicitly intended as a wrapper around other engineering
approaches. Therefore XP and Scrum can be seen to be complementary from a practical
point of view, supporting the claims made by Mar and Schwaber (2002).

Parsons et al./Agile Software Development Projects 243

Table 6. Agile Techniques with Significant Benefits for Software
Development Outcomes^

Active stakeholder participation

1 Agile model driven development

1 Code refactoring

1 Code regression testing

1 Colocation

1 Common coding guidelines

1 Continuous integration

Database refactoring

Database regression testing

Pair programming

1 Single sourcing information

Test driven design

Productivity

3.92 (0.76)

3.93 (0.82)

3.91 (0.74)

3.84(0.75)

3.99 (0.79)

3.79(0.76)

3.97(0.74)

3.88(0.78)

3.78 (0.76)

3.97 (0.77)

3.93 (0.80)

3.95 (0.76)

Quality

4.08 (0.73)

4.03 (0.82)

4.09(0.71)

4.05(0.71)

4.08 (0.76)

3.98 (0.73)

4.11 (0.73)

4.05 (0.74)

3.98 (0.74)

4.15(0.75)

4.00 (0.80)

4.18(0.70)

Satisfaction

4.07(0.76)

4.03(0.79)

3.92(0.78)

3.89(0.77)

4.00(0.83)

3.86(0.77)

3.99(0.77)

3.96(0.83)

3.86(0.80)

3.99(0.78)

4.00(0.81)

4.01 (0.77)
^Mean (s.d.)

4.3 Question 3: What Are the Most Effective Agile Techniques?

Having undertaken some analysis of the effects of method choice on outcomes, we turned
our attention to individual agile techniques. Since there are 12 different agile techniques
covered in the original data, it was interesting to see if any of these provided greater
benefits than others. The results of our analysis are shown in Table 6. The cost factor
was eliminated in this analysis, because our main concern was to see what positive
benefits a particular agile technique could bring.

To analyze this data, we first applied the same statistical approach that was used in
the previous analysis. However, the ratings were uniformly high. Because of this overall
ceiling effect, the small differences between means are not statistically evaluated. None­
theless, several of the mean ratings given in Table 6 show a particularly interesting
aspect. The techniques of colocation (3.99 in productivity, 4.08 in quality, and 4.00 in
satisfaction, respectively) and pair programming (3.97 in productivity, 4.15 in quality,
and 3.99 in satisfaction, respectively) appear to bring higher benefits for all three out­
comes. Without further research, we cannot say for sure why these techniques appear to
provide higher returns than some of the others. However, we can see support in the
literature for the economic benefits of pair programming (Erdogmus and Williams 2003)
and the importance of colocation (Bradner and Mark 2002).

THE RELATIONSHIP BETWEEN METHODOLOGY
AND TECHNIQUE

Some queries executed against our data set seemed to suggest that the use of certain tech­
niques among those respondents claiming to be using agile methods seemed to be very

244 Part 3: Software Process Improvement

Table 7. Actual Use of Seven Core XP Techniques Among the
Sample Claiming to Follow XP

Agile Technique Used with XP
1 Active stakeholder participation

1 Code refactoring

1 Code regression testing

1 Colocation

Continuous integration

1 Pair programming

1 Test Driven Design (TDD)

Number

114

269

210

66
176
183

180

Percentage of Sample

27.14%

64.05%

50.00%

15.71%

41.90%

43.57%)

42.86%

low. For example, test driven design, which from the agile methods literature one might
expect to be a fundamental part of an agile approach, was only reported by between 40
and 50 percent of respondents, regardless of their chosen methods. This led us to explore
in more detail the relationship between stated use of an agile method and actual use of
agile techniques.

We decided to address this relationship by focusing on those respondents who
claimed to be using eXtreme Programming as their agile method. There were two
reasons for this. First, XP was the most popular agile method in the survey, with 23.4
percent claiming to be using XP. Second, our own analysis identified that XP appeared
to be the most effective method, coupled with Scrum. Not all of the XP techniques
specified by Beck and Andres (2005) were included in the original survey. Nevertheless,
it would be reasonable to assume that those practitioners who claimed to be using XP
would be using the core XP practices that were included in the survey. These practices
would be active stakeholder participation, code refactoring, code regression testing, co-
location, continuous integration, pair programming and test driven design, as shown in
Table 7.

The sample size for this table was 420, which was the number of respondents who
claimed to be using XP and no other method. Of these, only eight were using all of these
techniques, and no single technique was being used by more than 65 percent of the
sample. This result is somewhat surprising, suggesting that claiming to be doing a
methodology did not necessarily mean that one was, in fact, following anything like the
full set of techniques of that methodology. This seemed to go beyond the expected
effects of adaptivity, and suggested an unreasonably low take up of some techniques.
The obvious question that followed from this analysis was, what kind of effect might this
limited use of core techniques have on the outcomes from using this method? We
therefore chose to analyze which techniques might be the most important, given that
many practitioners were using a subset of those recommended by the method. Our results
are shown in Table 8. In order to gain a clearer result, in this analysis we combined the
two techniques that focus on collaborative working, namely active stakeholder parti­
cipation and colocation.

We applied a log-linear analysis to the data set for XP users to identify the asso­
ciations between the techniques and their outcomes. The techniques that are ticked in
Table 8 are those that have a significant association with the three performance-related

Parsons et al./Agile Software Development Projects 245

Table 8, Techniques That Appear to Show the Most Benefit
in the Context of XP

Agile Technique Used with XP
Collaborative working
Code refactoring
Code regression testing
Continuous integration
Pair programming
Test Driven Design (TDD)

Productivity
^(2)
^(1)

^(3)

Quality
^(2)
^(1)
^(3)

^(4)

Satisfaction

^{2)

^(1)

outcomes. For each outcome, the number in parentheses shows the relative importance
of that technique. For example, in the context of satisfaction, test driven design is the
most important technique. Taking the three outcomes together, code refactoring appears
to be the most important technique. In the context of XP, which is a code centric method,
the importance of test driven design and refactoring can be understood as being crucial
components of maintaining design integrity. The importance of collaborative working
(in particular the XP practice of "real customer involvement") is also underlined by our
analysis.

Our final analysis addressed a further question, namely, if XP users are not using all,
or most, of the available techniques, does this have a negative effect on outcomes? For
this analysis, we compared the outcomes from XP users based on the number of XP tech­
niques (between zero and seven) that they had adopted. The results of this comparison
are shown in Figure 2.

Correlation between number of XP techniques and XP outcomes

8 3 j — /'^ iir ' "

/ / . • • ^ * • • • - • • - , . • • • • ' • • • • • • • . .

i / V - ' " ' ""••A-- "-A

— • — Productivity

- • - Quality

• - A - - - C o s t

- -X- - Quality

Number of XP Techniques

Figure 2. Graph Showing the Correlation between the Number of XP
Techniques Used and the Outcomes from Using the XP Method

246 Part 3: Software Process Improvement

As we have already identified in earlier analyses, the effect on cost seems to be
independent of the number of techniques adopted, but the other three performance-related
outcomes show that the more techniques that are adopted, the better the resulting per­
formance. Those respondents who claimed to be using XP but in fact were not using any
of the seven techniques had particularly poor results, which is unsurprising.

This data was further analyzed using the same classification analysis employed pre­
viously, revealing that adopting more than five techniques results in the best performance
in terms of all of the measures.

6 SUMMARY AND CONCLUSIONS

The adoption of agile methods appears from some of the literature to be an untidy process
of partial adoptions and adaptivity. Against this background it is helpful to try to under­
stand which agile methods and techniques may offer the best return on investment. In
this paper, we have undertaken a statistical analysis of a data set based on an on-line
survey about the adoption of agile methods. From our analyses, we have drawn a number
of conclusions. We have shown that adoption of at least one agile method improves the
outcomes of quality, satisfaction, and productivity over the use of non-agile methods,
without a statistically significant increase in cost. We have also shown that the most
effective way to apply agile methods is to combine more than one method together, and
the most effective combination of methods appears to be eXtreme Programming and
Scrum. We also looked at agile techniques and their outcomes and identified pair pro­
gramming and colocation as the two most significant techniques when analyzed across
all agile methods. However when we concentrated on an analysis of XP, the most
important techniques for this method appeared to be code refactoring, collaborative
working (colocation and active stakeholder involvement), and test driven design. Finally,
we showed that in order to gain the full benefits from adopting the XP method, at least
five of the core XP techniques had to be used.

From the work we have undertaken, we make a number of proposals for software
development teams using or migrating to agile methods. First, it appears that successful
adoption of an agile approach does not necessarily just mean selecting an individual
method. Rather, it may be better to consider blending multiple complementary methods.
Second, although it as an acceptable practice to adapt methods by selecting from
techniques, it is important to select those techniques that offer the best outcomes, rather
than adopting only those that are easy or do not require so much effort to integrate into
existing processes. Third, it is important to recognize that, although not all techniques
of an agile method are compulsory, there will always be a critical mass of techniques that
should be adopted in order to offer the best chance of project success. Finally, given the
insights that the data used in this paper has provided, it would be useful for development
teams to monitor the effectiveness of their agile project practices by gathering data on the
outcomes of quality, productivity, satisfaction, and cost on an ongoing basis, enabling
them to carry out their own project metrics.

There are a number of issues with this analysis that should be borne in mind when
considering our results. Because this was an on-line survey, the respondents were self
selecting. We cannot, therefore, guarantee the validity of their responses. We are also

Parsons et al./Agile Software Development Projects 247

unable to determine from the data whether respondents are reporting the use of multiple
methods because different teams within their organization use different methods, or
because individual teams are combining methods. We have also focused in this paper on
agile methods and techniques. However the original survey includes questions about
skill level and organization size, which Ambler has addressed separately (Ambler 2006c)
but which we have not attempted to include in this analysis. In addition, further
information about the respondents such as what type of organization they work for and
what type of software systems they are developing is not available to us.

Ambler has himself summarized a number of issues with the survey (Ambler 2006b),
including potential misunderstandings by respondents about feature driven development
(FDD), which may make answers relating to this method unreliable, and the absence of
the rational unified process (RUP) from the specified Hst of methods. This method
appears a number of times in the "other" category within the survey but has not been
discriminated in the analysis.

The results of our analysis appear to indicate a number of areas for future work. In
particular, our quantitative analysis suggests a number of areas where field studies and
qualitative analysis might be undertaken to further investigate issues such as how
software development teams select, combine, and adapt agile methods in practice, and
why particular subsets of techniques are selected from agile methods. There may also
be scope for a further survey that might attempt to provide a finer grained discrimination
of questions related to method and technique so that we might identify the ways that
multiple agile methods are being used in practice. Finally, the original survey results are
still available for public download (Ambler 2006a) and there are further aspects of the
data, not considered in this paper, that could be analyzed from new perspectives.

References

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. Agile Software Development Methods:
Review and Analysis, Oulu, Finland: VTT Publications, 2002.

Ambler, S. "Agile Adoption Rate Survey," Ambysoft, March 2006a (available online at
http://www.ambysoft.com/surveys/agileMarch2006.html).

Ambler, S. 'Agile Adoption Rate Survey: Discussion of the Results," Ambysoft, March 2006b
(available online at http://www.ambysoft.eom/surveys/agileMarch2006.html#Discussion).

Ambler, S. "Survey Says: Agile Works in Practice," Software Development Magazine, August
3, 2006c (available online at http://www.ddj.com/dept/architect/191800169).

Anderson, J. D. Agile Management for Software Engineering: Applying the Theory of Constraints
for Business Results, Upper Saddle River, NJ: Prentice Hall, 2004.

Aveling, B. "XP Lite Considered Harmful?," in J. Eckstein and H. Baumeister (eds.). Extreme
Programming and Agile Processes in Software Engineering: 5"' International Conference,
Garmish-Partenkirchen, Germany, June 6-10, 2004, pp. 94-103.

Beck, K., and Andres, C. Extreme Programming Explained: Embrace Change (2"̂ ^ ed.), Boston:
Addison-Wesley, 2005.

Beedle, M. "Agile Enterprise," 2006 (available online at http://www.e-architects.com/AE/).
Bhat, T., and Nagappan, N. "Evaluating the Efficacy of Test-Driven Development: Industrial

Case Studies," in Proceedings of the 2006 ACM/IEEE International Symposium on Empirical
Software Engineering, Rio de Janeiro, Brazil, September 21-22, 2006, pp. 356-363.

Boehm, B. "Get Ready for Agile Methods, with Care," IEEE Computer (35:1), 2002, pp. 64-69.

248 Part 3: Software Process Improvement

Bradner, E., and Mark, G. "Why Distance Matters: Effects on Cooperation, Persuasion and
Deception," in Proceedings of the 2002 ACM Conference on Computer-Supported
Cooperative Work, New Orleans, LA, 2002, pp. 226-235.

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and Visaggio, C. "Evaluating Advantages of
Test Driven Development: A Controlled Experiment with Professionals," in Proceedings of
the 2006 ACM/IEEE International Symposium on Empirical Software Engineering, Rio de
Janeiro, Brazil, September 21-22, 2006, pp. 364-371.

Datta, S. "Agility Measurement Index: A Metric for the Crossroads of Software Development
Methodologies," in Proceedings of the 44"' Annual ACM Southeast Regional Conference,
Melbourne, FL, 2006, pp. 271-273.

Dominguez, J., Linecar, P., and Black, S. "Visuahzation of a Suitability Filter for Agile
Methods," in R. Dawson, E. Georgiadou, P. Linecar, M. Ross, and S. Staples (eds.), Software
Quality Management XIV: Perspectives in Software Quality, Proceedings of the 14^'
International Software Quality Management Conference, Southampton, UK, April 10-12,
2006, pp. 299-319.

Dustin, E., Raskha, J., and Paul, J. Automated Software Testing, Reading, MA: Addison Wesley,
1999.

El Emam, K. "Finding Success in Small Software Projects," Agile Project Management Executive
Report {AA\),2mZ.

Erdogmus, H., and Williams, L. "An Economic Analysis of Pair Programming," in L. WilHams
and R. Kessler (eds.), Pair Programming Illuminated, Boston: Addison-Wesley, 2003, pp.
221-236.

George, B.,and Williams, L. "An Initial Investigation of Test-driven Development in Industry,"
in Proceedings of the A CM Symposium on Applied Computing, Melbourne, FL, March 9-12,
2003, pp. 1135-1139.

Grossman, F., Bergin, J., Leip, D., Merritt, S., and Gotel, O. "One XP Experience: Introducing
Agile (XP) Software Development into a Culture That Is Willing but Not Ready," in H.
Lutfiyya, J. Singer, and D. Stewart (eds.). Proceedings of the 2004 Conference of the Centre
for Advanced Studies on Collaborative Research, Markham, Ontario, Canada, October 4-7,
2003, pp. 242-254.

Highsmith, J. Agile Software Development Ecosystems, Boston: Addison-Wesley, 2002.
Hussman,D. "A Fishbowl with Piranhas: Coalescence, Convergence or Divergence? The Future

of Agile Software Development Practices: Some Assembly Required," in Proceedings of the
Conference on Object Oriented Programming Systems Languages and Applications, Portland,
Oregon, October 22-26, 2006, pp. 937-939.

Keenan, F. "Agile Process Tailoring and Problem Analysis," in Proceedings of the 26"' Inter­
national Conference on Software Engineering, Edinburgh, UK, May 23-28,2004, pp. 45-47.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C , Stupperich, M., Kiefer, D., May, J., and
Kahkonen, T. "Agile Software Development in Large Organizations," IEEE Computer
(37:12), December 2004, pp. 26-34.

Mar, K., and Schwaber, K. "Scrum with XP," Informit.com, March 22, 2002 (available online at
http://www.informit.com/articles/article.asp?p=26057&rl=l; article provided courtesy of
Prentice-Hall).

Misic, V. "Perceptions of Extreme Programming: An Exploratory Study," ACM SIGSOFT
Software Engineering Notes (31:2), 2006, pp. 1-9.

Muller, M. M., and Hagner, O. "Experiment About Test-First Programming," lEE Proceedings
Software (149:5), 2002, pp. 131-136.

Nerur, S., Mahapatra, R., and Mangalaraj, G. "Challenges of Migrating to Agile Methodologies,"
Communications of the ACM {4S:5), 2005, pp. 73-78.

Paige, R., Chivers, H., McDernid, A., and Stephenson, Z. "High-Integrity Extreme Pro­
gramming," in Proceedings of the ACM Symposium on Applied Computing, Santa Fe, New
Mexico, March 13-17, 2005, pp. 1518-1523.

Parsons et al./Agile Software Development Projects 249

Sfetsos, P., Angelis, L., and Stamelos, I. "Investigating the Extreme Programming System: An
Empirical Study," Empirical Software Engineering {\ 1:2), 2006, pp. 269-301.

Shine Technologies. "Agile Methodologies Survey Results," Shine Technologies Pty. Ltd., 2003
(available online at http://agilealliancebeta.0rg/system/article/f1le/l 12l/file.pdf).

Stephens, M., and Rosenberg, D. Extreme Programming Refactored: The Case Against XP, New
York: Apress, 2003.

Williams, L., Maximilien, M., and Vouk, M. "Test-Driven Development as Defect-Reduction
Practice," in Proceedings of the 14'^' International Symposium on Software Reliability
Engineering, Denver, CO, November 17-21, 2003, pp. 3-4.

About the Authors

David Parsons is a senior lecturer in Information Systems at Massey University, Auckland, New
Zealand. Formerly an Enterprise Java consultant in the U.K., his research interests include agile
methods, web application architectures and mobile learning. He can be reached by e-mail at
d.p.parsons@massey.ac.nz.

Hokyoung Ryu is a lecturer in Information Systems at Massey University, Auckland, New
Zealand. He is active in research on how new information and communication technologies such
as interactive TV and mobile systems will change human social behavior. He can be reached by
e-mail at h.ryu@massey.ac.nz.

Ramesh Lai is a researcher in Information Systems at Massey University, Auckland, New
Zealand. He is currently working for his Ph.D., studying the adaptivity of agile methods using
case studies across Australasia. He can be reached by e-mail at r.lal@massey.ac.nz.

