
IDENTIFICATION AND REMOVAL OF
PROGRAM SLICE CRITERIA FOR CODE
SIZE REDUCTION IN EMBEDDED
SYSTEMS

Mark Panahi, Trevor Harmon, Juan A. Colmenares∗, Shruti Gorappa,
and Raymond Klefstad
Department of Electrical Engineering and Computer Science
University of California, Irvine, CA 92697, USA
{mpanahi, tharmon, jcolmena, sgorappa, klefstad}@uci.edu

Abstract: Code shrinking is a technique for reducing the size of a software system
by detecting and eliminating unused features. It is a static approach
that is limited to information known at build time. We demonstrate
how to extend code shrinking to take dynamic behavior into account.
Our technique, Slice Criteria Identification and REmoval (SCIRE), com-
bines conditional compilation and code shrinking techniques with in-
formation provided by the developer about run-time behavior. This
integration allows SCIRE to achieve code reduction that is close to op-
timal while remaining mostly automatic. Our results show that SCIRE
reduces code size substantially: In many cases, removal of unused fea-
tures shrinks middleware footprint to less than 5% of its original size,
allowing CORBA and other large software libraries to be used in em-
bedded systems.

1. STATIC FOOTPRINT MINIMIZATION
TECHNIQUES

Over the years, three basic techniques have emerged for reducing the
size of executable code (“footprint”):
1. Specification subsetting: Removal of infrequently used features

from a standard shared library, API, or class hierarchy.
2. Conditional compilation: Manual removal of features on a per-

application basis using preprocessor directives.

∗Also with the Applied Computing Institute, Faculty of Engineering, University of Zulia.

 
Panahi, M., Harmon, T., Colmenares, J.A., Gorappa, S., Klefstad, R, 2007, in IFIP International 
Federation for Information Processing, Volume 231, Embedded System Design: Topics, Techniques 
and Trends, eds. A. Rettberg, Zanella, M., Dömer, R., Gerstlauer, A., Rammig, F., (Boston: Springer), 

 
pp. 269–278. 



M. Panahi, T. Harmon, J.A. Colmenares, S. Gorappa, R. Klefstad

3. Code shrinking: Automatic removal of dead code by pruning a
graph of all possible execution paths.

Each approach offers a unique set of strengths and weaknesses, and there-
fore any innovation beyond these existing techniques requires a careful
comparison to discover avenues of improvement. Toward that end, we
have identified three criteria for evaluating each approach:

Flexibility (Criterion 1). A flexible approach gives the developer
freedom to choose the features necessary to accommodate design
requirements.
Maintainability (Criterion 2). A maintainable approach is one
that remains manageable as the size of the application grows.
Meeting this criterion requires some form of automation to avoid
loss of productivity as the code base increases.
Run-time-awareness (Criterion 3). A “run-time-aware” ap-
proach takes into account knowledge of application-specific re-
quirements and explicitly removes features that will (according to
the developer) never be required at run-time.

For the remainder of this section, we examine the three approaches
to footprint reduction from an application developer’s standpoint and
discuss if and how they meet the three criteria listed above.

Specification Subsetting. With this approach, software architects
specify reduced profiles (e.g., an API or class hierarchy) of existing soft-
ware libraries with an eye toward resource-constrained embedded de-
vices. These reductions are obtained by removing features from standard
library specifications. This task necessarily implies a trade-off between
the conflicting goals of small footprint and usability. Thus, the memory
footprint reduction obtained from specification subsetting varies widely
and depends heavily on the original profiles and the objectives estab-
lished by the specification.

A well-known example is the Java 2 Platform, Micro Edition (J2ME).
By removing large portions of the standard Java class library and provid-
ing a simplified virtual machine interpreter, J2ME meets the stringent
requirements of many embedded systems. However, J2ME’s main disad-
vantage is that the reduced profiles are defined beforehand, preventing
adaptation to unanticipated application requirements (Criterion 1).

Moreover, specification subsetting does not take advantage of the
knowledge of a system’s run-time conditions (Criterion 3). In prac-
tice, features in reduced profiles are considered fixed, and even if an
application developer can guarantee that certain features will never be
used during execution, such features cannot be removed.

270



Identification and Removal of Program Slice Criteria

Conditional Compilation. Conditional compilation involves a pre-
processor examining compile-time configuration flags to decide which
portions of a shared library belong in the final executable package. It
is most often applied in C/C++ using the #ifdef directive to allow
retargeting of libraries to different platforms.

Because conditional compilation is applied on a per-application basis,
developers can include only the features they need. It imposes no re-
strictions on accommodating application requirements (Criterion 1) and
allows the developer to exploit knowledge of the system’s run-time condi-
tions (Criterion 3 ). Thus, in theory, conditional compilation can reduce
the footprint of a program to the absolute minimum. In practice, how-
ever, obtaining the theoretical minimum code size requires enormous ef-
fort, and therefore developers routinely accept sub-optimal results when
using this technique.

Code Shrinking. Many compilers include optimization algorithms
to reduce the footprint of a program. These algorithms typically elimi-
nate redundant and unused code based on an intra-procedural analysis.
However, they can easily fail to identify unused code due to a lack of
information necessary for a full inter -procedural analysis. When pars-
ing the shared library of an API, for example, compilers have no way of
knowing which of the API’s functions will (or will not) be called by a
given application.

public class Hello {
public Hello(boolean b) {
if (b) methodA();
else methodB();

}
private void methodA() {
System.out.println("Method A");

}
private void methodB() {
System.out.println("Method B");

}
private void methodC() {
System.out.println("Method C");

}
public static void main(String[] args) {
Hello h = new Hello(args.length > 0);

}
}

Figure 1. Java compilers generate code
for method C, but code shrinkers correctly
identify it as dead code and remove it.

For inter-procedural elimination,
there exist footprint optimization
tools that perform whole-program
analysis. These optimizers, also
known as code shrinkers, reduce foot-
print by analyzing an entire program,
including any shared libraries that
it uses, and removing unnecessary
(“dead”) portions of code. Code
shrinkers are able to detect this dead
code by building a call graph of all
possible execution paths of a given
program. Any classes and methods
not in the graph are removed, as
shown in Figures 1 and 2. This mem-
ory reduction process is called code shrinking or dead code elimination.

A code shrinker’s ability to remove unused features from a program
is effective but still sub-optimal. Because it has no knowledge of run-
time conditions, features may appear to the shrinker as having structural

271



M. Panahi, T. Harmon, J.A. Colmenares, S. Gorappa, R. Klefstad

Hello

if

main

methodA methodB

methodC

Figure 2. Code shrinkers
build call graphs, such as this
graph of Figure 1, to conclude
that method C is never called
and can be removed.

Technique Flexible Maintainable Run-time-
aware

(Crit. 1) (Crit. 2) (Crit. 3)
Specification
subsetting
Conditional
compilation
Code
shrinking

Figure 3. A comparison of footprint reduction tech-
niques.

dependencies even though they are independent according to the appli-
cation’s true run-time behavior. In other words, code shrinkers will not
remove any code that could potentially be executed at run-time (Crite-
rion 3).

Qualitative Comparison. Table 3 summarizes the three footprint
reduction techniques according to our criteria. Note that none of these
techniques is able to meet all criteria. We observe, however, that if the
code shrinking approach could be made run-time aware, it would meet
all three criteria. This observation is the basis for our SCIRE approach,
as described in the following section.

2. SCIRE
SCIRE, Slice Criteria Identification and REmoval, is our technique

for enhancing the ability of code shrinkers to discover dead code by
incorporating knowledge of run-time behavior. We first explain SCIRE’s
foundation in program slicing [Weiser, 1981] and then how it may be
applied to the problem of footprint reduction.

Program Slicing. Program slicing is a well-known software analysis
technique that is used to identify code that influences or is influenced
by a point of interest in a program. The point of interest is called the
slice criterion and could be a variable or any program statement. The
code that is affected by the criterion is known as the forward slice, and
the code that affects the criterion is known as the backward slice.

Code shrinking tools mainly use the forward slicing technique to re-
move unused code. However, code shrinking tools are based only on
static program slicing, where the slice is determined based on the static
program structure and does not include any run-time information. In

272



Identification and Removal of Program Slice Criteria

False Dependency

Original program

Entry Point
False Dependency

Entry Point

Entry Point

After code shrinking

After code shrinking

Entry Point

After slice criteria identification and removal (SCIRE)

A

B C

Figure 4. Removing syntactic dependencies (that is, the slice criteria) between
features can enhance the effect of code shrinking.

contrast, dynamic program slicing [Agrawal and Horgan, 1990] lever-
ages run-time information—in addition to static structure—to identify
the true program slice for a given execution. Dynamic slices are there-
fore smaller in most cases and no larger than their corresponding static
slices. Their precision varies depending on the slicing approach [Agrawal
and Horgan, 1990, Zhang et al., 2003]. In our approach, we rely on the
developer’s run-time knowledge of a given slice criterion to apply dy-
namic slicing. As a result, only the code truly necessary for program
execution is retained in the final footprint.

Application of Program Slicing to Footprint Reduction. Pro-
gram slicing techniques have traditionally been used to examine and
understand program execution, for debugging, and for testing. In this
paper, we present a new application of this technique to achieve code
footprint reduction. To the best of our knowledge, dynamic program
slicing has not previously been used to perform code reduction.

Our approach, Slice Criteria Identification and REmoval (SCIRE), is
simple in that it only requires the identification of program slice criteria,
rather than the entire program slice associated with a feature, as with a
purely conditional compilation (PCC) approach. Through the identifi-
cation and optional removal of such dependencies, SCIRE enhances the
code shrinking approach. The key observation is that certain slice crite-
ria, such as an if statement, may mark the start of a program slice such
that the decision to execute these slices cannot be made until run-time.

Figure 4 presents a generalized diagram of this process. Each circle,
or node, represents a basic program block. The links between nodes
represent dependencies between the blocks, such as if statements or
function calls. Analysis begins at the node marked Entry Point, usually
the standard main function. The shaded nodes are program blocks that

273



M. Panahi, T. Harmon, J.A. Colmenares, S. Gorappa, R. Klefstad

have no dependency on the entry point and can thus be removed through
code shrinking, as shown in part A. The nodes labeled False Dependency
are reachable from the entry point, but they are not actually needed by
this application at run-time.

In our alternative process, beginning in part B, SCIRE is applied
to remove the slice criteria binding the false dependencies to the entry
point. When code shrinking is subsequently applied (part C), it is able
to remove both the truly independent program slices and the falsely
dependent program slices. As more slice criteria are identified and re-
moved, the cumulative effect on the overall footprint can be significant,
typically around 30-50% more than code shrinking alone, according to
our experimental results.

3. IDENTIFYING PROGRAM SLICE
CRITERIA

The effectiveness of SCIRE depends on our ability to identify slice
criteria that bind unnecessary features in software libraries to a given
application. Finding many of the features in libraries, such as middle-
ware and foundation classes, is difficult because code associated with
these features is typically scattered throughout several locations. In ad-
dition, the codebase may be very large and complex, making manual
identification of slice criteria extremely difficult and time-consuming.

To overcome these drawbacks, we have developed our own tool called
Shiv for SCIRE that is based not on aspects but on static program slic-
ing. This change allows Shiv to focus on SCIRE’s overall goal of footprint
reduction. By taking into account the code size of each program slice, it
can provide a visual representation of slices along with their correspond-
ing contribution to the overall footprint. The developer can then use this
visualization to more easily identify large program slices as candidates
for removal.

Shiv offers the developer two choices for visualizing the call graph: a
tree or a treemap. The tree is a traditional node-link visualization, where
the root of the tree is the chosen slice criterion, each node is a method in
the program, and each link is a dependency from one method to another
(i.e., a method call). The treemap alternative represents the same tree
structure, but it does so using a space-filling algorithm [Johnson and
Shneiderman, 1991] that takes into account the code size of each method
in the call graph. This allows the largest program slices to be identified
easily.

We illustrate the benefits of Shiv using the canonical bubblesort al-
gorithm as an example. When Shiv is provided the program in Fig-

274



Identification and Removal of Program Slice Criteria

bubblesort.BubbleSortApp.main

bubblesort.ArrayBub.<init>

bubblesort.ArrayBub.insert

bubblesort.ArrayBub.bubbleSort

java.lang.Object.<init>

bubblesort.ArrayBub.swap

Figure 6. A node-link tree visualization generated by Shiv of the program in Fig-
ure 5.

ure 5 as input, it generates the tree shown in Figure 6. These figures
show the relationship between a program’s source code and its visual-
ization in Shiv. For example, the main method calls ArrayBub.insert,
ArrayBub.bubbleSort, and ArrayBub’s constructor, and therefore each
of these calls appears as a child of main.

class ArrayBub {
private long[] a; private int nElems;
public ArrayBub(int max) {
a = new long[max];
nElems = 0;

}
public void insert(long value) {
a[nElems] = value;
nElems++;

}
public void bubbleSort() {
for (int out = nElems-1; out > 1; out--)
for (int in = 0; in < out; in++)
if ( a[in] > a[in+1] )
swap(in, in+1);

}
private void swap(int one, int two) {
long temp = a[one];
a[one] = a[two];
a[two] = temp;

}
}
class BubbleSortApp {
public static void main(String[] args) {
ArrayBub arr = new ArrayBub(100);
arr.insert(77); arr.insert(99); arr.insert(44);
arr.bubbleSort();

}
}

Figure 5. This simple bubblesort program
demonstrates the effectiveness of our slice cri-
teria identification tool, Shiv. Visualizations of
this program can be seen in Figures 6, 7, and
8.

The true importance of Shiv
can be seen if a slight change is
made to the Figure 5 code. If
a single println statement is
added, the call graph explodes
into the tree shown in Fig-
ure 7. The Shiv output reveals
that the single slice criterion of
the println statement is the
source of an extremely large
program slice. (In this case,
the large size is due to the
security checks that Java re-
quires for all program output.)
We can also see possible fea-
tures starting to emerge, ex-
hibited by clusters in the tree.
These clusters indicate pro-
gram slices that could be mod-
ularized or perhaps removed
entirely, depending on the true
run-time behavior of the pro-
gram using the slice.

The tree in Figure 7 is in-
formative, but recall that the

motivation of Shiv, and our SCIRE technique in general, is footprint
reduction. For such a goal, a simple node-link diagram does not capture
information about code size. For example, a collection of very small

275



M. Panahi, T. Harmon, J.A. Colmenares, S. Gorappa, R. Klefstad

bubblesort.BubbleSortApp.main

bubblesort.ArrayBub.<init>

bubblesort.ArrayBub.insert

bubblesort.ArrayBub.bubbleSort

java.io.PrintStream.println

java.lang.Object.<init>

bubblesort.ArrayBub.swap

java.io.PrintStream.print

java.lang.String.length

java.io.PrintStream.writeChars

java.io.PrintStream.flush

java.lang.String.<init>

java.lang.String.getBytes

java.io.OutputStream.write

java.lang.StringIndexOutOfBoundsException.<init> java.lang.IndexOutOfBoundsException.<init> java.lang.RuntimeException.<init> java.lang.Exception.<init> java.lang.Throwable.<init>

java.io.OutputStream.flush

java.lang.Thread.currentThread

java.lang.Thread.interrupt

java.io.PrintStream.setError

java.lang.VMThread.currentThread

java.lang.Thread.checkAccess

java.lang.VMThread.interrupt

java.lang.SecurityManager.checkAccess

java.lang.Thread.getThreadGroup

java.lang.RuntimePermission.<init>

java.lang.SecurityManager.checkPermission

java.security.BasicPermission.<init>

java.security.Permission.<init>

java.lang.String.equals

java.lang.IllegalArgumentException.<init>

java.security.AccessController.checkPermission java.security.AccessController.getContext

java.security.AccessControlContext.checkPermission

java.security.VMAccessController.getContext

java.lang.ThreadLocal.get

java.lang.Boolean.booleanValue

java.lang.ThreadLocal.set

java.security.VMAccessController.getStack

java.util.HashSet.<init>

java.security.VMAccessController.class

java.lang.Object.equals

java.util.LinkedList.getFirst

java.lang.Class.getProtectionDomain

java.util.HashSet.contains

java.util.HashSet.add

java.security.ProtectionDomain.getCodeSource

java.security.ProtectionDomain.getPermissions

java.security.ProtectionDomain.<init>

java.util.HashSet.size

java.util.HashSet.toArray

java.security.AccessControlContext.getDomainCombiner

java.security.AccessControlContext.getProtectionDomains

java.security.IntersectingDomainCombiner.combine

java.security.AccessControlContext.<init>

java.lang.Thread.getThreadLocals

java.lang.ThreadLocal.initialValue

gnu.java.util.WeakIdentityHashMap.<init>

java.lang.Class.forName

java.lang.Class.getComponentType

java.lang.NoClassDefFoundError.<init>

java.lang.Throwable.initCause

gnu.classpath.VMStackWalker.getCallingClassLoader

java.lang.VMClass.forName

gnu.classpath.VMStackWalker.getClassContext

gnu.classpath.VMStackWalker.getClassLoader

java.lang.VMClass.getComponentType

java.lang.LinkageError.<init> java.lang.Error.<init>

java.lang.IllegalStateException.<init>

java.util.NoSuchElementException.<init>

java.util.HashMap.containsKey

java.util.HashMap.hash

java.util.HashMap.equals

java.lang.Object.hashCode

java.lang.Math.abs

java.lang.System.identityHashCode java.lang.VMSystem.identityHashCode

java.util.AbstractMap.entrySet

java.util.HashMap.put

java.util.HashMap$HashEntry.access

java.util.HashMap.rehash

java.util.HashMap.addEntry java.util.HashMap$HashEntry.<init> java.util.AbstractMap$BasicMapEntry.<init>

java.util.AbstractCollection.iterator

java.util.AbstractCollection.size

java.lang.StringBuffer.<init>

java.lang.StringBuffer.append

java.security.AccessControlException.<init>

java.security.ProtectionDomain.implies

java.lang.Object.toString

java.lang.Object.getClass

java.lang.Class.getName

java.lang.Integer.toHexString

java.lang.StringBuffer.toString

java.lang.VMObject.getClass

java.lang.VMClass.getName

java.lang.Integer.toUnsignedString

java.security.PermissionCollection.implies

java.security.Policy.getCurrentPolicy

java.security.Policy.implies

java.lang.System.getProperty

java.lang.Class.newInstance

gnu.java.security.provider.DefaultPolicy.<init>

java.lang.SecurityManager.checkPropertyAccess

gnu.classpath.SystemProperties.getProperty

java.util.PropertyPermission.<init> java.util.PropertyPermission.setActions java.lang.String.toLowerCase

java.util.Locale.getLanguage

java.lang.Character.toLowerCase

java.lang.Object.clone

java.lang.Character.readCodePoint

java.lang.VMObject.clone

java.lang.CloneNotSupportedException.<init>

java.util.Properties.getProperty
java.util.Properties.get

java.util.Hashtable.hash

java.lang.Class.memberAccessCheck

java.lang.Class.getDeclaredConstructors

java.lang.reflect.Constructor.getParameterTypes

java.lang.InstantiationException.<init>

java.lang.reflect.Constructor.getModifiers

java.lang.reflect.Modifier.isPublic

java.lang.VMClass.getModifiers

java.lang.Class$1.<init>

gnu.classpath.VMStackWalker.getCallingClass

java.lang.reflect.Modifier.isPrivate

java.lang.IllegalAccessException.<init>

java.lang.reflect.Constructor.newInstance

java.lang.reflect.InvocationTargetException.getTargetException

java.lang.VMClass.throwException

java.lang.InternalError.<init>

java.lang.InternalError.initCause

java.lang.SecurityManager.checkMemberAccess

java.lang.Class.getPackage

java.lang.Package.getName

java.lang.SecurityManager.checkPackageAccess

java.lang.NullPointerException.<init>

java.lang.Class.getClassLoader

java.lang.Class.getPackagePortion

java.lang.ClassLoader.getPackage

java.lang.Class.isPrimitive

java.lang.VMClass.getClassLoader

java.lang.ClassLoader.isAncestorOf

java.lang.VMClass.isPrimitive

java.lang.String.lastIndexOf

java.lang.String.substring

java.lang.VMClassLoader.getPackage java.util.HashMap.get

java.lang.SecurityManager.checkPackageList

java.lang.SecurityManager$1.<init>

java.security.AccessController.doPrivileged

java.util.StringTokenizer.<init>

java.util.StringTokenizer.nextToken

java.lang.String.startsWith

java.util.StringTokenizer.hasMoreTokens

java.security.VMAccessController.pushContext

java.security.VMAccessController.popContext

java.util.LinkedList.<init>

java.util.LinkedList.addFirst

java.util.AbstractSequentialList.<init>

java.util.LinkedList.this

java.util.AbstractList.<init> java.util.AbstractCollection.<init>

java.util.LinkedList$Entry.<init>

java.util.LinkedList.removeFirst

java.util.LinkedList.isEmpty

java.lang.String.regionMatches

java.lang.String.charAt

java.lang.String.indexOf

java.lang.reflect.Constructor.getModifiersInternal

java.lang.reflect.Constructor.constructNative

java.lang.VirtualMachineError.<init>

java.security.Policy.<init> java.security.Policy.this

java.security.Policy.setup

java.util.LinkedHashMap.<init>

java.util.Collections.synchronizedMap

java.security.Policy.getPermissions

java.security.Permissions.<init>

java.security.AllPermission.<init>

java.security.PermissionCollection.add

java.util.HashMap.<init>

java.util.Collections$SynchronizedMap.<init>

java.security.PermissionCollection.<init>

java.security.Permissions.this java.util.Hashtable.<init>

Figure 7. A node-link tree visualization generated by Shiv after adding a println

statement to the program in Figure 5. Although the labels are not legible here, the
structure shows that, in comparison with Figure 6, the size of the call graph has
exploded with the addition of a single line of code.

methods may appear in the tree as a large cluster, while a single large
method that takes up even more space would appear only as a single
node. This potential to mislead the developer compelled us to offer an
alternative visualization in Shiv: the treemap.

Using the Treemap 4.0 program [Baehrecke et al., 2004], Shiv produces
a visualization of the program slice that quantifies the largest methods
contributing to that slice. For example, Figure 8 shows the same bubble-
sort program of Figure 5, again with an added println statement. By
examining the branch labels of this squarified treemap, we can see that
the largest contributors to code size include the RuntimePersmission
constructor and the HashMap.put method, for they are represented by
the largest blocks. Looking further up the tree, we note that the check-
Access method corresponds to an extremely large block. Thus, security
checks make up the vast majority of the static footprint of this program.

Based on this information, the developer can select slice criteria that,
if removed, would have the largest impact on footprint reduction. Note
that the act of actually removing a program slice requires an explicit
action on the part of the developer (for instance, using the techniques in
Section 2) and cannot be achieved by Shiv alone. However, for complex
real-world programs with many dependencies, Shiv greatly simplifies
the overall SCIRE technique. It prevents the developer from having to
examine a large codebase method-by-method, looking for slice criteria.
In addition, it can provide insights that may not be readily visible, such
as the fact that the println statement has a dependency on Java’s
security module.

276



Identification and Removal of Program Slice Criteria

Figure 8. Shiv generates visualizations of embedded systems software, such as this
treemap of the program in Figure 5. Each block represents the static code size of a
program method: Larger, brighter blocks correspond to larger method sizes. Such
visualizations help the developer easily identify methods that adversely affect code
size.

4. EXPERIMENTAL RESULTS
This section presents the results of applying the SCIRE approach

in conjunction with ProGuard,1 a Java code shrinker, for reducing the
static code size of JacORB 2.2,2 a Java implementation of CORBA. For
our measurements, the J2ME Connected Limited Device Configuration
(CLDC) gives a reasonable target for code size: devices that have 160-
512 KB of memory available for the Java platform and applications.
Because the target size for these embedded devices is so small, even
modest reductions in footprint become significant.

Our footprint measurements were based on the functionality required
by two sample applications: 1) a Simple Remote Client and 2) Supplier
Dispatch using FACET 3. We collected the following measurements for
each application: 1) the original size of JacORB before any reduction
has taken place, 2) the size of the resulting library after code shrinking,

1http://proguard.sourceforge.net/
2http://www.jacorb.org/
3http://www.cs.wustl.edu/˜doc/RandD/PCES/facet/

277



M. Panahi, T. Harmon, J.A. Colmenares, S. Gorappa, R. Klefstad

and 3) the size of the resulting library after applying both SCIRE and
code shrinking.

Figure 9. Results of footprint reduction in two sample appli-
cations: a CORBA remote client and a FACET event channel
client.

Figure 9 shows
that code shrink-
ing alone pro-
vides a substan-
tial reduction of
code size: over
90% in relation
to the original
library. How-
ever, our pro-
posed approach—
the joint appli-
cation of SCIRE
and code shrinking—
provides addi-
tional reduction:
about 96% from
the original size,
and over 50%
beyond the application of code shrinking alone. This additional reduc-
tion shows the effects of dependencies on unused features that remained
in the code. Only the application of the SCIRE approach can enable the
removal of such features. In fact, for both applications, SCIRE is neces-
sary to bring the library size within the range specified by the CLDC.

REFERENCES
[Agrawal and Horgan, 1990] Agrawal, H. and Horgan, J. R. (1990). Dynamic pro-

gram slicing. In Proceedings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, volume 25, pages 246–256, White
Plains, NY.

[Baehrecke et al., 2004] Baehrecke, E. H., Dang, N., Babaria, K., and Shneiderman,
B. (2004). Visualization and analysis of microarray and gene ontology data with
treemaps. BMC Bioinformatics, 5(84).

[Johnson and Shneiderman, 1991] Johnson, B. and Shneiderman, B. (1991). Tree-
maps: a space-filling approach to the visualization of hierarchical information struc-
tures. In VIS ’91: Proceedings of the 2nd conference on Visualization, pages 284–
291, Los Alamitos, CA, USA. IEEE Computer Society Press.

[Weiser, 1981] Weiser, M. (1981). Program slicing. In ICSE ’81: Proceedings of the
5th international conference on Software engineering, pages 439–449, Piscataway,
NJ, USA. IEEE Press.

[Zhang et al., 2003] Zhang, X., Gupta, R., and Zhang, Y. (2003). Precise dynamic
slicing algorithms.

278




