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Preface

This book is intended as a textbook for a second course in experimental opti-
mization techniques for industrial production processes and other “noisy” sys-
tems where the main emphasis is process optimization. This includes courses
in “Response Surface Methods” and related topics. The book has outgrown
from class notes of a graduate course that I have given for the past 10 years to
Industrial Engineering and Operations Research students at Penn State Univer-
sity and at the University of Texas at Arlington. Typically, students come to
this course with some background in either Design of Experiments (DOE) or
Linear Regression. Many students also come to the course with a background
in optimization methods. After teaching this course for several years based on
other DOE and Response Surface Methods (RSM) books, it became clear the
need for a book more suited to graduate engineering students, who learn about a
wide variety of optimization techniques in other courses yet are somewhat dis-
enchanted because there is no apparent connection between those optimization
techniques and DOE/RSM.

The point of view of the book is to provide in the form of a text a contem-
porary account not only of the classical techniques and tools used in DOE and
RSM but also to present relatively more advanced process optimization tech-
niques from the recent literature which, perhaps due to lack of exposure or due
to their young age, have not been used that much in industrial practice. The
book contains a mix of technical and practical sections, appropriate for a first
year graduate text in the subject or useful for self-study or reference.

For a person with a more traditional Statistics or Quality Engineering
background, the present book will serve as a reference to techniques that

xv
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complement and extend basic process optimization techniques from DOE and
RSM, including statistical issues that arise in process optimization, Bayesian
methods for process optimization, and an introduction to Stochastic Approxi-
mation, Kriging methods and “computer experiment” techniques. For a person
with an Operations Research background which includes mathematical pro-
gramming techniques, the present book will not only serve as a guide to DOE
and RSM, but will show how important statistical considerations need to be
taken into account while optimizing a noisy process.

The book contents are as follows. After an introduction presented in
Chapter 1, classical DOE and RSM topics are covered in Part II (Chapters 2 to
5). This includes DOEs for first and 2nd order models (including the concepts
of D and G-optimality and an introduction to mixture models), and optimization
of these models using classical RSM tools such as steepest ascent, “canonical”
analysis, and “Ridge” analysis.

Part III (Chapters 6 to 8) treats the very important issue of sampling vari-
ability in an optimization problem where experimental data can vary randomly.
Although considerable work has appeared on this subject in the last 15 years
in the Statistics literature, this has found very little impact in applications. The
effect of sampling variability in the steepest ascent procedure, on the location
of the optimal settings, and on the eigenvalues of a quadratic model is dis-
cussed. Recent computational techniques for finding confidence regions on the
location of the optimal operating conditions of a process are presented here.
A discussion of the debate that evolved among opposing schools in design of
experiments is presented here (the “bias vs. variance” debate).

Part IV (Chapters 9 and 10) discusses optimization methods that achieve so-
lutions that are insensitive, or robust, to variations in factors that are not con-
trollable. This is the so-called Robust Parameter Design (RPD) problem. A
discussion of Split Plot design problems, where there are hard to vary factors
in an experiment is included here, as RPD problems often have hard to vary
factors. The idea of finding solutions that are not sensitive to variations in the
assumed model has become a popular topic in the area of mathematical pro-
gramming. An approach that uses ideas from robust optimization to solve opti-
mization problems based on models fitted from data is presented in Chapter 10.
It is shown that robust optimization methods are closely related to methods
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for finding a confidence region in the optimal settings discussed in Chapter 7.
Relation of these methods with stochastic programming problems is noted.

Parts I-IV contain what could be described as frequentist statistical tech-
niques for process optimization. In contrast, Part V (Chapters 11 and 12)
present recently developed Bayesian methods for process optimization. This
is an extremely useful and unfortunately not well-known method for process
optimization that resolves many of the issues regarding optimization of a mul-
tiple response process based on models fitted from data. First, an overview of
Bayesian inference is presented. Then, optimization of single and multiple re-
sponse systems from a Bayesian perspective is discussed based on the Bayesian
multivariate regression model. These approaches provide a means for handling
not only the uncertainty in the parameters of the assumed model, but the uncer-
tainty in the model form itself. A Bayesian technique due to Gilmour and Mead
for stopping a sequence of experiments based on the gains that are expected
from running further experiments is presented. Finally, Bayesian Mixture opti-
mization problems are also discussed. Matlab programs that implement most
of the techniques discussed in this chapter are presented.

Part VI deals with design, modeling, and optimization techniques that have
received a great deal of interest in recent years but that lie outside the main-
stream of techniques usually considered within DOE and RSM. This includes
computer experiments, a field with assumptions usually in strong contrast with
classic RSM. An introduction to space filling designs and Kriging methods for
computer experiments is provided. This part of the book also discusses recently
developed stochastic optimization techniques based on stochastic approxima-
tion, in particular, Spall’s simultaneous perturbation methods. An approach
for testing the Karush-Khun-Tucker (KKT) optimality conditions in a problem
where models are fitted to noisy responses is presented. Although the method-
ology presented was developed for optimization of simulated processes, this
problem also occurs when optimizing a real or physical (i.e., non-simulated)
process.

The book concludes with four appendices on the basics of linear regression,
analysis of variance, matrices and optimality results, and statistical results used
in Part V. Sections that contain material at a relatively more advanced level are
labeled with a **. To facilitate reading, all examples and proofs of theorems
end with a �. MATLAB and MAPLE programs that implement some of the
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techniques discussed in the book and solutions to end of chapter problems will
be posted on the author’s personal web page.

As the Mexican writer Carlos Monsivais has said, one only realizes what
one thinks in a topic until it sees it written down. I think such writing activity is
very healthy in particular for a university faculty member as myself. Therefore,
I would like to thank first of all Professor Fred Hillier for inviting me writing
this book. I thank my graduate students who have endured the classes and
the preliminary version of the notes on which this book is based. I wish to
thank my coauthors and Ph.D. students in RSM topics in recent years: Dr. John
J. Peterson (Glaxo SmithKline Beecham), Dr. Ramkumar Rajagopal (for-
merly at Intel Corp.), Dr. Guillermo Miró-Quesada (Eli-Lilly Co.), Dr. Suntara
Cahya (Eli Lilly), Dr. John Semple (Southern Methodist University), and Pro-
fessors Bert Bentovil and Jack Kleijnen (Tilburg University, The Netherlands).
Professor Kleijnen was very kind in reading the chapters on Bayesian optimiza-
tion, written while he acted as host during my sabbatical visit to his department.
I also wish to thank Dr. R. Jean Ruth and Ms. Sharon Zielinski (General Motors
R&D), Dr. Mani Janakiram (Intel Corp.), and Dr. Arnon Hurwitz (formerly
at SEMATECH) with whom I have had the privilege of working in research
related to process modeling and optimization funded by their organizations. I
am also indebted to the National Science Foundation, who has been a major
source of funding in the last 10 years.

ENRIQUE DEL CASTILLO, STATE COLLEGE, JANUARY 2007
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PRELIMINARIES



Chapter 1

AN OVERVIEW OF EMPIRICAL PROCESS
OPTIMIZATION

A masterpiece is an experiment that succeeded.
—Carlos Chávez 1

1.1 Introduction
Every engineering system or process is designed with an intended purpose.

The purpose frequently entails a desired performance of the operation of the
product being manufactured or of the process that manufactures it2. In many
cases, engineering design activities involve tests or experimentation, since the
product or process is not well understood, and the desired performance can
not be guaranteed. Classical examples abound in Chemical Engineering, in
which results from a pilot plant experiment are scaled up to the manufacturing
site. In traditional discrete part manufacturing, e.g., machining processes, ex-
perimental design and analysis has been used to improve the performance of
processes given the inherent noise in the various responses of interest. In des-
igning new products, research & development groups run experiments, build
models, and try to optimize responses related to the performance of the new
product being designed. In this chapter, we provide an overview of these meth-
ods and introduce some basic terminology that will be used in later chapters.

1Mexican composer (1899–1978).
2We will use the generic word process to mean a real manufacturing process of a product, although we
will discuss also optimization techniques for simulation and computer models of engineering systems (see
Part VI).

3
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An interesting high-tech example comes from the semiconductor sector,
where expensive manufacturing equipment is seldom utilized “out of the
box” as suggested by the equipment manufacturer. Instead, semiconductor
manufacturers need to perform a series of experiments in order to achieve a
desired performance, in a step in the life of a process called “qualification”
in semiconductor circles. Once a process has been qualified, it is “released
to manufacturing”, which means there is a recommended (hopefully optimal)
recipe of process settings that should be used in that equipment. Once the
process is released to manufacturing, a different set of techniques, mainly
feedback control and process monitoring techniques, are implemented to keep
the process at the recommended or optimized performance in the presence of
further process noise and disturbances (this interplay between optimization and
control will be a subject to which we return at different points in this book).
Figure 1.1 shows the relation between process optimization and control in
this example.

Other cases in engineering where optimization is necessary do not involve
a real system, but a model of a real system. This is the case of optimization
techniques of simulated systems (e.g., discrete-event simulations) and of some
computer codes (e.g., finite element programs) that are very expensive to run.

Some terminology and preliminary concepts are now in order. We will con-
sider a process as a black box. This means that the purpose of a process model
is to describe the behavior of the process only based on the observable inputs
and outputs. In process optimization and Design of Experiments (DOE), the
inputs correspond to variables we can control during an experiment, and we
will refer to these as controllable factors3. The outputs of the process corre-
spond to variables we wish to modify by varying the controllable factors, and
we will refer to them as the process responses and, if the discussion relates to
quality control applications, to quality characteristics.

The type of processes we consider are “noisy” in the sense that identical
settings of the controllable factors will not result in identical values of the
responses. The variability in the responses is due to other factors not acc-
ounted for in the experiment. In classical statistical terminology, we say that

3Sometimes, particularly in the literature on Taguchi methods, controllable factors are referred to as para-
meters, but we will avoid this use.
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Figure 1.1. The interplay between process optimization and process control in semiconductor
manufacturing

the process exhibits sampling variability4. It will be assumed the process can
be “run” in such a way that steady-state response values can be measured after
each “run”. An experiment will then be understood as a set of such experi-
mental runs or tests. The tests are performed on material that is processed; in
the DOE literature units of such material are called the experimental units.
Two typical examples of experimental units in industrial experiments are parts
and batches of product. A designed experiment is an experiment in which the
tests are planned out before hand. The set of test values for the controllable
factors in such plan constitute the experimental design.

4A different interpretation of this variability is presented in Part V where an introduction to Bayesian
Statistics and its use in process optimization is presented.
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Figure 1.2. Varying a control factor and measuring the steady-state response for a process with
inertia

Figure 1.2 shows a response as it varies in a process with inertial elements,
such as a chemical process, when a single factor is varied. The controllable
factor is varied at time t0, but the process output starts to vary at time t1 > t0.
The time difference t1 − t0 is the system delay. After time t1, the response
varies for a while according to some transient response after which the steady
state response, i.e., the level of the response that is time-invariant, is eventually
obtained. It will be assumed in this book that the process is such that a steady
state response is achievable (i.e., the process is “stable” in this sense) and that
the interest is in optimizing such steady-state response. Thus, we are willing
to wait until time t2 in the figure to collect measurements. The small vertical
normal distribution at time t2 illustrates that the steady-state value will be sub-
ject to sampling variability, so that the steady state response corresponds to the
expected value of the distribution of observed responses at t ≥ t2. For systems
without inertia (i.e., without “process dynamics”) it is immediately true that
steady state is achievable and of interest, as no transient occurs. Here we have
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again the relation with control theory, which typically focuses in optimizing the
transient response of a dynamic process.

The Japanese engineer and consultant G. Taguchi [149] introduced the
important notion of noise factors in the literature on Designed Experiments.
These are factors that are not really controllable while the process operates
(e.g., environmental temperature or humidity in a typical machining process)
or when the final product is used in the marketplace (e.g. driving habits). How-
ever, one key insight by Taguchi was to note that these factors can in many cases
be controlled (varied) during a carefully conducted experiment. This allows
the development of a model in which the responses are a function of both the
controllable factors and the noise factors. The purpose of the Taguchi-coined
term Robust Parameter Design consists of using this model to optimize the
controllable factors in such a way that the solution is insensitive or robust with
respect to variations in the noise factors. Robust Parameter Design is discussed
in Chapter 9.

We will use the following general notation. We assume we have k control-
lable variables which will be denoted by xi where i = 1, 2, . . . , k, or, in vector
form, as x. There may be q noise factors denoted zi, i = 1, 2, . . . , q or, in
vector form, z. There might be m responses of interest which will be denoted
by yi, i = 1, 2, . . . , m, or, in vector form, y. Figure 1.3 illustrates these def-
initions. If the noise factors are uncontrolled in an experiment (i.e., they are
“given” by the environment, as in the figure) they are typically not considered
in the model, although if they can be measured they could be incorporated
in the response model to improve prediction. For Robust Parameter Design,
the “environment” in the figure is substituted for another DOE, and the noise
factors are then always included in the model.

1.2 Brief Historical Account of Some Process Optimization
Methods for Noisy Processes

A short historical sketch of the development of some of the optimization
techniques for noisy processes discussed in this book is useful to understand
the issues we would like to address later on.

Response Surface Methodology (RSM) is a series of experimental design,
analysis, and optimization techniques that originated in the work by Box and
Wilson in 1951 [29]. The main idea of RSM is to optimize an unknown and
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Figure 1.3. A process seen as a black box

noisy function by means of simpler approximating functions that are valid over
a small region using designed experiments. By moving the operating conditions
of a process using a sequence of experimental designs, process improvement is
achieved.

As all important ideas in science and engineering, RSM did not emerged
from a vacuum. Least squares estimation and regression analysis existed thanks
to Gauss and, later, Galton, and it is possible they were applied in production
or industrial design at some point of the XIX century, although there is no such
historical evidence as far as we know. The idea of studying an engineering sys-
tem based on approximating functions dates back to the end of the XIX century,
when the Russian mathematician and engineer Chebyshev worked in finding
an approximating function for a given function or trajectory that a mechanical
artifact should follow. His work continued a long tradition in the area of func-
tion approximation and Fourier analysis. This lead to the concept of best



An Overview of Empirical Process Optimization 9

uniform approximation and his celebrated Chebyshev polynomials. The func-
tion to approximate is assumed known, so no statistical issues arise [2].

Industrial experimentation for the purposes of product design started in a
more systematic way at the end of the XIX century, with Edison’s company –
perhaps the first industrial research and development center – and, almost in
parallel to it, the work of Frederick Taylor, the “father” of industrial engineer-
ing, on metals for cutting tools. It is at least curious for a modern Industrial
Engineer familiarized with experimental design techniques to look at Taylor’s
work and see the tremendous amount of time and energy that could have been
saved if DOE techniques would have been available to Taylor at the time. The
same can be said about Edison and all the engineers and inventors that worked
for him. For this reason, this era can be called the “heroic era” of experimental
design in industry.

Closer in time to the Box-Wilson paper, ideas on process optimization from
a statistical perspective were put forward by Hotelling [71], who discusses app-
lying these ideas to the optimization of alloys. Hotelling considered a single
factor problem (he only speculated about two and more factors), trying to derive
the distribution and statistical properties of the optimum obtained through a
polynomial response fitted via least squares. Interestingly, he seems to antic-
ipate some of the ideas developed later by Box and Wilson when he mentions
the importance of conducting experiments in stages, where “A large-scale
investigation should be preceded by a smaller one designed primarily to obtain
information for use in designing the large one. The small preliminary investi-
gation may well in turn be preceded by a still smaller pre-preliminary investiga-
tion, and so on” [71]. At about the same time, the important work of Fisher on
the analysis and design of factorial experiments in agriculture in the first half
of the XX century [55] led the way to the application and adaptation of these
techniques in industry for the purpose of optimizing production processes. It
was from this basis that the paper by Box and Wilson took off. Their work and
the subsequent work in RSM that originated from it has had the greatest impact
in industrial practice.

At about the same time than the Box and Wilson paper appeared, a paral-
lel development took place in the Mathematical Statistics field. The paper by
Robbins and Monro [135] on Stochastic Approximation of the root of a func-
tion has spurred an impressive body of literature ever since. A year after the
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Robbins-Monro paper appeared, Kiefer and Wolfowitz5 [79] showed a conver-
gence proof for a search technique for the maximum of a regression function
based on stochastic-approximation, a proof that is nonexistent in the case of
RSM due to its much more general assumptions. Later authors extended these
results to several dimensions (Keifer and Wolfowitz dealt with the case of a
single dimension), and recent work has shown the many connections between
“stochastic optimization” and other sequential estimation techniques used in
Adaptive Control (for a nice recent discussion, see Spall [145]). A recent tech-
nique based on this school of thought is Spall’s Simultaneous Perturbation Sto-
chastic Approximation (SPSA) methods, which have been reported to be useful
in the optimization of noisy “black box” systems.

Optimization techniques based on stochastic approximation ideas have a
radically different point of view than RSM techniques. Instead of a sequence
of models obtained from carefully designed experiments over a small exper-
imental region that is changed in view of the experimental results, stochastic
approximation methods concentrate on a more mathematically rigorous algo-
rithmic search approach to process optimization, trying to find good conver-
gence properties under the fewest possible assumptions. The minimum set of
assumptions needed for proving convergence is usually too strict to be satis-
fied in real-life industrial experiments. However, this does not imply that these
methods will never work in practice. For example, recent computational experi-
ence with SPSA methods indicates that for certain applications, like simulation
optimization, they should certainly be considered as an important optimization
tool. SPSA and other related techniques will be discussed in Chapter 13.

In the earlier 1980’s, G. Taguchi came to the USA (he did work at AT&T
Bell Labs) and popularized his ideas about noise factors and robustness. Ini-
tially, his ideas were accepted in an uncritical manner by some of his followers.
In the late 80’s and early 90’s, Taguchi’s ideas were discussed and criticized
in the major Engineering Statistics journals of the US, and this resulted in a
consensus, among the leading experts, that Taguchi’s ideas were innovative (in
particular, the concept of a noise factor) but some of the statistical methods
he suggested to reach the ultimate goals of Robust Parameter Design were in-
appropriate. Since then, more sound statistical methods for Robust Parameter

5Kiefer and Wolfowitz later developed in great detail the mathematical theory of optimal experimental de-
sign, which we cover in Chapter 5.
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Design have been proposed in the literature. We will look at some of them in
Part IV.

1.3 Some Basic Ideas in Response Surface Methods
We now turn in more detail to describe the mainstream process optimization

ideas in the Statistics and Quality Engineering literature, namely, RSM. In order
to be more precise about the general aims of RSM, suppose we have a single
response which is a function of k controllable factors. After each experiment,
we observe:

y = η + ε

where

η = f(x1, x2, . . . , xk)

is the true response value, unobservable directly, since we hypothesize we
always observe η in conjunction with additive noise or error ε. The function
f is unknown and directly unaccessible to us, and one goal in design of experi-
ments is to model or characterize the function f .

The error or noise term ε is usually assumed distributed with mean zero
and constant variance σ2

ε , which implies that

E[y] = η

is the mean response value and y − η = ε is the error term, a random variable.
The error term models, in a collective manner, all other potential effects that we
do not understand or know (we will not consider noise factors until Part IV).
This is a classical form of a statistical model: it is composed by a part we can
explain and a part we cannot explain, which we would like to make as small as
possible in some well-defined way.

We will assume, for the most part in this book, that all the controllable factors
are quantitative. Let xi denote the level or value of factor i, i = 1, . . . , k.
This is the setting we, as experimenters, decide for this factor in a particular
experimental run. Experimental design techniques suggest that these levels be
scaled or coded into a unitless value, typically on the −1 to +1 range, in such a
way that an experimenter can pick an experimental design from a “catalog” of
designs, being able to compare alternative designs (other advantages of coding
will be discussed later). The most usual coding convention is the orthogonal
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convention given by:

xi =
ξi − Mi

Ri/2
, i = 1, 2, . . . , k (1.1)

where ξi is the level or value of controllable factor i in original units of mea-
surement, Mi is the midpoint of the range of values for factor i in original units,
and Ri is the range of values over which we will vary factor i in original units.
In vector notation, a coding transformation will have the general simple form

x = S−1(ξ − M)

where ξ is a k × 1 vector of controllable factors, M is a k × 1 vector that
determines a change in location and S is a k × k matrix which determines a
change in the scale of the factors. For the particular case of coding (1.1) we
have that

S =
1
2

⎛
⎜⎜⎜⎜⎜⎝

R1 0 0 · · · 0
0 R2 0 · · · 0
...

... . . .
...

...
0 · · · 0 0 Rk

⎞
⎟⎟⎟⎟⎟⎠

and M contains the midpoints of the factors in original units. This coding
convention maps the highest value of each controllable factor into the +1 level,
the lowest value is mapped into the −1 level, and the midpoint of the range is
mapped into the 0 (zero) level. For this reason, coding (1.1) will be referred to
as the “(−1,1)” coding convention.

Evidently, the transformation (1.1) is not unique, and others have been pro-
posed and will be discussed at certain points in this book. However, this is the
most frequent coding convention in practice. Coding conventions of this type
change the metric of the experimental design and with this they change the
properties of the parameter estimates associated with the corresponding model.
These ideas will be more fully explained in Chapter 3.

An experimenter is usually not interested in the complete k-dimensional
space defined by the factors ξ (in original units). This complete space where
experiments can in principle be conducted is referred to as the region of opera-
tion or region of operability. In some chemical or manufacturing processes, for
example, a combination of controllable factors may be unsafe for the operation
of the process or may be well-known to produce scrap. This imposes a con-
straint in the factor space which in turn poses special problems for experimental
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design. We discuss this issue in Chapter 5. In addition to the region of operation
we have the region of interest, that the experimenter actually wishes to explore.
In industrial experiments, it is within this region where we should request good
properties of the fitted response model, with the understanding that extrapo-
lating outside this region is not an immediate goal. In this case, the literature
mainly highlights the two most common regions of interest: a “cuboidal” region
and a “spherical” region, assuming these regions do not touch the boundaries
of the region of operation. The region of interest may still be a proper subset
of the region of operation but may be close to a boundary of the latter, which
imposes a constraint in the region of interest itself.

In the area of computer experiments (see Chapter 14), the region of interest
is frequently equal to the region of operation, and this calls for different DOE
and model building strategies, as we wish to have adequate response model
properties throughout the region of operation. In either case, industrial or com-
puter experiments, we point out that the region of operation may not necessarily
have a cuboidal form, since in most real-life experiments there might be con-
straints on the operation of a process.

We should further distinguish the region of interest from the actual experi-
mental region. The experimental region is usually defined by the ranges Ri

of the controllable factors once the experiment has been designed. There is
the intuitive notion that the experimental region should resemble the region of
interest. Thus, for example, if interest is in a cuboidal region, then a cuboidal
experimental design should be used. This is easier to do for cuboidal regions
than for spherical regions of interest, for which only some designs are truly
spherical in the way they distribute the design points on the factor space.

The center or origin of the experimental region corresponds to the point
whose coordinates are equal to zero in coded units. These can represent “base-
line” operating conditions. In industrial experiments, the experimental region
in RSM is quite small compared to the region of operation, has a geometry that
resembles the region of interest, and typically moves as we explore new regions
within the region of operation. The center “point” in coded units refers to the
center of the current experimental region.

The main goal of RSM techniques is process optimization. This could
imply, for example, to minimize the cost of operation of a production process,
to minimize the variability of a quality characteristic, to maximize the yield in a
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chemical process, or to achieve desired specifications for a response. Evidently,
multiple responses of interest are usually considered in practical problems.

In order to optimize an industrial process, RSM methods suggest to build a
parametric model for the expected response using designed experiments. These
models should be local approximations, valid in a small experimental region.
For example, a first order polynomial approximation in two (= k) controllable
factors is given by:

E[y] = η = β0 + β1x1 + β2x2. (1.2)

A second order polynomial approximation, useful in a region where the res-
ponse is “curved” (we will say that “curvature is present” in such a case) is
given instead by:

E[y] = η = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2. (1.3)

Here, the β’s are unknown parameters that must be estimated from experimen-
tal data. The βi parameters are estimating the main effects of each factor, that
is, the average change in response as we move factor i by a unit6. The para-
meter β12 estimates a two factor interaction, that is, the additional effect that
the response will experience on top of the main effects for the two factors. The
effect of adding a 2-factor interaction to a first order model is to curve the func-
tion in the form of a hyperbola. Finally, we have the βjj parameters, which are
called the “pure quadratic” effects, to distinguish them from 2-factor interac-
tions, which are also quadratic but due to the mixed effect of two factors. If
added to a linear model they will induce parabolic curvature on the function.

More generally, a first order polynomial model in k factors is

y = β0 +
k∑

j=1

βjxj + ε

which can be written as

y(x) = β0 + β′x + ε

6In DOE, main effects are really defined as the average change as the factor is moved over a two unit range,
from −1 to 1.
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where β and x are k×1 vectors. Similarly, a second order polynomial model
for k factors is

y = β0 +
k∑

j=1

βjxj +
k∑

j=1

βjjx
2
j +

j−1∑
i=1

k∑
j=2

βijxixj + ε

which can be written

y(x) = β0 + β′x + x′Ξx + ε (1.4)

where Ξ is a symmetric k × k matrix that contains the βii parameters in the
diagonals and 1/2βij in the (i, j) off-diagonal positions. Notice how the poly-
nomial models we are proposing are always linear in the parameters. In con-
trast, the second order model is non-linear in the controllable factors.

The justification of a polynomial as an approximating function comes from
a simple Taylor series expansion of the unknown function f (assumed twice
differentiable) around the center of the current experimental region. Suppose
k = 1. Then

y = f(x1) + ε,

and we have that

f(x1) = f(0) + x1
df

dx1

∣∣∣∣
x1=0

+
1
2
x2

1

d2f

dx1

∣∣∣∣
x1=0

+ · · · + xn

n!
dnf

dx1

∣∣∣∣
x1=0

Neglecting terms of third and higher order we get:

f(x1) ≈ f(0) + x1f
′(0) + x2

1f
′′(0)/2

from where we can see that if we fit a second order polynomial in one factor, β0

corresponds to the intercept of the function at the center (f(0)), β1 corresponds
to the slope of the function (f ′(0)) at the design center, and β11 corresponds to
a scaled measure of the curvature of the function at the center (as given by the
Hessian, f ′′(0)). The parameters are usually fit using ordinary least squares.

More generally, for a function of k factors, f(x), assumed twice differen-
tiable, we have that

f(x) ≈ f(0) + ∇f(0)′x +
1
2
x′∇2f(0)x. (1.5)

where ∇f(0) is the gradient of f evaluated at the origin and ∇2 f(0) is the
Hessian of f evaluated at the origin. Comparing (1.4) and (1.5) we see that by
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fitting (1.4), we are estimating the gradient and the Hessian of the function of
interest at the origin of the current experimental region. It should be pointed
out the differentiability assumption on which this Taylor series argument rests.
It implies that the functions we are expecting to find, although unknown, will
be sufficiently “smooth”.

A key insight in the Box and Wilson paper [29] was to suggest that for a
poorly understood process, a model of the type (1.2) will typically be appropri-
ate, since the process will likely be operating far from its optimum, in a region
where “curvature” should not exist. A model such as (1.3) will typically prove
to be useful in a region in the space of the controllable factors closer to an opti-
mum, since it allows to model such curvature in the response (see Figure 1.4).
These and later authors proposed a means to move the process from a region
of little curvature to one where there is curvature, suggested specific types of
designed experiments to be used at each stage and specific tests to decide be-
tween model (1.2) and model (1.3). Although there was no specific concern in
the RSM literature for the application or use of the ideas of non-linear program-
ming (see Appendix C) in noisy processes, the main reasoning of achieving a
local optimum through a search process mimics the underlying goal of deter-
ministic optimization techniques.

1.3.1 Steps in a Classical RSM Study
From its inception, the application of RSM techniques was seen as usually

divided in 3 stages of phases:

1 Factor screening.- find the active or important factors among a wider set of
possible controllable factors;

2 steepest ascent/descent searches.- used to “move” the operating conditions
of a process to a region of experimentation (within the region of operation)
where there is a better performance;

3 canonical analysis.- used to model curvilinear relationships and find sta-
tionary points of the response functions.

The Factor screening phase is preliminary to an actual optimization study,
and is based on the Pareto-like idea that a small number of controllable factors
will have the most important effect on a response of interest. This idea some-
times goes by the name Sparsity of effects principle, and its practical value in
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Figure 1.4. Contours of a hypothetical response as a function of two controllable factors. RSM
attempts to move the process from a region R1 of little curvature (where model (1.2) is appro-
priate) to a region R2 where model (1.3) would provide better fit. Notice how R2 is near a local
maximum, the global maximum in the region plotted being located near point G

the simplification of an experiment cannot be exaggerated. This and the other
two stages will be treated in greater detail in Part II of this book.

The steepest ascent (or descent) procedure consists in changing the operating
conditions of the process in the direction of the gradient of the response surface.
We discuss the classic use of steepest ascent in RSM in detail in Chapter 2, and
at a more advanced level in Chapter 6. This stage is conducted until signifi-
cant curvature in the response is detected. Once curvature is detected, a second
order model is fit as a local approximation of the response. Then, canonical
analysis of the quadratic response surface model consists in finding the station-
ary point of the response and its characteristics. Classic canonical analysis in
RSM is fully described in Chapter 4. We introduce it here with the following
example that serves also to illustrate a response surface experiment conducted
in a traditional manufacturing process. The example assumes basic knowledge
of linear regression techniques (see Appendix A).

Example. Optimization of a machining process. Consider an experiment
conducted to determine the life of a cutting tool. The effects of three variables,
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workpiece

speed

depth of cut

tool holder

insert

chip

feed

Figure 1.5. A typical machine tool showing the three main process variables: speed of cut,
depth of cut, and feed

cutting speed, feed rate, and depth of cut on the tool life performance are of
interest7. Figure 1.5 illustrates the three variables in a typical lathe machine.
The speed was measured in units of surface feet per minute (sfm’s), feed in
inches per revolution (ipr), depth of cut in inches, and tool life in minutes. Tool
life was determined by the first occurrence of 0.015 inch uniform flank wear,
0.004 inch crater depth, 0.030 inch localized wear, or catastrophic failure. The
three controllable factors were scaled according to the coding convention (1.1):
x1 = (speed − 725)/75, x2 = (feed − 0.018)/0.008, and x3 = (depth −
0.125)/0.075. A central composite design, an experimental design we will
discuss in detail in Chapter 5 was used. The experimental data is shown in
Table 1.1. The experiment was run in a completely randomized way.

The following second order model was fit using least squares in the coded
factors:

ŷ = 6.56 − 5.99x1 − 12.66x2 − 4.51x3 − 0.46x2
1 + 8.68x2

2 + 1.73x2
3

+ 4.8x1x2 + 1.82x1x3 + 1.80x2x3

7I thank Mr. Mike Delozier for providing the information related to this experiment [44].
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Table 1.1. Experimental design and data for the machining example

Speed Feed Depth of cut Tool life
650 0.010 0.050 49.4
800 0.010 0.050 22.0
650 0.026 0.050 10.0
800 0.026 0.050 3.2
650 0.010 0.200 32.2
800 0.010 0.200 13.5
650 0.026 0.200 1.4
800 0.026 0.200 0.5
650 0.018 0.125 9.1
800 0.018 0.125 3.0
725 0.010 0.125 27.5
725 0.026 0.125 2.9
725 0.018 0.050 12.3
725 0.018 0.200 4.2
725 0.018 0.125 7.1
725 0.018 0.125 8.6
725 0.018 0.125 4.2

with an estimated variance of σ̂2 = 2.1872 and a R2 = 0.988. The residual
plots (see Figure 1.6) look satisfactory. The fitted coefficients of the x2

1 and x2
3

terms are not significant; however, they were kept since the adjusted R2 statistic
improves very little (from 0.973 to 0.974) if these terms are deleted from the
model, and the residuals look better behaved with these terms in the model. The
lack of fit test (see Appendix A) showed that the fitted model exhibited no lack
of fit. While transformations are usually necessary in life data, this was not the
case in the present data set8. Writing the fitted model as in equation (1.4), we
have that β̂

′
= (−5.99,−12.66,−4.51) and

Ξ̂ =

⎡
⎢⎢⎣

−0.46 2.4 0.91
2.4 8.68 0.90
0.91 0.90 1.73

⎤
⎥⎥⎦ .

8In fact, F. W. Taylor obtained a first order model relation for the logarithm of tool life as a function of speed
in his experiments on high-speed steel tool materials in the early 1900s.
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Figure 1.6. Residual plots for the fitted model, machining example

This eigenvalues of this matrix9 are −1.2098, 1.732, and 9.4276, thus the fitted
response is a saddle function which has a stationary point at (−0.43, 0.72, 1.15)
which is neither a maximum nor a minimum, and therefore, not very interesting
in itself. The fitted function is displayed in Figure 1.7.

The previous analysis corresponds to “canonical analysis”, which is es-
sentially equivalent to unconstrained optimization of a second order model
and determination of the nature of the fitted response through analysis of the
fitted Ξ matrix and, if feasible, contour plots of the fitted response. Since the
stationary point found is not a maximum (the goal was to maximize tool life),
and the response has a good fit, constrained optimization could be conducted
(see Chapter 4). �

9See Appendix D.
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1.4 Statistical Inference in Process Optimization:
Frequentist and Bayesian Methods

It was thought by early RSM authors that it does not make sense to apply
sophisticated optimization techniques to models fitted from data subject to large
errors. Work conducted in the last 10 years has shown this statement not to be
completely correct. If it were true, what is essentially an unconstrained opti-
mization technique such as “canonical analysis” (see Chapter 4) should not be
utilized. The statement is only true in the sense that it is important to con-
sider the uncertainty in the data (and in general, all the uncertainties present)
in the optimization problem. Statistical inference in RSM is very important in
practice, and is one of the main themes in this book.

Experimental optimization of response surface models differs from classical
optimization techniques in at least three ways:

1 Experimental optimization is an iterative process, that is, experiments
conducted in one set of experiments result in fitted models that indicate
where to search for improved operating conditions in the next set of experi-
ments. Thus the coefficients of the fitted equations (or the form of the fitted
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equations) may change during the optimization process. This is in contrast
to classical optimization where the functions to optimize are supposed to be
fixed and given.

2 The response models are fitted from experimental data that usually con-
tains random variability due to uncontrollable or unknown causes. This
implies that an experiment, if repeated, will result in a different fitted res-
ponse surface model that might lead to different optimal operating condi-
tions. Therefore, sampling variability should be considered in experimental
optimization. In contrast, in classical optimization techniques the functions
are deterministic and given.

3 The fitted responses are local approximations, implying that the optimiza-
tion process requires the input of the experimenter (a person familiar with
the process). This is in contrast with classical optimization which is always
automated in the form of some computer algorithm.

To illustrate the kind of Statistical Inference problems that occur in process
optimization, suppose we ran two separate DOEs, D1 and D2, on a process,
and fit models m1 and m2 from each experiment. The optimum point x∗ that
achieves the optimal predicted response Ŷ (x∗) will differ if obtained from m1

than from m2. Thus, there is sampling variability in x∗ since it clearly varies
as the data varies. The value of x∗ obtained from a single experiment is simply
a point estimate on the optimal operating conditions. A practical an important
question is: how much will x∗ vary due to sampling variability? Chapter 7
discusses frequentist methods of statistical inference in process optimization
problems that address this kind of problems, both for unconstrained and for
constrained optimization methods.

A different question, often asked by engineers is: what probability do we
have that the response at x∗, y(x∗) will satisfy some given tolerances? And
how can we find x∗ so that “yield” is maximized? In Part V we present
Bayesian optimization approaches that address these and related questions.
The Bayesian approach to process optimization allows to consider not only the
uncertainty in the data but also uncertainties that exist due to: 1) not knowing
the model parameters of a given model form; 2) not knowing the true form of
the model; and 3) variability created by noise factors in the model.
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1.5 Some Basic Ideas in Experimental Design
Before ending this introductory chapter, it is worth emphasizing the value

of factorial experiments compared to a strategy where only one factor is varied
at a time10. There are also some misconceptions about the latter strategy that
should be pointed out.

To illustrate the use of a one-factor at a time (OFAT) experimental strat-
egy, consider the left display on Figure 1.8. The figure shows a hypothetical
quadratic function which we wish to maximize (the contours give increasingly
higher function values as we move inside the parabolas) by varying two con-
tinuous factors. Let us suppose we start varying x2, using increasingly larger
values (or levels) of this factor, while keeping x1 fixed at a value of zero. In this
case we will move the process “up” a hill which will allow us to find a local
optimum in that direction. The local optimum seems to be close to x2 = 0.
Thus, we now repeat the procedure, varying x1 only while keeping x2 at its
(local) optimal value of zero. A similar situation will occur: we will find
another “hill” in this direction, concluding that a value close to x1 = 0 is the
(local) optimum in this direction. Thus, we come to the (erroneous) conclusion
to run the process at the settings (0, 0), which evidently are very far away from
the region where the global maximum is located.

Figure 1.8. A case when a one factor at a time strategy does not work well (left) and a case
when it works well (right)

10Readers familiar with the basic notions of DOE can skip this section without loss of continuity.
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The function on the left panel in Figure 1.8 has a significant β12x1x2 term,
i.e., a significant two factor interaction. By varying only one factor at a time (in
the way shown in Figure 1.8), we “miss” this interaction, which has the effect
of rotating the paraboloid (note how as the interaction gets larger, the paraboloid
form will eventually be lost, and the function will turn instead into a saddle
function). In contrast, the right panel on Figure 1.8 shows a situation in which
an OFAT strategy will work well, finding the global optimum rapidly. The
function plotted on this figure does not have an interaction at all, therefore, the
main axis of the paraboloid coincides with the coordinate axis of the factors.
Which case is more common in practice? In practice, the probability of having
to deal with a function that is “nicely oriented” in such a way that there are
no interactions is very small, with the probability going further down as the
number of factors k increases. Thus, in practice, since the function to optimize
is unknown, it is much safer to assume there might be interactions and experi-
ment accordingly. We note, in passing, that if the function can be represented
by a second order polynomial and interactions are present, rotating the func-
tion to align the coordinate axis according to the main axis of the quadratic
function, by means of an algebraic transformation, will simplify the resulting
function and will facilitate its analysis as it will eliminate the interactions in
the rotated coordinates. This was noted by Box and Wilson, and is the basis
of their “canonical analysis”, which we discuss in Chapter 4. The effects of
rotations on the properties of a DOE have also been studied for a long time.
We look at the rotatability properties of a DOE in Chapter 5.

An experimental strategy that is adequate if there are significant interac-
tions is the factorial design strategy. In a factorial design, many factors are
varied from run to run. In industrial practice, 2-level factorial experiments are
frequently run. Figure 1.9 shows a 2-level factorial run in the case of the hypo-
thetical function depicted on the left of Figure 1.8. Comparison of the four res-
ponse values at each of the four test conditions will indicate the need to “move
the process” in a direction close to that given by the arrow. The arrow points
in the direction of steepest ascent from the center of the design. In Chapter 2
we discuss how to perform steepest ascent based on experimental data. We will
discuss 2-level factorial experiments in Chapter 3. Experimental designs that
allow to fit the second order model (1.4), such as the central composite design
shown in the machining example, will be discussed in Chapter 5.
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Figure 1.9. A 2-level factorial strategy showing the direction of steepest ascent

Shall we never use an OFAT strategy? The answer is certainly never use it
in the way depicted in Figure 1.8. There has been some recent work where a
special modification of OFAT designs, Adaptive OFAT, is shown to be useful
and inexpensive (we will discuss this approach in Chapter 3). Adaptive OFAT
methods attempt to “exploit” the interactions, and do not move simply as in
Figure 1.8 but use a sequence of 2-level OFAT designs that allow to “backtrack”
to the best point found thus far. Despite this interesting new development,
we note that, as a general principle in experimental design, a factorial design
should (almost always) be preferred. We discuss some further basic principles
of experimental design, such as randomization and blocking, in Chapters 3
and 5.



PART II

ELEMENTS OF RESPONSE SURFACE METHODS



Chapter 2

OPTIMIZATION OF FIRST ORDER MODELS

One should not multiply explanations and causes unless it is strictly necessary
—“William of Bakersville” in Umberto Eco’s In the Name of the Rose1

In Response Surface Methods, the optimal region to run a process is usually
determined after a sequence of experiments is conducted and a series of empi-
rical models are obtained. As mentioned in Chapter 1, in a new or poorly under-
stood process it is likely that a first order model will fit well. The Box-Wilson
methodology suggests the use of a steepest ascent technique coupled with lack
of fit and curvature tests to move the process from a region of little curvature
to one where curvature – and the presence of a stationary point – exists. In this
chapter we discuss, at an elementary level, steepest ascent/descent methods
for optimizing a process described by a first order model. We will assume
readers are familiar with the linear regression material reviewed in Appendix A.
More advanced techniques related to exploring a new region that incorporate
the statistical inference issues into the optimization methods are discussed
in Chapter 6.

1Paraphrasing a non-fictional Franciscan monk of the epoch, William of Ockham (1285–1347): Essentia non
sunt multiplicanda praeter necessitatem (Entities should not be multiplied beyond necessity), a statement
that became to be known as “Ockham’s razor”.

29
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2.1 New Region Exploration
A first order model will serve as a good local approximation in a small region

close to the initial operating conditions and far from where the process exhibits
curvature. A fitted first order polynomial model in k factors has the form

ŷ = β̂0 +
k∑

i=1

β̂jxj .

Experimental designs used for fitting this type of models are discussed in more
detail in Chapter 3. Usually, a two-level factorial experiment is conducted with
repeated runs at the current operating conditions which serve as the origin of
coordinates in coded factors.

The idea behind this region exploration “Phase” of RSM is to keep experi-
menting along the direction of steepest ascent (or descent, as required) until
there is no further improvement in the response. At that point, a new fractional
factorial experiment with center runs is conducted to determine a new search
direction. This process is repeated until at some point significant curvature in
ŷ or lack of fit in the 1st order model will be detected. In the new region,
the operating conditions x1, x2, . . . , xk are close to where a stationary point
(and hopefully, a local maximum or minimum, as required) of y occurs. When
significant curvature or lack of linear fit is detected, the experimenter should
proceed to fit and optimize a higher order model, in what Box and Wilson
called “canonical analysis”. Figure 2.1 illustrates a sequence of line searches
when seeking a region where curvature exists in a problem with 2 factors (i.e.,
k = 2). In practical problems, more than 3 iterations of steepest ascent/descent
are rare.

There are two main decisions we must make in the region exploration phase
of RSM:

1 determine the search direction;

2 determine the length of the step to move from the current operating
conditions.

These two decisions are linked, because a search in a direction where there
is strong evidence the process will improve may proceed at larger steps than a
search in a less reliable direction. In Chapter 6 we present some approaches on
how to deal with these two aspects jointly.
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Figure 2.1. A sequence of line searches for a 2 factor optimization problem

2.2 Steepest Ascent/Descent Procedure
Suppose a first order model has been fitted and the model does not exhibit

lack of fit due to second order terms. Then the direction of maximum improve-
ment is given by:

1 ∇ŷ, if the objective is to maximize y (this gives the steepest ascent
direction);

2 −∇ŷ, if the objective is to minimize y (this gives the steepest descent
direction).

The direction of the gradient is given by the values of the parameter es-
timates (excluding the intercept), that is, β̂

′
= b′ = (b1, b2, . . . , bk). Since

the parameter estimates depend on the scaling convention for the factors,
the steepest ascent (descent) direction is also scale-dependent. That is, two
experimenters using different scaling conventions will follow different paths
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for process improvement. We note, however, that the region of the search, as
given by the signs of the parameter estimates, does not change with scale2.

Let us consider without loss of generality a maximization problem. The
coordinates of the factor settings on the direction of steepest ascent separated a
distance ρ from the origin are obtained from solving:

max b1x1 + b2x2 + · · · + bkxk = b′x

subject to:
k∑

i=1

x2
i ≤ ρ2 or x′x ≤ ρ2.

Unconstrained optimization of the first order model will evidently provide an
unbounded solution, hence the constraint is added. The value of ρ is the step
size, which is user-defined. A value of ρ = 1 will give a point close to the edge
of the experimental region where the model was fit (in coded factors). To solve
the maximization problem, form the Lagrangian (see Appendix C for general
results on optimality conditions):

maximize L = b′x − λ(x′x − ρ2)

where λ is a Lagrange multiplier. Compute the partials and equate them to zero

∂L

∂x
= b − 2λx = 0

∂L

∂λ
= −(x′x − ρ2) = 0.

These two equations have two unknowns (the vector x and the scalar λ) and
thus can be solved yielding the desired solution:

x∗ = ρ
b

||b||

or, in non-vector notation:

x∗
i = ρ

bi√∑k
j=1 b2

j

i = 1, 2, . . . , k. (2.1)

From this equation, we can see that any multiple ρ of the direction of the
gradient (given by the unit vector b/||b||) will lead to points on the steepest

2For a recent proposal on a scale-independent direction finding method, see Section 6.3.
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ascent direction. For steepest descent, we use instead −bi in the numerator of
the equation above.

An equivalent and simple approach to finding the points on the steepest
ascent path is as follows [110]:

1 Choose a step size in one of the controllable factors, say ∆xj . This may
be the factor we are most comfortable varying or simply the one with the
largest |bj |.

2 Take a proportional step in all other factors, i.e.,

∆xi

bi
=

∆xj

bj
, i = 1, 2, . . . , k; i �= j

from which

∆xi =
bi

bj
∆xj , i = 1, 2, . . . , k; i �= j. (2.2)

These two approaches are equivalent since the second approach will result in

a point on the path of steepest ascent located at a distance ρ =
√∑k

i=1 ∆x2
i

(coded units) from the origin.
Starting at some given operating conditions (the origin in coded units), the

recommended practice is to run a 2-level factorial experiment with center points
replicated to allow to test for lack of fit and for curvature (see Appendix A). If
there is evidence of lack of fit (LOF) or of curvature, we should add points to
the 2-level factorial so that a second order model is estimable. With the second
order model, we can then estimate the location of a local optima more precisely,
as explained later in Chapter 4. We now illustrate the steepest ascent procedure.

Example. Optimization of a Chemical Process. It has been concluded
(perhaps after a factor screening experiment) that the yield (y, in %) of a chemi-
cal process is mainly affected by the temperature (ξ1, in ◦C ) and by the reaction
time (ξ2, in minutes). Due to safety reasons, the region of operation is limited to

50 ≤ ξ1 ≤ 250

150 ≤ ξ2 ≤ 500

The process is currently run at a temperature of 200 ◦C and a reaction time of
200 minutes. A process engineer decides to run a 22 full factorial experiment
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with factor levels at

factor low center high

X1 170 200 230
X2 150 200 250

Five repeated runs at the center were conducted to assess lack of fit (see
Appendix A for details on lack of fit tests). The orthogonally coded factors are

x1 =
ξ1 − 200

30
and x2 =

ξ2 − 200
50

.

The experimental results are shown in Table 2.1. The corresponding ANOVA
table for a first order polynomial model is given in Table 2.2.

Neither the single degree of freedom test of curvature nor the lack of fit test
indicate a problem with the model. Furthermore, there is evidence that the first

Table 2.1. First 2-level experimental design, chemical experiment example

x1 x2 ξ1 ξ2 Y (=yield)
−1 −1 170 150 32.79

1 −1 230 150 24.07
−1 1 170 250 48.94

1 1 230 250 52.49
0 0 200 200 38.89
0 0 200 200 48.29
0 0 200 200 29.68
0 0 200 200 46.50
0 0 200 200 44.15

Table 2.2. ANOVA table for first DOE, chemical example

Source SS d.o.f. MS F0 P-value
Model 503.3035 2 251.6517 4.810 0.0684
Curvature 8.1536 1 8.1536 0.1558 0.7093
Residual (Error) 261.5935 5 52.3187

Lack of Fit 37.6382 1 37.6382 0.6722 0.4583
Pure Error 223.9553 4 55.9888

Total 773.0506 8



Optimization of First Order Models 35

order model is significant. The fitted equation in coded factors, using ordinary
least squares (OLS), is

Ŷ = 39.57 − 1.2925x1 + 11.14x2

Diagnostic checks (see Appendix A) show conformance to the regression
assumptions, although the R2 value (0.6580) is not very high.

To maximize ŷ, we use the direction of steepest ascent. Suppose we select
ρ = 1, since a point on the steepest ascent direction distanced one unit (in the
coded units) from the origin is desired. Then from equation (2.1), the coordi-
nates of the factor levels for the next run are given by:

x∗
1 =

ρb1√∑2
j=1 b2

j

=
(1)(−1.2925)√

(−1.2925)2 + (11.14)2
= −0.1152

and
x∗

2 =
ρb2√∑2
j=1 b2

j

=
(1)(11.14)√

(−1.2925)2 + (11.14)2
= 0.9933.

This means that to improve the process, for every (−0.1152)(30) = −3.456 ◦C
that temperature is varied (decreased), the reaction time should be varied by
(0.9933)(50) = 49.66 minutes.

Alternatively, we could have used instead the procedure that lead to
expression (2.2):

1 Suppose we select ∆ξ2 = 50 minutes. This can be based on process
engineering considerations. It could have been felt that ∆ξ2 = 50 does
not move the process too far away from the current region of experimenta-
tion. This makes sense since the R2 value of 0.6580 for the fitted model is
quite low, providing a steepest ascent direction not very reliable.

2 ∆x2 = 50
50 = 1.0.

3 ∆x1 = −1.2925
11.14 = −0.1160.

4 ∆ξ2 = (−.1160)(30) = −3.48 ◦C.

Thus the step size in original units is ∆ξ′ = (−3.48 ◦C, 50 minutes). �

To conduct experiments along the direction of maximum improvement, we
just continue selecting operating conditions using the same step size as selected
before, adding the step ∆ξ to the last point on the steepest ascent/descent
direction ξi.
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1 Given current operating conditions ξ′0 = (ξ1, ξ2, . . . , ξk) and a step size
∆ξ′ = (∆ξ1, ∆ξ2, . . . ,∆ξk), perform experiments at factor levels ξ0 +
∆ξ, ξ0 + 2∆ξ, ξ0 + 3∆ξ, . . . as long as improvement in the response y

(decrease or increase, as desired) is observed.

2 Once a point has been reached where there is no further improvement, a
new first order experiment (e.g. a 2-level factorial) should be performed
with repeated center runs to assess lack of fit and curvature. If there is no
significant evidence of lack of fit, the new first order model will provide
a new search direction, and another iteration is performed. Otherwise, if
either there is evidence of lack of fit or of (pure quadratic) curvature, the ex-
perimental design is augmented and a second order model should be fitted.
That is, the experimenter should proceed with the next “Phase” of RSM.

Example. Experimenting along the direction of maximum improvement.
Let us apply the steepest ascent procedure to the Chemical Experiment ana-
lyzed earlier. Recall that a first order model was significant, and did not show
lack of fit or evidence of curvature. We proceed to move the process in the
direction of steepest ascent, by using the step size computed earlier.
Step 1:
Given ξ0 = (200 ◦C, 200 minutes) and ∆ξ = (−3.48 ◦C, 50 minutes), perform
experiments as shown on Table 2.3 (the step size in temperature was rounded
to −3.5 ◦C for practical reasons). Since the goal was to maximize y, the point
of maximum observed response is ξ1 = 189.5 ◦C , ξ2 = 350 minutes. Notice
that the search was stopped after 2 consecutive drops in response. This was
done to reassure us that the mean response was actually decreasing and to avoid

Table 2.3. Illustration of a steepest ascent search

ξ1 ξ2 x1 x2 y (=yield)
ξ0 200 200 0 0

ξ0 + ∆ξ 196.5 250 −0.1160 1 56.2
ξ0 + 2∆ξ 193.0 300 −0.2333 2 71.49
ξ0 + 3∆ξ 189.5 350 −0.3500 3 75.63
ξ0 + 4∆ξ 186.0 400 −0.4666 4 72.31
ξ0 + 5∆ξ 182.5 450 −0.5826 5 72.10
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stopping the search too early due to noise. This issue calls for a formal stopping
rule for steepest ascent, a topic we discuss in detail in Chapter 6.
Step 2:

A new 22 factorial experiment is performed with ξ′ = (189.5, 350) as the
origin. Using the same scaling factors as before, the new scaled controllable
factors are:

x1 =
ξ1 − 189.5

30
and x2 =

ξ2 − 350
50

Five center runs (at ξ1 = 189.5, ξ2 = 350) were repeated to assess lack of fit
and curvature. The experimental results are shown on Table 2.4. The corres-
ponding ANOVA table for a linear model is shown on Table 2.5.

From the table, the linear effects model is significant and there is no evidence
of lack of fit. However, there is a significant curvature effect, which implies

Table 2.4. Second 2-level factorial run, chemical experiment example

x1 x2 ξ1 ξ2 y (=yield)
−1 −1 159.5 300 64.33

1 −1 219.5 300 51.78
−1 1 158.5 400 77.30

1 1 219.5 400 45.37
0 0 189.5 350 62.08
0 0 189.5 350 79.36
0 0 189.5 350 75.29
0 0 189.5 350 73.81
0 0 189.5 350 69.45

Table 2.5. ANOVA table for the second DOE, chemical example

Source SS d.o.f. MS F0 P-value
Model 505.300 2 252.650 4.731 0.0703
Curvature 336.309 1 336.309 6.297 0.0539
Residual 267.036 5 53.407

Lack of fit 93.857 1 93.857 2.168 0.2149
Pure Error 173.179 4 43.295

Total 1108.646 8
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that we have moved the process operating conditions to a region where there is
curvature, so we should proceed to the next phase in RSM, namely, fitting and
optimizing a second order model. �

The discussants of the Box and Wilson paper [29] pointed out that no clear
stopping criterion existed in the methodology, to which the authors agreed.
Although the discussants were referring to the final phase of RSM, the same can
be said about a steepest ascent search. Using a simple “first drop” stopping rule
(i.e., stop if the response drops for the first time) may miss the true maximum
in the steepest ascent direction, as the observed drop may be due to noise. Box
and Wilson noted this, mentioning that the observed response values could
be used to test for the difference of the mean response, and warned that the
steepest ascent procedure is useful under low noise conditions. Formal tests
of hypothesis that consider “noise” in the ascent procedure were developed by
later authors, and we present them in Chapter 6. A Bayesian stopping rule,
much in the sense of the discussion of the Box-Wilson paper, has been deve-
loped by Gilmour and Mead [61]. We discuss it in detail in Chapter 12.

Considerable work has been conducted since the Box and Wilson paper
[29] on using search directions other than the steepest ascent direction, and
on computing a confidence “cone” around a given direction. If the cone is
too wide, this is evidence to proceed cautiously along such direction, so the
cone provides some guidance about how large one should choose the step size
along the steepest ascent direction other than selecting either ρ or ∆xj arbi-
trarily. Again, we refer to Chapter 6 for details. Directions other than steepest
ascent, which is well-known in the non-linear programming literature to have
“zig-zagging” problems, have been proposed as well. We review one such
proposal in Chapter 6.

A final comment on the steepest ascent procedure as proposed in Box and
Wilson refers to the assumed model. If a fractional factorial experiment at two
levels is conducted, why neglecting two factor interactions? The argument in
favor of this model is that in the initial stage of experimentation interactions
will be dominated by main effects. This might be true for pure quadratic terms,
but it is not clear why it should be true for two factor interactions. The argu-
ment reminds us a point in the controversy around the Taguchi methods (see
Chapter 9). Taguchi considers a priori that some interactions are insignificant,
and this has been criticized – fairly in our view – to be unjustified in general.
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Likewise, in steepest ascent it seems that the first order model is assumed to
fit the optimization technique (steepest ascent) because otherwise one would
have to rely on relatively more complex nonlinear programming techniques.
A two level factorial of enough resolution may be adequate to estimate two-
factor interactions which can be utilized to optimize a process more efficiently,
even at an earlier stage. The success of steepest ascent in practice, a evidenced
by the many papers that have reported its application, is due to the fact that
the technique will achieve some improvement – maybe considerable improve-
ment – with respect to an earlier, non-optimized state of the process. That this
improvement is as large as it could have been obtained or that it was found at
the minimum cost (i.e., with a minimum number of experiments) has not been
shown, and this point has not been emphasized much in the literature. Thus,
there is room for improvement in this topic. We further discuss steepest ascent
and related methods at a somewhat more advanced point of view in Chapter 6.

2.3 Problems
1 Consider the first order model ŷ = 100 + 5x1 + 8x2 − 3x3. This model

was fit using an unreplicated 23 design in the coded variables −1 < xi <

1, i = 1, 2, 3. The model fit was adequate and S2
b = 2.54. The region of

exploration on the natural variables was

ξ1 = temperature (100, 110 degrees C)

ξ2 = time (1, 2 hrs.)

ξ3 = pressure (50,75 psi)

a) Using x2 as the variable to define a step size along the steepest ascent
direction, choose a step size large enough to take you to the boundary
of the experimental region in that particular direction. Find and show
the coordinates of this point on the path of steepest ascent in the coded
variables xi.

b) Find and show the coordinates of this point on the path of steepest ascent
from part a) using the natural variables.

c) Find a unit vector that defines the path of steepest ascent.

d) What step size multiplier for the unit vector in c) above would give the
same point on the path of steepest ascent you found in parts a) and b)?
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e) Find the fraction of directions excluded by the 95% confidence cone of
steepest ascent.

2 Consider the first order model ŷ = 14.4 − 5.09x1 − 13.2x2 − 4x3, where
y denotes the life of a tool, in minutes, as a function of 3 process variables.
This model was fit using an unreplicated 23 design in the coded variables
−1 < xi < 1, i = 1, 2, 3. The model fit was adequate with S2

b = 1.74. The
region of exploration on the natural variables was

ξ1= speed of cut (650 to 800 units of surface per minute, sfm)

ξ2 = cut feed (0.01 to 0.03 inches per revolution, ipr)

ξ3 = depth of cut (0.05 to 0.20 in.)

and the current operating conditions are the center of this region.

a) For steepest ascent purposes, the Quality Engineer chooses to decrease
the coded variable x2 one unit from the origin. Find the coordinates of the
resulting point on the path of steepest ascent in all other coded variables xi.

b) Find and show the coordinates of this point on the path of steepest ascent
from part a) using the natural variables.

c) Find a unit vector that defines the path of steepest ascent.

d) What step size multiplier for the unit vector in c) above would give the
same point on the path of steepest ascent you found in parts a) and b)?

e) Find the fraction of directions excluded by the 95% confidence cone of
steepest ascent.

3 Consider the first order model: ŷ = 52.1 − 3.1x1 + 6.4x2 − 1.25x3,
where the variance of the parameter estimates, s2

b , equals 0.4 computed
based on 5 replications of the center point of the design. Does the point
x′ = (−0.9, 1.0,−0.3) generate a direction vector inside the 95% confi-
dence cone of steepest ascent?

4 Consider the tool-life experimental data shown in Table 2.6 [44]. Two fac-
tors were varied in a replicated 22 with three center runs. The tool life of
the tool was considered by the first occurrence of 0.015 inch uniform flank
wear, 0.004 inch crater depth, 0.030 inch localized wear, or catastrophic
failure.
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Table 2.6. Data for problems 4 and 5

Tool life (minutes)
Speed (sfm) Feed (ipr) Grade A Grade B

500 0.015 67.0 84.4
500 0.015 101.9 91.2
500 0.015 63.6 66.7
800 0.015 23.5 16.0
800 0.015 17.6 15.2
800 0.015 21.3 17.6
500 0.027 17.9 24.6
500 0.027 25.3 15.3
500 0.027 25.4 30.4
800 0.027 0.4 1.1
800 0.027 0.6 0.5
800 0.027 0.5 0.9
650 0.021 21.4 11.8
650 0.021 19.2 8.9
650 0.021 22.6 10.6

a) Fit the best polynomial model you can to the “grade A” tool data. (Hint:
transformations of the response may be necessary).

b) Find the direction of steepest ascent, and determine a point that would
take the process to a distance approximately equal to the boundary of the
current experimental region.

5 Consider the “grade B” tool life data in Table 2.6.

a) Fit the best polynomial model you can.

b) Determine a point on the direction of steepest ascent that would take the
process to a distance approximately equal to the boundary of the current
experimental region.

For the following problems, readers may wish to consult Appendix A.
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6 Consider the following one factor experiment:

ξ1 y (observed)
650 7
800 18
650 6
800 11
725 10

a) Using regression analysis, find the least squares estimates and the esti-
mated variance of the parameters estimates in the model:

y = β0 + β1x1 + ε

where x1 is a coded factor corresponding to ξ1.

b) Find Cook’s Di diagnostic statistics based on the studentized residuals
(ri). Which point(s) seem to be outliers and/or influential?

c) Test the significance of the regression model. What are the null and the
alternative hypotheses?

d) Test for lack of fit of the linear model. What are the null hypothesis and
the alternative hypotheses?

7 Assume a 1st order model is to be fit in k factors. From ∂R(β)/∂βj =
0, j = 0, 1, 2, . . . , k, find the set of normal equations. Do not use any
matrix notation.

8 Consider the following “unit length” coding convention:

xiu =
ξiu − ξi

si
, i = 1, . . . , k; u = 1, 2, . . . , n

where

ξi =
∑n

u=1 ξiu

n
, i = 1, . . . , k

and

si =

√√√√
n∑

u=1

(ξiu − ξi)2, i = 1, . . . , k.
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Show that the X ′X matrix will contain the correlation matrix of the
controllable factors. Assume a first order model for simplicity.

9 It is well-known in regression analysis that

e = (I − H)Y = (I − H)ε

a) Interpret this expression using the concept of “projections” described in
Appendix A. Draw a picture of the corresponding vectors to explain.

b) Does this expression imply that Y = ε? Explain.

10 Assume we fit a linear model with an intercept. Argue why 1′H = 1′

where 1 is an n × 1 vector of ones. What does this imply for the average
prediction, Ŷ and the average response Y ? Is 1′H = 1′ if the model has no
intercept? Why?

11 Consider the basic ANOVA for a linear regression model. Show that the
following expressions for the “corrected sums of squares” are true. Do not
use the relation SStotal = SSreg + SSerror:

a) SStotal = (Y − Y 1)′(Y − Y 1) = Y ′Y − nY
2;

b) SSregression = (Ŷ − Y 1)′(Ŷ − Y 1) = Y ′Xβ̂ − nY
2. (Hint: use the

result in Problem 10).

12 Show that h = p/n. (Hint: use the fact that tr(AB) = tr(BA), where
“tr” means the trace; see Appendix C.). Relate this fact to

n∑
i=1

Var ŷ(xi)
σ2

= p.

What is this last expression saying in favor of simpler models (i.e., models
with fewer parameters)?

13 Show that a random variable W ∼ F1,n−p is equivalent to W ∼ t2n−p.



Chapter 3

EXPERIMENTAL DESIGNS FOR FIRST ORDER
MODELS

It appears to me, Sancho, that there is no saying that is not true, because they are all
sentences taken from experience, mother of all sciences.

—Miguel de Cervantes Saavedra (1547–1616)

An obvious choice of experimental design for fitting a first order model is
the class of 2-level factorial designs. Within this class, we have full 2k designs,
that is, factorial designs in which all k factors are varied only at two levels (a
“low” and a “high” level, coded into the (−1,1) convention discussed in Chap-
ter 1) and all 2k combinations are tried, hence their name. These experimental
designs actually allow to estimate the more complicated model

y = β0 +
k∑

i=1

βixi +
∑
i<j

∑
j

βijxixj +
∑
i<j

∑
j<l

∑
l

βijlxixjxl + · · ·

+ β123...kx1x2 · · ·xk + ε (3.1)

which contains all interactions up to order k. An alternative to this kind of
design is to run instead a fraction of a full 2k design and then either assume
higher order interactions are negligible or eliminate negligible effects.

If a fractional factorial strategy is followed, a 1/r fraction (with r a multiple
of 2, i.e., one half, one quarter, etc.) is selected from a 2k. Denoted by 2k−r

designs since that is the number of factor combinations they have, these designs
have been studied for a long time. They save runs (2k−r < 2k, evidently), but
there is a price to pay. If the true model contains interactions as in the model

45
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shown above and a 2k−r design is run, it will result in some biased parameter
estimates, the biases depending on the particular fraction selected.

In this chapter, we consider variance and bias properties of designs used to
fit a first order model, i.e., a model with no interactions. We call these, by
extension, first order designs. We concentrate mainly on 2k, 2k−r and related
2-level designs, such as Plackett-Burman designs.

3.1 Variance Properties of 2-level Factorial Designs
for a First Order Model

In this section we will prove the following statement:

Theorem 3.1 Consider a process which follows the first order model1

yj = β0x0j +
k∑

i=1

βixij + εj , j = 1, . . . , N (3.2)

and an associated N × (k + 1) design matrix X = [xij ] such that each of its
columns i must satisfy the constraint

∑n
j=1 x2

ij ≤ ci, i = 0, . . . , k. Then if
X is:

a) orthogonal and

b) such that
∑N

j=1 x2
ij = ci, i = 0, . . . k,

then it minimizes Var(bi)/σ2, i = 1, 2, . . . , k, for the given number of runs N .

A few remarks are in order before showing the truth of this statement:

A limit in the sum of squares of each column is needed since otherwise the
elements of (X ′X)−1 could decrease indefinitely by making the levels of
the factors (elements of X) increase indefinitely. The sum of squares lim-
itation can be seen as defining the maximum size of the DOE on the factor
space (the larger the size, the lower the variances of the parameter estimates
of a first order model). Usually, this will be given by some region of interest
or operability. An instance of such restriction are cuboidal designs where
the design levels are constrained by −1 ≤ xij ≤ 1. In such case we clearly
have that ci = N . This implies that a 2-level design that places the two
levels at the extreme values are variance optimal for a first order model.

1Usually, x0j = 1 if the model has an intercept.
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Based on this theorem we will use the term first order variance optimal
design, but this means optimal given the design size N , since ci =

∑N
i=j x2

ij ,
which clearly depends on N . It will be seen in Section 5.7.3 that first order
designs that satisfy conditions a) and b) of the theorem are D-optimal, an
important design optimality notion which will be introduced in Chapter 5.

Note the theorem implies that 2-level factorial designs with center points
(with the constraint −1 ≤ xij ≤ 1) are not variance optimal.

The first column of X , is set equal to 1 (a N × 1 vector of ones) if the
model contains an intercept, thus x0,j = 1, j = 1 . . . , N . This column
always satisfies the sum of squares constraint (for c0 = N ) and all other
columns need to be set orthogonal to the first one (and to each other).

Finally, an important aspect to notice is that the theorem relates to the vari-
ance properties of the parameter estimates, not to their bias properties.

Many authors have offered proofs of this theorem, some apparently incom-
plete [16, 112] or too elaborated [76]. Plackett and Burman [128] proved
this theorem for the case when the levels of the factors are constrained to
−1 ≤ xij ≤ 1 (so ci = N ), concluding that their renowned designs are vari-
ance optimal for a first order model if −1 ≤ xij ≤ 1. The following is perhaps
the simplest proof around, based on triangularization of a symmetric, positive
definite matrix, and is due to Tocher [150].

Proof. Write the model as Y = Xβ +ε where X is N ×p and consider the
matrix X ′X . Given the stated constraint, the diagonal elements of the X ′X

matrix can at most be equal to ci, and the diagonal elements of (X ′X)−1 can
be no smaller than 1/ci. The X ′X matrix is symmetric and positive definite,
therefore a non-singular, upper triangular2 matrix U can be found such that
U ′U = X ′X . Furthermore, V = U−1 is also upper triangular. Then we have
that vii = 1/uii and (X ′X)−1 = V V ′. Consider the ith diagonal element of
the (X ′X)−1 matrix, call it αi. We then have that

αi =
p∑

j=1

v2
ij ≥ v2

ii = 1/u2
ii ≥ 1/

p∑
j=1

u2
ji = 1/ci.

For αi to achieve its lower bound of 1/ci, both inequalities must become equal-
ities, and for this to happen, we must have that vij = 0 for all entries in the

2That is, uij = 0 for i > j.
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V matrix for which i �= j. This means that V must be diagonal, and implies
that U must be diagonal too. This finally implies that X ′X must be diago-
nal. Therefore, an orthogonal design for which

∑N
j=1 x2

ij = ci, i = 0, . . . , k

minimizes Var(bi)/σ2 = [(X ′X)−1]ii, i = 0, . . . , k for the given N . �

Despite not resulting in variance optimal designs, it is customary to add repli-
cated center runs to a 2-level factorial in order to be able to test for curvature and
test for lack of fit. Furthermore, the center point provides a model-independent
estimate of the error variance, and, if the number of center point replicates to
total number of runs is small, the variance of the parameter estimates increases
only a little over its minimum.

If the design has center points but is orthogonal, then still some advantages
are kept. In particular, the parameter estimates are uncorrelated, so tests on their
significance are independent. Useful first order orthogonal designs include:

2k and 2k−r
R (R ≥ III) designs3;

Simplex designs;

Plackett Burman (PB) designs.

Simplex and PB designs are saturated for a first order model in k factors, i.e.,
n = p, so some replicates are necessary if statistical tests are desired. Note that
2k, 2k−r without center points, Simplex and PB designs are variance optimal
according to Theorem 3.1 under the constraint ci = N , although good practice
in these designs is to add center points as mentioned before4. We treat PB
designs in more detail in Section 3.4.

We finally point out in this section that the optimality of a design according
to Theorem 3.1 relates to the variance of the parameter estimates, but having
low variances in the parameter estimates translates in more precise response
predictions, since the prediction variance will also be low. For a first order
model fit with an orthogonal design according to the theorem, we have that, for
a point in the DOE used to fit the model

Var(ŷ(x)) = σ2x′
m(X ′X)−1xm

3The subscript R denotes the resolution of a factorial design, a term we define in Section 3.3.
4The Simplex designs do not satisfy −1 ≤ xij ≤ 1 but satisfy the stated sum of squares constraint for
ci = N , hence they are also optimal.
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where x′
m = f(x)′ = (1, x′) = (1, x1, x2, . . . , xk) (we say that xm is x in

“model form”) will result in

Var(ŷ(x))/σ2 = 1 + ρ2

where ρ2 = x′x. Notice how the variance of the prediction at a point x is
not a function of where the point is but only of the distance of the point with
respect to the origin, as given by the quantity ρ. This indicates that all points
separated a distance of ρ from the origin (i.e., points on a circle with radius ρ)
will be predicted equally well. Later on we will refer to this variance property
of a design as rotatability.

3.2 Useful 2-level First Order Designs
In this section we look in more detail at 2-level designs, paying particu-

lar attention to the bias aspects of these designs. The literature on DOE uses
terminology that has an origin in the type of Agricultural experiments from
where designed experiments originated, based mainly on the work by Fisher
and Yates. We will explain some of this terminology in what follows.

3.2.1 2k Designs
A 2k design consists of running all combinations of runs at the ±1 levels of

the coded factors. Graphically, the design points correspond to the corners of a
k-dimensional hypercube. Table 3.1 shows an instance of an unreplicated 24.
As k gets larger, these designs get more impractical due to their large number
of runs, even if no replications are conducted. The labels in the columns of
Table 3.1 are one usual way of denoting the factors in the DOE literature5.
The two levels of each factor are simply denoted by +1 and −1. In the DOE
literature, when non-quantitative factors are considered it is customary to use
the symbols + and −, but this will not be necessary in this book as we assume
continuous factors.

Construction of 2k designs is easy: the so-called standard order shown in
the table is used. This consists of writing 2j−1 cells with a “−1” followed by
2j−1 cells with a “+1” in each column j, j = 1, . . . , k. The first row has all
entries equal to −1.

5Another convention is to use numbers to denote the columns.
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Table 3.1. A design matrix (D) for a 24 experimental design

A B C D

−1 −1 −1 −1
1 −1 −1 −1

−1 1 −1 −1
1 1 −1 −1

−1 −1 1 −1
1 −1 1 −1

−1 1 1 −1
1 1 1 −1

−1 −1 −1 1
1 −1 −1 1

−1 1 −1 1
1 1 −1 1

−1 −1 1 1
1 −1 1 1

−1 1 1 1
1 1 1 1

The total number of runs in a 2k design is N = n2k, where n is the number
of times we replicate the DOE. Obtaining the effect estimates and the sum of
squares necessary to do an ANOVA and test for significance of the different
effects, etc., can be done using the ordinary least squares (OLS) formula with:

X = [1|D|other columns]

where the “other columns” are columns that result from the element by ele-
ment multiplication of the columns in D and that relate to each of the l-factor
interaction terms in the model.

An elegant way of constructing the X matrix of a 2k design for model (3.1)
is to define the basic matrix6

H2 =

(
1 −1
1 1

)
.

6H2 is a normalized Hadamard matrix of order 2, and the procedure indicated generates normalized
Hadamard matrices of order N where N = 0(mod 4) [69].
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Then the 2k matrix X is given by

X = H2 ⊗ H2 ⊗ H2 · · · ⊗ H2︸ ︷︷ ︸
k times

where ⊗ denotes the Kroenecker direct product (see Appendix C).

Example. For a 23 matrix, the X matrix for model (3.1) is

X = H2 ⊗ H2 ⊗ H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note how the columns associated with effects A, B, and C are columns 2, 3,
and 5, as column 4 is the AB interaction, and so on. �

Historically, the computations based on inverting the X ′X matrix were
avoided in the pre-computer era thanks to using 2-level factorials. The man-
ual computations are based on the concept of treatment totals and contrasts.
We now review them briefly. For example, for a 22 design, we label the four
“treatments” (i.e., combinations of factors) as (1), a, b, and ab, when writing
the design in standard order. It is customary to let these same lowercase letters
also represent the combination totals, i.e., the sum of the observed responses
when that particular combination was run. See Table 3.2. Note how the com-
bination a corresponds to the run where factor A is at its high level and all
other factors are at their low level, and similarly for combination b. The first

Table 3.2. A 22 design showing the combination totals

Treatment combination A B y1st rep. y2nd rep. Totals
(1) −1 −1 3.1 5.4 8.5
a 1 −1 10.2 8.2 18.4
b −1 1 11.6 9.1 20.7
ab 1 1 8.9 7.7 16.6
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combination, denoted by a (1), contains all factors at their low level. If the first
observed response at these settings is 3.1 and the second one is 5.4, the total is
8.5, so we write (1) = 8.5. A contrast for a particular column is the element
by element product of one of the columns in D and the column of totals. Thus,
using DOE notation we have that

ContrastA = −(1) + a − b + ab = −8.5 + 18.4 − 20.7 + 16.6 = 5.8.

The contrasts compare (or contrast, hence its name) the runs where factor A is
at its “high” level (a and ab) with the runs where it was set at its “low” setting
((1) and b).

The effect (the main effect, in this case) of factor A is given by ContrastA/4=
1.45. In general, for any 2k or 2k−r experiment7 the effect of any factor or fac-
tor interaction is given by

EffectABC··· =
ContrastABC···

N/2
(3.3)

where N is the total number of runs. The effect for a 2-factor interaction is
obtained by first obtaining the corresponding column from the basic DOE and
then computing the contrast. For example, for the AB interaction in the 22

design just shown, we have that AB = (1,−1,−1, 1)′ which gives a contrast of
−14 so EffectAB = −3.5. The usual notation for effects in the DOE literature is
to use the letters denoting the columns to also denote the corresponding effect.
Thus, in the 22 design we have that A = 1.45 and AB = −3.5.

The relation between the effects as computed using (3.3) and the β̂1 OLS
estimate is that (3.3) measures the average response as we change the factor
from low to high, which implies a net change in the regressor of 2 units. The
model parameters βi measure the average change in the response as we change
the associated factor from 0 to 1, half the range than when using (3.3). Thus,
β̂i = Effectxi/2.

The sums of squares in a 2k or a 2k−r design can also be computed based on
the contrasts according to

SSABC··· =
Contrast2ABC···

N
.

Thus, in the 22 example we have that SSA = 4.205, SSB = 13.52, and
SSAB = 24.5. Each of these sum of squares has a single degree of freedom

7This is true in general for any balanced 2-level design.
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Table 3.3. ANOVA for a 2k design, showing all the 2k−1 effects (m.e.=main effect, f.i.=factor
interaction)

Source dof SS MS Fo

A 1 SSA SSA/1 MSA
MSerror

B 1 SSB SSB/1
...(

k

1

)
= k m.e.

...
...

...
...

K 1 SSK SSK/1

AB 1 SSAB SSAB/1(
k

2

)
2-f.i. AC 1 SSAC SSAC/1

...
...

...
...

ABC 1 SSABC SSABC/1(
k

3

)
3-f.i. ABD 1 SSABD SSABD/1

...
... 1

...
...(

k

k

)
= 1 k-f.i. ABC . . . K 1 SSABC...K SSABC...K/1

Error 2k(n − 1) SSerror SSerror/

2k(n − 1)

Total n2k − 1 SStotal SStotal

(we are essentially squaring the difference between two average responses, one
obtained when the factor is high and one when the factor is low). There is a total
of 2k parameters in model (3.1), so the 2k design is saturated for such model.
The ANOVA table for a 2k design and model (3.1) is shown in Table 3.3.

If it is desired to estimate model (3.1), note that replicates (i.e., n > 1) are
necessary to perform the ANOVA and determine the significance of the effects
(the effects themselves can be estimated, however). This is because the degrees
of freedom for error are 2k(n−1). Alternatives to replicating the whole design
are as follows:
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1 Do not replicate the design and assume higher order interactions (say, third
order and higher) to be negligible and fit a model for all main effects and 2
factor interactions. The rationale is that high order interactions are usually
not significant and are difficult to interpret in most cases. The neglected
interactions are then “pooled” (added up) into SSerror;

2 Do not replicate the design but compute all effects. Plot all the effects on a
normal probability plot (NPP). Those effects that are insignificant will tend
to be distributed along a line on the graph which corresponds to a zero mean,
normally distributed effects (they are normal if the errors are normal). Pool
all the negligible effects according to the NPP into SSerror. This and the
previous option are based on the Sparsity of Effects Principle introduced in
Chapter 1;

3 Replicate only the center points. This allows to test for curvature and for
lack of fit, and provides a model independent estimate of σ2. We discuss
the addition of center points in Section 3.8;

4 Run a 2k−r fractional factorial or a Plackett-Burman design.

In the next two sections, we discuss Fractional Factorials and Plackett-Burman
designs.

3.3 2k−r Designs. Resolution of a Fractional Factorial.
Construction of 2k−r Designs

A 2k−r fractional factorial has the advantage of requiring less runs than a
2k but there is a price to pay: if higher order interactions exist, the parameter
estimates will be biased, with the bias depending on the actual DOE used and
the real function the process follows.

Replicating a 2k−p design is not common since it defeats its main advantage,
namely, saving runs, without helping to solve its main deficiency, that is (as we
will see), the biased estimates they produce.

It has been customary in the DOE literature to analyze what would happen if
we run a particular 2k−r design when in fact the model (3.1) is the true process
description. Suppose we have 4 factors and decide to run a half of the full 24

design, i.e., we want to run a 24−1 design (8 runs) . Which half shall we select?

We could choose the 8 runs from a full 24 design in

(
16
8

)
= 12870 different
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Table 3.4. A 24 design and its two 24−1 halves determined according to the ABCD (highest)
interaction

I A B C D AB AC AD BC BD CD ABC ABCD

1 −1 −1 −1 −1 1 1 1 1 1 1 −1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 1
1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 1
1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1
1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 −1
1 1 1 −1 1 1 −1 1 −1 1 −1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1
1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1
1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1

ways. Fortunately, this type of designs have been studied for over 80 years, and
a huge literature exists on how to proceed.

Table 3.4 shows only one of the possible partitions we could choose, with
the two halves of 8 runs listed one after the other. The columns shown are the
basic design columns (labeled A to D), all the 2-factor interaction columns in
addition to one 3-factor and one 4-factor interaction column (the first column, I,
is a column of all ones, which will be discussed shortly). These particular
selection of halves was obtained as follows. The A, B, and C columns were
written in standard order. Notice how the D column is not in standard order,
although we could re-arrange the rows and write them such that D is also in
standard order. Instead of doing that, we arrange the top 8 runs (rows) such
that their entries in the ABCD column equal 1, and the bottom 8 runs are such
that for them ABCD = −1. As a result of this re-arrangement of the rows,
notice that for the first half (first 8 rows) we have that the numbers in column D
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equal the numbers in the column labelled ABC. It is easy to check that column
ABC is obtained by multiplying element by element the numbers in columns
A, B and C. Thus, we will write D = ABC for the first half. Similarly, for the
second half it is easy to see that D = −ABC.

With this, in the first half we have that I = ABCD and for the second half
we have that I = −ABCD, where I is a column of all ones. These expressions
are the defining relations of each half, because with them we can construct the
design. As it turns out, the algebra of columns in a 2-level factorial is not the
standard algebra we learn in elementary school. There are two basic operations
the algebra of columns obeys. Let W be any column of the design and let (·)
denote element by element multiplication of two columns. Then:

W · W = I

and

W · I = W ( i.e., get the same column).

Thus, for example, if W is column A then A · A = I , as it can readily be
verified how by multiplying element wise any column in the design times itself
gives a column of ones8. Thus the “times” operation of columns is not standard
algebra. In the algebra of DOE columns, the inverse equals the square, with
the column I playing the role of the identity9. Note how these rules work in the
example: I = ABCD implies DI = ABCD2 which implies D = ABC.

So, to construct a 24−1 design where I = ABCD all we have to do is to
create a table where columns A, B, and C are in standard order and add a
column for D such that D = ABC. This will pick the top half in Table 3.4.

A central concept in fractional factorial designs is resolution. In the first half
of Table 3.4 we have that D = ABC. This means that the contrast of column D

and the contrast of column ABC are identical, so when estimating the effect of
column D we are also estimating the effect of column ABC. We will say that
effect D is aliased with effect ABC, since the same effect has “two names”, or
that the two effects are confounded. Using the algebraic properties of columns,
it is not difficult to see some other aliased columns:

8Note how the powers are reduced modulo 2, i.e., A2 = A4 = . . . = A, or Al = A[l(mod 2)]+1.
9Contrast with regular algebra where for any x �= 0, x−1x = 1 and number one is the identity element.
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A = BCD

B = ACD

C = ABD

AB = CD

AC = BD

AD = BC

The first 3 are aliases between a main effect (i.e., a single letter effect) and
a 3 factor interaction not involving the letter. The last 3 aliases are between
different 2-factor interactions. Thus, in this design, main effects are aliased
with 3-factor interactions, and 2-factor interactions are aliased with one other
2-factor interaction. A design with this type of confounding is called a design
of resolution IV (Roman four).

The term “resolution” was borrowed from optics. A design with higher
resolution will allow us to “see” the effects more clearly. In the limit, a full
2k design has full resolution to estimate in an unbiased manner all effects in
model (3.1). In the following discussion, it is important to keep in mind that
the importance of the effects in practice usually decreases with the number of
factors in the effect. Thus, main effects (i.e., single factor effects) are usually
more important that 2-factor interactions which in turn are usually more impor-
tant than 3-factor interactions, etc. By “importance” we mean larger in absolute
value. A more precise definition of resolution is as follows:

Definition 3.1 A design of resolution R is one in which no m-factor inter-
action effect is aliased with any other effect with less than R − m factors.

Therefore:

A design of resolution R = III has main effects (i.e., single letter effects)
confounded with at least one 2-factor interaction, but main effects are not
aliased with other main effects. For example, consider the 23−1 design with
C = AB, denoted 23−1

III .

A design of resolution IV has main effects confounded with 3-factor interac-
tions, and 2 factor interactions confounded with other 2-factor interactions.
This is clearly better than a R = III design since main effects are not
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aliased with 2-factor interactions but with 3-factor interactions, which tend
to be less important. The 24−1

IV design with D = ABC shown earlier is an
example.

A design of resolution V has main effects confounded with 3-factor inter-
actions, and 2-factor interactions are confounded with 3-factor interactions.
An instance is a 25−1

V with E = ABCD. Note how this is a better design
than a resolution IV design since 2-factor interaction effects are not aliased
with other 2-factor interaction effects.

As a further analogy with Optics we will say that if a main effect or a 2-factor
interaction is not aliased with any other main effect or 2-factor interaction, then
these effects are clear. Thus, in a R = IV design main effects are clear but
2-factor interactions are not, whereas in a R = V design both main effects and
2-factor interaction effects are clear.

Higher order resolution designs are of course possible and desirable. Reso-
lution III designs are useful for factor screening (see Chapter 1), that is, to dis-
cern from among a very large number of potential factors k which ones are the
“active” factors in the process. If k is very large, it is prudent as a first ap-
proach to consider main effects only in a small DOE and eliminate inactive
factors. The results of such experiment would then indicate what further exper-
iments are necessary in the active factors, and in those experiments we should
then use higher resolution. Resolution II designs are never considered because
the main effects would be confounded with other main effects.

Consider the defining relations of the three DOEs listed above: I = ABC,
I = ABCD and I = ABCDE. The words on the right hand side of these
expressions have lengths equal to the resolution to each design. Thus we have
an alternative definition of resolution.

Definition 3.2 The resolution of a design is the shortest word in the com-
plete defining relation.

In the examples above, which were all half fractions (r = 1), there was only
one such word, so automatically it was the shortest.

Any 2k−r design will have r generators and 2k−r alias chains each consist-
ing of 2r elements. The generators are the words used to define the r columns
when constructing a fraction. Products of these generators will give more
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words, and the shortest of them gives the resolution of the design. An example
shall illustrate these definitions.

Example. Consider a 26−3 experiment with generators D = AB, E = AC

and F = BC. The defining relation is given by

I = ABD = ACE = BCF = DEF = ABEF = ACDF

where the first 3(= r) words are the generators, the next word is the product of
all 3 generators, and the last 3 words are obtained as products of 2 generators
at a time. This is the complete defining relation of the design. Its shortest word
has 3 letters (I is not considered a word), hence R = III . The 8(= 26−3)
alias chains each of 2r = 8 elements give all the aliases of each effect, and are
obtained from the complete defining relation by multiplying all terms by the
effect of interest:

I = ABD = ACE = BCF = DEF = ABEF = ACDF = BCDE

A = BD = CE = BEF = CDF = ABCF = ADEF = ABCDE

B = AD = CF = AEF = CDE = ABCE = BDEF = ABCDF

C = AE = BF = ADF = BDE = ABCD = CDEF = ABCEF

D = AB = EF = ACF = BCE = ACDE = BCDF = ABDEF

E = AC = DF = ABF = BCD = ABDE = BCEF = ACDEF

F = BC = DE = ABE = ACD = ABDF = ACEF = BCDEF

AF = BE = CD = ABC = ADE = BDF = CEF = ABCDEF

For instance, multiplying all words in the complete defining relation times A,
we get:

A = BD = CE = BEF = CDF = ABCF = ADEF = ABCDE

which is the second alias chain listed above (the other 6 chains are obtained
similarly). Thus, we see that while it is true that the main effect A is confounded
with at least one 2-factor interaction, and hence this is a resolution III design,
main effect A has many other aliases, including two 2-factor interactions, two
3-factor interactions, 2 four factor interactions, and one 5-factor interaction. �

To construct a 2k−r design, we would choose a design that has the high-
est resolution possible for the experimental budget (usually, a fixed number of
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runs) we have available. Catalogs of these designs exist that give generators
that guarantee maximum resolution for the given sample size. An on-line cat-
alog is available from the NIST/Sematech Handbook of Engineering Statistics
(Section 5.3.3.4.7), a public document available at:

http://www.itl.nist.gov/div898/handbook/index.htm.
These DOE catalogs give, for a given number of factors k and runs N ,

the highest resolution possible that has minimum aberration. In general, to
achieve higher resolution, one needs larger designs, up to having full resolution
for all terms in model (3.1) when using a full 2k design. But as it turns out,
there might be several 2k−r

R designs for a particular choice of k, r, and R, since
they all have at least one word of length R. The minimum aberration design
“breaks the ties” and chooses the design with fewer words of shortest length.
This results in simpler confounding (simpler alias structure) among the designs
tied according to the resolution criterion. See [157] for more details.

Given the r generators, to construct the design we write the first k− r

columns in standard order and the next r columns using each of the generators.
The resolution of a design can be increased from III to IV by “folding over”

it (see Section 3.3.2 below). Likewise, particular alias chains can be broken
and “clear” estimates can be obtained by adding more runs to the design. See
[110, 157] for details.

The algebra of columns has a deeper mathematical foundation based on
group theory. We show some of the basics of this foundation next.

3.3.1 Group Theory Aspects of 2k and 2k−r Factorials**
It turns out10 that in a 2k or 2k−r design, the set of effects or columns in

model (3.1), namely

{I, A, B, . . . , AB, AC, . . . , ABCD · · ·K}

and the corresponding set of treatments totals or rows

{(1), a, b, . . . , k, ab, . . . , abcd · · · k}

constitute two instances of Abelian groups.

10This section has somewhat more advanced material and may be skipped on a first reading.
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A group is a set G with a binary operation ∗ such that the operation:

1 is associative,

2 has an identity,

3 has an inverse operation.

If in addition, ∗ is commutative, then the group is said to be Abelian.
An example of an Abelian group is the integers with addition as the ∗ op-

eration (note a group could be infinite in size). Readers may wish to consider
whether the integers under multiplication form a group or not.

For the group of effects in 2k or 2k−r factorial, the group operation ∗ is
defined as A ∗ B

.= [Ai · Bi] Thus, if A = [−1, +1,−1, +1]′ and B =
[−1,−1, +1, +1]′, then A ∗ B = [+1,−1,−1, +1]′ and we denote it (for
short) as AB. This is not the dot product of the two vectors, although we will
use the word “product” to refer to it. This operation does not obey the usual
algebraic rules.

Notice all properties of Abelian groups are satisfied for the ∗ operation:

1 A ∗ B ∗ C = (A ∗ B) ∗ C

2 A ∗ I = A

3 A ∗ A = I (the inverse operation consists of multiplying by itself, i.e.,
A−1 = A (we write A2 = I for short)

4 A ∗ B = B ∗ A

For the set of treatment combinations {(1), a, b, . . . , k, ab, . . . , abcd · · · k}
the operation ∗ that makes this set an Abelian group is more complicated. In
this case, a ∗ b

.= [((1)i + ai + bi) (mod 2)] where ai = 0 if there is a “−1”
in the ith position of this row vector and ai = 1 if there is a “+1” in the ith
position (similarly for bi. (1)i denotes the ith position in the row labeled (1)).

For example: consider a 23 design. Then {(1), a, b, c, ab, ac, bc, abc} forms
a group under the operation ∗ defined above. Take a ∗ b = [(0 + 1 + 0)mod 2,

(0 + 0 + 1)mod 2, . . . , (0 + 1 + 1)mod 2] = [1, 1, 0, 1, 0, 0, 0] so we get
ab = [+1 + 1 − 1 + 1 − 1 − 1 − 1].

The most enlightening property of groups that helps understanding of the
algebraic properties of DOE columns is the fact that a group is closed under the
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“*” operation. This means that any product of effects is another effect in the
group. For example, consider a 25−2 design with generators E = AD, B =
CE. The generators imply that I = ADE = BCE. The product ADE ∗
BCE = ABCD makes up the complete defining relation:

I = ADE = BCE = ABCD

Any binary product of elements in the group G = {I, ADE, BCE, ABCD}
results in another element of the group. Thus, for instance

ABCDE ∗ ADE = BCE ∈ G

or
ABCD ∗ BCE = ADE ∈ G

ABCD ∗ ADE ∗ BCD = I ∈ G

thus the result is always in the group G. We see that the closeness property is a
consequence of the way the operator * was defined.

In a full factorial, the closeness property of the group of effects holds too.
Thus, in a 22 design, the group is G = {I, A, B, AB} and any product of
elements results in another element in G, e.g., AB ∗ A = B, A ∗ I = A, etc.
The difference with a group of effects in a 2k−r design is that in a fraction,
the group of effects has members that are equal, and the alias structure tells
us which are those elements. So, in a 23−1 with C = AB we know that the
group of effects is G = {I, A, B, C, AB, BC, AC, ABC} but then A = BC,
B = AC, C = AB. The terms defining relation and generator of a design
(I = ABC and ABC, respectively, for the 23−1 design) are terms borrowed
from group theory, as they are the defining relation and the generator of the
group G.

In a full factorial there is no such defining relation for the group, which
simply contains all the effects as distinct elements.

3.3.2 Folding Over Resolution III Designs
It is always wise never to expend the experimental budget in a first experi-

ment. It is always better to start with a small fractional factorial to which we
can add more runs to increase the resolution or break alias chains that obscure
model interpretation. One useful technique for doing this is folding over a res-
olution III design. Folding over consists in running a second DOE where one
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or more columns in the design have their signs switched. If the initial design is
a 2k−p

III , this either breaks the aliases between a main effect and its two factor
interactions or breaks the aliases between all main effects and the two factor
interactions, respectively. The following summarizes the main results in each
of these two cases.

1. Folding over by switching the sign in one column only of a 2k−p
III

Here we switch the sign of a single column (a main effect or a two factor in-
teraction. If lA denotes the contrast for column A (this will also refer to the
contrast of a two-factor interaction in a resolution III design, hence we label it
by the letter l for linear contrast) then:

we get the main effect of that factor (say, A), from 1
2(lA + lA′);

we get all the two-factor interactions that contain factor A from 1
2(li −

li′), i �= A;

The generators of the second fraction are the same as those in first fraction
except that the words containing the “switched” factor (letter) are multiplied
by −1;

The “assembled” design (i.e., putting the 2 fractions together) has U +L−1
generators where L is the number of words of Like sign in each of the two
fractions and U is the number of words of Unlike sign (note this means
you get one generator less for the assembled design than for each of its two
fractions);

The complete defining relation of the assembled design is shortened. It is
made up of the L generators of like sign and the U −1 generators which are
even products of independent words of unlike sign.

Example. Consider a 27−4 fraction with generators: ABD, ACE, BCF ,
and ABCG. If we switch column D, then the fold over fraction has generators:
−ABD, ACE, BCF , ABGG. This implies that the assembled 27−3 design
has L + U − 1 = 3 generators: U − 1 = 0 words which are products of unlike
sign words and the L = 3 words of like sign: ACE = BCF = ABCG. The
complete defining relation is I = ACE = BCF = ABCG = ABEF =
BCEG = AFG = CGEF . By doing this, D and all its two factor interac-
tions are “clear”. However, we still have a resolution III design. �
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2. Switch signs in all columns of a 2k−p
III (“full” fold over):

If we switch the signs of all the columns to create the second experiment (get-
ting what some authors call a “reflection”), then:

we get all main effects clear from 1
2(li + li′);

the two factor interactions will still be aliased (we get a resolution IV de-
sign). The chains of two factor interactions are estimated from 1

2(li − li′);

the generators of the second fraction are:

– Same as those in first fraction if the number of letters in the generator
is even;

– Same as those in first fraction but with the sign changed if the number
of letters is odd.

The U + L − 1 generators of “assembled” design are the L words of like
sign and the U − 1 generators which are independent even products of the
U words of unlike sign.

Example. Suppose we initially run a 27−4
III fraction with generators: ABD,

ACE, BCF , ABCG. Then the fold over obtained by switching the sign in all
columns is a second 27−4

III fraction with generators: −ABD,−ACE,−BCF,

ABCG. The assembled 27−3
IV design has generators ABCG (L = 1 word)

and U − 1 = 2 words that are independent even products of the U = 3
words of unlike sign11, for example: ABD ∗ ACE = BCDE and ABD ∗
BCF = ACDF . The complete defining relation of the assembled experiment
is I = ABCG = BCDE = ACDF = ADEG = BDFG = ABEF =
CEFG. �

When doing a full fold over of a resolution III design, the words in the defin-
ing relation of the “assembled” design always have 4 or more letters, i.e., we
get resolution=IV for the combined design. As proved by Margolin [92], this
folding procedure is the only way to generate minimal resolution IV designs,
defined as designs in k factors such as N = 2k. Not all folded designs of reso-
lution III will result in minimal resolution IV designs, however, and in general
we will get an assembled design with N ≥ 2k.

11Any 2 such products, recall the set of words in the complete defining relation forms an Abelian group, see
Section 3.3.1.
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Folding 2k−p
IV designs is also possible, but it generally results in assembled

designs that have too many runs and is not recommended. Furthermore, the
assembled design will not have resolution V, although it will have less aber-
ration than the original design. A better approach is to add runs using the
D-optimality principle (see Chapter 5).

3.3.3 Projection Properties of 2k−r Designs
A projection of a design simply means to select some columns of the de-

sign and ignore the remaining ones. Any 2k−r
R design contains full factorials

(possibly replicated) in every subset of R − 1 variables. We thus say that the
projectivity of 2k−r

R designs is R − 1. This projection property of fractional
factorial is useful in practice. Suppose in an experiment with k factors only
R−1 are suspected to have a significant effect prior to running the experiment.
We could then run a resolution R design. If our guess is correct and all these
R − 1 factors turn out to be the only significant ones after the experiment is
conducted, we will end up with a full factorial on these effects, with which
we can estimate all effects and interactions between them clear of any aliasing.
This result gives an auxiliary criterion to aid selecting the minimum resolution
we should require in a DOE.

More precisely, if we project a 2k−r
R fraction into R − 1 columns we get

a full factorial since the shortest word in the defining relation has length R,
thus choosing R − 1 columns will not result in a alias relation between the se-
lected columns. However, if we project the design into R or more factors, then
whether or not the selected columns form a full factorial depends on whether or
not the selected columns form a word in the defining relation. If they do, then
the selected columns will form a replicated fractional factorial. If the do not,
the selected columns will form a replicated full factorial.

Example. Consider a 25−2 design with generators D = AB and E = AC,
shown in Table 3.5 and Figure 3.1. If we conduct the experiment and it turns
out that factors D and E are not active, the remaining three factors A, B, C

will form a full factorial (see Figure 3.2) because the word ABC is not a word
of the complete defining relation given by I = ABD = ACE = BCDE (see
Figure 3.2). If in contrast, it turns out that C and E are not active, the remaining
factors A, B, and D will form a fractional factorial, not a full factorial, because
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Table 3.5. A 25−2
III design

A B C D = AB E = AC

−1 −1 −1 1 1
1 −1 −1 −1 −1

−1 1 −1 −1 1
1 1 −1 1 −1

−1 −1 1 1 −1
1 −1 1 −1 1

−1 1 1 −1 −1
1 1 1 1 1

1

-1

1-1

C1

-1

1

-1
1-1

E

D

B

A

Figure 3.1. A 25−2
III design

the word ABD is in the defining relation, so for the remaining columns we
clearly have D = AB (the figure was created with the useful “Cube plot”
option of Minitab, which does not show replicated points. The fractional facto-
rial has actually two replicates in 3 different points). �

3.4 Plackett-Burman Designs and Other Screening Designs
An economical class of 2-level designs was proposed by Plackett and Bur-

man (PB) [128]. PB designs have resolution III and are saturated (n = p). They
are constructed, in general, differently than 2k−r

III designs. All PB designs have
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1

-1

1

-1
1-1

C

B

A

1

-1

1

-1
1-1

D

B

A

Figure 3.2. Projections of a 25−2
III design in A, B, and C (left) and on A, B, and D (right). The

complete defining relation is I = ABD = ACE = BCDE

N a multiple of 4 and are orthogonal for a first order model (from Theorem 3.1,
they are optimal for a first order model if we have the restriction −1 ≤ xij ≤ 1
which implies that ci = N ). If N is a power of 2, these designs are frac-
tional factorials designs (these are sometimes are referred to as geometrical PB
designs, and when N �= 2k PB designs are called non-geometrical). Since these
designs are mainly used for factor screening, not for optimization, we will dis-
cuss them only briefly.

PB designs have a more complicated and difficult to determine alias struc-
ture than 2k−r

III designs. Each main effect is aliased with a long string of 2-factor
interactions. The aliasing is not total but partial, in the sense that in a 2k−r

III de-
sign main effects are identical to some 2-factor interactions, but in a PB design
main effects are only correlated with the columns corresponding to 2-factor
(and higher) interactions. Thus, in a PB design aliases are more gradual.

The attractiveness of the projection properties of PB designs has been subject
to certain debate. PB designs for 12, 20 and 24 runs project into full factorials
in any 3 factors, they therefore have projectivity 3. Resolution III fractional
factorials, in contrast, have projectivity R − 1 = 2. Montgomery [110] indi-
cates that for N = 12, a PB for 11 factors design projects into an unbalanced
fraction in four factors (see leftmost display in Figure 3.3). Wu and Hamada
[157] indicate that this fraction still has good efficiency to estimate main effects
and 2-factor interactions among the remaining 4 factors if k ≥ 4 and N not
a multiple of 8 (which includes the k = 11, N = 12 case). They call this
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1-1

1

-1

1

-1 -1 1

D
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1
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E
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A

Figure 3.3. Projection of a PB design for k = 11 in N = 12 runs into factors A, B, C and D

(left two cubes). On the right two cubes, projection of a 211−7
III design onto A, B, C, and E

property the hidden projection property of PB designs. Box et al. [25] indicate
that it is the projection properties of these designs that makes them useful for
factor screening.

Example. Consider a PB design for 11 factors in 12 runs. The design is
shown in Table 3.6. If projected into every 3 columns, it results in a full fac-
torial, but if projected into 4 columns (Figure 3.3, left panel) it results in a
fractional factorial which is actually not balanced. An alternative to this design
is to run a 211−7

III (N = 16) with generators E = ABC, F = BCD, G =
ACD, H = ABD, J = ABCD, K = AB, L = AC. If any three active fac-
tors form a word in the defining relation of the 211−7 (the three-letter words in
the defining relation are ABK = ACL = AFJ = BEL = BGJ = CEK =
CHJ = DEJ = DGL = DHK = FGK = FHL), the resulting design
will be a fraction of resolution III; otherwise the projection will be a full 23

factorial12. The right panel of Figure 3.3 shows the projection of this fractional
factorial onto columns A, B, C, and E. Since ABCE is clearly a word of the
defining relation, we get a resolution IV fraction (this design when projected
onto A, B, C, and D gives a full factorial in these factors, as they do not form
a word in the defining relation). �

Analysis of PB designs is difficult given the complex alias structure due
to partial aliasing. Box et al. [25] recommend using Bayesian methods to

12In the absence of any a priori information about active factors, the probability of having 3 factors picked

at random forming any one of the 12 words in the defining relation is 12/

(
12

3

)
= 0.0545.
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Table 3.6. A Plackett-Burman design for k = 11 in N = 12 runs

A B C D E F G H J K L

1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 −1 −1 −1 1 1 1
1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1

−1 1 1 1 −1 1 1 −1 1 −1 −1
−1 −1 1 1 1 −1 1 1 −1 1 −1
−1 −1 −1 1 1 1 −1 1 1 −1 1

1 −1 −1 −1 1 1 1 −1 1 1 −1
−1 1 −1 −1 −1 1 1 1 −1 1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

disentangle the complex alias relationships. Bayesian methods have also value
in analyzing any other low-resolution design. They point out that a normal prob-
ability plots of effects, as used in 2k−r designs, may be misleading due to the
partial aliasing. See Part V for more on Bayesian methods.

Other screening designs apart of PB and 2k−r
III designs are supersaturated

designs, in which N is less than p, where the number of parameters of interest
are all k main effects and all the 2-factor interactions. For the construction and
analysis of these designs, see [85, 157].

3.5 Randomization and Blocking
Randomization allows to neutralize undesirable or uninteresting sources of

error in an experiment that cannot be controlled. Running the experiments in
random order is part of randomization. But not only that: in general, we should
randomly assign the treatments (“design points”) to the experimental units (see
Chapter 1). If the experimental units differ, this will be balanced or averaged
by the randomization step. It is always recommended that the experiments used
to optimize a process be randomized. Here it is important that to truly have
a randomized experiment, we should reset the factor settings before each new
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run. Thus, suppose we have a factor that is difficult to vary, say temperature.
Suppose we obtained the following test conditions after shuffling a DOE ran-
domly: 100◦F, 150◦F, 150◦F, 100◦F . Experimenters will likely not reset the
temperature from run 2 to run 3, since the DOE calls for keeping the level at
150◦F . However, resetting the level to some base value (in this case, waiting
for some furnace to cool down, for example) and then increasing the tempera-
ture to 150◦F again is exactly what randomization calls for. If no resetting takes
place, we call the DOE a design run in random order. If we reset, we call it fully
randomized. Not resetting may induce what is called a “Split-Plot” structure13

in the experiment, and the data analysis should take this into consideration [59].
The basis of statistical inference is that the probability model that generates

the data is known and available. Therefore, it is necessary to generate the obser-
vations in such a way that the probability distribution of the various outcomes
can be specified to the extent necessary to conduct the tests of hypothesis and
compute the confidence intervals necessary in the analysis. This is exactly
achieved by the randomization principle [134].

If a suspected source of variability can be controlled in the sense that we
can vary the levels of the nuisance factor that creates the variability during
the experiment, then blocking is an alternative technique that can be used in
experimental design. For example, if we suspect that different batches of a raw
material may induce variability in the response of interest, say, some quality
characteristic of a manufactured product, and we are not interested in the effect
of the batches, we can assign the experimental units to different batches of
raw material, i.e., we can control which experimental runs are performed with
which batches. Thus, we can form groups of experimental runs that use more
homogeneous material (e.g., runs that use the same raw material). This will
enhance the sensitivity of the experiment to detect other significant effects due
to factor we are interested. Another instance of a blocking factor is simply the
time in which experiments are conducted (e.g., different days). If we suspect
or know that experiments conducted on Monday will give different results than
those conducted on Friday, and we are not interested in the “day” factor, we
can form blocks of experimental runs to separate this source of variability and
reduce the experimental error. Blocking an effect reduces the experimental
error since the source of variability of the nuisance factor is eliminated from it.

13See Section 9.4.
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When blocking, we randomize the runs within each block, but not from block to
block. We will discuss blocking only when we look at Central Composite and
other second order designs in Chapter 6 and at Split Plot designs in Chapter 9.
For blocking in factorial designs see [25, 110].

3.6 Designs for Models with Main Effects and 2-Factor
Interactions

A similar result to Theorem 3.1 exists for a model with main effects and
2-factor interactions:

y = β0 +
k∑

i=1

βixi +
∑
i<j

∑
j

βijxixj + ε.

Thus, an orthogonal design that places the levels of the factors at the extremes
minimizes the variances of the parameter estimates. Two instances of such
orthogonal designs are 2k designs and 2k−r fractional factorials with resolution
≥ V . A fraction with resolution lower than five will result in an X ′X matrix
that is non-invertible.

3.7 Bias Properties of First Order Designs
The defining relation gives the alias structure of a 2k−r design if the model

is (3.1). These aliases say that parameter estimates will be biased. If the model
is more complex than (3.1), the defining relation method does not work and we
need to find the aliases some other way. A useful concept to study the potential
bias of parameter estimates with respect to more general “true” models is the
Alias matrix. Suppose our assumed model is

Y = X1β1 + ε

of order d1, with OLS estimate β̂1 = (X ′
1X1)−1X ′

1Y . Suppose the true
model the process follows is

Y = X1β1 + X2β2 + ε
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of order d2 > d1. The bias of the parameter estimates in our model will then
be obtained from

E[β̂1] = E[(X ′
1X1)−1X ′

1Y ] = (X ′
1X1)−1X ′

1(X1β1 + X2β2)

= β1 + (X ′
1X1)−1X ′

1X2β2

= β1 + Aβ2.

Thus the bias in the parameter estimates is Aβ2, where we call A the “alias”
matrix, since it gives the relationships between each parameter in β1 and β2.
These are the aliases or confounding scheme of the DOE. Note how the biases
depend on things we can control (the fitted model and the DOE used) and on
something we cannot control (the true process model).

The bias in the parameter estimates is of concern in process optimization,
since these biases are transmitted to the fitted function itself, just as the variance
properties:

Bias(Ŷ ) = X1β1 + X1Aβ2 − X1β1 − X2β2 = (X1A − X2)β2

thus the bias in our predictions also depends on the DOE used, the model fit,
and on the true model the process follows. It is this bias that the lack of fit test
detects.

Example 1. Suppose the model is Y = β0 + β1x1 + β2x2 + β3x3 + ε. The
DOE used is a 23−1 and assume the true process is Y = β0 +

∑
j βjxj +

β12x1x2 + β13x1x3 + β23x2x3 + ε.
Then,

X1 =

⎡
⎢⎢⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎤
⎥⎥⎥⎥⎦

,

and

X2 =

⎡
⎢⎢⎢⎢⎣

1 −1 −1
−1 −1 1
−1 1 −1

1 1 1

⎤
⎥⎥⎥⎥⎦

.
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Thus, X ′
1X1 = 4I , (X ′

1X1)−1 = 1
4I and

X ′
1X2 =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤
⎥⎥⎥⎥⎦

.

Finally, the alias matrix is

A = (X ′
1X1)−1X ′

1X2 =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎥⎥⎦

and from E[β̂1] = β1 + Aβ2 we get that

E

⎡
⎢⎢⎢⎢⎣

β̂0

β̂1

β̂2

β̂3

⎤
⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎝

β0

β1

β2

β3

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
β23

β13

β12

⎞
⎟⎟⎟⎟⎠

.

Therefore, the intercept estimate is unbiased, but the main effects are biased,
their bias equal to the 2-factor interaction not involving the factor corresponding
to the main effect. This is exactly what we get when we look at the defining
relation of the experiment (I = ABC, from which A = BC, B = AC and
C = AB). �

The previous example does not show the value of computing an Alias ma-
trix since the DOE was a 2-level factorial and the true model only had 2-factor
interactions. In this case, the algebra of defining relations provides the aliases
(and biases) with much less computation. However, the alias matrix is use-
ful to obtain biases for DOE’s and models more complicated than that, as the
following example shows.

Example 2. Suppose the model is first order but the true process description
is given by a second order polynomial. Using a 2k factorial, it is easy to see
from the Alias matrix that the estimates of the intercept and the pure quadratic
terms will be aliased, but the main effect estimates will be unbiased. �

Both variance and bias properties of the fitted response should be considered
when modeling a process with the purpose of optimizing it. Just as in basic
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statistics, the Mean Square Error function of the fitted response model gives
the sum of these two components:

MSE(Ŷ (x)) = E

[(
Ŷ (x) − f(x)

)2
]

= E

[(
Ŷ (x) − E[Ŷ (x)]

)2
]

+
(
E[Ŷ (x) − f(x)]

)2

= Var(Ŷ (x)) +
[
Bias(Ŷ (x))

]2
.

3.8 Adding Center Points to a 2k (or 2k−r) Design
It was mentioned earlier that adding center points to a 2-level orthogonal

design will not result in minimum variance parameter estimates, yet it was still
suggested that the center be added and replicated for these designs. In response
surface work, center points in this type of designs provide a model-independent
estimate of the error variance and allow to test for curvature. In this section we
provide some rationale about this test, typically described and recommend in
Design of Experiments books (see Appendix A for a review of the mechanics
of the test).

The test is:

H0 :
k∑

i=1

βjj = 0

tested versus a two sided alternative. Here recall that βjj is the coefficient asso-
ciated with x2

j , a pure quadratic term in a second order model (see Chapter 1).
The test statistic is based on the single degree of freedom curvature sum of
squares:

SScurvature =
nfnc(yf − yc)2

nf + nc

where nf is the number of factorial (corner) points, nc is the number of center
point replicates, and yc and yf are the average observed responses in factorial
and center points. This one degree of freedom sum of squares is contrasted with
an estimate of σ2 (perhaps, the estimate obtained from the nc center points)
using an F statistic:

F0 =
SScurv

σ̂2
.

This statistic follows an F1,v distribution, where v is the degrees of freedom
of σ̂2. The intuition is that if there is curvature of a parabolic nature in the
inside of the “box” defined by the DOE, the observations at the center and
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at the corners will differ, so we should reject the null hypothesis when their
difference is significant.

The reason for an F test is that, under H0, E[yf − yc] =
∑k

i=1 βii = 0, so

yf − yc − 0

σ̂
√

1
nf

+ 1
nc

∼ tv

and squaring this quantity we get F0 ∼ F1,v.
There still remains the question of the relation of the statistic yf −yc and the

term
∑k

i=1 βii. The following statement indicates the relation.
The statistic yf − yc is equal to

∑k
j=1 β̂jj (where the β̂jj are the OLS esti-

mators) if a 2k or 2k−r factorial with center points is run to fit a full second
order model.

Proof. We first consider the X and X ′X matrices:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 β1 β2 . . . βk β12 . . . βk−1,k β11 . . . βkk

1 −1 . . . . . . 1 1
1 1 1 1
1 −1 ±1 1 1

1 1
. . .

...
. . .

...
...

... 1
1 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

1 0 0 0 0 . . . . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(where we show the column variables, for clarity), and

X ′X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nf + nc 0 0 . . . 0 nf . . . nf

nf 0 . . . 0
nf . . . 0 0′s

. . .
...

...
...

...
symmetric nf 0 . . . 0

nf 0 . . . 0 nf . . . nf

. . . . . .
... . . .

. . . . . .

nf 0 . . . 0 nf . . . nf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The normal equations are (X ′X)β = X ′Y , where the right hand side is

X ′Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑nf+nc
i=1 yi

...∑nf

i=1 yi

...

⎞
⎟⎟⎟⎟⎟⎟⎠

The first normal equation is then given by:

(nf + nc)β̂0 + nf

k∑
j=1

β̂jj =
nf+nc∑

i=1

yi. (3.4)

The first normal equation below the partition is given by

nf β̂0 + nf

k∑
j=1

β̂jj =
nf∑
i=1

yi. (3.5)

From (3.4)–(3.5) we get

ncβ̂0 =
∑

last nc terms

yi ⇒ β̂0 = yc. (3.6)

Substituting (3.6) into (3.5) gives
k∑

j=1

β̂jj =
∑nf

i=1 yi

nf
− yc = yf − yc �

If quadratic effects are significant, the experimental design needs to be aug-
mented to allow the fit of a higher order model which includes such terms. This
will be discussed in the Chapter 5. We finally look in this chapter at one factor
at a time experimental designs from a more advance viewpoint.

3.9 Adaptive Two Level, One-factor-at-a-time
Experimentation**

In a recent and interesting paper14, Frey and Wang [56] propose to run
experiments using a 2-level strategy where the experimental runs are varied in a
one-factor-at-a-time fashion. They coined they approach adaptive OFAT, since
the key of the approach is that the design “returns” to the best point in the fac-
torial design if no significant improvement has been observed in the response.
The search ends when all factors have been varied at least once. Figure 3.4
illustrates this idea for an experiment with 3 factors.

14This section contains relative more advanced material and may be skipped without loss of continuity.
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Change one factor

Do an
experiment

If there is no improvement, keep best
previous state

Change another factor

Change another factor.
Stop if every factor has 

been changed once

A

B

C

Figure 3.4. Illustration of Adaptive OFAT experimentation when k = 3. Adapted from Frey
and Wang [56]

Frey and Wang [56] proved that there are significant improvements in the
response to be gained under this strategy. Their results are based on the model
they assumed:

y(x) =
k∑

i=1

βixi +
k−1∑
i=1

k∑
j=i+1

βijxixj + ε (3.7)

where

ε ∼ N(0, σ2
ε)

βi ∼ N(0, σ2
ME)

βij ∼ N(0, σ2
INT )

and where xi ∈ {−1, +1}. In this model, the parameters are assumed to be
random variables that vary from experimental session to experimental session.
That is, once we start conducting the experiments the values of the parame-
ters are fixed, and all the variability comes from the experimental error ε,
as it is assumed in standard experimental design analysis. But before start-
ing the experiments, the parameters are unknown (adaptive OFAT does not
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assume knowledge of the “hyperparameters” σME , σINT , they are introduced
to analyze the procedure only). Thus, before starting any experiment, the ex-
pected response is zero, since all coefficients have mean zero and no intercept
is included in the model15. We will comment on the appropriateness of these
assumptions after we discuss some of the results found by these authors. Fol-
lowing Frey and Wang, we assume maximization in this section.

As one starts to conducts experiments, the model assumed in adaptive OFAT
says that what we get are realizations of a stochastic process in which E[y|β]+ε

is observed. The experimental procedure depicted in Figure 3.4 can be formal-
ized as follows:

1 Let O0 = y(w1, w2, . . . , wk). This is the function value at the baseline point
xi = wi, i = 1, . . . , k.

2 Let O1 = y(−w1, w2, . . . , wk). We are varying factor 1.

3 Set x1 = w1Sgn(O0 − O1), i.e., choose the best value for x1. Here
Sgn(z) = −1 if z ≤ 0 and equals +1 if z > 0.

4 Let Oi = y(x1, x2, . . . ,−wi, wi+1, . . . , wk) for i = 2, 3, . . . , k (observed
responses at subsequent points).

5 Set xi = wiSgn[max(O0, O1, . . . , Oi−1) − Oi] for i = 2, 3, . . . , k, i.e.,
choose the best values for other factors by comparing with earlier observed
responses.

In step 3, x1 is simply set to whatever level provides the highest response (recall
it is assumed only two levels, −1 and +1, are possible for each factor)16. Under
these assumptions, Frey and Wang show some interesting results. In particular,
they show that the expected improvement in the response after changing the
first factor is

15This in inconsequential since if the intercept is included it would simply represent the expected baseline
response value.
16This strategy is reminiscent of greedy procedures used in combinatorial optimization. See, e.g., [122].
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E[y(x1, w2, . . . , wk)] = E[β1x1] + (k − 1)E[β1jx1wj ]

where

E[β1x1] =
√

2
π

σ2
ME√

σ2
ME + (k − 1)σ2

INT + σ2
ε/2

(3.8)

and

E[β1jx1wj ] =
√

2
π

σ2
INT√

σ2
ME + (k − 1)σ2

INT + σ2
ε/2

(3.9)

Thus, if the σME � σINT , most of the improvement can be attributed to the
main effect of the first factor, as one would expect. If the opposite occurs, most
of the improvement can be attributed to the two factor interactions that involve
the first factor. Thus, in apparent contradiction to what is usually known about
OFAT, two factor interactions are being “exploited”17. Based on simulations
of their procedure, Frey and Wang conjecture that the average improvement
after the first factor is changed is about 1/n of the maximum possible improve-
ment, provided that σME > σINT and that the experimental error (σε) is also
moderate compared to σME .

For subsequent steps, Frey and Wang show that additional improvements
over (3.8–3.9) are expected from the possible exploitation of two factor
interactions18. This apparent paradox, given that an OFAT experimental design
evidently confounds two factor interactions with main effects can be explained
because the probability of observing some improvement from this exploita-
tion of the interactions is better than random chance (for specific probability
theorems related to the exploitation of effects, see Frey and Wang’s paper [56]).

The idea of adaptive optimization, in which the best result thus far is saved
has not been utilized much in the experimental optimization literature. It is
reminiscent of some pure search (non-model based) methods to process opti-
mization, such as Nelder and Mead’s [119] adaptive simplex search method.
An interesting contribution of Frey and Wang is to point out the importance of
the ability of exploiting an interaction, for which it is not necessary to estimate
them “clear” of any aliases. Furthermore, being able to exploit an interaction

17More precisely, a two factor interaction is exploited if we are able to set xi and xj such that βijxixj > 0.
In this sense, adaptive OFAT starts to exploit two factor interactions only from the second step on.
18Frey and Wang [56] show how P (βijxixj > 0) ≥ P (β12x1x2 > 0) for any i, j (with i �= j). That
is, the probability of exploiting interactions in later stages of the method is larger than the probability of
exploiting the interaction at the second step.
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is a probabilistic event. Both the expected improvement and the probability
of exploiting interactions can be computed under reasonable assumptions to
compare different experimental strategies for process optimization.

The main conclusion by the proponents of adaptive OFAT is that it is a tech-
nique of value if experimental noise is low. This happens to be the same sit-
uation under which Box and Wilson [29] recommended steepest ascent. Note
how none of these two techniques consider two-factor interactions explicitly19.
As mentioned by Frey and Wang, it is of interest to determine the expected
improvements obtained by alternative optimization techniques. These authors
compared adaptive OFAT with saturated (n = p + 1) resolution III factorial
designs. They found that after conducting all n runs in a saturated resolution
III design, the expected improvement is

E[y] = σ2
ME

√
2
π

√√√√√
σ2

ME +

(
k

2

)

k
σ2

INT +
σ2

ε

k + 1
(3.10)

and that in this case P (βijxixj > 0) = 0.5, exactly as flipping a coin (“ran-
dom chance”). In contrast, the expected improvement after a complete session
of adaptive OFAT is performed will be larger than (3.10) if the experimental
noise is low or the interactions (σINT ) large. Furthermore, the probability of
exploiting interactions is better than random choice in these cases. Thus, based
on these results, if the purpose of the experiment is to optimize the response
over the vertices of a hypercube, adaptive OFAT is to be preferred to running a
saturated resolution III design.

The evaluation of the response improvements rests on the assumption of the
parameters being zero mean random variables before starting to conduct any
experiment. This has a Bayesian interpretation (see Chapters 11 and 12). If
the a priori variance of a main effect is very large, this is indicative of lack
of knowledge about this effect before running the experiment, a situation we
refer to as approaching a “noninformative” prior. Thus, the results from (3.8–
3.9) indicate the intriguing result that the less we know about main effects and

19But also observe that steepest ascent is an “interior point” method, in the language of optimization meth-
ods, that proceeds by interpolating/extrapolating the (−1,1) factor levels, whereas adaptive OFAT is re-
stricted to the vertices of the hypercube defined by a two level factorial.
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interaction effects, the more we are to gain from them. An informative Bayesian
adaptive approach in which the magnitude of the effects is bounded a priori –
perhaps, one knows the direction of some of the effects – and/or one in which
the distributions of the parameters are updated as more experiments are con-
ducted, in a classical Bayesian way, seems as fruitful research topic based on
more reasonable assumptions, Another interesting extension is to study adap-
tive OFAT over sequences of “hypercubes” in k dimensions, in a similar way
that search methods operate. These extensions, however, are beyond the scope
of this book.

3.10 Problems
1 Suppose we wish to fit a model for k = 6 with main effects and all 2-factor

interactions with a 26−2
IV design. Compute the X ′X matrix. Is this DOE

variance-optimal (do you need to invert X ′X to answer this?). What about
if you use instead a 26−1

V I design? Explain.

2 Suppose we fit y = β0 + β1x1 + β2x2 + ε using a 22 design (no center
runs) when the true model is a full quadratic. Obtain the Alias matrix and
interpret.

3 Consider the following “simplex” design in two factors:

x1 x2√
3/2 −1/

√
2

−
√

3/2 −1/
√

2
0 2/

√
2

a) Is this design orthogonal for a first order polynomial model?

b) What is a disadvantage of this design for fitting a first order model?

c) What are the aliases of this design if the true model has a two-factor
interaction in addition to the first order model terms?.

4 Consider the following 25−1 factorial experiment in five factors: ffff
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x1 x2 x3 x4 x5 y (observed)
− − − − + 51.8
+ − − − − 56.3
− + − − − 56.8
+ + − − + 48.3
− − + − − 62.3
+ − + − + 49.8
− + + − + 49.0
+ + + − − 46.0
− − − + − 72.6
+ − − + + 49.5
− + − + + 56.8
+ + − + − 63.1
− − + + + 64.6
+ − + + − 67.8
− + + + − 70.3
+ + + + + 49.8

Suppose you add four center points to the experiment with observed
responses at those runs of 57, 63, 52, and 56.

a) Find the mean square for “pure error”.

b) Using the following ANOVA table, test for the significance of the
“second-order” terms. Are these terms important to the model? Exactly
what “second order” terms are included in this analysis?

Source d.o.f. SS MS
First order 5 956.90 191.38
Second order 10 150.78 15.08
Total 15 1107.69

c) Calculate a sum of squares for “curvature”. Do you think that curvature
is important?

5 How well will the single degree of freedom test for curvature work for k = 2
if β11 = −β22 �= 0? Why?
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6 It was shown that β̂0 is aliased with
∑k

i=1 βii if we fit a first order polyno-
mial model using a 2-level factorial but the real model is a full quadratic.
If the first order model is correct, the intercept (β0) should be the value of
Ŷ at the design center. How can we use these facts to develop an informal
(heuristic) test for curvature?

7 Give two advantages of using a first order orthogonal experimental design.

8 Consider a 25−2 fractional factorial design with generators I = ABD and
I = ACE and coded variables in the usual (−1,+1) scale. Suppose the
fitted first degree polynomial was

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5

when, in fact, to obtain adequate representation over the region covered
by the x’s, we would need a second degree polynomial model (all pure
quadratic and two-factor interactions present). What are the expected val-
ues of b0, b1, . . . , b5? (Note: the first generator is associated with x4 and the
second with x5).

9 Construct a 29 design using Kroenecker products as discussed in
Section 3.2.1. Suggestion: use Matlab.

10 Show that the relations a ∗ (1) = a and a ∗ a = (1) are satisfied for the
group of treatment combinations of a 23 example.

11 Prove that expressions (3.8–3.9) hold for the expected improvement after
setting x1 in adaptive OFAT ([56]).

12 Prove that the expected improvement after conducting a saturated resolution
III design is given by expression (3.10) ([56]).



Chapter 4

ANALYSIS AND OPTIMIZATION OF SECOND
ORDER MODELS

All exact science is dominated by the idea of approximation.
—Bertrand Russell (1872–1970)

As it can be seen from previous chapters, experimental design and process
optimization are two intertwined tasks. Sequences of designed experiments
are frequently run to optimize a process. In traditional RSM practice, such
sequences are often first order designs with center runs that allow to test for
curvature. If curvature is detected, second order experimental designs and
models are used as a local approximation for process optimization. In this
chapter we look at optimizing a second order model. Designs used to fit these
models are described in Chapter 5.

We first look at the problem of locating and characterizing the stationary
point of a second order response surface in the absence of any constraints in
the controllable factors. This is the so-called canonical analysis, a technique
proposed in the Box-Wilson paper [29]. Constrained optimization schemes, in
particular, Ridge Analysis, mainly developed by Hoerl [70], are presented next.
The type of inferences discussed in this chapter are all subject to sampling
variation in the sense that if the experiment is repeated and the model is refit,
the location of the optimum will change. These statistical considerations related
to second order optimization problems are discussed in Chapter 7.

It will be assumed curvature has been detected in the neighborhood of our
latest set of experiments. This is the second step of an RSM study. We are

85
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near a stationary point, and the purpose of the study at this stage is to model
the process in this new region, determine the location of the stationary point,
and determine its nature, whether it is a local maximum or minimum of the true
response or perhaps simply a saddle point.

Experimental design strategies for fitting second order models require at
least three distinct levels in each coordinate; see Chapter 5. For now, it suf-
fices to say that the standard way to fit these models in the RSM literature has
been running a so-called Central Composite Design (CCD), proposed by Box
and Wilson [29] in their original paper1. Obvious alternatives are 3k factorial
designs, which are typically not run in practice due to the excessive number
of experiments required, and 3-level fractional factorials, which have complex
aliasing and are therefore less understood by practitioners than their 2-level
counterparts. The CCD is composed of a 2k−r fractional factorial of at least
resolution V which allows us to fit all second order interactions without any
aliasing of other 2-factor interactions, some center points, and 2k axial points
that allow to fit the pure quadratic terms.

4.1 Unconstrained Optimization and Characterization
of Second Order Models: “Canonical” Analysis

Suppose we have fitted the model

ŷ = β̂0 + x′b + x′Bx

(x in coded units) where b contains the main effects parameter estimates, and
matrix B = Ξ̂ is k×k and contains “pure” quadratic and two-factor interaction
estimates (for notation, see Chapter 1).

As it is well-known from Calculus (see Appendix C), to find the stationary
point we simply compute ∂ŷ

∂xj
= 0 for j = 1, ..., k or in vector form

∂ŷ

∂x
= b + 2Bx = 0

from where

x0 = −1
2
B−1b. (4.1)

1An example of a CCD was already shown in Chapter 1.
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Substituting in the fitted model, the predicted response at the stationary
point is:

ŷ0 = ŷ(x0) = β̂0 +
1
2
x′

0b.

Some immediate questions that arise are: what type of surface have we fitted?
and what type of stationary point do we have? Answering these basic questions
have become known in the RSM literature as “canonical analysis” and corre-
sponds to the analysis of the eigenvalues and eigenvectors of matrix B. This is
because the Hessian of ŷ is ∂2ŷ/∂x2 = 2B.

It was noted in Chapter 1, when the “one factor at a time” method was first
discussed, that it is simpler to understand a second order polynomial model if
no 2-factor interactions are present. Thus, if we can transform the fitted model
and avoid the 2-factor interactions in the new coordinates, easier interpretation
results. The transformation consists of:

1 translation of the origin to the stationary point;

2 rotation of the axes until they coincide with the principal axes of the
contours (ellipses or hyperbolas) corresponding to the fitted model.

The translation step is achieved simply by defining

z = x − x0

thus x = z + x0. Substituting this into the fitted model we get

ŷ = β̂0 + (z + x0)′b + (z + x0)′B(z + x0)

= β̂0 + z′b + x′
0b + z′Bz + x′

0Bx0 + 2z′Bx0

= ŷ0 + z′b + z′Bz + 2z′Bx0.

Substituting the stationary point (equation 4.1) we get

ŷ = ŷ(z) = ŷ0 + z′Bz (4.2)

this is the model written in the translated (but not rotated) coordinates.
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Since B is real and symmetric, from the spectral theorem of linear algebra
there exists an orthogonal matrix M such that

M ′BM =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0
0 λ2 0 0

. . .

symm. . . . λk

⎤
⎥⎥⎥⎥⎥⎦

= D

where the λi are the k real eigenvalues of B (see Appendix C). The columns
of M are the eigenvectors of B, which are such that M ′M = I (i.e., the
eigenvectors are orthonormal) which implies that M ′ = M−1.

The rotation step is achieved by defining

X = M ′z

or z = MX, which after substituting into (4.2) yields

ŷ = ŷ0 + (MX)′B(MX)

= ŷ0 + X
′M ′BMX

= ŷ0 + X
′DX

or

ŷ = ŷ(X) = ŷ0 +
k∑

j=1

λjX
2
j

which is called the “canonical” form of the quadratic model. This is an
extremely easy function to interpret:

If all the eigenvalues λi < 0, then the function decreases from ŷ0 as one
moves away from x0; we then have that x0 is a maximum;

If all the eigenvalues λi > 0, then the function increases from ŷ0 as one
moves away from x0; we then have that x0 is a minimum;

If we have a mixture of signs in the eigenvalues, the response increases in
some directions and decreases in others. Then x0 is a saddle point.

The canonical analysis of matrix B gives more useful information than this.
Suppose k = 2 and λ1  λ2 < 0. We will then have a maximum, but there will
be elongation over the direction implied by the first eigenvector. The distance
to a contour of ŷ along the rotated axis i is proportional to 1/

√
|λi|. Thus, if one
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eigenvalue is very small relative to the others, this implies that its contours will
be very elongated in the direction of the i-th eigenvector. Actually, this may be
good news for a process engineer, who will have the flexibility of moving the
operating conditions along Xi while knowing that the response is expected to
deteriorate little. In the limit, if an eigenvalue is exactly zero, the paraboloid
degenerates into a “cylinder”, called a ridge among RSM authors. We then have
multiple optima. In higher-dimensional problems, if a pair of eigenvalues is
zero, then we have a plane of optimal operating conditions, over two canonical
axes, etc.

Example. Recall that in the chemical experiment of Chapter 2 the ANOVA
table, obtained from using an experiment run around the coordinates ξ1 =
189.5, ξ2 = 350, indicated significant curvature effects. Augmenting the 22

factorial experiment with axial runs at ±α = ±
√

2 we obtain the aforemen-
tioned central composite design (CCD), with which we can fit a second order
model. The experimental results obtained at the axial points are shown in
Table 4.1. From Table 4.2, the linear and (pure) quadratic effects are signif-
icant. The lack of fit tests for linear, quadratic and Cubic (third order) models
fit to these data are shown in Table 4.3 and goodness of fit information is re-
ported in Table 4.4.

The quadratic model has a larger p-value for the lack of fit test, higher
adjusted R2, and a lower PRESS statistic (see Appendix A) than the linear or
cubic models, thus it seems to be the best model. The fitted quadratic equation,
in coded units, is

ŷ = 72.0 − 11.78x1 + 0.74x2 − 7.25x2
1 − 7.55x2

2 − 4.85x1x2.

A contour plot of this function (Figure 4.1) shows that it has a single optimum
point in the region of the experiment.

Table 4.1. Experimental data for the axial runs, canonical analysis example

x1 x2 ξ1 ξ2 y(=yield)
−1.414 0 147.08 350 72.58

1.414 0 231.92 350 37.42
0 −1.414 189.5 279.3 54.63
0 1.414 189.5 420.7 54.18
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Table 4.2. ANOVA for chemical process data (all data in central composite design used), with
significance of regression tests using the extra sum of squares principle, canonical analysis
example

Source Sum of Squares dof Mean Square F0 Prob >F0

Intercept 51418.2 1 51418.2
Linear 1113.7 2 556.8 5.56 0.024

Quadratic 768.1 3 256.0 7.69 0.013
Cubic 9.9 2 5.0 0.11 0.897

Residual 223.1 5 44.6
Total 53533.0 13

Table 4.3. Lack of fit (LOF) tests for a linear, quadratic, and cubic models fit to the chemical
experiment data, canonical analysis example

Source Sum of Squares dof Mean Square F0 Prob >F0

Linear 827.9 6 138.0 3.19 0.141
Quadratic 59.9 3 20.0 0.46 0.725

Cubic 49.9 1 49.9 1.15 0.343
Pure error 173.2 4 43.3

Table 4.4. Goodness of fit statistics for a linear, quadratic, and a cubic model fit to the chemical
experiment data, canonical analysis example

Model Root MSE R2 Adj. R2 PRESS
Linear 10.01 0.5266 0.4319 1602.02

Quadratic 5.77 0.8898 0.8111 696.25
Cubic 6.68 0.8945 0.7468 3466.71

From the fitted second order model we have that b′ = (−11.78, 0.74),

B =

(
−7.25 −2.425
−2.425 −7.55

)
; B−1 =

(
−0.1545 0.0496
0.0496 −0.1483

)

and

x0 = −1
2

(
−0.1545 0.0496
0.0496 −0.1483

)(
−11.78
0.74

)
=

(
−0.9285
0.3472

)
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Figure 4.1. Contour plot of the fitted second order response in the Canonical Analysis example

Notice that the stationary point is well inside the experimental region. Trans-
forming back to the original units of measurement, the coordinates of the
stationary point are

ξ0 =

(
161.64 ◦C
367.36 min.

)
.

The eigenvalues are the two roots of det(B − λI) = (−7.25λ)(−7.55 − λ) −
(−2.425(−2.245)) = 0, which give λ1 = −4.97 and −9.82. Thus, the sta-
tionary point is a point of maximum response. The stationary point x′

0 =
(−0.9278, 0.3468) corresponds to ξ′0 = (161.64, 367.36). The two normal-
ized eigenvectors are m′

1 = (0.7284, 0.6850) and m′
2 = (−0.6850, 0.7284)

(thus [m1, m2] = M ).
To get the directions of the axis of the fitted paraboloid, compute

X1 = 0.7284(x1 + 0.9278) + 0.6850(x2 − 0.3468)

= 0.43823 + 0.7284x1 + 0.6850x2

and

X2 = −0.6850(x1 + 0.9278) + 0.7284(x2 − 0.3468)

= −0.8881 + 0.6850x1 + 0.7284x2

Since |λ1| < |λ2|, there is somewhat more elongation in the X1 direction. This
can be seen from Figure 4.1. A confirmation experiment was conducted by the
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process engineer at settings ξ1 = 161.64, ξ2 = 367.32. The observed response
was y(ξ0) = 76.5 % which is satisfactorily close to the estimated optimum.
�

4.1.1 Using SAS PROC RSREG
SAS PROC RSREG provides a nice tool for canonical analysis of second

order models. The SAS commands applied to the chemical experiment data are
as shown on Table 4.5. The “nocode” option was entered since the factors were
already input in coded form. Note how easy it is to specify the quadratic model
in the “model” line: if a list of factor names is given, the program assumes a
second order polynomial in all the listed factors. This is practical if k is large.
The corresponding output from SAS canonical analysis is shown in Table 4.6.
As it can be seen, the results are identical to those shown earlier.

Table 4.5. SAS commands to conduct a canonical analysis

data;
input x1 x2 y;
cards;
−1 −1 64.33
1 −1 51.78
−1 1 77.30
1 1 45.37
0 0 62.08
0 0 79.36
0 0 75.29
0 0 73.81
0 0 69.45
−1.414 0 72.58
1.414 0 37.42
0 −1.414 54.63
0 1.414 54.18
;
proc rsreg;
model y=x1 x2 /nocode/lackfit;
run;
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Table 4.6. SAS PROC RSREG canonical analysis output

Canonical Analysis of Response Surface
Factor Critical Value

X1 −0.927852
X2 0.346800

Predicted value at stationary point 77.589146
Eigenvectors

Eigenvalues X1 X2
−4.973187 0.728460 −0.685089
−9.827317 0.685089 0.728460

Stationary point is a maximum.

4.2 Constrained Optimization and Analysis of Second
Order Models: “Ridge” Analysis

If the stationary point x0 is a maximum or a minimum but is located far
away of the experimental region defined by the DOE or if it is a saddle point,
it is of practical interest to locate some other operating conditions that achieve
an optimum within the region of the experiment. In an important paper that had
repercussions in the area of numerical methods, Hoerl [70] proposed to use a
spherical constraint on x, and called his method Ridge Analysis2. Assuming, as
before, that a second order polynomial model is adequate in some local region,
we wish to optimize

ŷ = b0 + b′x + x′Bx

subject to the constraint

x′x ≤ ρ2.

The restriction defines a spherical constraint, centered at the origin, on the
operating conditions. Hoerl’s approach to solve this problem is to look at
the Lagrangian function and try different values of the lagrange multiplier of
the constraint, µ. The lagrangian is

L = ŷ − µ(x′x − ρ2)

2Hoerl’s paper was also the first reference on the so-called Trust Region methods, used in mathematical
programming.
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thus
∂L

∂x
= b + 2Bx − 2µx = 0

or
(B − µI)x = −1

2
b (4.3)

where I is a k × k identity matrix. The Hessian of the Lagrangian is

H(x) =
∂2L

∂x2
= 2(B − µI).

Therefore, depending on the value of µ we choose, we will obtain either a
maximum (if µ makes H(x) negative definite) or a minimum (in case µ makes
H(x) positive definite). In particular, since the eigenvalues of (B − µI) are
equal to λi − µ, i = 1, ..., k, we have that

If µ > max(λi), we obtain a maximum point on the sphere of radius ρ =√
x′x.

If µ < min(λi), we obtain a minimum point on the sphere of radius ρ =√
x′x.

In either case, the value of µ selected implies a solution x from (4.3), which in
turn implies a radius ρ.

Interestingly, if µ = λi, the inverse of matrix (B − µI) “blows up”. The
graph µ vs.

√
x′x will then have “poles” at each of the eigenvalues of B. Note

this includes the largest and smallest eigenvalues. Thus, for values of µ greater
but increasingly closer to max(λi), we will get solutions that are increasingly
farther from the origin. Likewise, for values of µ smaller but increasingly closer
to min(λi) will also result in increasingly farther solutions.

Example. Let us consider the example given by Hoerl [70] himself. The fitted
second order polynomial is

ŷ = 80 + 0.1x1 + 0.2x2 + 0.2x2
1 + 0.1x2

1 + x1x2.

Note from a first glance at the model that the interaction term looks relatively
large. Let us assume the model fits well and proceed with the analysis. From
the model we have that b′ = (0.1, 0.2) and

B =

[
0.2 0.5
0.5 0.1

]
.
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Figure 4.2. Contour plot of the fitted second order response in the Ridge Analysis example

Therefore, the stationary point is

x0 = −1
2
B−1b =

(
−0.1917
−0.0217

)
.

The eigenvalues are λ1 = −0.3525 and λ2 = 0.6525, so the stationary point is
a saddle point (see Figure 4.2). As mentioned earlier from our first inspection
at the fitted function, the off-diagonal element of the B matrix dominates, and
this results in an indefinite matrix. A ridge analysis will certainly be of benefit
in this case, since saddle points, by themselves, are typically useless.

To get the point of maximum response separated a distance

ρ =
√

x′
0x0 =

√
1
4
((B − µI)−1b)′(B − µI)−1b

from the design center, we select values µ > max{λi} = 0.6525. To get
the point of minimum response separated ρ units from the origin we set µ <

min{λi} = −0.3525. Figure 4.3 shows a plot of ρ as a function of different
values of µ.

Useful plots for a process engineer are shown in Figures 4.4–4.5. Figure
4.4 shows how the maximum and the minimum estimated response values vary
over spheres of different radii ρ. Thus, this figure gives a range of average
predicted values within one should expect the response to lie as we move the
operating conditions away from the origin. Figure 4.5 shows the corresponding
coordinates of the maximums and minimums over spheres of different radii.
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Figure 4.3. Radius (ρ) vs. values of the Lagrange multiplier µ for the example. The poles are
at the two eigenvalues of B
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Figure 4.4. Values of the maximum and minimum estimated response on spheres of increas-
ingly larger radius ρ

This is in agreement with Figure 4.2, since it says that to maximize y one should
move approximately in the direction (1, 1) whereas to minimize one should
move the process roughly in the direction (1, −1). �
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Figure 4.5. Coordinates of the maximum (left) and minimum (right) points as a function of
the radius ρ

In the previous example (k = 2) a simple contour plot will suffice, and the
rest of the analysis is not necessary. The value of the Ridge Analysis approach
is that the plots in Figures 4.4–4.5 are still useful and easily obtained for k > 2.

As it can be seen, Canonical Analysis corresponds to unconstrained optimi-
zation and analysis of a second order polynomial, whence Ridge Analysis
corresponds to constrained optimization. Box and Draper [20] (see also Draper
[48]) do not show enthusiasm for Ridge Analysis.3 They indicate that it is use-
less to apply a mathematical technique to data subject to sampling errors
and then expect precise conclusions. This is certainly true and applies to
every optimization technique in the field of RSM, including an unconstrained
optimization technique such as canonical analysis. Their comment does not de-
crease the value of any process optimization technique provided that statistical
issues are not left aside.

In Chapter 7, we discuss statistical considerations in the unconstrained and
constrained optimization of response surface models.

4.3 Optimization of Multiple Response Processes
Most real life processes need to be optimized with respect to several criteria

simultaneously. Frequently, operating conditions need to satisfy several con-
ditions or constraints on m responses, y1, ..., ym. For example, in the design
of a new product, product specifications need to be satisfied which determine

3At the time this book went to print, it appears these authors have retracted from their earlier, strong oppo-
sition to ridge analysis and now they recommend it.
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the performance of the product when in use. In a manufacturing process, there
are always at least two responses of interest in every process, one being quite
frequently cost. This chapter discusses methods that have been developed in the
Statistical literature to handle optimization problems with multiple responses.

While there has been continuous interest in academic circles to apply differ-
ent multi-objective optimization techniques to solve process optimization prob-
lems as they apply in RSM, few of these have attracted the attention of Applied
or Industrial Statisticians. In this chapter we focus on the most popular meth-
ods, and signal their strengths and weaknesses. We start describing the desir-
ability method and continue with a brief description of nonlinear programming
approaches, an extension of ridge analysis. While interesting, potentially useful
and widely used in practice, these techniques, together with the vast majority
of techniques found in academic circles for “multi-response process optimiza-
tion” that simply try to translate mathematical programming techniques into a
new domain miss the main point: it makes little sense to apply complicated
mathematical programming techniques to models fit from data which may con-
tain large errors. The uncertainty of the parameter estimates, and of the model
for itself, needs to be accounted for. These issues will be discussed in Chap-
ter 7 from a frequentist point of view, and later on (Part V) from a Bayesian
perspective.

A method still used when handling multiple responses is simply to graph
contour plots and overlay them on the space of controllable factors4. One
then searches “by eye” a region of operating conditions which optimize all
responses. Evidently this is useful, provided the number of controllable factors
is 2 or maybe 3 factors. With 3 factors, interpreting the graphs is already
non-trivial since one should seek on three different xi − xj planes where the

contours are projected. Evidently, for k factors, there will be a need for

(
k

2

)

such planes. Another evident limitation of this approach is that it provides the
false sense that a “sweet spot” will be found with certainty, when in fact the
contours are just point estimates on the mean of the responses at each location
on the space of controllable factors. The contours neglect sampling variability
in each response. This is an issue we will illustrate with a Bayesian approach
in Chapter 12.
4This started as a manual graphing technique, that many statistical software packages now implement in a
computer.
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Other more formal approaches either try to form a new function f : R
m×k →

R
k, which is then optimized. This function is supposed to contain a measure of

the degrees with which each of the individual objectives or goals are being met.
An instance of this approach, described in the next section, is the desirability
function. Another is an approach by Khuri and Conlon [75].

A popular approach for multiple response optimization, clearly an applica-
tion of mathematical programming techniques, is to regard one response as the
“primary”, or most important response, and treat all other m − 1 responses
as secondary. One then optimizes the primary response subject to constraints
on all secondary responses. The Dual Response approach is such a technique,
which applies to the particular case of two responses. We will discuss it in
Section 4.4.

4.3.1 Desirability Approach
This approach was originally proposed by Harrington [65] and later refined

by Derringer and Suich [45] to its most common use in practice today.
The desirability function approach is one of the most widely used methods

in industry for dealing with the optimization of multiple response processes. It
is based on the idea that the “quality” of a product or process that has multiple
quality characteristics, with one of them out of some “desired” limits, is com-
pletely unacceptable. The method finds operating conditions x that provide the
“most desirable” response values.

For each response yi(x), a desirability function di(yi) assigns numbers
between 0 and 1 to the possible values of yi, with di(yi) = 0 representing
a completely undesirable value of yi and di(yi) = 1 representing a com-
pletely desirable or ideal response value. The individual desirabilities are then
combined using the geometric mean, which gives the overall desirability D:

D = (d1(y1) × d2(y2) × ... × dm(ym))1/m

where m denotes the number of responses. Notice that if any response i is
completely undesirable (di(yi) = 0) then the overall desirability is zero. In
practice, fitted response models ŷi are used in the method.

Depending on whether a particular response yi is to be maximized, mini-
mized, or assigned to a target value, different desirability functions di(yi) can
be used. A useful class of desirability functions was proposed by Derringer and
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Suich [45]. Let Li, Ui and Ti be the lower, upper, and target values desired for
response i, where Li ≤ Ti ≤ Ui. If a response is of the “target is best” kind,
then its individual desirability function is

di(ŷi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if ŷi(x) < Li(
ŷi(x)−Li

Ti−Li

)s
if Li ≤ ŷi(x) ≤ Ti(

ŷi(x)−Ui

Ti−Ui

)t
if Ti ≤ ŷi(x) ≤ Ui

0 if ŷi(x) > Ui

where the exponents s and t determine how strictly the target value is desired.
For s = t = 1, the desirability function increases linearly towards Ti, for
s < 1, t < 1, the function is convex, and for s > 1, t > 1, the function is
concave (see example below for an illustration).

If a response is to be maximized instead, the individual desirability is instead
defined as

di(ŷi) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ŷi(x) < Li(
ŷi(x)−Li

Ti−Li

)s
if Li ≤ ŷi(x) ≤ Ti

1.0 if ŷi(x) > Ti

where in this case Ti is interpreted as a large enough value for the response.
Finally, if we want to minimize a response, we could use

di(ŷi) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 if ŷi(x) < Ti(
ŷi(x)−Ui

Ti−Ui

)s
if Ti ≤ ŷi(x) ≤ Ui

0 if ŷi(x) > Ui

where Ti represents a small enough value for the response.
The desirability approach consists of the following steps:

1 Conduct experiments and fit response models for all m responses;

2 Define individual desirability functions for each response;

3 Maximize the overall desirability D with respect to the controllable factors.

Example. A now classical data set was used by Derringer and Suich [45]
to illustrate the use of desirability optimization in an experiment arising in
the development of a tire tread compound. The controllable factors are : x1,
hydrated silica level, x2, silane coupling agent level, and x3, sulfur level. The
four responses to be optimized and their desired ranges are:
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PICO Abrasion index, y1, 120 < y1;

200% modulus, y2, 1000 < y2;

Elongation at break, y3, 400 < y3 < 600;

Hardness, y4, 60 < y4 < 75.

The first two responses are to be maximized, and the value s = 1 was chosen
for their desirability functions. The last two responses are “target is best” with
T3 = 500 and T4 = 67.5. The values s = t = 1 were chosen in both cases. The
experiments were conducted according to a CCD, and the data is in Table 4.7.

Table 4.7. The Derringer-Suich data set

Run no. x1 x2 x3 y1 y2 y3 y4

1 −1.00 −1.00 1.00 102 900 470 67.5
2 1.00 −1.00 −1.00 120 860 410 65
3 −1.00 1.00 −1.00 117 800 570 77.5
4 1.00 1.00 1.00 198 2294 240 74.5
5 −1.00 −1.00 1.00 103 490 640 62.5
6 1.00 −1.00 1.00 132 1289 270 67
7 −1.00 1.00 1.00 132 1270 410 78
8 1.00 1.00 −1.00 139 1090 380 70
9 −1.63 0.00 0.00 102 770 590 76
10 1.63 0.00 0.00 154 1690 260 70
11 0.00 −1.63 0.00 96 700 520 63
12 0.00 1.63 0.00 163 1540 380 75
13 0.00 0.00 −1.63 116 2184 520 65
14 0.00 0.00 1.63 153 1784 290 71
15 0.00 0.00 0.00 133 1300 380 70
16 0.00 0.00 0.00 133 1300 380 68.5
17 0.00 0.00 0.00 140 1145 430 68
18 0.00 0.00 0.00 142 1090 430 68
19 0.00 0.00 0.00 145 1260 390 69
20 0.00 0.00 0.00 142 1344 390 70
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Using ordinary least squares and standard diagnostics, the fitted responses
were:

ŷ1 = 139.12 + 16.49x1 + 17.88x2 + 2.21x3 − 4.01x2
1

− 3.45x2
2 − 1.57x2

3 + 5.12x1x2 − 7.88x1x3 − 7.13x2x3

(adj. R2 = 0.6903);

ŷ2 = 1261.13 + 268.15x1 + 246.5x2 − 102.6x3 − 83.57x2
1

− 124.82x2
2 + 199.2x2

3 + 69.37x1x2 − 104.38x1x3 − 94.13x2x3

(adj. R2 = 0.4562);

ŷ3 = 417.5 − 99.67x1 − 31.4x2 − 27.42x3

(adj R2 = 0.6224);

ŷ4 = 68.91 − 1.41x1 + 4.32x2 + 0.21x3 + 1.56x2
1 + 0.058x2

2

− 0.32x2
3 − 1.62x1x2 + 0.25x1x3 − 0.12x2x3

(adj. R2 = 0.7466).
Note that no interactions were significant for response 3, and that the fit for
response 2 is quite poor.

Figure 4.6 displays an overlaid contour plot of the four fitted responses,
prepared with the Minitab software. The unshaded region corresponds to sett-
ings for x1 and x2 that satisfy the response constraints.

Figure 4.7 shows the a plot of each of the responses as a function of the
three controllable factors, a graph prepared with the Minitab software. The
best solution found is shown. The best solution is x∗′ = (−0.05, 0.14,−0.86)
and results in d1(ŷ1) = 0.31 (ŷ1(x∗) = 129.4), d2(ŷ2) = 1.0 (ŷ2(x∗) =
1299.9), d3(ŷ3) = 0.65 (ŷ3(x∗) = 465.8) and d4(ŷ4) = 0.93 (ŷ4(x∗) =
68.02). The overall desirability for this solution is 0.662. All responses are
predicted to be within the desired limits. �.

Although easy to use thanks to its availability in best-selling statistical pack-
ages, the desirability function has some severe limitations. Perhaps the worst
one is that it gives a sense of being able to achieve solutions that will fall inside
a “sweet spot” with certainty, the same false impression that simple contours
provide. The Derringer and Suich example is an excellent illustration of this
point. The second response has a terrible fit, yet the authors proceeded as if a
second order model fit well.
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Figure 4.6. Overlaid contour plot of the four responses. Unshaded region satisfies the response
constraints

Figure 4.7. Relation between the responses and controllable factors, with optimal solution
shown, Desirability example

A statistical aspect, minor compared with the seriousness of neglecting
sampling variability, is that the method does not incorporate the covariances of
the responses into consideration. As it will be seen in Chapter 12, a Bayesian
approach is probably the best way to resolve all these difficulties.
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4.4 Nonlinear Programming Approaches
The analysis of multiple response systems usually involves some type of

optimization problem. When one response can be chosen as the “primary”,
or most important response, and bounds or targets can be defined on all other
responses, a mathematical programming approach can be taken. If this is not
possible, the desirability approach could be used instead.

In the mathematical programming approach the primary response is maxi-
mized or minimized, as desired, subject to appropriate constraints on all other
responses. The case of two responses (“dual” responses) has been studied in
more detail by some authors [42, 43, 114].

The optimization of dual response systems (DRS) consists of finding oper-
ating conditions x that

optimize ŷp(x)

subject to: ŷs(x) = T

x′x ≤ ρ2

where T is the target value for the secondary response and ρ is the radius of a
spherical constraint that limits the region in the controllable factor space where
the search should be undertaken. The value of ρ should be chosen with the pur-
pose of avoiding solutions that extrapolate too far outside of the region where
the experimental data were obtained. For example, if the experimental design is
a central composite design, choosing ρ = α (axial distance) is a logical choice.
Bounds of the form L ≤ xi ≤ U can be used instead if a cuboidal experimental
region was used (e.g., when using a factorial experiment). Note that a Ridge
Analysis problem is nothing but a DRS problem where the secondary constraint
is absent. Thus, any algorithm or solver for DRS’s will also work for the Ridge
Analysis of single-response systems.

In a DRS, the response models ŷp and ŷs can be linear, quadratic or even
cubic polynomials. A nonlinear programming algorithm has to be used for
the optimization of a DRS. For the particular case of quadratic responses,
an equality constraint for the secondary response, and a spherical region
of experimentation, specialized optimization algorithms exist that guarantee
global optimal solutions, regardless of the convexity or concavity of the two
responses [43].
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In the more general case of inequality constraints or a cuboidal region of
experimentation, a general purpose nonlinear solver must be used and several
starting points should be tried to avoid local optima. This is illustrated in the
next example.

Example. 3 components (x1, x2, x3) of a propellant need to be selected to
maximize a primary reponse, burning rate (y1) subject to satisfactory levels of
two secondary reponses, namely, the variance of the burning rate (y2) and the
cost (y3). The three components must add up to 100% of the mixture. The
fitted models were:

ŷ1 = 35.4x1 + 42.77x2 + 70.36x3 + 16.02x1x2 + 36.33x1x3

+ 136.8x2x3 + 854.9x1x2x3

ŷ2 = 3.88x1 + 9.03x2 + 13.63x3 − 0.1904x1x2

− 16.61x1x3 − 27.67x2x3

ŷ3 = 23.13x1 + 19.73x2 + 14.73x3.

The optimization problem is therefore:

maximize ŷ1(x)

subject to ŷ2(x) ≤ 4.5

ŷ3(x) ≤ 20

x1 + x2 + x3 = 1.0

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

The solution to this problem using a nonlinear programming code is x∗′ =
(0.212, 0.343, 0.443) which provides ŷ1 = 106.62, ŷ2 = 4.17, and ŷ3 = 18.23.
Therefore, both secondary responses meet the desired bounds. The solver
should be run from a variety of starting points to avoid local optima. �.

We should point out, once again, that all these optimization techniques are of
value in case good models have been fit, hence the importance of good model
building practices. These methods may have the negative effect of providing an
air of authority to a solution x∗ based on poorly fitted models.
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4.5 Problems
1 Suppose that a central composite design was used to fit the equation:

ŷ = 78.89 + 2.27x1 + 3.49x2 − 2.08x2
1 − 2.92x2

2 − 2.88x1x2

with adequate fit.

a) Find the coordinates of the stationary point.

b) Express the fitted equation in canonical form. Characterize the nature
of the stationary point. If there is attenuation (i.e., elongation) in some
direction, give the direction of the attenuation in the original variables.

c) Suppose that in b) you get λ1 ≈ 0.0 and λ2 ≈ 0.0. How can you charac-
terize the response in the region of the stationary point?

2 Consider the following response surface in two factors:

ŷ = 80 + 0.1x1 + 0.2x2 + 0.2x2
1 + 0.1x2

2 + x1x2.

a) Find the coordinates of the stationary point.

b) What type of response function is this?

c) Perform a ridge analysis for this response. In particular, find the values of
x1 and x2 that maximize the response on a sphere of radius approximately
equal to

√
3.

3 Consider the Hardness response in the example in Section 4.3.1 (desirability
approach).

a) Perform a canonical analysis on the hardness response. What type of
response is this?

b) Find the coordinates of the stationary point

c) Perform a ridge analysis on the hardness response. Draw the radius vs.
lagrange multiplier plot for this response, similar to Figure 4.3.

4 Consider the response surface in two factors:

ŷ = 80 + 0.3x1 − 0.2x2 + 0.5x2
1 + 0.2x2

2 + 1.2x1x2.

a) Find the coordinates of the stationary point.
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b) What type of response function is this?

c) Perform a ridge analysis for this response. In particular, find the values of
x1 and x2 that maximize the response on a sphere of radius approximately
equal to

√
3.

5 Consider the Derringer and Suich example (Section 4.3.1). Solve a nonlin-
ear programming approach where y1 is maximized subject to y2 > 1000,
400 < y3 < 600, and 60 < y4 < 75. Compare to the solution obtained
using the desirability approach.

6 Consider the machining example in Section 1.3.1. In that example, the
stationary point is a saddle. Therefore, find the point of maximum tool
life within a spherical region of radius

√
3 in coded units.

7 For the machining example in Section 1.3.1, draw figures similar to Figures
4.3 to 4.5.

8 Refer to the response fitted in Problem 2. Draw figures similar to Figures
4.3 to 4.5 for this fitted model.

9 Refer to the response fitted in Problem 1. Draw figures similar to Figures
4.3 to 4.5 for this fitted model.

10 Refer to the response fitted in Problem 4. Draw figures similar to Figures
4.3 to 4.5 for this fitted model.

11 Repeat Problem 2 for the fitted response:

ŷ = 82.17 − 1.01x1 − 8.61x2 + 1.40x2
1 − 8.76x2

2 − 7.20x1x2.



Chapter 5

EXPERIMENTAL DESIGNS FOR SECOND ORDER
MODELS

A theory has to be simpler than the data it tries to explain, otherwise it does not explain
anything.

—G.W. Liebniz, 1646–1716.

Response Surface Methods suggest to estimate a second order polynomial
when there is evidence that the response is curved in the current region of
interest, or when lack of fit tests point to an inadequacy of the a first order
model. The decision for when to change from using first order designs and
models to second order designs and models is therefore based on the single
degree of freedom test for curvature and the lack of fit (LOF) tests explained
earlier. In this chapter we provide a description of designed experiments with
which we can fit the second order model

ŷ = β0 + bx′ + x′Bx. (5.1)

There is a wide variety of such experimental designs, some more adequate when
the region of interest is cuboidal and some when the experimental region is
spherical. This chapter concentrates on some of the second order DOEs most
frequently used in practice. Criteria to evaluate second order designs, such as
rotatability, orthogonal blocking and prediction variance are explained. As it
will be seen, rotatability is an adequate criterion to evaluate designs for which
we assume a spherical region of interest. We make use of the Variance Disper-
sion Graph (VDG), a graphical tool used to evaluate the prediction properties

109
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of different second order experimental designs in a succinct manner. We start
by describing the rotatability criterion for second order designs used when the
region of interest is spherical.

5.1 Rotatable Designs
Box and Hunter [24] considered the problem of selecting practical experi-

mental designs for second order response surfaces1. A question these authors
tried to answer is: if no prior knowledge exists about the orientation of the re-
sponse surface, how shall the design be oriented? It is obvious that the same
design may have different properties if rotated. We would like to find a de-
sign that has properties (variance properties, in this case) that remain invariant
with respect to rotations. The question of which designs have invariant variance
properties under rotation is answered by the class of rotatable designs.

Definition 5.1 An experimental design is said to be rotatable if Var(ŷ(x))
is constant at all points x equidistant from the design center.

Recall that Var(ŷ(x))/σ2 = x′(X ′X)−1x. When plotted against x, this
function should result in spherical contours if the design is rotatable. The pre-
diction variance at any of the points on the same sphere will be constant. Thus,
if the design is rotated, the prediction variance contours remain spherical, and
therefore unchanged. One has to keep in mind that, in a rotatable design, points
on different spheres (spheres of different radii) may still yield quite different
predicted variance values, so a rotatable design per se is not enough to guar-
antee a nice variance distribution over the experimental region. The ultimate
objective of a good experimental design, from a prediction variance perspec-
tive, is that the variance of the predictions is as flat and as low as possible. This
will give no preference to a region over another, so if the optimum is located in
a particular region, predictions in that region will be as good as those made else-
where. We will see more recent developments on how to capture the flatness of
the Var(ŷ(x)) function in later sections in this chapter.

The development of the rotatability criterion is also related to the fact that,
for a second order model, the X ′X matrix cannot be diagonal, i.e., orthogonal
designs are impossible since not all the regressors x0 = 1, xi, x2

i and xixj

1This paper actually introduced many of the topics in this chapter, e.g., rotatability, uniform precision, and
orthogonal blocking.
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are functionally independent2. Recall that although orthogonal designs for a
first order model have nice optimality properties, they also have the practical
advantage, which was much more important 50 years ago than now, of making
the computation of the inverse of X ′X a trivial matter. Thus, seeking a class
of second order designs that simplify the structure of the X ′X was also seen
as desirable from a numerical point of view.

It appears that the original motivation behind the rotatability criterion was
precisely to obtain a design with a prediction variance invariant to rotations and
with a simple X ′X matrix that approaches inasmuch as possible a diagonal
matrix [24]. A further reason Box and co-workers (and considerable work in
RSM up to the early 1990’s) concentrated in rotatability is an interesting result
due to Box and Draper [22, 21] that relates to bias. Suppose we fit a polyno-
mial response surface model of order d1 but the true response is a polynomial
d2 > d1. These authors show that the bias of the fitted response averaged over a
spherical region of interest R is minimized by a design that is rotatable in addi-
tion of having other properties. This is true for any orders d2, d1 with d2 > d1.
We will comment in some more detail this result in Chapter 8. It is important,
for the time being, to emphasize that these desirable bias properties hold only
for a spherical region.

Having explained the origins of the rotatability criterion and its relevance, we
now proceed to describe it in more detail, mainly following the aforementioned
papers and authors.

In this section, we adopt the coding convention used by Box and Hunter [24]:

xiu =
ξiu − ξi

si
, s2

i =
∑N

u=1(ξiu − ξi)2

N
, i = 1, . . . , k

which results in
N∑

u=1

xiu = 0,
N∑

u=1

x2
iu = N,

thus the “size” of the design in the space of the controllable factors is fixed by
the coding convention. This coding convention gives the X ′X/N matrix in
correlation form.

2For a second order design that has an intercept (thus x0j = 1 for all j), there will always be a nonzero
sum of squares in the x0x2

i cross terms which equals to
∑N

u=1
x2

ui. Note this appears in an off-diagonal
position within the X′X matrix.
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Whether or not a design is rotatable is determined by the design moments
of order through 2d, where d is the order of the polynomial model. The
experimental design is thus seen as a distribution of points. The first four
moments of the distribution indicate measures of location, dispersion, skew-
ness and kurtosis. For a first order model, the moment matrix has moments of
order 1 and 2 only. The matrix X ′X

N collects the moments and is thus called
the moment matrix of a design. For a first order model (d = 1), the moment
matrix is:

X ′X

N
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 [1] [2] . . . [k]
[11] [12] . . . [1k]

[22] . . . [2k]
. . .

symmetric [kk]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The bracket notation used to denote the design moments in the above is as
follows:

[ij] =
1
n

N∑
u=1

xiuxju

and

[i] =
N∑

u=1

xiu.

In case the Box-Hunter coding convention is used, the moment matrix for a
first order model is:

X ′X

N
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 [12] . . . [1k]

1 [23] . . . [2k]
. . .

symmetric 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For a second order model (d = 2), the moment matrix has moments of orders
1 through 4. For example, for k = 2 (two factors), the moment matrix for a
second order model is:
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X ′X

N
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 x2
1 x2

2 x1x2

1 [1] [2] [11] [22] [12]
[11] [12] [111] [122] [112]

[22] [112] [222] [122]
[1111] [1122] [1222]

[2222] [1222]
symmetric [1122]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where each column has been labelled for clarity. Here, the fourth order mom-
ents are of the form

[1111] =
1
N

N∑
u=1

x4
1u (pure fourth order moment)

[1112] =
1
N

N∑
u=1

x3
1ux2u (mixed fourth order moment),

etc. In general, when using an experimental design for fitting a response model
of order d in k factors, a moment of order δ is given by:

1
N

N∑
u=1

xδ1
1uxδ2

2u . . . xδk
ku

.= [1δ12δ2 . . . kδk ]

where δ =
∑k

i=1 δi.
Box and Hunter [24] showed that a necessary and sufficient condition for an

experimental design to be rotatable for a polynomial model of order d is that

design moments = moments of a spherical normal distribution

for all moments up to order 2d. From this, necessary and sufficient conditions
for rotatability of a second order model (d = 2) were derived and are:

[1δ12δ2 . . . kδk ] =

⎧⎪⎪⎨
⎪⎪⎩

λδ

∏k

i=1
δi!

2δ/2
∏k

i=1

(
δi
2

)
!

if all δi are even

0 if any δi is odd
(5.2)

The quantity λδ depends only on δ and is a parameter that can be chosen by the
experimenter. Note how, e.g., [1112] = [132] implies δ1 = 3,δ2 = 1, so this is
an odd moment; likewise, [22] is an even moment, etc.
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Before looking in more detail at designs for second order models, let us first
consider how the rotatability conditions work for a first (d = 1) order model.
Suppose we have k = 2 factors. Then the moment matrix reduces to:

X ′X

N
=

⎡
⎢⎢⎣

1 [1] [2]
[11] [12]

symm. [22]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0
1 0

symm. 1

⎤
⎥⎥⎦

where the zeroes on the first row come from the coding convention or from the
rotatability condition, [12] = 0 is from the rotatability condition (odd moment),
and the ones in the diagonal from the coding convention. This seems to imply
that a rotatable design is orthogonal for a first order model, that is rotatability ⇒
orthogonality for a first order model. In fact, the rotatability conditions indicate
that [ii] = λ2, where λ2 is an arbitrary constant. If λ2 = 1 we are setting
the diagonal elements of X ′X equal to N , and this is the same as imposing a
constraint of the form

∑N
u=1 x2

iu = ci = N , which can be met in various ways
(see Chapter 3). Thus, for a first order model, a rotatable design will be one that
is variance optimal according to Theorem 3.1.

Showing the inverse relation, that for a first order model variance optimality
implies rotatability, is left as an exercise.

For a second order model (d = 2), the rotatability conditions (5.2) imply the
following in the fourth order moments:

[iiii] =
λ44!0!
222!0!

= 3λ4

and

[iijj] =
λ42!2!
221!1!

= λ4

thus we have that the rotatability conditions for a second order model are:

a) [iiii] = 3[iijj] for all i, j;

b) all odd moments through order 4 must be zero.

The rotatability condition does not depend on the scaling of the design, i.e.,
it does not depend on the second order moments of the design. With these
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conditions, the moment matrix of a rotatable design used to fit a second order
model is:

1 x1 . . . xk x2
1 x2

2

... x2
k x1x2 x1x3 . . . xk−1xk

1 0 . . . 0 1 1 . . . 1 0 0 . . . 0

1 . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

. . .
...

1 0 0 0 0 0 . . . 0
3λ4 λ4 . . . λ4 0 0 . . . 0

3λ4
. . . λ4

...
...

...
...

. . . λ4

3λ4 0 0 . . . 0

λ4 0
... 0

λ4 . . . 0
. . . 0

symm. λ4

With this structure, the inverse of the moment matrix, N(X ′X)−1, is easy to
get3 as in Table 5.1 ([24]).

The λ4 parameter on the table can be chosen based on a criterion other than
rotatability. For example, Box and Hunter [24] showed how in a rotatable sec-
ond order design the bias of the β̂i parameter estimates, when the true model is
a third order polynomial, is proportional to λ4. From (5.1), it can be shown that

Var(ŷ(ρ)) = A[2(k +2)λ2
4 +2λ4(λ4−1)(k +2)ρ2 +((k +1)λ4− (k−1))ρ4]

where ρ =
√

x′x. Furthermore,

Cov(bii, bjj) = (1 − λ4)Aσ2/N, i �= j;

Cov(b0, bii) = −2λ4Aσ2/N, i = 1, . . . k

(all other covariances are zero). These equations imply that the choice:

λ4 =
k

k + 2

3Note that although
∑N

u=1
xouxiu =

∑N

u=1
x2

iu = N , when taking the inverse, the corresponding
entries in the inverse of the moment matrix, shown here, actually differ.
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causes A → ∞ thus Var(ŷ) diverges (X ′X is not invertible in this case). This
occurs if all points in the design are equidistant from the origin. Another λ4

choice of interest is

λ4 ORTH = 1

which causes Cov(bii, bjj) = 0, thus the resulting design is “orthogonal” (the
X ′X matrix is not completely diagonal, since the intercept and the quadratic
effects will still be correlated). As λ4 increases over 1.0, the bias in the main
effects increases.

It was mentioned before that what really matters is that the variance function
be as low and flat as possible everywhere in the experimental region. Noticing
this, Box and Hunter proposed to choose the value of λ4 such that the prediction
variance at the origin equals the prediction variance at a distance of 1.0 coded
units, that is, choose λ4 such that

Var(ŷ|ρ = 0) = Var(ŷ|ρ = 1).

These authors called such designs uniform precision rotatable designs. It can
be shown that the value of λ4 that satisfies this condition is

λ4 (UP) =
k + 3 +

√
9k2 + 14k − 7

4(k + 2)
(5.3)

By solving this expression for various values of k we obtain Table 5.2. Note
that the values of λ4 obtained from this formula and on the table are only valid
if the Box-Hunter coding convention is used.

Note that all the λ4 (UP) values are between k/(k + 2) and 1.0.
We now describe how the rotatability conditions are achieved in central com-

posite designs.

Table 5.2. Values of the λ4 (UP) parameter providing uniform precision

k 1 2 3 4 5 6 7 8 9

λ4 0.6666 0.7844 0.8385 0.8705 0.8918 0.9070 0.9185 0.9274 0.9346

k 10 11 12 13 14 15 16 17 18

λ4 0.94042 0.9453 0.9495 0.9530 0.9561 0.9588 0.9612 0.9634 0.96528
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5.2 Central Composite Designs
Designs that can fit model (5.1) must have at least three different levels in

each variable. This is satisfied by Central Composite Designs (CCD)’s, which
have five levels per variable. First proposed by Box and Wilson [29] (see also
[24]), these designs are formed or composed by three parts:

1 2k or 2k−r
R (R ≥ V ) factorial experiment (we will refer to this as the facto-

rial part);

2 2k axial points;

3 n0 replicates of the center point.

A resolution of at least V allows clear estimates of all main effects and
2-factor interactions. The axial points allow the estimation of the pure quadratic
effects. Some center points can be designed to be run together with the factorial
points and some more can be run together with the axial points.

Table 5.3 shows a central composite design table. The axial distance is α.
The total number of runs N is thus F + n0 + 2k, where F is the number of

Table 5.3. The D matrix for a central composite design

x1 x2 x3 . . . xk

±1 from a 2k or 2k−r
V design

0 0 0 0 0
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0
−α 0 0 . . . 0
α 0 0 . . . 0
0 −α 0 . . . 0
0 α 0 . . . 0
0 0 −α 0 0
0 0 α 0 0
...

...
...

. . .
...

0 0 0 0 −α

0 0 0 0 α
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factorial points. Notice the structure of the experimental design is fixed; the
tuning parameters of this experimental design are α and n0 (and the way the
center points are allocated, as will be seen below). These can be selected to
achieve particular properties. Box and Hunter suggested to choose α to induce
rotatability and choose n0 to try to get uniform precision. If the experiment is
run in blocks, the allocation of center points to the different blocks of the design
can be used to make the block effects orthogonal to the effects in the second
order model.

If we look only at the pure quadratic columns of matrix X for a CCD, we get

x2
1 x2

2 . . . x2
k

1 1 . . . 1
...

...
...

...
1 1 . . . 1
0 0 . . . 0
...

...
...

...
0 0 . . . 0
α2 0 . . . 0
α2 0 . . . 0
0 α2 . . . 0
0 α2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 0 α2

0 0 0 α2

It is easy to check that, for all i = 1, 2, . . . , k:

N∑
u=1

x2
iu = F + 2α2

N∑
u=1

x4
iu = F + 2α4

and
N∑

u=1

x2
iux2

ju = F.
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Recall that the rotatability condition is that [iiii] = 3[iijj] and all odd moments
in the moment matrix must equal to zero. The second condition, on the odd
moments, is satisfied by all CCD’s in the usual coding convention. Thus, we
seek a value of α such that the first condition is also true. We have that

[iiii] =
1
N

(F + 2α4)

and

[iijj] =
F

N

Thus 1
N (F + 2α4) = 3F/N , from which the rotatable choice of the axial

distance in a CCD is

α = F 1/4.

It could be thought that the rotatable choice will place the design points on a
sphere. This is true only when α =

√
k. Recall that the rotatability condition

matches design moments with those of the spherical distribution only up to
order 2d. The α =

√
k choice is rotatable only for k = 2 and k = 4.

A popular choice of the axial distance is to use α = 1, giving what is called
a Face-centered central composite design. This is a design with 3 levels only,
an advantage from a practical point of view.

In a CCD, we vary the number of center points, n0, to achieve uniform pre-
cision. Since the values of the λ4 parameter that give uniform precision (given
in Table 5.3) depend on Box and Hunter coding convention, we need to find the
relation of these values to the design written in the usual (−1,1) coding conven-
tion. For a CCD, the usual coding satisfies

∑N
u=1 xiu = 0 but does not satisfy∑N

u=1 x2
iu = N . Therefore, consider satisfying this constraint by introducing a

scaling factor g that would transform the factors from the (−1,1) convention to
the BH coding convention:

N∑
u=1

(gxiu)2 = N

where the xiu’s are the factors in the usual coding. Thus,

g2
N∑

u=1

x2
iu = g2(F + 2α2) = N
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which, solving from g gives the scaling factor necessary to meet the sum of
squares constraint:

g =

√
N

F + 2α2
.

With this, and the rotatability choice α = F 1/4, the pure fourth order moment is

[iiii] =
g4(F + 2α4)

N
=

3N

F + 4F 1/2 + 4
.

From the rotatability condition,

3[iijj] = 3λ4 = [iiii] ⇒ λ4 =
N

F + 4F 1/2 + 4

where N = F + 2k + n0. Thus, using this equation for λ4, we modify n0 to
get as close as possible to the value λ4 on Table 5.3, obtained from (5.3). Thus
we wish to find an integer value of n0 that solves

F + 2k + n0

F + 4F 1/2 + 4
=

k + 3 +
√

9k2 + 14k − 4
4(k + 2)

.

Integer solutions of this equation will be the exception, but we can still use an
integer solution as close as possible to the value that solves it exactly. This will
provide rotatable, near uniform precision designs.

The variance properties of CCD (and other second order) designs will be
studied using variance dispersion graphs in Section 5.6. Here we want to point
out that not all terms in the second order model will be estimated with the
same precision or efficiency. We define the efficiency with which parameter β

is estimated as
σ2/N

Var(β̂)
=

1
NVar(β̂)/σ2

The efficiencies are therefore measuring the variance of the parameter estimate
compared to the variance we will get from the average of the N observations
at a single point. The larger this number is, the more efficient the parameter is
being estimated, where efficiencies can very well be greater than one. Table 5.4
shows the efficiencies for each of the terms relevant for optimization (the in-
tercept is not), assuming that we either use the orthogonal choice of λ4 or the
uniform precision choice.
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Table 5.4. Efficiencies of the second order parameter estimates obtained with a rotatable CCD
for both an orthogonal or a uniform precision choice of λ4

k 1st order 2-factor interactions Pure quadratic
Orthogonal Uniform Precison Orthogonal Uniform Precision

2 1 1 0.7844 2 1.3187

3 1 1 0.8385 2 1.4770

4 1 1 0.8705 2 1.5744

5 1 1 0.8918 2 1.6408

6 1 1 0.9070 2 1.6891

7 1 1 0.9185 2 1.7258

8 1 1 0.9274 2 1.7548

9 1 1 0.9346 2 1.7782

10 1 1 0.9404 2 1.7975

11 1 1 0.9453 2 1.8137

12 1 1 0.9495 2 1.8275

13 1 1 0.9530 2 1.8394

14 1 1 0.9561 2 1.8498

15 1 1 0.9588 2 1.8589

16 1 1 0.9612 2 1.8669

17 1 1 0.9634 2 1.8741

18 1 1 0.9653 2 1.8806

19 1 1 0.9670 2 1.8864

20 1 1 0.9686 2 1.8917

We note from Table 5.4 that the rotatable CCD estimates the pure quadratic
terms very efficiently compared with two factor interactions and main effects.

5.3 Blocking in Second Order Models
If the factorial and axial runs of a CCD are performed in chronological

order, then some block effect due to time might be present. This is common
in RSM, in which the factorial part of the CCD is run first as part of the end
of a steepest ascent/descent search, and, once curvature is detected, the axial
runs are added. The presence of a block effect may bias the parameter esti-
mates of the quadratic function we wish to fit. A design in which the ordinary
least squares estimators of the β’s are independent of the block effects δl is said
to block orthogonally. Thus, the goal is to find conditions on the design that
achieve orthogonal blocking.
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The second order model with blocking is

yu = β0 +
k∑

i=1

βixiu +
k∑

i=1

βiix
2
iu +

∑
i<j

∑
j

βijxiuxju

+
b∑

l=1

δlzlu + εu, u = 1, 2, . . . , n

where b is the number of blocks (in general, there might be any number of
blocks, not only two). The variable zlu is a dummy or indicator variable equal
to 1 if run u is performed in block l and zero otherwise.

Box and Hunter [24] derived two conditions for orthogonal blocking for a
second order design that satisfies the conditions [i] = 0 and [ij] = 0. These
conditions are satisfied, for example, by all rotatable designs.

Centering the dummy variables and writing β′
0 = β0 +

∑b
l=1 δlzl:

yu = β′
0 +

k∑
i=1

βixiu +
k∑

i=1

βiix
2
iu +

∑
i<j

∑
j

βijxiuxju

+
b∑

l=1

δl(zlu − zl) + εu, u = 1, 2, . . . , n.

To have orthogonally blocking, we must first have that:

N∑
u=1

xui(zul − zl) = 0

⇔
N∑

u=1

xuizul = zl

N∑
u=1

xui, i = 1, 2, . . . , k, l = 1, . . . , b

Assuming [i] = 0, we conclude that since the right hand side must equal zero,
so does the left hand side which can be written in the more compact form:

∑
u∈bl

xui = 0, i = 1, 2, . . . , k; l = 1, . . . , b (5.4)

where bl is the set of run indices that belong to block l. Similarly,

N∑
u=1

xuixuj(zul − zl) = 0

⇔
N∑

u=1

xuixujzul = zl

N∑
u=1

xuixuj i, j = 1, 2, . . . , k, i �= j, l = 1, . . . , b



124 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

and from assuming [ij] = 0:
∑
u∈bl

xuixuj = 0, i, j = 1, 2, . . . , k, i �= j, l = 1, . . . , b (5.5)

Finally, in a similar way, the quadratic terms must be orthogonal:

N∑
u=1

x2
uizul = zl

N∑
u=1

x2
ui, i, j = 1, 2, . . . , k, i �= j, l = 1, . . . , b

from which
∑

u∈bl
x2

iu∑N
u=1 x2

iu

=
nl

N
, i = 1, 2, . . . , k; l = 1, . . . , b (5.6)

Summarizing: for block effects to be orthogonal, in a second order design for
which [i] = [ij] = 0 we must have that:

1 each block must be a first-order orthogonal design as indicated by (5.4) and
(5.5): (this condition is always true for CCD’s in the usual two blocks);

2 the sum of squares of each variable as a fraction of the total sum of squares
should equal the fraction of the number of observations with respect to the
total N (as (5.6) says).

If the experimental design does not block orthogonally, the blocking effect will
be confounded.

For a CCD in two blocks, factorial and axial, we have that N = F + 2k +
n0f + n0a with n0f the center points allocated to the factorial part and n0a the
number of center points allocated to the axial block (n0 = n0f + n0a). The
second orthogonal blocking condition implies that for a CCD,

2α2

F + 2α2
=

2k + n0a

F + 2k + n0f + n0a

from which, solving for α,

α =

√
F (2k + n0a)
2(F + n0f )

(5.7)

which guarantees orthogonal blocking. Since this value of α depends on the
allocation of center points to the two blocks, we can try to get a rotatable,
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orthogonal blocking CCD by equating the orthogonal blocking choice of α to
the rotatable choice of α, F 1/4, obtaining the equation

F 1/2

2
=

F + n0f

2k + n0a
. (5.8)

This equation will not always have a solution for integer n0f and n0a. If it does,
then the value of α computed from (5.7) will yield a rotatable, orthogonally
blocking CCD.

In some cases, several integer values of n0f and n0a will satisfy (5.8). If
this happens, we then have the flexibility of making n0f + n0a = n0 equal
to the total number of center points which will give a (near) uniform precision
design. This will be a highly desirable CCD; it would be rotatable, would block
orthogonally, and would be a near uniform precision design.

5.4 Box-Behnken Designs
A class of 3-level designs for fitting quadratic polynomials was proposed

by Box and Behnken (BB, [19]). Besides being 3-level experiments, which in
itself is of practical advantage in industrial experiments compared to (say), the
5-level CCD’s, these designs have other nice properties. Three useful properties
are:

these designs are either rotatable or close to rotatable, thus they are useful
if the region of interest is spherical (although the experimental region is not
really spherical);

they can be run in blocks that are orthogonal to all other effects by addition
of center runs;

they change few factors at a time, which from the point of view of actually
conducting certain experiments may be desirable if many factors are
difficult to vary.

As it is discussed below, unless k is quite small the latter property actually
can turn into a disadvantage, because it implies a relative poor estimation of
the two factor interactions, as we show below. This has not been emphasized
enough in the literature.

Construction of these designs is quite interesting. They are based in com-
bining a two-level factorial with the arrangement of treatments in a balanced
incomplete block design, or BIBD or in a partial BIB design, or PBIB design.
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A BIBD is a single factor experimental design in which every two levels (or
treatments) of the factor are tried together an equal number of runs (thus, it is
balanced). However, not all levels (treatments) are varied together at each run,
thus the design is incomplete. To better understand what incomplete means, it
is convenient to think, as BB did, on the treatments of the factors actually as
different factors. Then the design will not vary all factors simultaneously, but
only certain number of factors, say l < k are varied, and we leave all other
k − l factors constant in every run. Thus the resulting design will be closer
in this sense, to a one-factor-at-a-time design (for which l = 1). Since not all
treatments (levels) are varied within each run, this may result in a block effect.
Hence the BIBD name. A PBIB design is a DOE in which not all pairs of treat-
ments are tried the same number of times, thus the balance is partial. BB used
PBIB designs with two class associates, meaning that each pair of treatments
appears together either some m1 or some m2 times, where m1 and m2 may
vary from design to design, but are constant for a given design. Same as in a
BIBD, there are only l < k levels varied together, so the design is incomplete
and block effects may occur.

Box and Behnken proposed to combine a BIBD or a PBIB design with a
2-level factorial design in such a way that whenever there is a treatment in
a block being applied, we would substitute that entry in the BIBD or PBIB
design by a whole column of a 2l factorial design4, where l is the number of
treatments varied in each block. The remaining k − l entries that have a zero
value in the BIBD or PBIB design are substituted by 2l × 1 columns of zeroes.

Example. Construction of a 4 factor BB design. BB used in this case a
BIBD. A BIBD design for four treatments, with two treatments varied in each
block is:

Treatments

Block 1 2 3 4

1 * *

2 * *

3 * *

4 * *

5 * *

6 * *

4In some cases, a 2l−r design was used.
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Substituting the columns of a 22 design and 4× 1 column vector of zeros in the
empty spaces, we get the BB design, which, following Box and Behnken can
be written as: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4

±1 ±1 0 0
0 0 ±1 ±1

±1 0 0 ±1
0 ±1 ±1 0
0 ±1 0 ±1

±1 0 ±1 0

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← 22

← 22

← 22

← 22

← 22

← 22

Here, the entries ±1 represent the two columns of a 22 design. Thus this is a
design in which the basic DOE is a BIBD with the columns of a 22 substituted
6 times. This particular design can be run in 3 blocks if to each set of 8 runs
we add one center point. If we do that, the blocks will be orthogonal to all
other effects of interest. The design thus has 27 runs to estimate p = (k + 1)
(k + 2)/2 = 15 parameters. In addition, it is rotatable, since [iiii] = 12/24 =
3[iijj] = 3(4)/24. �.

The BB designs for k = 3 and k = 5 are constructed similarly, where
l = 2 factors are changed at a time and hence the columns of a 22 factorial are
substituted in a BIBD5. For k = 6, the most economical BB design is based on
the PBIB design6:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0
0 0 ±1 ±1 0 ±1

±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← 23

← 23

← 23

← 23

← 23

← 23

It is easy to see how in this design factors pairs x1 and x4, x2 and x5 and x3

and x6 are varied together in two blocks whereas all other pairs are varied only
in one block. Hence this is a PBIB design with two associates, m1 = 1 and
m2 = 2.

5This substitution is done 3 and 10 times, respectively, for k = 3 and k = 5.
6In [19], a much larger experiment (N = 80+center runs) was also suggested based on a BIBD.
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Recently, Mee [96] has observed the efficiencies of the parameter estimates
obtained from running a BB design, noticing the inefficiency with which
2-factor interactions are estimated. Recall that the efficiency of a parameter
estimate β̂ is defined as σ2/(NVar(β̂)). It is instructive to point out that in a
one factor at a time design, no information can be gathered about the 2-factor
interactions, i.e., they are not estimable. If we change several factors simul-
taneously from run to run, in a factorial fashion, there will be several cases
where xi and xj will be varied together, and this adds information useful to
estimate these effects. A BB design is in this sense somewhere in between an
OFAT design and a factorial design; we should expect that the efficiency with
which we estimate 2-factor interactions is not very good. Table 5.5 shows the
efficiencies with which different BB designs estimate each of the parameters
of relevance for process optimization. Note how for a PBIB, the efficiencies
for the 2-factor interactions are not all the same, since the pairs of factors that
are varied more often will have interaction effects estimated more precisely
than the rest (actually, exactly twice as precise, since m1 = m2/2 in all cases).
As it can be seen from the table, the efficiencies for estimating the 2-factor
interactions are not good relative to the efficiencies of the other terms. It should
be mentioned that BB proposed other designs for some values of k, but they
require a considerable number of runs, so only the smallest BB design is listed.
Mee’s new BB-type designs [96] have in general much better efficiencies in

Table 5.5. Construction method and efficiencies of parameter estimates in selected Box-
Behnken designs (source: from Mee [96])

Efficiency
k Basic design N − n0 n0 Linear 2 f. i. Pure quad.
3 BIB: 22 3 times 12 3 0.533 0.267 0.247
4 BIB: 22 6 times 24 3 0.444 0.148 0.198
5 BIB: 22 10 times 40 6 0.348 0.087 0.19
6 PBIB: 23 6 times 48 6 0.444 0.148–0.296 0.19
7 BIB: 23 7 times 56 6 0.387 0.129 0.218
8 PBIB: 23 24 times 192 16 0.346 0.077–0.115 0.184
9 PBIB: 23 15 times 120 10 0.308 0.062–0.123 0.173

10 PBIB: 24 10 times 160 10 0.376 0.094-0.188 0.149
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estimating the 2-factor interactions since they vary more factors at a time (for
example, by using the columns of a 25−1 design), but require in general a
considerable number of runs.

5.5 Roquemore’s (Hybrid) Designs
Roquemore [137] proposed an interesting set of designs for second order

response surfaces. His goals when searching for these designs were:

1 First and third order moments must be zero to achieve orthogonality among
most of the parameter estimates;

2 [ii] and [iijj] should be constant to equalize the variance of the linear and
2-factor interaction parameter estimates, respectively. This also promotes
the rotatability of the design;

3 let [iiii] = 3[iijj] to achieve rotatability;

4 design should be minimum in size.

The designs found meet most of these criteria (his designs are not always ro-
tatable). They are based on ideas similar to a CCD. These designs have the
following structure:

At one level of variable k, a 2k−1 full factorial or a 2k−1−r fraction of a
2k−1 in the remaining k − 1 factors. This design may be rotated;

At a second level of variable k, a cross polytope design (i.e., “axial points”)
for the remaining k − 1 factors, possibly rotated;

One or two axial points for variable k;

A center point, if necessary, to avoid singularity of the moment matrix.

“Hybrid designs”, as they are also called, can then be viewed as a central com-
posite designs for the first k − 1 factors, with one additional column for factor
xk and possible one or two more runs. The designs require 5 levels per factor,
similarly than CCD’s.

Interesting Roquemore designs are the 311A, the 416A, and the 628A. These
are either rotatable or very near to rotatable, and very economical. The first
number in the name refers to k, the next two numbers denote N (number of
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runs) and the letter denotes the “version” number, as in some cases Roque-
more proposed more than one design for the same k and N . The designs are as
follows:

311A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3

0 0 2
0 0 −2

−1.4142 −1.4142 1
1.4142 −1.4142 1

−1.4142 1.4142 1
1.4142 1.4142 1

2 0 −1
−2 0 −1

0 2 −1
0 −2 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

416A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4

0 0 0 1.7844
0 0 0 −1.4945

−1 −1 −1 0.6444
1 −1 −1 0.6444

−1 1 −1 0.6444
1 1 −1 0.6444

−1 −1 1 0.6444
1 −1 1 0.6444

−1 1 1 0.6444
1 1 1 0.6444

1.6853 0 0 −0.9075
−1.6853 0 0 −0.9075

0 1.6853 0 −0.9075
0 −1.6853 0 −0.9075
0 0 1.6853 −0.9075
0 0 −1.6853 −0.9075

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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628A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

0 0 0 0 0 2.3094

−1 −1 −1 −1 −1 0.5774

1 1 −1 −1 −1 0.5774

1 −1 1 −1 −1 0.5774

−1 1 1 −1 −1 0.5774

1 −1 −1 1 −1 0.5774

−1 1 −1 1 −1 0.5774

−1 −1 1 1 −1 0.5774

1 1 1 1 −1 0.5774

1 −1 −1 −1 1 0.5774

−1 1 −1 −1 1 0.5774

−1 −1 1 −1 1 0.5774

1 1 1 −1 1 0.5774

−1 −1 −1 1 1 0.5774

1 1 −1 1 1 0.5774

1 −1 1 1 1 0.5774

−1 1 1 1 1 0.5774

2 0 0 0 0 −1.1547

−2 0 0 0 0 −1.1547

0 2 0 0 0 −1.1547

0 −2 0 0 0 −1.1547

0 0 2 0 0 −1.1547

0 0 −2 0 0 −1.1547

0 0 0 2 0 −1.1547

0 0 0 −2 0 −1.1547

0 0 0 0 2 −1.1547

0 0 0 0 −2 −1.1547

0 0 0 0 0 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The efficiencies with which each hybrid design estimates the effects of the sec-
ond order model are shown on Table 5.6. As it can be seen, these widely vary
from design to design in this class.

We describe next a method for evaluating the variance performance (hence,
the efficiency) of a DOE in a more general form, by looking at the variance of
the predictions over the experimental region.
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Table 5.6. Efficiencies of parameter estimates for a second order model, selected Roquemore
(Hybrid) designs

Efficiency
Design linear 2fi pure quad.
311A 1.4545 1.4545 1.5015–0.9697
416A 0.8550 0.5000 0.07–0.0465
628A 0.8571 0.5714 0.5714

5.6 Variance Dispersion Graphs
Variance Dispersion Graphs (VDG’s, see [62]) are a graphical tool to

evaluate the prediction variance properties of a design across the experimental
region. To get a VDG for a design with associated matrix X , we compute

V M
r = max

x′x=r2

NVar(ŷ(x))
σ2

= max
x′x=r2

Nx′
m(X ′X)−1xm

and

V m
r = min

x′x=r2

NVar(ŷ(x))
σ2

= min
x′x=r2

Nx′
m(X ′X)−1xm

the maximum and minimum scaled prediction variances, respectively, over the
surface of spheres of radii r. Here, xm denotes the vector x expanded in model
form to match the columns of X . VDG’s also include a plot of the average
prediction variance over spheres of radii r, defined as

V r =
N

Ψσ2

∫

x′x=r2
Var(ŷ(x))dx.

where Ψ =
∫
x′x=r2 dx. A VDG plots V M

r , V m
r and V r versus different radii

r, typically going from r = 0 to r = ||x||max, the point in X farthest from the
origin. This will generate three curves, which, evidently, can be graphed as a
function of r regardless of the number of factors k, so VDG’s are of greatest
value when k > 2. Of the three lines, the one of utmost importance is V M

r ,
the maximum prediction variance. V m

r can be used to “break ties” when two
designs have similar V M

r .
The three lines on the VDG will always have values greater than 1.0, because

Var(ŷ(x))
σ2/N

≥ 1 (5.9)
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in other words, the VDG compares the prediction variance with the variance
of an average of N observations obtained at the same point. This implies that
designs with larger number of observations are compared more strictly, thus the
scaled prediction variance is a way of asking larger designs to “justify them-
selves” [117]. It also allows to compare designs with different N . However,
comparing designs with different number of runs in this way may not be a good
idea. There is some debate about the value of looking at the scaled variance.
This is a question that also arises in comparing designs using single number
efficiencies, see Section 5.7 below. If two experimental designs with very dif-
ferent sample sizes are to be compared, we suggest to also look at the unscaled
VDG. The unscaled graph will show the gain in precision of running a larger
design and should be used to compare the two designs. The scaled VDG’s can
be used to determine how the prediction variances of each design compares to
the variance of N replicates at a single point (see Equation (5.9).)

We can use VDGs to study the variance properties of some second order
designs. Figure 5.1 shows the scaled VDG for three CCD designs7 for k = 6
factors where the spherical choice of the axial distance α =

√
k =

√
6 was

used in all cases. The number of center points n0 was varied from 1 to 5. As it
can be seen, running only one center point results in high variance, and running
more than 5 center points will not reduce the variance considerably further.

Figure 5.2 shows the scaled VDG8 for another set of three CCDs, all for
k = 6 factors and n0 = 5 center runs (so N = 49). This figure illustrates the
effect of the axial distance: the face-centered (α = 1), spherical (α =

√
k) and

rotatable α = F 1/4. Note how for a rotatable design, all three lines V M
r , V m

r ,

and V r, coincide.
In the literature, the face-centered CCD is evaluated with a different kind

of VDG, the “cuboidal” VDG, in which the maximum, the minimum, and the
average prediction variance is over squares of half side r. This is because it is
argued it is a cuboidal design and “it is not natural to deal with surfaces over
spheres when the design is cuboidal” [117, p. 409].

However, using a cuboidal VDG to evaluate a design is not a very sensible
idea given the very different “shape” a hypercube in k > 3 dimensions can get
which is against our geometric intuition. The distance to a corner in the (−1,1)

7The number of design points in each DOE is not dramatically different.
8All designs in this VDG have the same number of runs.
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Figure 5.1. Effect of center points (n0) on the prediction variance performance of a CCD for
k = 6 factors. The spherical choice α =

√
6 was used in all cases

hypercube is
√

k, which tends to infinity as k → ∞. In contrast, the faces of
the cube are always at a distance of 1.0, regardless of k. Thus, a cube in higher
dimensions should be thought of as a “porcupine” [66, p. 41] with 2k “spikes”
that correspond to the corner (factorial) points. Computing the variance over
points on such an irregular surface does not seem natural or advantageous for
evaluating any DOE, since the points on which we will compute the min., max.,
and average V (ŷ(x)) can be at very different distances from the origin, with
more drastic differences with increasing k. We will therefore use a “spherical”
VDG regardless of the shape of the experimental region, since such a VDG will
show the prediction performance of the design at points always separated the
same distance r from the origin, as we move away from it, instead of showing
the performance over sets of points with different or mixed distances from the
origin.

The face centered CCD provides better prediction close to the origin
(Figure 5.2). This design provides acceptable variance performance only close
to the origin, with a maximum predicted variance that increases rapidly after
r > 0.5. All the designs on the figure have 26−1 = 64 factorial runs at a
distance of

√
6 ≈ 2.45, so the effect of the additional 12 axial runs is notable.
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Figure 5.2. Effect of axial distance (α) on the prediction variance performance of a CCD for
k = 6 factors and n0 = 6 center points. The choices α = {1,

√
6, F 1/4} (face centered,

spherical, and rotatable) are shown

The performance of the spherical CCD is better farther from the origin, a con-
sequence of the effect of the axial distance. This is evidence against the use
of face-centered CCD’s, which are popular in practice mainly because they
require only 3 levels.

Figure 5.3 shows a Roquemore 628A with 2 center points (N = 30), a CCD
with α =

√
6 and 3 center points (N = 47), and a BBD with n0 = 6 (N = 54),

the latter design table generated by the Minitab package. As it can be seen
from the graph, the Roquemore design has an excellent performance relative
to the others much larger designs. However, as it was mentioned before, one
should not be carried away from looking at these scaled graphs. The unscaled
variance of the Roquemore design will be considerable higher than that offered
by the CCD. Perhaps the only clear thing from this graph is the poor variance
performance of the Box-Behnken design.

Figure 5.4 shows a VDG for two designs for k = 6 with relative small
number of runs: a Roquemore 628A with n0 = 2 runs (N = 30) and a
Small Composite Design (SCD, [49] which are similar to CCD’s but utilize
a resolution III factorial (or some other small fractional factorial) instead of a
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Figure 5.3. Some designs for k = 6 factors. A Box-Behnken with 6 center points (N = 54), a
Roquemore 628 with 2 center runs (N = 30), and a spherical CCD with 3 center runs (N = 47)
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Figure 5.4. Economic designs for k = 6: a Small Composite Design (N = 32) and Roque-
more’s 628A (N = 30)
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Figure 5.5. Economic designs for k = 4: a Small Composite Design (N = 21) and Roque-
more’s 416A (N = 19)

resolution V fraction. The SCD design shown has n0 = 5 (N = 32), and the
spherical axial value was chosen α =

√
k. As it can be seen, only for the region

next to the origin is the SCD preferable to the 628A, and not for much.
The last VDG on Figure 5.5 shows two designs for k = 4, a SCD with

n0 = 5 (N = 21), α =
√

k, and Roquemore’s 416A design with n0 = 3
(N = 19). The conclusions are identical to those reached when looking at the
previous figure for k = 6 factors.

5.7 D and G-Optimal Designs
Given the omnipresence of the X ′X matrix in the analysis of linear models,

optimal design theory has seeked to modify this matrix so that it has good
properties. In particular, optimal design theory has concentrated in making this
matrix “small” in some sense. The problem is how to measure the size of a
matrix. One of the most useful ways to do this is to use the determinant.

A D-optimal design is a design that maximizes |X ′X| for a given model
(hence D stands for “determinant”). Recall that

(X ′X)−1 =
adj (X ′X)
|X ′X|
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(see Appendix C) so maximizing the determinant will tend to make the entries
in the inverse small. Because of this, D-optimal designs have:

1 small variances for the β̂’s;

2 small correlations between the β̂’s;

3 small variances for the predicted response.

D-optimal designs are very useful when we are quite certain of the model
form, or when the experimental region is constrained in such a way that classi-
cal designs cannot be “fit” into the constrained region.

The main proponents of optimal design theory, Kiefer and Wolfowitz [80],
developed a deep mathematical theory which we will only briefly mention here.
An introductory account is the paper by St. John and Draper [148] and the more
recent books by Spall [145] and Goos [64]. A classical but formal presentation
is the book by Fedorov [54].

The basic idea in optimal design theory is to view a design as a probability
measure ξ defined over the experimental region, that is:

ξ(x) ≥ 0 x ∈ R,

∫

R
ξ(x)dx = 1.

An “approximate design9” ξ assigns to points in the experimental region a pro-
portion or weight ξ(x) = wi. If ξ(xi) = wi = 0 then there are no observations
at point xi. To implement an approximate design in practice, ξ(xi) needs to be
rounded in a corresponding exact design by ni/N so that ni observations out of
the total are taken at xi. In general, this discretization of the proportions cannot
be done exactly as the values ξ(xi) may be irrational, unless we let N → ∞
(hence the name “asymptotic”). In Kiefer’s approximate theory, a D-optimal
design is defined as the design ξ∗ such that

ξ∗ = arg max
ξ

{|M(ξ)|}

where M(ξ) equals to
n∑

i=1

wixm,ix
′
m,i

9Also called an asymptotic design. These names in the literature are used in contraposition to “exact” or
“finite” designs that request a discrete number of observations be taken at each design point, i.e., a design
ξ(x) such that Nξ(x) is an integer > 0.
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and where xm,i is a vector that contains the point xi in “model form”10. In the
exact case this reduces to NM(ξ) = X ′X .

Box and Draper [20] criticize the determinant criterion11 since the determi-
nant, being a measure of the volume of the column vectors spanned by the ma-
trix, will change with the “size” of the design, that is, the dispersion of the de-
sign points on the space of the controllable factors (note how “size” here is not
the number of runs in the design but the dispersion of its points). Thus changes
in the scale of the factors will have a dramatic effect on the determinant, partic-
ularly for large number of factors (high dimensions). This is certainly true, but
as mentioned by Lucas [87], if all columns of a second order design are multi-
plied by a constant c, changing the scale of the k factors, then the determinant
changes from |X ′X| to c2k(k+2)|X ′X|. Thus, although the determinant is not
scale-invariant, a D-optimal design will remain so in a different scale, since
the difference is a constant which plays no role in the optimization process. In
other words, the D-optimality of a design is invariant to coding of the factors12.

5.7.1 D-Optimal Design Algorithms
There is a large literature on D-optimal design construction. Most algo-

rithms use an exchange method. These are based on a candidate list of points,
frequently taken from a grid over the experimental region. The algorithm then
starts to exchange points in the current design with those in the list, looking for
improvements in |X ′X|.

Cook and Nachtsheim [33] performed a benchmarking study of different
exchange algorithms for finding exact D-optimal designs proposed up to 1980.
They came to the not too surprising conclusion that the algorithms that took
longer in searching for alternative designs would give in general more efficient
designs. They concluded Mitchell’s DETMAX [107] design to be the best over-
all, providing a balance between good efficiency and speed13.
10That is, for a second order design in k = 2 factor, xi = (x1, x2)′ results in xm,i =

(1, x1, x2, x1x2, x2
1, x2

2)′.
11The critique is against all “alphabetic” criteria, as called perhaps in a derisive way by the authors.
12By the same token, efficiency comparisons shown later on, will not be affected either as long as the two
designs being compared using ratios are scaled equally. Box and Draper proposed to use a coding convention
that makes

∑
x2

iu = 1 so that the designs one compares have the same “spread” over the controllable
factors.
13There have been more recent approaches at D-optimality construction using genetic optimization algo-
rithms that pose a great promise. For an introduction, see Heredia-Langner et al. [67].
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A brief discussion of DETMAX and similar exchange algorithms will help
to illustrate the complexities of the optimization problem.

Exchange methods were originally created to do the following: starting from
a randomly generated N -point design, try:

a) adding an N + 1 point such that |X ′X| increases the most. From an argu-
ment identical to the augmentation theorem (see 5.2 below), this point is that
which maximizes x′

m(X ′X)−1xm for x ∈ R, i.e., for a point anywhere in
the region of interest14;

b) removing a point from the current design such that |X ′X| increases the
most. By a similar argument as above, this is the point in the design at
which x′

m(X ′X)−1xm is minimized.

The two steps are tried until no further improvements are possible.
Step a) involves a hard, non-concave maximization problem, one that has

many local maximums. Mitchell [107] followed an idea he attributed to Dykstra
[52]: the maximization step in a) should be done over a grid of points. This is
the origin of the “candidate list” of points L. Thus, all exchange methods do
step a) for x ∈ L only.

It is clear then that, in general, the resulting design will not be the D-optimal
design. It will approximate a D-optimal design the finer the grid is. Thus, the
D-optimal design must be included in the candidate list for any such algorithm
to find it. Finding good grids is in itself a problem, particularly on constrained
regions R.

In some small, first order examples, however, it is possible to give the
D-optimal design, as the next example shows.

Example. D-Optimal design for k =1. If a linear model is going to be fit
to a one factor data set, then p = 2,

X =

⎡
⎢⎢⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎥⎥⎦

14Here x are the coordinates of any point and xm denotes the point expanded to match the columns of X.
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and

X ′X =

[
n

∑
xi∑

xi
∑

x2
i

]

from which |X ′X| = n
∑

x2
i − (

∑
xi)2. Thus. if we desire for example

N = 2 runs and −1 ≤ xi ≤ 1, then setting x1 = −1 and x2 = 1 gives the
maximum value of |X ′X| = 4. �.

5.7.2 D-Efficiency
The D-efficiency of a design and model with given matrix X is defined as:

Deff =

(
|X ′X|

max |M(ξ)|

)1/p

where the denominator is the optimal value of the determinant for the approxi-
mate D-optima design. Thus, to know the D-efficiency of an exact design,
we must know the efficiency of the approximate D-optimal design, otherwise,
the denominator will not be the largest possible, and the ratio above will
only be an overestimate of the actual D-efficiency, giving an upper bound on
Deff . Such upper bound can be computed by finding the best possible exact
D-optimal design with an exchange algorithm and using its determinant in the
denominator.

Because of these computational difficulties, for a given design with associ-
ated matrix X , some D-optimal design programs (e.g., SAS OPTEX) report
instead the quantity

D
(L)
eff =

|X ′X|1/p

N
.

This is a measure of D-optimality with respect to a hypothetical orthogonal
design (which would be D-optimal15), but one that for the second order model
is not achievable. It requires that the DOE be scaled (or re-scaled) such that∑N

u=1 x2
iu = 1, which can be accomplished using Box and Draper’s coding

convention xiu = (ξiu − ξi)/si, where si =
√∑

(ξiu − ξi)2.

The quantity D
(L)
eff is a lower bound on the actual D-efficiency of a design,

i.e., Deff ≥ D
(L)
eff . Although not a measure of absolute D-optimality, this is

sometimes useful for comparing the relative efficiency of two or more designs
with the same number of runs. However, the lower bound is sometimes not
very “sharp”.
15Note that for first order designs, orthogonal designs are D-optimal.
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When comparing designs of unequal number of runs, the designs should be
equally scaled (say, using the Box and Draper convention), because the deter-
minant is a measure of volume, and this volume is determined by the scaling
of the controllable factors. Simply reporting the determinant |X ′X| in cases
of unequal number of runs is recommended as a measure of D-efficiency [64].
This is because the design that provides lowest |X ′X| will provide better pa-
rameter estimates.

In the example above for k = 1, the design is orthogonal, so D
(L)
eff =

Deff = 1.

5.7.3 D-Optimal Designs for First Order Models
Mitchell [108] investigated D-optimal designs for 1st order models using his

DETMAX code. He points out that since Plackett Burman (PB) designs exist
for N a multiple of 4, these are orthogonal and therefore variance optimal, as
described in Chapter 3. If N is not a multiple of 4, there is no orthogonal design
for a 1st order model, and a question of more theoretical than practical interest
is what design to use if N cannot be rounded up to the next multiple of 4?
By an application of the Design Augmentation Theorem 5.2, he shows that in
a D-optimal design for a first order model on the hypercube −1 ≤ xi ≤ 1
only consists of corner points. This facilitates considerably the construction of
D-optimal designs, as the candidate points form a set with a finite number of
elements. Mitchell conclusions are quite easy to follow:

If N = 4t, use an orthogonal design (PB or 2k−r);

if N = 4t + 1, add any corner point to an orthogonal design for N runs;

if N = 4t + 2, add two runs to an orthogonal design for N − 2 runs such
that the two points are as orthogonal as possible in the X matrix;

if N = 4t + 3, remove any run to an orthogonal design for N + 1 runs.

In practice, it will be difficult to find a case where 4t+ j runs are mandatory
instead of simply running 4t or 4(t + 1) runs.

5.7.4 Design Augmentation
One of the most useful applications of D-optimal designs is when there is a

need to “repair” or “augment” a design that has already been run. In this case,
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we want to select the (r + 1)th point in an existing design containing r points.
The r + 1 point is typically chosen from a candidate list of points such that
it achieves D-optimality given the r-point design. The new design with r + 1
points will not be D-optimal, in general. It turns out that finding the next point
xr+1 is very easy16, given a candidate set of points, as the following result
shows.

Theorem 5.2 Given an r-point design and a model, both characterized by
the matrix Xr, the point xr+1 which maximizes |X ′

r+1Xr+1| is that for which
x′

r+1(X
′
rXr)−1xr+1 is maximized throughout the candidate list of points.

Proof. The proof is straightforward given the update formula for the deter-
minant (which we do not prove here; see [1] for a proof):

|X ′
r+1Xr+1| = |X ′

rX
′
r + xr+1xr+1| = |X ′

rXr|(1 + x′
r+1(X

′
rXr)−1xr+1)

so to maximize |X ′
r+1Xr+1| we maximize x′

r+1(X
′
rXr)−1xr+1.

Note how the quantity we need to maximize, x′
r+1(X

′
rXr)−1xr+1, is

Var(ŷ(xr+1)/σ2), the scaled variance of the predicted response at the new
point. Thus, this result says that to “repair” a design we should look for the
“weakest” spot and run an experiment there, a very intuitive recommendation.
The procedure can be repeated several times sequentially, if more than just one
point is desired.

Example. Consider a 22 factorial design used to fit a first order model in
2 factors. The next point is to be chosen from a 32 design. We then have
(X ′

rXr)−1 = 1
4I , and if x′ = (1, x1, x2), then Var(ŷ(xr+1))/σ2 = 1

4(1 +
x2

1 +x2
2). This equals to 3/4 at any factorial (corner) point, 1/2 at any midpoint

of an edge, and to 1/4 at the origin. Therefore, the sequential D-optimal design
calls for replicating one of the corner points. �.

5.7.5 G-Optimality and G-Efficiency
A good deal of the results on optimal design theory are due to the work by

Kiefer and Wolfowitz [80]. One of the most useful results obtained by these
authors concerns G-optimality and G-efficiency.

16In this section, xr+1 denotes the vector x expanded in model for to match the columns of X.
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A G-optimal design is a design described by matrix X such that

minmax
x∈R

NVar(ŷ(x)) = min max
x∈R

Nx′
m(X ′X)−1xm

where R is the experimental region and xm indicates this vector x in model
form. The outer minimization is over all possible designs. This minimax
criterion assures the design obtained has no “weak spots” (from a prediction
variance perspective) since its worst behavior over the experimental region is
minimized.

It is easy to show (see Problem 13) that

max
x∈R

Nx′
m(X ′X)−1xm ≥ p (5.10)

where p is the number of parameters in the model. Therefore, the G-efficiency
of a design X is defined by

Geff =
p

maxx∈R Nx′
m(X ′X)−1xm

. (5.11)

This has an obvious connection with the idea of leverage and the “Hat” matrix
H = X(X ′X)−1X ′. Whenever Geff = 1, all points in the design have the
same “leverage” hii, where hii is the ith diagonal element of H . Thus, the
higher the G-efficiency of the design, the better the leverage of the points and
the less likely influential observations will occur. However, one should recall
that the hii terms are a measure of distance from each point i to the centroid
of the points. G-optimal (and D-optimal) designs will tend to place the points
on the boundaries of R, and therefore all points will tend to be about the same
distance from the origin, resulting in a even leverage distribution17.

5.7.6 Efficiencies of Classical Second Order Designs
Before the development of Variance Dispersion Graphs, it was customary

to evaluate the efficiency of a design by looking at its G and D-efficiencies
alone. We recommended to compute D and G-efficiencies in addition to the
VDG when analyzing a design. Lucas [87] investigated the efficiencies of Cen-
tral Composite Designs. Rather than repeating the tables in his paper, we can
summarize his conclusions:

17However, Lucas [90] has argued that G-efficiency is usually the best single performance measure of an
experimental design.
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|X ′X| is an increasing function of α in a CCD. Thus, for a spherical region,
the optimum value of the axial distance is α =

√
k and for a hypercube with

side equal to two, the best choice is α = 1;

CCD’s can be constructed that are close to being D-optimal for k ≤ 5.
These CCD’s have a resolution V or greater 2k−r factorial for n ≥ 6;

As k increases, the type of CCD’s mentioned above have a D-efficiency that
gets farther from being D-optimal, although the decrease in efficiency is not
very dramatic. For k = 11 it is only down to 0.83;

Center points almost always decrease the efficiency of a CCD, although
there are other good reasons to include them, as described before.

Designs with resolution III or lower are never D-optimal.

In a subsequent paper, Lucas [88] studied the D and G efficiencies of CCDs,
Box-Behnken designs, and other designs used for second order polynomial
models, both under a spherical and under a hypercube (in contrast with VDGs,
efficiency computations should be modified depending on the shape of the ex-
perimental region, as the optimization problem has different constraint types).
His conclusions were that BBD’s and CCD’s are very efficient, and that “while
more efficient designs are possible, they either remain to be discovered or they
require significantly more experimental points. Classical designs will continue
to be used in most applications” [88]. That CCD’s and BBD’s have been con-
tinuously used is certainly true, but recent work indicates that BBDs are not
that good designs as once thought from the variance/efficiency point of view
(see Sections 5.4 and 5.6).

The designs by Roquemore (see Section 5.5) indicate that there is room
for improvement in second order experimental designs; not everything has
been written about this subject. Some of these designs are extremely efficient,
economical, and in some cases are rotatable.

5.7.7 Kiefer-Wolfowitz Theorem
A fundamental result was proved by Kiefer and Wolfowitz. Their equiv-

alence theorem indicates that for approximate designs, D-optimality and
G-optimality are equivalent conditions. Unfortunately, this does not happen for
exact designs, otherwise checking D-optimality would be as easy as checking
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G-optimality. In many cases, however, we have that Geff < Deff , although
there are exceptions to this.

5.7.8 Good Practice when using D-Optimal Designs:
Degrees of Freedom and Variance Inflation Factors

D-optimal designs are of great value when the experimental region is con-
strained in a non-standard way, when the model form is quite well known, and
when repairing a bad design or augmenting a design with a few more runs is
desired. Good practice when using a D-optimal or sequential D-optimal design
is to also consider the degrees of freedom available to do model tests and to
look at the X ′X matrix for problems.

In practice, it is suggested that the resulting designs should have:

n − p ≥ 10 (or so) to have enough degrees of freedom to obtain a good
estimate of variance and reduce leverage;

m > p to allow testing lack of fit18 (recall that m is the number of distinct
design points);

n > m to have enough degrees of freedom for “pure error”.

In practice, these three inequalities can be entered in a D-optimal algorithm
as additional constraints under which the determinant objective is maximized.

Another issue to consider relates to lack of orthogonality, what in regression
is called multicollinearity. This is reflected in the degree of linear association
among the columns of the X matrix. For a second order model, complete
orthogonality is impossible, but trying to get a design as orthogonal as possi-
ble is a good idea since the parameter estimates will then have low variance
and covariances. A measure of multicollinearity are the Variance Inflation
Factors. These are simply the diagonal elements of the (X ′X)−1 matrix when
written in correlation form. The jth variance inflation factor, VIFj , is simply
the scaled variance of the estimate of the jth coefficient in the model. There
are various rules of thumb about what should be considered a high VIF, and
therefore, evidence of multicollinearity. For a second order model, it is proba-
bly wise to say that if VIFj > 10, then there is multicollinearity in the design,

18This recommendation is related to the “bias vs. variance” debate discussed in Chapter 8.



Experimental Designs for Second Order Models 147

which should be fixed. When this problem is detected, we need to “fix” the de-
sign with additional runs that decrease the linear dependencies. The D criterion
may be useful for such purpose, since |X ′X| can be maximized with respect
to the additional runs subject to constraints that limit the VIFs.

If there is no chance of augmenting the design and this has to be used “as
is”, then the analysis should take into consideration the multicollinearity. Ridge
regression techniques is one way of doing this, see [111].

5.8 Mixture Experiments
A different kind of experimental design where second order and higher order

models are often fit is a mixture design. Since we will refer a few times in
subsequent chapters to this kind of experiments, we provide a brief overview
in this section for completeness. For a thorough discussion of mixture designs
and analysis, see the book by Cornell [34].

The distinctive feature of a mixture is that the controllable factors are the in-
gredients of a mixture. The ingredients must add up to 100%, and the response
or responses of interest are modelled as a function of these proportions19. The
factors are then called the components of the mixture. If xi denotes the ith
component and q the number of components in the mixture, the mixture con-
straints are:

q∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, . . . , q. (5.12)

This constraint modifies the space of controllable factors from R
q to a q − 1

dimensional simplex (see Figure 5.6). For q = 2 components, the simplex is
simply a line; in one extreme x1 = 1 and x2 = 0; at the other extreme, x1 = 0
and x2 = 1. All points such that x1 + x2 = 1 are in the simplex. In general, all
points x such that (5.12) is true are inside the simplex.

Examples of mixture experiments abound. Some examples are alloys,
cement, plastics, gasoline, many examples in the food industry, soap, deter-
gent, and even some semiconductor manufacturing processes, such as etching.
Sometimes a hidden ingredient, typically water, is what makes all components
add up to 100%. Water is sometimes thought to be an “inert” component,
and the experiment is run (incorrectly) as a factorial without considering
the “water” component when in fact this is a mixture experiment. The main

19Strictly speaking, the ingredients need only add up to a fixed proportion, not necessarily 1.
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A

0

1

B

1

0

C

1

0

Figure 5.6. The simplex experimental region for q = 3 components. The vertices have coordi-
nates xi = 1, xj = 0 for j �= i

difference between a factorial and a mixture experiment is that in a factorial,
all factors can take values independent of each other, whereas in a mixture the
values of the components are constrained by (5.12).

5.8.1 Simplex Designs and Associated Polynomial Models
The simplest instance of a mixture experimental design is a Simplex Lattice

Design in which there is a uniformly spaced set of points on the simplex. A
{q,m} simplex lattice design is simply a design in which each of the q compo-
nents takes proportion values at the m + 1 equally-spaced values:

xi = 0,
1
m

,
2
m

, . . . ,
m

m
= 1, for i = 1, 2, . . . , q,

and all possible mixture combinations of these proportions are used in the
design, i.e., the combinations must satisfy (5.12).

Example. a {3,2} lattice design. We have that the values on the lattice are
xi = 0, 1/2 and 1 for i = 1, 2, 3, and therefore the design consists of the points

(x1, x2, x3) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)︸ ︷︷ ︸
“pure blends”

,

(
1
2
,
1
2
, 0
)

,

(
1
2
, 0,

1
2

)
,

(
0,

1
2
,
1
2

)

︸ ︷︷ ︸
“binary blends”

}
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Table 5.7. A {3, 2} simplex lattice design

Run A B C
1 1 0 0
2 0.5 0.5 0
3 0.5 0 0.5
4 0 1 0
5 0 0.5 0.5
6 0 0 1

A

0

1

B
1

0

C
1

0

A

0

1

B
1

0

C
1

0

Figure 5.7. Left: a {3, 2} and (right) a {3, 3} simplex lattice design

The corner points are often called the “pure blends”, although they are
actually not blends, and the 3 last points listed above do mix two of the
three components and hence their name. Table 5.7 shows the resulting design.
Figure 5.7 shows the corresponding design, together with a {3, 3} simplex
lattice design. Notice how the {3, 2} design does not place any design point
in the center, whereas the {3, 3} design places one run in the simplex centroid
(1/3, 1/3, 1/3). �

The total number of points in a {q,m} simplex lattice design is
(

q + m − 1
m

)
.

A form of regression model that can be fitted using a {q,m} simplex lat-
tice design is the canonical or Scheffé form of a mixture polynomial model.
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An important feature of every mixture design from the model estimation point
of view is that the mixture constraint introduces a perfect linear relation in
the X of the design. The canonical form is derived by avoiding such linear
dependencies in such a way that the final model is estimable.

For example, for q = 2 components, the first order Scheffé polynomial
model is

E[y] = β0 + β1x1 + β2x2 + β3x3

= β0(x1 + x2) + β1x1 + β2x2

= (β0 + β1)x1 + (β0 + β2)x2

= β∗
1x1 + β∗

2x2

where the first step follows due to the mixture constraint (5.12). The procedure
has hence removed the intercept β0, and thanks to this, the parameters β∗

1 and
β∗

2 are estimable.
In general, with a {q,m} simplex lattice design one can fit a Scheffé polyno-

mial of order m. For q components, the canonical forms of the mixture models
(with the * removed from the parameter names) are as follows.
Linear model:

E[y] =
q∑

i=1

βixi

(with q terms). This model is adequate if blending is additive.
Quadratic model:

E[y] =
q∑

i=1

βixi +
q∑

i=1

q∑
j>i

βijxixj

which has q + q(q−1)
2 = q(q+1)

2 terms.
The “Full cubic” model is

E[y] =
q∑

i=1

βixi +
q∑

i=1

q∑
j>i

βijxixj +
q∑

i=1

q∑
j>i

δijxixj(xi − xj)

+
q∑

i=1

q∑
j>i

q∑
k>j

βijkxixjxk

which has q(q+1)(q+2)
26 terms. In this model, the pure cubic terms are also re-

moved to avoid singularity of the X ′X matrix.
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Finally, the “Special cubic” model is:

E[y] =
q∑

i=1

βixi +
q∑

i=1

q∑
j>i

βijxixj +
q∑

i=1

q∑
j>i

q∑
k>j

βijkxixjxk

which does not contain any x2
i xj term and has q(q2+5)

6 terms.
In general, the number of terms in an m-order Scheffé polynomial model is

(
q + m − 1

m

)
.

which is exactly equal to the number of points in an {q,m} simplex lattice
design.

In all of these models above, the coefficients βi do not represent “slopes”
or derivatives of y as xi changes (as in factorial–non-mixture– experiments),
but instead they represent the height of the response surface at the “pure blend”
points (xi = 1, xj = 0, j �= i). The βijxixj terms represent the excess response
of the quadratic model over the linear model. These terms allow to model cur-
vature along the edges of the simplex, but not in its interior. If βij > 0 the
blending is said to be synergistic because as the two components i and j are
introduced in the mix the response increases. If βij < 0 the blending of the
components i and j is said to be antagonistic because as these two components
are introduced in the mix the response goes down.

Simplex lattice designs can be augmented with center points (at the centroid)
and/or with “axial” points, so that more interior points are run. Other standard
designs for mixtures have been proposed, such as Simplex centroid designs
(useful to fit the “special cubic” model) and Becker designs. Constraints in
mixture designs are very common. If the constraints are such that the feasible
region is a simplex, then the standard designs can be applied in the reduced
region. When this is not the case, D-optimal designs are very useful. An issue
in mixture designs is multicollinearity. Even after eliminating the simplex con-
straints from the model, there is always significant multicollinearity. Some
analysts indicate that VIF values between 50 and 100 are not to be considered
uncommon in mixture experiments.

The analysis of variance for mixture experiments proceeds along similar
lines than in non-mixture experiments. However, there are some important
differences. The null hypothesis: Ho : β1 = β2 = · · · = βq = β tests for
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no linear blend, i.e., the hypothesis says the response is just a plane parallel
to the simplex region. Effects are also defined differently than in factorial
experiments, given the mixture constraint. The effect of a component i is
defined as

Ei = β̂i −
∑

j �=i β̂j

q − 1

and measures the effect of increasing xi while keeping the relative proportions
of all other components constant.

Experiments in which a subset of factors are components of a mixture and
some other factors are not, for example some other factors are process variables,
are also common in practice. The design and analysis of these experiments is
treated by Cornell [34].

5.9 Problems
1 Show that using α =

√
k results in a rotatable CCD for k = 2 and k = 4,

but not for k = 3.

2 What is the effect of varying the λ4 parameter when using a CCD? How do
you vary this parameter in practice?

3 Consider the following experimental design in two factors that is to be used
to fit a second order polynomial model:

x1 x2

−g −g

−g 0
−g g

0 −g

0 0
0 g

g −g

g 0
g g

where g is some constant. Is this experiment rotatable? Why?
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4 Suppose we want to use a CCD for k = 6 factors, where the factorial portion
of the experiment is a 26−1 fractional factorial.

a) Find the axial distance (α) for a rotatable CCD design.

b) Find the number of center points to achieve (near) uniform precision.

c) Find the number of center points that will give an “orthogonal” CCD.

d) Suppose the CCD is going to be run in two blocks (axial and factorial,
with a single block in the factorial part). Allocate center runs to each block
to allow for the design to block orthogonally while at the same time obtain-
ing (near) uniform-precision, and near rotatability.

5 Consider a Box-Behnken design for 3 factors. Prove that this is not a rotat-
able design.

6 In this exercise you will compare, for 2 ≤ k ≤ 10 “spherical” CCD’s (i.e.,
α =

√
k) and rotatable CCD’s. Specifically:

a) which type of DOE places the points farthest from the origin?

b) for which values of k are spherical designs rotatable?. For the rotatable
CCD’s, compute α using the smallest 2k−r fraction of resolution at least V.

7 Consider a Box-Behnken design for 5 factors. Prove that this is not a rotat-
able design.

8 Show that Hybrid designs 311A, 416A+one center point, and 628A are all
rotatable.

9 Show that for a first order model, D-optimality implies rotatability.

10 Suppose we have a 23 factorial design used to fit a first order model in
3 variables. We want to add one more point using the idea of sequential
D-optimality. The list of candidate points consists of all the points in a
rotatable CCD.

a) Give the next D-optimal point given the current design.

b) Give the determinant of the resulting X ′
r+1Xr+1 matrix using the update

formula for the determinant.
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11 Suppose we wish to fit a full quadratic model in k = 4 factors. A 20-run
D-optimal design for this problem is shown below in the natural variables.

a) Is the leverage distribution appropriate? Why?

ξ1 ξ2 ξ3 ξ4

0.64 340 220 480
0.96 510 220 480
0.96 340 330 480
0.64 510 330 720
0.64 510 220 600
0.80 425 220 720
0.64 510 330 480
0.96 340 330 720
0.64 340 330 480
0.80 510 275 720
0.64 340 220 720
0.80 425 220 480
0.80 340 275 600
0.64 425 275 600
0.96 340 275 720
0.96 340 220 600
0.96 425 275 480
0.96 510 220 720
0.64 340 330 720
0.96 510 330 600

b) Find the VIF’s of this design. (Hint: to find the VIF’s, use the “unit
length” coding convention:

xiu =
ξiu − ξi√∑n

u=1(ξiu − ξi)2

which gives
∑n

u=1 xiu = 0 and
∑n

u=1 x2
iu = 1.0. If you do this, the X ′X

matrix will be in correlation or moment form. Then the diagonal elements
of (X ′X)−1 will give you the VIF’s.)
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12 Compare the D-Optimal design in the previous problem with Roquemore’s
416A design with 4 center runs added (n = 20 runs) based on leverage
(hii) and orthogonality (VIF’s). (Hint: use the same “unit length” coding
convention as above. Otherwise, your comparison will not be fair.)

13 Show that expressions (5.10) and (5.11) for the G-efficiency of a design are
true.

14 Consider a 22 design with center points used to fit a first order model (i.e.,
intercept and main effects only). Show that if the number of center points,
n0, is greater than zero, then the resulting design is not G-optimal.

15 In a 2 component mixture experiment, car mileage figures were recorded
based on using only each of the individual fuels A and B as well as using
a 50%:50% blend of the two fuels A and B. Consider the following three
separate experimental studies with mileages as follows:

Study no. A only B only A and B
1 17 10 15
2 6 6 4
3 9 12 12

In which of the experimental studies are the fuels synergistic? In which are
the fuels antagonistic?

16 One way of using a regular experimental design in a mixture situation is to
assign the factors to ratios of components. Suppose that in a 3-component
experiment you decide to use the component ratios r1 = x2/x1 and r2 =
x3/x1 as your two independent factors. A rotatable CCD for 2 factors with
3 center runs is going to be run on these ratios.

a) For each CCD design point, identify the corresponding point on the
simplex for the mixture components (x1, x2, x3). Assume the lowest ratio
possible is zero.

b) Suppose the same CCD design as above is to be used. In addition, sup-
pose we only wish to investigate mixtures where x1 (first component) is
lower than 0.5. What is a good coding scheme that will achieve this? (Hint:
what is the largest allowable ratio (max(r1, r2) you should allow?)
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17 Derive the Scheffé second order (quadratic) polynomial model by applying
(5.12) and x2

i = xi(1 −∑
j �=i xj) to a standard (non-mixture) second order

polynomial and simplifying.

18 If there are 8 components in a mixture experiment, what is the number of
terms in a: a) quadratic model, b) special cubic model?

19 What DOE’s will allow us to fit the two models in the previous question?
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Chapter 6

STATISTICAL INFERENCE IN FIRST ORDER
RSM OPTIMIZATION

The history of science counsels us to hold our mathematical generalizations regarding the
universe lightly. But it also encourages us to anticipate that a first approximation may be
valuable in suggesting a closer fidelity to the observables of nature.

—Eric Temple Bell (1883–1960)

All of the standard inferences in RSM as presented in previous chapters are
based on point estimators which have sampling, or experimental, variability.
Assuming a classical or frequentist point of view, every quantity computed
based on experimental data is subject to sampling variability and is therefore
a random quantity itself. As Draper [48] pointed out, one should not expect
precise conclusions when using mathematical optimization techniques based
on data subject to large errors. This comment applies to every technique pre-
viously discussed, namely, the steepest ascent/descent direction, eigenvalues of
the quadratic matrix and point estimators of the stationary or optimal points in
quadratic (second order) optimization for both canonical and ridge analysis. It
also applies to more sophisticated mathematical programming techniques. In
the RSM literature, there has been an over-emphasis on using different types
of such mathematical techniques which neglect the main statistical issue that
arises from random data: if the experiment is repeated and new models fitted,
the parameters (or even the response model form) may change, and this will
necessarily result in a different optimal solution.

159
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More specifically, for steepest ascent, observed response drops in the
steepest ascent direction may be due to noise and not really because the
mean response is decreasing. This indicates the need for a statistical stop-
ping rule for steepest ascent/descent that distinguishes between “noise” and
the real “signal” of a response that is decreasing. In addition, the steepest as-
cent/descent direction may not be the best direction for searching. Some recent
work has discussed, based on statistical considerations, how to search for an
ascent direction other than steepest ascent. These are topics we explore in this
chapter, namely, cases where statistical issues arise in first order RSM opti-
mization. Chapter 7 will discuss in turn how to consider sampling variability in
optimization techniques for second order models.

6.1 Stopping Rules for Steepest Ascent
As we commented at the end of Chapter 2, an aspect of the Box-Wilson

methodology which was not well defined was when to stop a steepest as-
cent/descent search. If we are maximizing a response (say), a drop in the
response may be due to “noise”, not due to a real decrease of the mean re-
sponse. We wish to find a rule that can determine when to stop in such a
way that we neither miss the true maximum over the steepest ascent direction
due to an early stoppage nor do we stop experimenting several steps after the
maximum occurs, which will result in waisted experiments. In this section we
describe two methods that have been proposed to answer this question.

We assume in this section the step size along the search direction has already
been selected according to what was described in Chapter 2. It is important to
point out that the stopping rules described in this section apply to any given
search direction, not only the steepest ascent/descent one. Hence, we will sim-
ply refer to a generic and given “search direction” in this section.

Let t be the number of steps along the search direction on which we wish
to conduct an experiment. The response at step t on such direction can be
modeled as

y(t) = η(t) + ε, ε ∼ (0, σ2)

where we assume for the moment that the errors have a zero mean, constant
variance distribution. An underlying assumption is that in the search direction
the unknown function has an unimodal mean η(t). Suppose we wish to maxi-
mize the mean response, without loss of generality.
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Stopping rules for searching along a direction can be quite simple, for exam-
ple we can apply a:

“Classical” rule: stop at the first step tstop such that y(tstop) < y(tstop − 1).

2-in-a-row rule: stop at the first step tstop such that y(tstop) < y(tstop−1) <

y(tstop − 2).

3-in-a-row rule: stop at the first step tstop such that y(tstop) < y(tstop−1) <

y(tstop − 2) < y(tstop − 3).

etc.

A stopping rule will return (for a maximization problem, like in steepest ascent)
the value topt, where

y(topt) = max
t=1,2,...,tstop

{y(t)}. (6.1)

We now describe two formal stopping rules.

6.1.1 Myers and Khuri Stopping Rule
Myers and Khuri (MK, [115]) proposed the following sequential test of hy-

pothesis approach for stopping experimentation. Without loss of generality,
assume a maximization (ascent1) problem.

Let i = 0 (the index i represents the number of steps since we last start
testing). Let j = 1. If there is a drop in the observed response, say from step
nj to nj +1 (i.e., y(nj) > y(nj +1), thus nj is the step number just before the
jth observed drop2) we set i ← i + 1, and test:

H
(j)
0 : η(t) ≥ m(i)

o i.e., the process mean is increasing at step i

H
(j)
1 : η(t) ≤ m

(i)
1 i.e., the process mean is decreasing at step i

where t > nj , m
(i)
i − m

(i)
o = ∆ < 0 and m

(i)
o = η(nj). The MK test is:

1 Accept H
(j)
0 if y(nj + i) − y(nj) ≥ b > 0. Make i = 0. In this case, we

keep experimenting along the (ascent) direction, and we repeat the test only
when a new drop is observed in which case we make j := j + 1;

1Myers and Khuri derived their procedure for the steepest ascent direction, but evidently, their procedure
applies without modification to any ascent direction.
2Note how we keep track of both the drop number j and when –in which step– each drop occurred, nj .



162 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

2 Reject H(j)
0 if y(nj+i)−y(nj) ≤ a < 0. In this case we stop experimenting

along the (ascent) direction and return topt using (6.1);

3 Keep experimenting along the (ascent) direction if a<y(nj +i)−y(nj)<b.
This means make i := i + 1, and keep testing if the response at nj + i is
significantly lower than that at nj .

The bounds a and b derived by MK are elegantly simple:

a = −b = Φ−1
(

1
2κ

)
σ
√

2

where a ≤ 0 for κ ≥ 1 and Φ−1 denotes the inverse of the standard normal
CDF. These bounds were derived by solving

min E

[
tstop|

∞⋂
i=1

H
(i)
1

]

(minimize the number of experiments until stopping given the response was
decreasing) subject to

E

[
tstop|

∞⋂
i=1

H
(i)
0

]
≥ κ

which safeguards against missing the optimum, that is, stopping when the mean
response was actually increasing. The value of κ is an a priori estimate (a
lower bound) on the number of steps until the maximum is observed along the
search (ascent) direction. Thus this is an estimate of what we wish to find, topt,
and therefore this is a weakness of this method. We will mention the effect of
selecting an erroneous value of κ in the performance of the procedure below.

Notice how the comparisons are made between the observation right before
a drop was observed, y(nj), and the subsequent observed response values
y(nj + i), hence the need to keep two subscripts, one for the drop number
and one for the step number since the last drop. Two simple illustrations will
suffice to explain the algorithmic description.

Example. Myers-Khuri stopping rule for steepest ascent illustration.
Consider Figure 6.1. The figure shows two typical behaviors of the MK rule for
some given values of a and b. Let us suppose the search direction is the steepest
ascent direction. Consider first the graph on the left in Figure 6.1. The figure
shows the label “NT” whenever no test was performed. Since the first drop
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Figure 6.1. Two examples illustrating the Myers-Khuri stopping rule. On the left, tstop = 4

and topt = 3; on the right, tstop = 7 and topt = 5

occurs from step 3 to step 4, n1 = 3 and n1 + 1 = 4. Let us suppose a is such
that the difference y(n1 + 1) − y(n1) < a (recall a is negative), so we would
reject H

(1)
0 at step tstop = 4 and return topt = 3, the step at which the highest

response was observed. Now consider the graph on the right of the Figure. In
this case, no tests were conducted at steps 1 and 2, but a drop occurred from
step n1 = 2 to step n1 +1 = 3. The difference y(n1 +1) − y(n1), however,
was in the interval (a, b), so we cannot conclude if the drop was significant
or not. Thus, we keep experimenting along the steepest ascent direction. At
step 4 = n1 + 2, the difference y(n1 + 2) − y(n1) > b (note we compare
against y(n1), since we could not conclude earlier if the first drop was sig-
nificant or not), so we accept the null hypothesis that the mean response was
really increasing (accept H

(1)
0 ). We set i = 0 and keep experimenting, waiting

to observe another drop in the response. No test is conducted at step 5 since
the response did not drop. However, the second (j = 2) drop was observed
from step 5 = n2 to step 6 = n2 + 1. The difference y(n2 + 1) − y(n2) is
between the (a, b) range, so we keep experimenting along the steepest ascent
direction and keep testing, making i = 2. The difference y(n2 + 2) − y(n2)
(note we compare against y(n2)) is now less than a, so we reject H

(2)
0 and stop

at tstop = 7, returning topt = 5. �

Simulation experience with the Myers-Khuri stopping procedure ([37],
[102]) indicates that it has a good performance compared with the n-in-row
rules mentioned before. In simulated parabolic functions, the MK rule stops
after the optimum, but not too far after it occurs on the steepest ascent/descent
direction. The “first drop” and “two drops in a row” stopping rules tended to
stop earlier than the optimum in a large number of cases, so they should not be
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used. Waiting 3 drops in a row before stopping wastes experiments (stops too
many steps after the optimum), but because of this, the optimum is not missed.

The Myers-Khuri rule is sensitive to the normality assumption (made when
computing the bounds a and b). The effect of using κ > topt is more moderate
than if κ < topt, thus this rule should be used with a non-conservative a priori
estimate of where we think the optimum might lie along the search direction.

6.1.2 Recursive Parabolic Stopping Rules
In addition to the rule by Myers and Khuri, a rule by del Castillo [37]

and a rule by Miro and del Castillo [102] have been proposed for stopping a
search based on experiments3. The Recursive Parabolic Rule (RPR) [37] fits
a parabola (i.e., a second order model) to the sequence of observed responses
in the search direction. It recursively updates the estimate of the second order
coefficient and tests if the first derivative is negative. When this is true, that is
evidence a maximum has been reached and the search is stopped.

The performance of the RPR was only studied in [37] when the response
function was quadratic with additive noise. Although classical RSM uses sec-
ond order models to obtain a local approximation of the true function, during
steepest ascent searches significant changes are made to the controllable factors
and the quadratic approximation may not be valid over a large region of the fac-
tor space. Furthermore, the intercept and first order term carried over from the
previous factorial design may also need to be changed in order to give a better
local approximation of the true function. For these reasons, Miro et al. [102]
proposed several enhancements to the RPR rule to make it robust with respect
to non-quadratic behavior.

In this section we first present the RPR rule and then the enhancements pro-
posed to it by Miro et al. [102] are discussed.

Recursive Parabolic Rule.

The Recursive Parabolic Rule4 (RPR, [37]) assumes that the mean response
along the search direction can be modeled by a quadratic polynomial of the

3As in the previous section, these alternative stopping rules are applicable on any given direction, not only
the steepest ascent/descent direction. We will refer to their application along the steepest ascent/descent
direction in this section.
4This section is based on reference [102].
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form:
η(t) = θ0 + θ1t + θ2t

2 , (6.2)

where t is the step counter of the search. The values of the true response η(t)
cannot be directly observed:

Y (t) = η(t) + εt = θ0 + θ1t + θ2t
2 + εt , (6.3)

where Y (t) are the observed values during the search and εt ∼ N(0, σ2
ε ) is a

sequence of i.i.d. random variables.
Under the assumptions in model (6.2) the point of maximum mean response

is given by the value of t such that:

dη(t)
dt

= θ1 + 2θ2t = 0 (6.4)

thus t∗ = − θ1
2θ2

is the location of the maximum in the search direction. In
practice, t∗ cannot be obtained using equation (6.4) because the parameters θ0,
θ1 and θ2 are unknown. The RPR addresses this problem by:

1. Using the observations Y (t) taken along the steepest ascent search to recur-
sively fit the model in (6.3).

2. Testing whether or not the derivative in (6.4) is negative, i.e. test H0 :
θ1 + 2θ2t ≥ 0 vs. Ha : θ1 + 2θ2t < 0.

For fitting model (6.3), the rule proposes to obtain an estimate of θ0 from the
arithmetic mean of the center points of the previous factorial, denoted Ŷ (0).
An estimate of θ1 is also needed. This is the slope of the response function at
the origin in the direction of steepest ascent. Therefore, an estimate of θ1 is
given by the norm of the gradient from the previously fitted first order model:

θ̂1 = ‖b‖ =
√

b2
1 + b2

2 + · · · + b2
k .

Since in general the previous factorial experiment does not supply any
information regarding the second order coefficient θ2, the RPR uses a Recur-
sive Least Squares (RLS) algorithm [4,5,6] to re-estimate the parameter θ2

at each step t of the steepest ascent search. This allows the RPR to model
curvature present in the true response η(t). Since the estimate of θ2 changes
after each step, it will be denoted by θ̂

(t)
2 . The RLS method requires updates
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on the scaled variance of this estimate, for which we will use the notation
Pt ≡ 1

σ2
ε
Var

(
θ̂
(t)
2

)
.

To start the RLS algorithm, an estimate of θ2 at t = 0 (the origin of the
search) θ̂

(0)
2 , and its associated scaled variance, P0, are needed. It was sug-

gested to use θ̂
(0)
2 = −θ̂1/2tprior, where tprior is an initial guess of how many

steps away the directional optimum is located. Although this guess needs to
be specified by the user, its impact on the overall performance of the recursive
parabolic rule was reported in [37] to be almost insignificant and much less rel-
evant than the effect of κ on the Myers-Khuri rule. The values of Pt decrease so
rapidly that the value given to P0 has practically no effect on the performance
of the method [37].

The detection of an eventual drop in the response is based on testing if the
first derivative of the fitted model given in equation (6.4) is negative.

From the preceding discussion, the recursive parabolic rule can be formally
stated as:

1. Perform an experiment at step t.

2. With the observed value Y (t), update the estimate of θ̂
(t)
2 as follows:

θ̂
(t)
2 = θ̂

(t−1)
2 +

Pt−1t
2

1 + t4Pt−1
(Y (t) − Ŷ (0) − θ̂1t − θ̂

(t−1)
2 t2) . (6.5)

3. Update Pt, the scaled variance of θ
(t)
2 after t experiments:

Pt =

(
1 − Pt−1t

4

1 + t4Pt−1

)
Pt−1 . (6.6)

4. If:
θ̂1 + 2θ̂

(t)
2 t < −3

√
σ̂2

θ̂1+2θ̂
(t)
2 t

, (6.7)

stop the search and return t̂∗ such that Y (t̂∗) = max l=1,..,t{Y (l)}. Other-
wise, increase the step counter (t) and go back to 1. Here, σ̂2

θ̂1+2θ̂
(t)
2 t

denotes

the variance of θ̂1 + 2θ̂
(t)
2 t.

Steps 2 and 3 constitute a standard Recursive Least Squares update for the
case of one parameter, θ2. In this rule, θ1 and Ŷ (0) are not recursively updated
at each step.
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Step 4 in the algorithm considers the sampling variability of θ̂1 + 2θ̂
(t)
2 t.

Assuming θ1 “known” and equal to θ̂1, we have that Var(θ̂1) = 0 and:

σ̂2

(θ̂1+2θ̂
(t)
2 t)

=
120tσ̂2

ε

(t + 1)(2t + 1)(3t2 + 3t − 1)
≈ 4σ̂2

ε t
2Pt (6.8)

The estimate of the random noise variance, σ̂2
ε , is obtained from the residual

variance of the previous factorial. Assuming this variance also known and equal
to σ̂2

ε , step 4 becomes a size α = 0.0013 test of the null hypothesis H0 :
θ1 + 2θ2t ≥ 0 vs. the alternative Ha : θ1 + 2θ2t < 0. When H0 is rejected
we conclude that a drop in the mean response was observed and the search is
stopped.

The main advantage of the recursive parabolic rule is that it makes use of
all the information available from the previous factorial experiment that was
conducted, which is used to estimate θ0, θ1 and σ2

ε . Only θ2 is estimated during
the search. This type of efficiency can be very valuable when the cost of an ex-
periment is high. However, the performance of the RPR (6.5–6.7) deteriorates
under non-quadratic responses. We illustrate this rule next for a non-quadratic
response. For additional examples and derivations see [37].

Example. Use of the Recursive Parabolic Rule. Suppose the true re-
sponse function consists of a quartic polynomial on two controllable factors.
Figure 6.2 contains a surface plot of this function. The true maximum is located
at x∗ = [7.87 , 12.89]. A random noise term, ε ∼ N(0, 30), was added to the
true response function to simulate the observed values.

A 2-level full factorial with 2 center points was performed at the location
marked with the “o” in Figure 6.2. The straight line represents the steepest as-
cent direction, b = [−14.1, 23.1], obtained from the first order model. Also
from this first order model we obtain: θ̂1 = 27.04, Ŷ (0) = −36.18 and
σ̂ε = 5.98. In addition we use P0 = 10. Suppose in this example that the
true response in the steepest ascent direction obeys:

η(t) = −36.4 + 25.9t − 3.69t2 + 0.2903t3 − 0.0083t4,

which has a maximum at t∗ = 15.1 and corresponds to a mean response
η(t∗) = 83.86. However, let us suppose, for illustration purposes, that we
choose tprior = 18. This implies that θ̂

(0)
2 = −θ̂1/2tprior = −0.75.
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Figure 6.2. Surface plot of the true response response function for the example. The “o”
marks the center of the initial factorial design, the x’s mark the experiments conducted along
the steepest ascent search, the square marks the stopping point of the RPR rule and the diamond
marks the stopping point of the ERPR (from [102])

Table 6.1 shows the computations required by the RPR at each step t and
Figure 6.3 shows the realizations of Y (t) and θ̂1 +2θ̂

(t)
2 t. It is observed that the

RPR rule stops at tstop = 7 and returns t̂∗ = 6 as the best point (step) along the
steepest ascent direction. Both of these values are considerable different than
the true optimum t∗ = 15.1. The expected value of the response at t̂∗, η(t̂∗) =
38.17, is significantly smaller than the true optimum value, η(t∗) = 83.86. The
poor performance of the RPR is due to the non-quadratic behavior of the true
response. �

An Enhanced Recursive Parabolic Rule (ERPR)

Response Surface Methods assume the validity of second order models only
locally. However, during steepest ascent searches changes over large ranges on
the controllable factor space can be made to the factors, contradicting the local
model assumption. Therefore, for relatively long searches, and specially when
the noise standard deviation, σε, is small, the RPR can become sensitive to
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Table 6.1. Computations for the application of the Recursive Parabolic Rule in the example
(from [102])

t Y (t) θ̂
(t)
2 Pt θ̂1+2θ̂

(t)
2 t σ̂2

θ̂1+2θ̂
(t)
2 t

−3
√

σ̂2

θ̂1+2θ̂
(t)
2 t

0 −36.18 −0.75 10.0 × 10+1 27.04
1 −6.13 2.67 9.09 × 10−1 32.38 143.04 −35.88
2 −0.46 −4.12 5.85 × 10−2 10.55 33.66 −17.40
3 32.95 −1.82 1.02 × 10−2 16.13 13.14 −10.87
4 21.45 −2.79 2.82 × 10−3 4.74 6.47 −7.63
5 38.99 −2.54 1.02 × 10−3 1.63 3.65 −5.73
6 47.69 −2.33 4.40 × 10−4 −0.96 2.26 −4.51
7 41.12 −2.31 2.14 × 10−4 −5.28 1.50 −3.67
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Figure 6.3. Illustration of the RPR. On the left, realization of Y (t) and values of η(t). On the
right, the estimated first derivative and the stopping limits (dotted line) computed using (6.7).
Source: [102]

non-quadratic behavior which can lead to stopping before the maximum. This
situation was observed in the example in the previous section.

An enhanced recursive parabolic rule (ERPR) that is more robust to non-
quadratic behavior was proposed by Miro et al. [102] by making the following
modifications to the recursive rule in [37]:

1 Recursively fit the intercept and the first order term in addition to the second
order term in equation (6.3). This should increase the robustness against
non-quadratic behavior.
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2 Allow the specification of a maximum number of experiments in the
Recursive Least Squares algorithm, defining what from now on will be
called a “window”, in order to fit only a local parabolic model along
the search direction. This model should be less sensitive to large scale
deviations from quadratic behavior.

3 Use a coding scheme on the step numbers in order to obtain a near orthog-
onal design, reducing in this form the bias and variance of the parameter
estimates of model (6.3).

While at first sight this seems to result in an overly complicated approach,
particularly compared to traditional steepest ascent practice, it was shown in
[102] how the computations simplify notably and are therefore implementable
without any specialized software. Each of these 3 modifications are described
and illustrated next. Readers who want to skip the technical details may wish
to read the “Summary of computations” in Section 6.1.3, shown later in this
chapter, and study only the examples in what follows next.

Modification 1: Using Recursive Least Squares to update the estimates of θ0,
θ1 and θ2.

In general, when the true function is no longer quadratic, fitting all the pa-
rameters in a parabolic model will give a better local approximation of the true
function, since the model has more flexibility to adapt to the changes in curva-
ture of a non-quadratic function.

The RLS algorithm for updating the three parameters θ0, θ1 and θ2, makes
use of the following definitions:

θ̂
(t)

=

⎡
⎢⎢⎣

θ̂
(t)
0

θ̂
(t)
1

θ̂
(t)
2

⎤
⎥⎥⎦ , φt =

⎡
⎢⎢⎣

1
t

t2

⎤
⎥⎥⎦ ,

dφt

dt
≡ dt =

⎡
⎢⎢⎣

0
1
2t

⎤
⎥⎥⎦

and Pt = Var
(

θ̂
(t)
)

/σ2
ε

Then dY (t)
dt = d′

tθ̂
(t)

, and we can write the recursive parabolic rule for all
three parameters θ0, θ1 and θ2 in the following way:

1. Perform an experiment at step t.
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2. With the observed value Y (t), update the estimate of θ̂(t) as follows:

θ̂
(t)

= θ̂
(t−1)

+
Pt−1φt

1 + φ′
tPt−1φt

(
Y (t) − φ′

tθ̂
(t−1)

)
. (6.9)

3. Update Pt, the scaled covariance matrix of θ(t) after t experiments:

Pt = Var
(

θ̂
(t)
)

/σ2
ε =

(
I − Pt−1φt

1 + φ′
tPt−1φt

φ′
t

)
Pt−1 . (6.10)

4. If:
d′

tθ̂
(t)

< −1.645σ̂ε

√
d′

tPtdt , (6.11)

stop the search and return t̂∗ such that Y (t̂∗) = maxl=1,..,t{Y (l)}. Other-
wise, increase the step counter (t) and go back to 1.

The −1.645 multiplier in equation (6.11) implies a size α = 0.05 test. This
is done because it is not assumed that θ0 and θ1 are “known” as it is assumed
in the RPR. Therefore, there is no need to protect against underestimating the
variance of the first derivative’s estimate. It was observed in simulation studies
that this selection for the size of the test makes the rule more effective in short
searches. Computations (6.9–6.11) are very easy to implement on a spreadsheet
software.

For the initial values of the parameter estimates θ̂
(0)
0 , θ̂

(0)
1 and θ̂

(0)
2 , a similar

approach than in the RPR rule was suggested:

θ̂
(0)
0 = Ŷ (0) (6.12)

θ̂
(0)
1 = ‖b‖ (6.13)

θ̂
(0)
2 = − θ̂

(0)
1

2tprior
(6.14)

For the initial scaled covariance matrix of the parameter estimates, P0, Miro
et al. [102] suggested to use:

P0 =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 10

⎤
⎥⎥⎦ (6.15)

The large value of 10 given to Var
(
θ̂
(0)
2

)
/σ2

ε makes the rule robust against
possibly large discrepancies between tprior and t∗, providing some “adaptation”
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ability to varying curvature. The smaller scaled initial variances of the other
two parameters assure that the search will not stop too early before the maxi-
mum (see [102]).

Modification 2: Use of a moving window.
Goodwin and Payne [63] suggested to use a moving “window” in recursive

least squares estimation in order to track time-changing parameters in adaptive
control applications. The name is taken from the fact that only a fixed number
of observations –a window–is used in the RLS algorithm. The effect of the
moving window is that the algorithm discards the last observation once a new
observation has been made, keeping the number of observations used at any
step (i.e. the “window” size) constant. This can be used to fit a local model
during a steepest ascent search. In such case, the change or adaptation in the
parameter estimates allows to model possible changes in curvature due to non-
quadratic behavior in the controllable factor space.

The size of the window must be selected in order to make a compromise
between bias and variance. A large window will use much of the response
information available giving a very small variance for the first derivative and
hence a very powerful test for a negative derivative, but it will provide biased
estimates for curvature.

One way of making a compromise between bias and variance, when the
form of η(t) is unknown, is to determine the minimum number of observations
N that gives a pre-specified power for the test of a negative derivative. Miro
et al. [102] gave the folowing expression for the power of an α = 0.05 test of
the hypothesis Ho : θ1 + 2θ2t ≥ 0 versus an alternative Ha : θ1 + 2θ2t < 0:

K(∆) = Pr∆
(
d′

tθ̂
(t)

< −1.645σ̂ε

√
d′

tPtdt

)
(6.16)

where ∆ is the expected value of the derivative of the response along the search

direction, i.e., ∆ = E

(
d′

tθ̂
(t)
)

. Now, if it turns out that Ha : ∆ < 0 is true,

we have that:

K(∆) = Pr∆

⎛
⎝ d′

tθ̂
(t) − ∆

σ̂ε

√
d′

tPtdt
< −1.645 − ∆

σ̂ε

√
d′

tPtdt

⎞
⎠ . (6.17)



Statistical Inference in First Order RSM Optimization 173

Under the assumption of a locally valid second order model, E

(
d′

tθ̂
(t)
)

=

d′
tθ

(t). In addition, as in the RPR, assuming σ2
ε “known” and equal to σ̂2

ε we
have that:

d′
tθ̂

(t) − ∆
σ̂ε

√
d′

tPtdt
= Z ∼ N(0, 1) . (6.18)

Given that

d′
tPtdt ≈

12(2t − 1)(8t − 11)
(t − 1)(t − 2)(t + 2)(t + 1)t

(6.19)

and substituting (6.19) in (6.17) we have that:

1 − β = Φ

(
−1.645 − ∆

σ̂ε

√
(t − 1)(t − 2)(t + 2)(t + 1)t

12(2t − 1)(8t − 11)

)
(6.20)

where β is the probability of a Type II error, 1 − β is the power of the test, and
Φ is the standard normal CDF. The window size N is then set to the value of t

that solves equation (6.20) for a desired value of power. Provided N is not too
large, the bias due to higher order effects will be significantly reduced when
compared to the case when all the observed values Y (t) are used.

In practice, it will be difficult to come up with suitable values of ∆. Miro
et al. [102] recommended that the value of ∆ be specified as a percentage of
the norm of the gradient at the beginning of the search, that is:

∆ = −a‖b‖

where a is a number between 0 and 1 decided by the experimenter. This choice
guarantees with some probability the rejection of the null hypothesis when
the response is dropping at a 100a% of the rate at which it was increasing
at the beginning of the search.

Example. Updating all parameter estimates and use of a moving window.
We now show an example of how to apply the first two modifications to the RPR
rule with the same example used earlier in the previous section. For determin-
ing the window size N we chose a = 0.4 and 1 − β = 0.8 (this selection was
justified based on an extensive simulation study conducted by G. Miro [101]).
This means we want a window size such that it allows to detect with power
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equal to 0.80 a response that is dropping 40% of what was increasing initially.
With these selections we have that ∆ = −a‖b‖ = −10.82 and equation (6.20)
becomes:

0.8 = Φ

(
−1.645 − −10.82

5.98

√
(t − 1)(t − 2)(t + 2)(t + 1)t

12(2t − 1)(8t − 11)

)

The value t = 6.7070 solves the previous equation, and therefore we set
a window size of N = 7. Therefore, we use the recursive computations for
t < N − 1 = 6, or t ≤ 5. Table 6.2 contains the required computations
obtained. As it can be seen, the proposed rule does not signal to stop the search
for t ≤ 5. �

Modification 3: Use of a coding convention.
The use of a coding convention is frequently recommended in response sur-

face methods. A coding convention reduces the bias in the parameter estimates
[8,9]. The single regressor t (step number along the search) used in the recur-
sive parabolic rule can be coded using the sequence:

{
− t − 1

2
,− t − 3

2
,− t − 5

2
, . . . ,

t − 5
2

,
t − 3

2
,
t − 1

2

}
(6.21)

This is a sequence of t numbers centered at zero that provides a new scale. It
was shown in [102] how using this coding convention helps to reduce the bias
in the estimate of the first derivative due to the presence of third and fourth
order effects, i.e. when the true response is not quadratic.

An added advantage of this coding convention for t is that if used for t ≥
N − 1 then the modified recursive procedure (equations (6.9) to (6.11)) sim-
plifies significantly. Miro [101] realized that by using this coding, the design
matrix X remains fixed at:

X =

t t2⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (N−1)
2

(N−1)2

4

1 (N−3)
2

(N−3)2

4
...

...
...

1 − (N−3)
2

(N−3)2

4

1 − (N−1)
2

(N−1)2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The scaled covariance matrix of the parameters estimates also remains constant
and is given by:

(X′X)−1 =

⎡
⎢⎢⎣

3(3N2−7)
4N(N2−4)

0 − 15
N(N2−4)

0 12
N(N2−1)

0

− 15
N(N2−4)

0 180
N(N4−5N2+4)

⎤
⎥⎥⎦

In general, there will be small differences between (X′X)−1 and Pt for t ≥
N − 1 due to the effect of the initial value P0. Using the coding convention
(6.21) with a window size N , step (N − 1)/2 corresponds to the end of the
window at which point the vector of the derivatives of the regressors equals:

dN =

⎡
⎢⎢⎣

0
1

(N − 1)

⎤
⎥⎥⎦ .

Defining bN ≡ X(X′X)−1dN , we can obtain updates for the value of the first
derivative of the response by:

d′
N θ̂

(t)
= d′

N (X′X)−1X′YN (t) = b′
NYN (t)

where the “moving window” of the last N observations is given by:

YN (t) =

⎡
⎢⎢⎢⎢⎢⎣

Y (t)
Y (t − 1)

...
Y (t − N + 1)

⎤
⎥⎥⎥⎥⎥⎦

.

To obtain an update of the first derivative of the response for steps t≥N − 1,
the user only has to compute the inner product between bN and YN (t).
Furthermore, for t ≥ N − 1 the scaled variance of the first derivative, denoted
by vN , remains fixed at:

vN ≡ d′
N (X′X)−1dN =

12(2N − 1)(8N − 11)
(N − 1)(N − 2)(N + 1)(N + 1)N

,

(note how it is not a function of t). Therefore, for t ≥ N − 1 the enhanced
recursive rule is very easy to use since bN and vN can be determined before
starting the search once the window size N is determined. Table 6.3 provides
values for bN and vN . The values of N were calculated using a = 0.4 and
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1−β = 0.8 as before. To use this table, one needs to find the pair of lower and
upper bounds that brackets the signal-to-noise ratio ‖b‖/σ̂ε obtained from the
previous factorial. From that column, the window size N , the scaled standard
deviation of the first derivative,

√
vN , and the N × 1 vector bN are read. For

the previous example, we have that ‖b‖/σ̂ε = 4.52, which lies between 3.84
and 4.71, hence N = 7.

For t ≥ N the enhanced recursive parabolic rule is as follows:

1. Perform an experiment at step t ≥ N − 1

2. With the observed value Y (t), update vector YN (t) by discarding its first,
shifting the remaining elements one position up in the vector and including
Y (t) as the last element in YN (t).

3. Read bN and vN from Table 6.3 and test if:

b′
NYN (t) < −1.645σ̂ε

√
vN , (6.22)

If the inequality holds, then stop the search and return t̂∗ such that Y (t̂∗) =
max l=1,..,t{Y (l)}. Otherwise, increase the step counter (t) and go back
to 1.

Example. Enhanced recursive parabolic rule for t≥N−1. To illustrate,
let us continue the previous example for steps t ≥ N − 1 = 6. From
Table 6.3 we read b7 = [0.46, 0.07,−0.18,−0.29,−0.25,−0.07, 0.25]′ and
√

v7 = 0.681. From this, the limit in (6.22) equals to -6.69 (recall that
σ̂ε = 5.98 from the previous examples).

Table 6.4 contains the computations necessary to implement the rule. The
values of θ̂0(t), θ̂1(t) and θ̂2(t) are not needed in the proposed methodology
for t ≥ N − 1 so they are not shown. However, the procedure is implicitly
re-estimating these parameters, adapting to the non-constant curvature of the
underlying quartic model. Figure 6.4 illustrates the realizations of Y (t) and
d′

tθ
(t).

The proposed rule stops at tstop = 16 and returns t̂∗ = 14, only 1.1 steps
away from t̂∗ = 15.1. The expected mean at t̂∗, is η(t̂∗) = 82.54, only 1.5%
smaller than at t̂∗. In addition, notice that the rule stops after an increase in the
observed response. �
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Table 6.4. Computations for the enhanced rule (ERPR) for steps t ≥ 6. The limit is
−1.645σ̂ε

√
v7 = −6.69 for all t ≥ 6. Third column shows the “rectangular window” of

the last N = 7 observations. Source: [102]

t Y (t) Y7(t) b′
7Y7(t)

6 47.69 [−36.18, −6.13, −0.46, 32.95, 21.45, 38.99, 47.69] 3.19
7 41.12 [−6.13, −0.46, 32.95, 21.45, 38.99, 47.69, 41.12] −0.33
8 47.42 [−0.46, 32.95, 21.45, 38.99, 47.69, 41.12, 47.42] −2.53
9 52.04 [32.95, 21.45, 38.99, 47.69, 41.12, 47.42, 52.04] 3.54
10 58.59 [21.45, 38.99, 47.69, 41.12, 47.42, 52.04, 58.59] 1.36
11 75.08 [38.99, 47.69, 41.12, 47.42, 52.04, 58.59, 75.08] 12.26
12 76.40 [47.69, 41.12, 47.42, 52.04, 58.59, 75.08, 76.40] 12.63
13 97.27 [41.12, 47.42, 52.04, 58.59, 75.08, 76.40, 97.27] 14.35
14 100.80 [47.42, 52.04, 58.59, 75.08, 76.40, 97.27, 100.80] 12.14
15 82.84 [52.04, 58.59, 75.08, 76.40, 97.27, 100.80, 82.84] −3.48
16 82.94 [58.59, 75.08, 76.40, 97.27, 100.80, 82.84, 82.94] −11.18
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Figure 6.4. Graphical illustration of the enhanced recursive rule (ERPR). On the left, realiza-
tion of Y (t) and values of η(t). On the right, illustration of stopping rule (6.11) for t < 6

and stopping rule (6.22) for t ≥ 6. Graph on the right shows the estimated derivative and the
stopping limits (dotted line). Note how the limit is a constant for t ≥ 6 = N − 1. Source: [102]

6.1.3 Summary of Computations, ERPR Method
1. Perform a 2-level factorial design with replicated center points at the base-

line operating conditions (point t = 0). Compute ||b|| = ||β̂|| =
√∑k

i=1 b2
i .

Estimate σ̂2
ε from the standard deviation of the center points.

2. Compute ||b||/σ̂ε and use Table 6.3 to find N , the window size, the bN

vector, and the vN upper bound.



180 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

3. Initialize the recursive computations (t = 0). Define tprior. Use equations
(6.12) to (6.15).

4. For t = 1 to t = N − 1, perform an experiment at step t along the ascent
direction. Use the recursive computations (6.9) and (6.10) to update the
parameter estimates and covariance matrix. If (6.11) is true, make tstop = t

and go to 8.

5. Load vector YN (t) with observations Y (0), Y (1), . . . , Y (N − 1).

6. For t ≥ N − 1, perform an experiment at step t along the ascent direction
and update vector YN (t) using a moving window of size N (i.e., discard its
first element, shift all elements up one position and add Y (t) at its end).

7. Test for termination at each t ≥ N − 1: if

b′NYN (t) < −1.645σ̂ε
√

vN ,

stop (tstop = t).

8. Return t̂∗ such that Y (t̂∗) = maxl=1,2,...,tstop Y (l)

Step 1 is common to basic steepest ascent. Special computations are required
in steps 4, 6, and 7. They are very simple to perform and can be easily imple-
mented in a spreadsheet software (see Problem 17).

As mentioned earlier, Miro [101] conducted extensive simulations of the
ERPR, MK, and RPR stopping schemes. His results indicate that the ERPR
stopping scheme provides best performance, including most robust behavior
against non-normality (a problem for the MK rule) and against non-quadratic
behavior (a problem for the RPR rule).

6.2 Confidence Cone for the Direction of Steepest
Ascent/Descent

Selecting the step size in a steepest ascent/descent search ultimately depends
on how much confidence do we have in such direction. If the model fit is poor,
the parameter estimates for the main effects, and hence, the gradient estimate
will be poor (large standard error), and this means that we should not trust the
estimated steepest ascent/descent direction very much. Evidently, if the fit is
very poor it is either because we need to conduct more experiments to reduce
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the noise and get a better fit of the linear model or because the linear model
(and steepest ascent/descent) was not adequate in the first place.

There will still be cases in which a first order model fits reasonable well, it
shows no lack of fit, yet the fit might not be that great. Compared with a model
with really good fit, the first scenario should call for more cautious steps be
taken. To answer these questions, Box [17] proposed to compute a confidence
“cone” around the direction of steepest ascent/descent. It turns out that any
operating conditions x′ = (x1, x2, . . . , xk) that satisfy

k∑
i=1

b2
i −

(
∑k

i=1 bixi)2∑k
i=1 x2

i

≤ (k − 1)s2
bFα,k−1,v (6.23)

generate a direction that lies inside the 100(1−α)% confidence cone of steepest
ascent if in addition

k∑
i=1

bixi > 0,

and generate a direction that lies inside the 100(1 − α)% confidence cone of
steepest descent if

k∑
i=1

bixi < 0.

Here, s2
b = V̂ar(bi) and has v degrees of freedom. It is assumed that the DOE

run to fit the model estimates all the main effects with the same precision.
The rationale for result (6.23) is based on Figure 6.5, which shows the vec-

tors involved in the cone expression in some k-dimensional space. The projec-
tion of vector b on to x is given by b′x

‖x‖
x

‖x‖ and has magnitude b′x
‖x‖ . Thus,

from Pythagoras theorem, we have that

‖b‖2 −
(

b′x

‖x‖

)2

= ‖d‖2.

Notice how the left hand side is identical to the left hand side of the inequality
in (6.23). The direction generated by x is inside the confidence cone around
the estimated gradient (given by vector b) if the vector d is small. This vector
should account for the statistical variability in our estimates b. If all bi are
estimated with the same standard error, the variance of bi, s2

b , is a measure
of this variability. Now, the left hand side of the last expression is the length
of vector d, and is a sum of squares. Thus, we can compare this with s2

b to
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d

b

x
b'x

||x||

||b||

||d||
φ

Figure 6.5. The vectors involved in the confidence cone expression

determine if x is inside the cone or not. Since vector d has (k − 1) degrees
of freedom (its tip must coincide with vector b) we should scale the sum of
squares that represents its length by (k − 1) to form a mean square which can
be compared with s2

b . We then have that, assuming normally distributed errors,
(
‖b‖2 −

(
b′x
‖x‖

)2
)

/(k − 1)

s2
b

∼ Fk−1, v

and the result (6.23) follows.
Since b′x = (cos φ)‖b‖‖x‖, then if b′x > 0 ⇒ cos φ > 0 ⇒ φ < 90◦,

and x is inside the steepest ascent cone. Likewise, if b′x < 0 ⇒ φ > 90◦ and
x is inside the steepest descent cone.

For vector x to lie inside the confidence cone we should have that

‖d‖2 ≤ (k − 1)s2
bFα,k−1,v

so we use the square root of the upper bound as the distance value ‖d‖ in the
cone. With this, it is simple to see that the angle φ of the cone (Figure 6.5) is

φ = arcsin

⎛
⎝
√√√√(k − 1)s2

bFα,k−1,v∑k
i=1 b2

i

⎞
⎠ .

We would like to know how wide the confidence cone on the direction of
steepest ascent/descent is. If it is too wide, this means the estimated direction
is not very precise, and it would be wise not to take big steps in that direction.
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It may be even wiser to get a better estimate of the direction through more
experiments before conducting a line search.

A quantity useful to determine the precision of a direction is the fraction of
directions excluded by the confidence cone, w. If this fraction is close to 1, it
means the cone is quite narrow and therefore precise. To compute w, we use:

w = 1 − Scap

Ssphere

where Scap is the surface area of the spherical cap generated by the confidence
cone when it reaches a sphere centered at the apex of the cone (see Figure 6.6),
and Ssphere is the surface area of the sphere.

For k dimensions, the surface area of a hypersphere of unit radius is

Ssphere =
2πk/2

Γ(k/2)

and the surface area of the spherical cap of a hypersphere of unit radius is

Scap =
(k − 1)π(k−1)/2

Γ(k+1
2 )

∫ φ

0
sink−2u du

Figure 6.6. The fraction of directions included in the cone equals the area of the spherical cap
generated by the cone divided by the total area of the sphere
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Table 6.5. The proportion of directions excluded by a confidence cone, w, from the formulae
for surface areas of caps and hyperspheres

k Scap Ssphere w

2 2φ 2π 1 − φ
π

3 2π(1 − cos(φ)) 4π 1
2(1 + cos(φ))

4 2π(φ − cos(φ) sin(φ)) 2π2 1 + 1
π (cos(φ) sin(φ) − φ)

Therefore, the fraction of directions excluded by the 100(1 − α)% confidence
cone of steepest ascent/descent is

w = 1 − (k − 1)Γ(k/2)
2π1/2Γ(k+1

2 )

∫ φ

0
sink−2u du.

This expression looks formidable, but for small values of k is quite easy to
handle, as shown in Table 6.5.

Based on a characterization of the Student t distribution related to spherical
caps, Box and Draper give the equivalent expression:

w = 1 − Tk−1

(√ ∑
b2
i

s2
bFα,k−1,v

− (k − 1)

)

where Tk−1(u) = P (tk−1 ≥ u) is the complement of a Student t cumulative
distribution function with k − 1 degrees of freedom.

Example. Suppose an experiment with k = 2 factors was run, resulting in
s2
b = 0.0086 with v = n−p = 6 degrees of freedom, and b1 = 0.78, b2 = 0.33.

Thus
∑

b2
i = 0.7173, and using α = 5%, F0.05,1,6 = 5.99,

φ = arcsin

⎛
⎝
√√√√(k − 1)s2

bFα,k−1,v∑k
i=1 b2

i

⎞
⎠ = 0.2763

and since k = 2,

w = 1 − φ

π
= 1 − 0.0879 = 0.9120.

Alternatively, using Box and Draper’s expression

w = 1 − T1

[(
0.7173

(0.0086)(5.99)
− 1

)1/2
]

= 0.9136.
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The steepest ascent direction eliminates 91% of possible directions, and hence
is a relatively precise direction estimator. �

In practice, if the first order model has a poor fit (a low R2 value) the cor-
responding confidence cone will be wide and w small. We mention in passing
that the value of w obtained represents a point estimate of the actual percentage
of directions excluded from the confidence cone. If experiments are repeated,
sampling variability in the parameter estimates will be transmitted to w, hence
w will have a sampling distribution which in principle could be studied,
although no work has been reported in this sense in the literature. Confi-
dence cones can be useful for steepest ascent/descent when multiple responses
are considered, see [38]. A procedure for steepest ascent in the presence of
noise factors used in a Robust Parameter Design framework has been recently
proposed by Miro and del Castillo [103].

In an interesting recent paper, Diaz-Garcia and Ramos Quiroga [46] give the
marginal distributions of the coordinates of the maximum point along a steepest
ascent search. They also derive the distribution of the maximum response at this
point.

6.3 Setting the Step Size and the Direction Simultaneously
for New Region Exploration**

Kleijnen et al. [81] have recently proposed5 an interesting modification of
the steepest ascent (SA) procedure that provides a suggestion not only of what
step size to use, but also on which direction (other than the SA direction) the
search of a new region should be conducted. In this section we present their
approach, together with a modification to it by Perez-Salvador and O’Reilly
[123]. This section will then be followed by the discussion of a different pro-
posal by Perez-Salvador and O’Reilly [123] on how to choose the step size in
SA in order to avoid wild extrapolations of the current model. We assume we
wish to maximize the response, without loss of generality, and that the factors
are coded in the (−1,1) convention.

The idea in [81] is to find the point x where the lower confidence interval on
the expected response is a maximum. Such point will give us some assurance
(confidence) that the response, on average, at least will not be any lower, since
the confidence interval takes into account the variance of the estimated E[y|x].

5This section has somewhat more advanced material and may be skipped on a first reading.
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Suppose we conduct a first order DOE and fit a linear or first order polyno-
mial model around the current operating conditions. The model is

y = β′x + ε, β′ = (β0, β1, . . . , βk),

where β is a (k +1)×1 = p×1 vector of parameters Write the p×1 vector of
regressors (vector of factors in model form) as x′ = (1, d) where d is a k × 1
vector. Then, for the assumed model, let X be the design matrix with columns
that correspond to the model. Then we can write

(X ′X)−1 =

[
1/n b′

b C

]

where n is the number of experiments in the DOE, b is a k × 1 vector of con-
stants and C is a k × k matrix. With this notation, we have that

Var(ŷ|x)
σ2

= x′(X ′X)−1x

= (1, d′)

[
1/n b′

b C

](
1
d

)

= 1/n + 2d′b + d′Cd (6.24)

Since C is positive definite, we can simply find the point of minimum vari-
ance, d∗, by taking the first partial derivatives and equate them to zero:

∂Var(ŷ|x)/σ2

∂d
= 2b + 2Cd = 0

from where
d∗ = −C−1b. (6.25)

Note how if the experimental design is orthogonal, then d∗ = 0 (the origin in
coded units) since b = 0, and in such case Var(ŷ|x)/σ2 = 1/n, in accordance
with our discussion of variance properties of factorial designs.

A 100(1 − α)% lower confidence interval on the expected response (see
Appendix A) is given by

ŷmin(x) = ŷ(x) − tn−p,α σ̂
√

x′(X ′X)−1x

where σ̂ = SSerror/(n−p). The “Adapted Steepest Ascent” (ASA) procedure
proposed by Kleijnen et al. [81] suggests to choose the next point d in x′ =
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(1, d) such that we

max
d

ŷmin(x) = max
d

β̂0 + β̂
′
0d − tn−p,α σ̂

√
1/n + 2d′b + d′Cd (6.26)

where β̂−0 is the vector of all β̂’s except of the intercept. It turns out (see
Problem 15) that ŷmin(x) is concave in d. Therefore,

∂ŷmin(x)
∂d

= β̂−0 −
tn−p,α σ̂√

1/n + 2d′b + d′Cd
(b + Cd) = 0 (6.27)

If the experimental design is orthogonal, then b = 0 and C = I/n, so the
previous system of equations reduce to

√
1
n

(1 + d′d) β̂−0 − tn−p,α
σ̂

n
d = 0 (6.28)

This is a system of k non-linear equations with k unknowns. It could be solved
with a nonlinear solver 6. Instead, Kleijnen et al. [81] postulate a solution with
the form

d∗ = −C−1b + λC−1β̂−0 (6.29)

where the first term is equal to (6.25) and the second term adds a multiple of the
estimated steepest ascent direction deflected by the variance-covariance matrix.
The multiple λ is then the step size we take as we move from the point given by
(6.25), which gives minimum variance (the origin, in the orthogonal case). Any
point satisfying (6.27) solves problem (6.26) since ŷmin(x) is concave in d. We
then find the value of λ which makes d∗ satisfy (6.27). Note how in the non-
orthogonal case, d∗ and λ define a direction and step size, respectively, whereas
in the orthogonal case the direction is just the steepest ascent direction. We only
consider the orthogonal case in what follows.

Substituting (6.29) into (6.28) we get, after some algebra
(
1/n + λ2(n β̂

′
−0β̂−0 − t2n−p,α σ̂2)

)
β̂
′
−0β̂−0 = 0

from where

λ =

√√√√ 1/n

t2n−p,α σ̂2 − n β̂
′
−0β̂−0

(6.30)

6Such as MATLAB’s lsqnonlin.
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which gives the step size in the direction of steepest ascent. Note (see Problem
16) that (6.30) can be written as

λ =

√
1/n

t2n−p,α MSerror − SSRegression
(6.31)

where MSerror denotes the mean square error and SSReg denotes the sum of
squares due to the regression (see Appendix A). Perez-Salvador and O’Reilly
[123] point out that this quantity is well defined only when the denominator is
greater than zero, which occurs only when

t2n−p,α >
SSReg

MSerror
.

This inequality can certainly not hold in practice. These authors suggest to use
instead a Sheffé-like critical value in the denominator of (6.31), that is, use a
denominator equal to

p Fp,n−p,αMSerror − SSReg (6.32)

for some α such that

k + 1
k

Fk+1,n−p,α >
MSReg

MSerror
(6.33)

(recall that p = k + 1 for a first order model). To find an α such that this last
inequality is always true, making λ real always, consider the rule for rejecting
Ho : β1 = β2 = · · · = βk = 0 at level α (see Appendix A)7:

Fk,n−p,α ≤ MSReg

MSerror
. (6.34)

Since

Fk,n−p,α <
k + 1

k
Fk+1,n−p,α ∀α

then choosing α equal to the p-value of (6.34), say α∗, we get

Fk,n−p,α∗ =
MSReg

MSerror
<

k + 1
k

Fk+1,n−p,α∗

7This is the “Significance of Regression” test for a first order model, which is testing for significance of any
of the derivatives of the function with respect to the factors.
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and from the right hand side equality and (6.33) we see that λ obtained this way
will always be positive.

This suggestion is not without problems. If the p-value α∗ for the signifi-
cance of regression test is large, it means no derivative is significant, and no
steepest ascent search should be taken. However, as α∗ increases we see that
Fp,n−p,α∗ decreases, and this will make the step size λ increasingly larger, con-
trary to our intuition that tells us to take cautious steps if the model fits poorly.

We now illustrate this “modified ASA” procedure with a numerical example,
and show afterwards a second, different and better proposal by Perez-Salvador
and O’Reilly on how to select the step size in SA.

Example. Modified Adapted Steepest Ascent. Consider the Chemical
Process experiment in Section 2-2. There, recall we had that a 22 factorial
(n = 9) with center runs used to fit a first order model for steepest ascent. The
estimated parameters are β′ = (39.57,−1.12925, 11.14) (the fit is not great,
R2 = 0.6580) and we found that MSerror = 44.95 with n − p = 6 dof and
MSregression = 251.65 with p − 1 = k = 2 dof. Using (6.30), we get

λ =

√
1/9

(4.542)(44.95) − 9(125.77)

and the denominator is negative. Using (6.34), the p-value is such that

F2,6,α∗ =
MSregression

MSerror
= 5.598

or α∗ = 0.0425. The alternative denominator (6.32) is therefore

3(5.1532)(44.95) − 503.30 = 191.62

and therefore λ =
√

1/9/191.62 = 0.02408. Therefore, the next run should
be conducted at the point

d = λC−1β̂−0 = 9(0.02408)

(
−1.29
11.14

)
=

(
−0.28
2.41

)
.

This point corresponds to a somewhat larger step than the first two steps taken
in Table 2.3. �
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6.4 Avoiding Extrapolation in Steepest Ascent Searches**
Perez-Salvador and O’Reilly [123] suggest8 a different method for selecting

the step size in steepest ascent by considering how much we extrapolate in the
first experiment on the SA direction. Their suggested step size λ is such that

x′(X ′X)−1x = 0.5 (6.35)

where

x′ =

⎛
⎝1, λ

β̂
′
−0

||β̂−0||

⎞
⎠

which is based on a result by O’Reilly [121], who shows how for a point x

such that x′(X ′X)−1x ≤ 1 there exists an unbiased estimate of the CDF of
the response. In such case it is said that the extrapolation is valid, otherwise the
extrapolation is considered “too far away” or invalid. The value 0.5 is arbitrary,
and represents a value “half way” from the center of the experimental design
region to its boundaries. If the model fit is suspect, a smaller value may be
used.

Example. To illustrate the computation of the step size using the idea of ex-
trapolation, consider again the Chemical process in Section 2-2. We have that

β̂−0

||β̂−0||
=

(
−0.1150
0.9933

)

and (X ′X)−1 = 1
9I3. Therefore, the criterion (6.35) is
⎛
⎝1, λ

β̂
′
−0

||β̂−0||

⎞
⎠
⎛
⎝1, λ

β̂
′
−0

||β̂−0||

⎞
⎠

′

=
9
2

= 4.5

or 1+(0.1323+0.98664)λ2 = 4.5 from which λ = 1.76. The next point along
the SA direction is therefore

1.76

(
−0.1150
0.9933

)
=

(
−0.2024
1.7482

)

which corresponds to less than the first two steps taken in Table 2.3. �

We point out that this method can be used in conjunction with any of the
stopping rules for steepest ascent discussed earlier in this chapter.

8This section contain relatively more advanced material and may be skipped on a first reading.
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6.5 Problems
1 Consider Problem 1 in Chapter 2. Find the fraction of directions excluded

by the 95% confidence cone of steepest ascent.

2 Consider Problem 2 in Chapter 2. Find the fraction of directions excluded
by the 95% confidence cone of steepest ascent.

3 The following response measurements have been observed along the direc-
tion of steepest ascent:

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Y (t) 10.0 3.89 39.39 27.17 44.15 51.41 85.33 97.23 42.96 81.23 58.32 33.42 46.25 43.36

If the Myers-Khuri stopping rule were applied to these data, what would be
the stopping point and the optimal point returned? Use κ = 10, σε = 20.
Show, for each step, what decision is taken.

4 Repeat the previous exercise using the following response measurements
observed along the direction of steepest ascent:

t 0 1 2 3 4 5 6 7 8 9 10 11 12
Y (t)50.034.1679.64104.93103.66126.99115.54170.74143.41110.29174.07158.5363.99

Use κ = 12, σε = 15. For each step, show what decision is taken for the
hypothesis being tested.

5 Apply the recursive parabolic stopping rule (RPR) to the data in Problem 3.
Use θ̂0 = 10, θ̂1 = 5, tprior = 10, and P0 = 10.

6 Apply the recursive parabolic stopping rule (RPR) to the data in Problem 4.
Use θ̂0 = 50, θ̂1 = 5, tprior = 12, and P0 = 10.

7 Apply the enhanced recursive parabolic stopping rule (ERPR) to the data in
Problem 3. Use θ̂0 = 10, θ̂1 = 5, tprior = 10, and N = 7 (window size).

8 Apply the enhanced recursive parabolic stopping rule (ERPR) to the data in
Problem 4. Use θ̂0 = 50, θ̂1 = 5, tprior = 12, and N = 7 (window size).

9 Consider the first order model: ŷ = 52.1 − 3.1x1 + 6.4x2 − 1.25x3, where
the variance of the parameter estimates, s2

b , equals 0.4 computed based on 5
replications of the center point of the design.
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a) Does the point x′ = (−0.9, 1.0,−0.3) generate a direction vector inside
the 95% confidence cone of steepest ascent?

b) Find the fraction of directions excluded by the 95% confidence cone
around the steepest ascent direction.

10 Suppose the following are the observed responses along different steps
taken on the direction of steepest ascent:

51.4 54.0 56.8 60.9 62.1 64.2 66.1 69.0 68.2 69.9 69.8 69.9 70.9 69.2 68.3 68.0 66.0

If you were to apply the Myers-Khuri stopping rule to these data, show how
would it work, i.e., which hypothesis are being tested at each step and what
are the results (topt and tstop) of the stopping rule. Use κ = 25 and σε = 1
and assume normally-distributed errors.

11 Consider the “grade A” data in Problem 4, Chapter 2. Find the percentage of
directions excluded by the 95% confidence cone in the direction of steepest
ascent.

12 Consider the “grade B” data in Problem 5, Chapter 2. Find the percentage of
directions excluded by the 95% confidence cone in the direction of steepest
ascent.

13 Consider the “grade A” data in Problem 4, Chapter 3. Apply the modified
ASA procedure described in Section 6.4 to find the step size and direction
of search.

14 Consider the “grade B” data in Problem 5, Chapter 3. Apply the modified
ASA procedure described in Section 6.4 to find the step size and direction
of search.

15 Show that ŷmin(x) is concave in d.

16 Show that (6.30) reduces to (6.31).

17 Write a spreadsheet function or computer program that implements the com-
putations in the ERPR method. Your program should allow the user to apply
the ERPR for any window size using Table 6.3.



Chapter 7

STATISTICAL INFERENCE IN SECOND ORDER
RSM OPTIMIZATION

Everything should be made as simple as possible, but not simpler.
—Albert Einstein (1879–1955)

We continue in this chapter the discussion of methods for dealing with sam-
pling variability in experimental optimization techniques. This chapter consid-
ers the effect of statistical sampling error in RSM techniques that are based on
second order (quadratic) polynomial models. We first discuss finding confi-
dence intervals for the eigenvalues of the Hessian matrix, that is, the effect of
sampling variability in canonical analysis. Later sections consider the related
and important problem of finding a confidence region for the optimal operating
conditions x0. The unconstrained case is discussed first after which methods
for the computation and display of confidence regions on constrained optima
are discussed. Any traditional (frequentist) RSM optimization analysis should
probably always include such regions.

7.1 Confidence Intervals on the Eigenvalues of the Matrix
of Quadratic Parameter Estimates

As said earlier, any inference based on sample data is subject to sampling
variability. When fitting a second order model of the form

ŷ = b0 + b′x + x′Bx

the eigenvalues of B determine the nature of ŷ. This is exploited in Canoni-
cal (and Ridge) Analysis. The eigenvalues are in fact only point estimates of

193



194 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

the eigenvalues of the matrix of quadratic parameters in the “true” quadratic
response surface model (here we will assume no model bias). This is relevant
in practice, because an eigenvalue of B which has a large standard error is
likely to cover the value of zero. If this is the case, we cannot claim the sta-
tionary point is statistically a maximum or minimum. Statistically, it would be
a saddle function.

It is therefore of importance to estimate the standard errors of the eigenval-
ues of B and with these compute confidence intervals on each λi. If none of
these intervals covers zero and all are to the left of zero, then there is statistical
evidence that the stationary point is a maximum; if all the intervals are to the
right of zero there is evidence to claim x0 is a minimum; and if some interval i

covers zero this is evidence the stationary point is a saddle point.
Bisgaard and Ankenman [11] proposed a simple procedure to estimate

the standard errors of the eigenvalues. Their method suggests to fit first the
quadratic polynomial and compute the eigenvectors of B from M ′BM = D,
where D is a diagonal matrix containing the eigenvalues and M is an ortho-
normal matrix of eigenvectors of B (see Appendix C). Next, we get the rotated
coordinates without translation. That is, define u = M ′x or x = Mu for
a given point x. With this transformation, the resulting model can be easily
shown to be (see Problem 1):

ŷ = ŷ(u) = a0 + a′u +
k∑

i=1

λ̂iu
2
i

which is sometimes called the “A-canonical form” [20] of the quadratic model
(it is easy to see that a0 = b0 and a = M ′b). This is just another linear
regression model in the u’s, which can be fit using ordinary least squares. For
an experimental design matrix A (n × k matrix corresponding to the k fac-
tors) after transformation we get the rotated design matrix U = [1|AM |quad]
where “quad” are the k columns corresponding to the pure quadratic terms
obtained from the k columns that contain the rotated main effects ui’s, and 1
is a column of ones. The standard errors of the eigenvalues, std(λ̂i), can there-
fore be obtained from the corresponding σ̂2(U ′U)−1 matrix, with σ̂2 obtained
from the sum of squared errors of this second fit, which only has p = 2k + 1.

The 100(1 − α)% confidence interval on eigenvalue i is given by

λ̂i ± tα/2,n−pstd(λ̂i), i = 1, . . . , k
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The confidence may be adjusted via Bonferroni’s inequality to account for the
effect of the k simultaneous confidence intervals computed.

Example. A 33 experimental design (n = 27) is run to fit a full quadratic
polynomial. The resulting fitted model is

ŷ = 23.17 + 3.232x1 + 4.005x2 − 3.311x3 + 0.424x1x3 +

2.994x1x3 − 4.674x2x3 + 1.582x2
1 + 3.041x2

2 + 4.537x2
3

with σ̂2 = 6.1939. The matrix of estimated quadratic coefficients is therefore:

B =

⎡
⎢⎢⎣

1.582 0.2121 1.4972
0.2121 3.041 −2.3373
1.4972 −2.3373 4.537

⎤
⎥⎥⎦

and thus, the eigenvalues are λ̂1 = 0.30432, λ̂2 = 2.3607, and λ̂3 = 6.4934.
This seems to indicate that the stationary point x = 0.5B−1b = [2.7649,

−0.8542,−1.7174]′ (in coded units) is a point of minimum response.
However, the sampling variability of the eigenvalues needs to be taken into

account. The matrix M of eigenvectors1 that diagonalizes matrix B is

M =

⎡
⎢⎢⎣

−0.69358 0.68447 0.22463
0.49815 0.68094 −0.53681
0.52039 0.26042 0.81325

⎤
⎥⎥⎦

The A matrix corresponds to the three columns of a 33 designs in coded factors
(a 27 × 3 matrix). Thus, U = [1|AM |quad] is a 27 × 7 matrix, and

σ̂2(U ′U )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3649 0.0000 0.0000 0.0000 −0.5850 −0.5850 −0.5850

0.0000 0.2925 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.2925 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.2925 0.0000 0.0000 0.0000

−0.5850 0.0000 0.0000 0.0000 0.4450 0.2254 0.2072

−0.5850 0.0000 0.0000 0.0000 0.2254 0.4608 0.1914

−0.5850 0.0000 0.0000 0.0000 0.2072 0.1914 0.4790

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, the standard errors of the three estimated eigenvalues are 0.4450,
0.4608, and 0.4790. The 95% simultaneous confidence intervals for the eigen-
values (neglecting Bonferroni effects) are2:

λ̂1 = 0.3043 ± 2.4213(0.4450) = 0.3043 ± 1.0782

1This is easy to compute with Matlab’s eig function.
2Note that t0.025,20 = 2.4213.
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and, similarly,
λ̂2 = 2.3607 ± 1.1163

and
λ̂3 = 6.4939 ± 1.1606

and therefore, since the first interval covers zero, there is evidence that the fitted
response is a saddle function in reality, and that the stationary point corresponds
to a saddle point. �

The method of Bisgaard and Ankenman assumes all eigenvalues are distinct.
The possibility of repeated eigenvalues, although remote in RSM practice, has
been treated by Yin and Seymour [159].

7.2 Confidence Region on the Location of a Stationary
Point

Suppose3 we fit
ŷ = b0 + b′x + x′Bx.

To get the stationary point we compute

∂ŷ

∂x
= d(x) = b + 2Bx = 0

where d(x) is the first derivative vector. If we run the DOE again, and fit
the model from new experimental data, the location of the stationary point ob-
tained this way will vary. In other words, the stationary point x0 = −1

2B−1b

is simply a point estimate of the true stationary point of a hypothetical “true”
quadratic response function, assuming no model bias. In analogy to basic sta-
tistical procedures, a confidence region on the location of the stationary point
will help us determine a region in the controllable factor space, which, if com-
puted several times after many experiments would cover the true stationary
point some proportion of times.

Confidence regions on stationary points are in principle useful in two ways:

1 to determine how precise our point estimate x0 is;

2 to propose a region where alternative operating conditions exist that pro-
vide a solution that does not differ significantly from the response at the

3This section is based on reference [41].
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estimated stationary point, in case the stationary point solution is impracti-
cal for reasons not modeled in the DOE (e.g., cost of running the process
at x0).

A procedure for obtaining such regions was presented by Box and Hunter
[23]. To obtain the confidence region we proceed as follows. It is easy to see
that the sample variability in the parameter estimates will be transmitted to the
derivative vector, and this in turn will be transmitted to the stationary point x0.
At the stationary point we have that

d(x) ∼ N (0, Var(d(x)))

thus, the vector of derivatives follows a multivariate normal distribution with
mean zero and some variance covariance matrix of the form

Var(d(x)) = σ2V

where V is a k × k matrix that contains the variances and covariances of the
derivatives of ŷ. The quantity d(x)′ Var(d(x))−1d(x) is a quadratic form of
multivariate normal variables with mean zero. Therefore, it is distributed as

d′ Var(d)−1d =
d′V −1d

σ2
∼ χ2

k

(omitting the dependency on x), a (central) chi-square distribution with k

degrees of freedom. We also know that

(n − p)s2

σ2
∼ χ2

n−p,

where d and s2 are independent. From the definition of an F random variable,

d′V −1d
σ2 /k

(n−p)s2

σ2 /(n − p)
=

d′V −1d

ks2
=

d′ V̂ar(d(x))−1d

k
∼ Fk,n−p. (7.1)

Therefore,

P
{
d′(x)V̂ar(d(x))−1d(x) ≤ kFα,k,n−p

}
= 1 − α

where V̂ar(d(x)) = s2V . Vectors x satisfying the quantity inside the curly
braces are inside the 100(1−α)% confidence region for the stationary point, x.
The stationary point estimate x̂0 = −1

2B−1b will be inside this region. To plot
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the region is cumbersome (up to recently, only 2-dimensional BH confidence
regions had been plotted). One has to draw all points x such that the inequality
inside the curly braces is an equality. This will give the edge of the region.

A MAPLE computer program that plots the Box-Hunter confidence regions
up to k = 5 was written by S. Cahya and is described by del Castillo and Cahya
[41]. One of the findings in this paper is that the BH confidence regions may
be composed of disjoint subsets. The reason for this is that the resulting con-
fidence regions are for all stationary points that could occur through repeated
sampling, regardless of whether such stationary points are a minimum, maxi-
mum or saddle point. For instance, it can happen that the function is not sig-
nificantly convex statistically speaking, so in repeated sampling, its parameter
estimates will result in a mix of minimums and saddle points. This will tend to
happen when at least one of the eigenvalues of the B matrix has a confidence
interval that covers zero at some confidence level. If this is the case, the sad-
dle points may be located far away from the minimums, forming two disjoint
regions. An example from Box and Draper [20] where exactly this happens is
shown below.

One has to keep in mind that the term d(x)′ V̂ar(d(x))d(x) is not a
paraboloid but a fourth order polynomial in x. This will result in very compli-
cated shapes of the confidence region, which will be hard to interpret. The size
of the confidence region depends on two aspects:

1 how flat the true function is in the vicinity of the stationary point (the flatter,
the larger the region);

2 how well the response model fits (the worse fit the larger the region).

Thus, it is not true that for a stationary point that is maximum or a minimum,
a large confidence region is bad news. A flat region gives flexibility to process
engineers when choosing operating conditions for the process. Thus, model
checks should complement any conclusions from such a confidence region in
order to discern the reason for a confidence region that is large relative to the
experimental region.

Example. Computation of a Box-Hunter confidence region. Consider
the three factor experiment reported by Box and Draper [20, p. 305]. In this
experiment, the goal was to find the percentage concentration of two con-
stituents (x1 and x2, in coded units) and the temperature (x3, coded) that
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Table 7.1. Experimental design data (from [20])

x1 x2 x3 y
−1 −1 −1 25.74

1 −1 −1 48.98
−1 1 −1 42.78

1 1 −1 35.94
−1 −1 1 41.50

1 −1 1 50.10
−1 1 1 46.06

1 1 1 27.70
−2 0 0 35.50

2 0 0 44.18
0 −2 0 38.58
0 2 0 28.46
0 0 −2 33.50
0 0 2 42.02
0 0 0 57.52
0 0 0 59.68

maximize the elasticity of certain polymer. The experimental design and data
are shown in Table 7.1.

The second order polynomial model fit is

ŷ = 57.31 + 1.5x1 − 2.13x2 + 1.81x3

−4.69x2
1 − 6.27x2

2 − 5.21x2
3

−7.13x1x2 − 3.27x1x3 − 2.73x2x3 (7.2)

with stationary point x̂∗ = (0.4603,−0.4644, 0.1509)′, which, from the eigen-
values of matrix B is a maximum point.

The fitted full quadratic model has an excellent fit, with R2 = 0.972 (adj
R2 = 0.930), no lack of fit, all terms in the model are statistically significant,
and the usual regression diagnostics do not show any abnormality. Box and
Draper [20, p. 339] discuss how the stationary point corresponds to a maximum
point given the eigenvalues and approximate standard errors of the eigenvalues
of B. They describe how there is elongation in the response in one of the



200 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

canonical directions, clearly seen from a contour plot of Ŷ vs. x1 and x2 (see
Figure 7.1).

Box and Draper indicate that in this example
A more accurate picture about what is known at this stage of experimentation can be
gained by the confidence region calculation described in Box and Hunter, 1954.

but provided no such calculation. Let us suppose that a 90% confidence region
is desired.

The d(x) vector is
⎡
⎢⎢⎣

1.5000 − 9.3800 x1 − 7.1300 x2 − 3.2700 x3

−2.1300 − 7.1300 x1 − 12.5400 x2 − 2.7300 x3

1.8100 − 3.2700 x1 − 2.7300 x2 − 10.4200 x3

⎤
⎥⎥⎦

with a scaled variance-covariance matrix V equal as shown in Table 7.2.

2

1

0x1

1

2

21 02 1
x2

Response Surface Plot (Y) 
x1   x2 plane

Figure 7.1. Contour plot of fitted response vs. x1 and x2. Source: [41]

Table 7.2. The scaled variance-covariance matrix V in the example (from [41])
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.432 + 1.731 x1
2+ 1.731 x1 x2 1.731 x1 x3

0.865 x2
2 + 0.865 x3

2

1.731 x1 x2 0.432 + 0.865 x1
2+ 1.731 x2 x3

1.731 x2
2 + 0.865 x3

2

1.731 x1 x3 1.731 x2 x3 0.432 + 0.865 x1
2+

0.865 x2
2 + 1.731 x3

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is immediately obvious that even in this relatively simple case, manually
obtaining the expression for d′V −1d is extremely tedious. The aforementioned
MAPLE program can be used for this purpose, and then used to graph and
display the confidence region.

Figure 7.2 shows the 90% confidence region plots for this experiment. Even
though the fit of the quadratic model is excellent, the confidence region is not
only open, but disconnected. Such a region occurs because some parameter
values within the confidence region for the parameters in the Ξ matrix result in
saddle functions, and generate the stationary points in the smaller sub-region,
far from the stationary points in the larger sub-region which contains only
maxima of concave functions. The important message is that the Box-Hunter
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1

0

1

2
x3

11
2

0 2

2

Confidence Region Plot (90.0%) 
 x2   x3 plane
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0
2

2

2

1

0

1

x2

Confidence Region Plot (90.0%)
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Confidence Region Plot (90.0%) 
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Figure 7.2. 90% Box-Hunter confidence region plots for the stationary points in the example.
The stationary point of the fitted model is (0.4603, −0.4644, −0.1509). From: [41]
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technique gives a confidence region for all types of stationary points which in
turn originate from the confidence region of the parameter values. This includes
true maxima and minima and saddle points. A more exact analysis of the eigen-
values in this problem, using the procedure suggested in Peterson [124] with a
critical value of c2

α = kFα,k,n−q (where in this case q = 6 is the number of
parameters in B) reveals that the 90% upper confidence bound for the largest
eigenvalue is −0.34. However, a 95% upper bound equals 0.03. Thus there is
some probability that the response is not a statistically concave quadratic func-
tion. There is a non-negligible probability that the response is a saddle. In such
instances, the stationary points will be located in the smaller sub-region. �

This example indicates a potential weakness in the Box-Hunter confidence
region computation. In cases in which the fitted response is a saddle, the exper-
imenter should use instead a technique for finding the confidence region for the
true maximum of the surface subject to some constraint, as we discuss in the
next section.

7.3 Confidence Regions for the Constrained Maximum
or Minimum of a Response Function**

The previous discussion4 shows that the Box and Hunter confidence regions
are not very useful in practice, as they will provide a region for all stationary
points, and therefore the regions may be disconnected or relate to an uninter-
esting saddle function. Even when the stationary point is indeed an optimal
point, this point is sometimes located outside the region of operability hence
the optimal solution cannot be implemented. Therefore, in practice, solutions
should be limited to be inside of a constrained region of interest. Furthermore,
some problems are naturally constrained, such as mixture experiments where
the fraction of the mixture ingredients should add up to one.

The underlying optimization problem in Box-Hunter (BH) confidence
regions is an unconstrained one, essentially the same problem addressed in
“Canonical analysis”. A procedure that eliminates the problems in the uncons-
trained BH confidence regions was proposed by Peterson, Cahya and del
Castillo [126] (hereafter their procedure is referred to as the PCD method).
The procedure finds a confidence region for the location of the optimum of

4This section has somewhat more advanced material and may be skipped on a first reading.
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any response function model linear in the parameters subject to an arbitrary
constraint that depends on x but not on any unknown parameter.

Stablein, Carter, and Wampler [146] proposed a methodology for computing
the confidence regions for constrained optimal points. These authors modified
the BH approach by using the Lagrange multiplier approach to incorporate the
constraints. However, their method assumes the lagrangian multipliers as con-
stants, hence ignoring the sampling variability of the multipliers. This assump-
tion is not valid since the multipliers are dependent on the model parameter
estimates and these estimates are subject to sampling variability.

Peterson et al. [126] proposed a generalized approach that has some advan-
tages over the Stablein et al. method. This approach does not use lagrangian
multipliers, so it avoids the technical difficulty of incorporating the sampling
variability of the multipliers. Moreover, the method generalizes the quadratic
polynomial model required in Stablein et al. (1983) into any models that are
linear in the parameters. This is especially beneficial in mixture experiments
where “exotic” functions of the factors sometimes provide a better fit than
quadratic polynomials.

The PCD method for confidence regions of constrained optima
Let us assume that the response surface under consideration is linear in the
parameters, i.e., it can be modeled as

y = β0 + z(x)′θ + ε, (7.3)

where y is the response variable, β0 is the intercept term, z(x) is a (p− 1)× 1
vector valued function of the k × 1 vector x (i.e., z(x) corresponds to x in
model form), θ is a (p − 1) × 1 vector of regression coefficients, and ε is the
error term that follows a normal distribution with mean 0 and variance σ2.

Without loss of generality, suppose that we want to minimize the response y.
Let x0 and η(θ) be defined as

z(x0)′θ = min
x∈R

z(x)′θ = η(θ), (7.4)

where R is the constraining region (for unconstrained optimization R is simply
the space of x). Note that x0 is the true minimizer of the response surface and
it is unknown. To compute the 100(1 − α)% confidence region of x0, one can
find the set of all x-values such that the null hypothesis H0 : η(θ)−z(x)′θ = 0
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is not rejected at level α. This hypothesis needs to be tested for all points x on
a grid defined over R. In other words, when H0 is not rejected for a point
x, the point x must belong to the confidence region for the optimum since
there is statistical evidence to conclude that the response value at x does not
differ from the minimum response value. PCD proposed a way to compute
the 100(1 − α)% confidence interval for

(
η(θ) − z(x)′θ

)
and rejecting H0

simply by checking whether this confidence interval excludes 0. Since
(
η(θ)−

z(x)′θ
)
≤ 0 for all θ, the lower bound of the confidence interval is always less

than zero. Therefore, the confidence interval for
(
η(θ) − z(x)′θ

)
excludes

zero if the upper bound is less than zero. This upper bound is given by (see
PCD for the derivation):

UB = min
w∈R

bx(w), (7.5)

where

bx(w) =
(
z(w) − z(x)

)′
θ̂ +

√
c2
α

[(
z(w) − z(x)

)′
V̂
(
z(w) − z(x)

)]
.

(7.6)
Here, θ̂ is the estimate of θ, V̂ is the estimated variance-covariance matrix of
z(x)′θ, c2

α is the 100(1−α)% upper percentile of an F -distribution with k and
n − p degrees of freedom.

Equation (7.5) allows us to construct the 100(1 − α)% confidence region
for the optimal factor level x0 in a straightforward manner. This confidence
region is denoted as CR for brevity. A point x ∈ R does not belong to CR if
UB < 0. However, it is not necessary to perform the minimization in (7.5) and
get the minimum value UB . To discard a point x from being inside the CR,
it is only necessary to find a single other point w ∈ R such that the function
bx(w) < 0, since UB ≤ bx(w) for all w ∈ R. This clearly would imply that
UB < 0. Furthermore, for the specific case when the response surface satisfies
the following two conditions:

(i) the response is quadratic (hence it is differentiable);

(ii) the response is strictly convex in a statistical sense, i.e. the matrix of
quadratic coefficients B is positive definite (p.d.) for all θ ∈ C where
C = {θ : (θ̂ − θ)′V̂θ

−1
(θ̂ − θ) ≤ c2

α} is the 100(1 − α)% confidence
region for θ̂ and V̂θ is an estimate of Vθ, the variance covariance matrix
of θ̂,
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PCD proposed the following two-step derivative approach:

Step 1 (Box-Hunter (BH) Step): For all points x in the interior of R, select
confidence region points according to the BH criterion.

Step 2: For all points x on the boundary of R, search for the first d-value on
D such that b′x(x; d) < 0, where D = {d : d′d = 1, x + hd ∈ R for small
h > 0} and b′x(w; d) = limh→0+ [bx(w + hd) − bx(w)]/h.

PCD showed that, for differentiable response models, b′x(x; d) = d′D(x)θ̂ +
cα[d′D(x)V̂ D(x)′d]1/2 where D(x) is the k×(p−1) matrix of partial deriv-
atives of z(x) with respect to x. For subsequent discussions, the first step of
this derivative approach will be referred to as the BH Step.

In general, some response models do not satisfy differentiability nor con-
vexity assumptions. We note that even though a fitted quadratic polynomial is
strictly convex (i.e. B̂ is p.d.), B might not be p.d. everywhere on C. For
general response surface models, a two-step derivative-free approach was then
proposed:

Step 1: Compute the estimated optimal point x̂0. Set w = x̂0 and use bx(x̂0)
as a criterion to reject as many points in R as possible.

Step 2: For any x not rejected in step 1, search for the first w ∈ R such that
bx(w) < 0.

For response surfaces that are differentiable on R but not necessarily convex,
an efficient algorithm can be constructed by adding the BH Step (for checking
points in the interior of R) in between steps 1 and 2 of the derivative-free
approach shown above.

Cahya et al. [31] provide an easy to use MATLAB program that implements
an improved version of the PCD algorithm, providing a faster algorithm than
the original PCD method, hereafter called the CDP method5. The accuracy
of the CDP algorithm has the important property of being independent of the
grid used in the computations (contrary to the PCD method) and applicable to
differentiable and non-differentiable response models.

Example. A non-differentiable mixture problem. Consider a mixture ex-
periment that studies the effect of three chemical substances on the glass transi-

5As with other programs mentioned in this book, the Matlab code, called CONREG, is available at the
author’s (EDC) personal web page (Engineering Statistics Laboratory, Penn State University).
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tion temperature [57] was used. The objective of the study was to find the opti-
mal factor levels associated with minimizing glass transition temperature. The
chemical substances were Pluronic F68 (x1), polyoxyethelene 40 monostearate
(x2), and polyoxyethelene sorbitan fatty acid ester NF (x3). The experimental
design used was a modified McLean-Anderson design [94] with two centroid
points, resulting in a sample size of eleven. The response surface model that
gave the best fit was an H1 Becker model [6]:

y = β1x1 + β2x2 + β3x3 + β12 min(x1, x2)

+β13 min(x1, x3) + β23 min(x2, x3) + ε, (7.7)

where y equals the observed glass transition temperature (oC). The mean
squared error (MSE) associated with this model is 1.71 which is a 53% re-
duction in MSE from the standard quadratic model. The adjusted-R2 for the
model is 96.4%. Note that the response model in (7.7) is not everywhere differ-
entiable and is subject to the mixture constraints. Thus use of the BH (derivative
based) step would not be convenient to implement, requiring careful checking
of each x-point to make sure that xi �= xj or that x is not on the boundary
of mixture experimental region. Furthermore, for any mixture model, use of
the BH Step requires that the x1 + . . . + xk = 1 constraint be eliminated by
reducing the model to (k − 1) independent factors.

The confidence regions for the optimal factor levels were computed for three
different grid resolutions: 3721, 10201, and 40401 grid points, respectively,
inside a unit square (the constrained region for the experiment is a simplex
region which is a triangle inside a unit square). The confidence regions are
plotted in Figure 7.3. The figure illustrates the original PCD region at different
grid resolution and the enhanced CDP method proposed by Cahya et al. [31].
As it can be seen, the accuracy shape) of the region is independent for the latter,
but not for the former. �

While the CDP method does not guarantee a given coverage, extensive sim-
ulations (see [30]) have shown that is actual coverage is very close to nominal,
and therefore, it is of considerable value in practice. This is particularly true
given the availability of an easy-to-use computer program that implements the
method.
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Figure 7.3. 95% Confidence Regions for Frisbee and McGinity [57] example. The confidence
regions were obtained using (a) PCD approach (3271); (b) CDP approach (3271); (c) PCD
approach (10201); (d) CDP approach (10201); (e) PCD approach (40401); (f) CDP (40401). The
numbers in the parentheses are the total number of grid points inside a unit square. The resulting
confidence regions of the PCD derivative-free approach (a,c,e) are inaccurate (bigger than they
actually are). This inaccuracy is decreased as the grid resolution is increased. Source: [31]

7.4 Problems
1 Show that the resulting model after translation using x = Mu where

M ′BM = D with D a diagonal matrix with the eigenvalues of B and
M the matrix of corresponding eigenvectors is the “A-canonical” model.
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2 Consider a full quadratic model in k factors that is to be minimized subject
to x′x ≤ ρ2, just as in ridge analysis.

a) Using a Lagrange multiplier for the constraint, find an expression for the
100(1 − α%) confidence region for the constrained optimum assuming the
Lagrange multiplier µ is a known constant (a value of µ can certainly be
obtained numerically from the problem’s data, so this is not a problem).

b) What is wrong with the assumption of a constant Lagrange multiplier?

3 Use MATLAB and the CONREG program available the author personal
web page (Engineering Statistics Laboratory) to build a confidence region
for the stationary point of the following data.

x1 x2 Yield
−1 −1 88.55

1 −1 85.8
−1 1 86.29

1 1 80.4
−1.414 0 85.5

1.414 0 85.39
0 −1.414 86.22
0 1.414 85.7
0 0 91.21
0 0 91.85
0 0 91.31
0 0 91.94

Provide a) the input data file, and b) a plot of the resulting 95% confidence
region in a region bounded by (−1, −1) and (1,1). Use c2

α = Fα,k,n−p and
specify a “maximum”.

4 Repeat the previous problem for the metal cutting experiment in Chapter 1.

5 Repeat the previous problem for the “grade A” response in Table 2.6.

6 Repeat the previous problem for the “grade B” response in Table 2.6.



Chapter 8

BIAS VS. VARIANCE

It may be remarked that nobody has yet shown that an erroneous mathematical logic is
incapable of predicting phenomena verifiable by experiment.

—Eric Temple Bell (1883–1960)

From the late 1950’s to up to the later 1970’s a debate ensued in the Statis-
tics community between two schools of thought in experimental design. The
main point of contention was the practical utility of optimal experimental de-
sign theory, mainly developed by J. Kiefer and co-workers. We will refer to this
school as the “optimal design school” in this chapter. As mentioned in Section
5.7, using optimality theory one designs an experiment that is optimal in some
precisely defined way for a given model form; the design will not be optimal,
and probably, not even “robust” if the true process obeys a model different than
the assumed one1. This point of view is held by G. Box and his co-workers,
which we will refer here as the “Applied Statistics school”. The purpose of the
present chapter is to introduce the main ideas behind this debate. Since very
few practical conclusions resulted from the debate itself, the chapter is neces-
sarily short (the methods developed by both schools have had a great impact,
but that is the matter for the other chapters in this book).

For a fuller description of this debate from the point of view of the Applied
Statistics school there are at least 4 books, see [112, 20, 76, 117]. Although

1There has been recent work where methods for optimal designs that are robust to the model form have been
proposed. See, e.g., [68] and the comments in the conclusion to this chapter.
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there are several books on optimal design theory, these are highly abstract and
for the most part do not pay attention to the bias vs. variance debate. Perhaps
the best references where Kiefer and co-workers argued in favor of their side in
the Bias vs. Variance debate are the papers [78, 58]. The initial round of this
“clash of statistical cultures”, as H. Wynn [158] has called it2 was during the
presentation of a famous paper by Kiefer at the Royal Society [77]. This was
received with scorn by some of the society members, in particular by Yates.
As mentioned by Wynn, this subject pertains to the “sociology” of experimen-
tal design in the XX century. The debate pertains also to statistical inference
aspects of experimental design, and it is because of this that is presented in the
present part of this book.

8.1 The Applied Statistics Argument
Box and Draper [21] argued that bias is a much more important consideration

than variance when designing an experiment. The argument goes as follows.
Suppose that the true unknown system we want to model is given by

g(x1, x2, . . . , xk) = g(x)

where g is a polynomial of order d2, but we use instead a model

ŷ(x1, x2, . . . , xk) = ŷ(x),

a polynomial of order d1 < d2. Both polynomials are defined over a region of
interest R. The difference ŷ − g represents the discrepancy between the fitted
model and the true system. These differences occur due to two causes:

1 sampling (experimental) error. This is the “variance” component of the
difference or error.

2 systematic differences between ŷ and g. This is the “bias” component of
difference or error.

To study the relative importance of these two components of the error, Box and
Draper [21] proposed to use the following criterion which accounts for both
types of error above:

J =
n

σ2

∫
R E[ŷ(x) − g(x)]2dx∫

R dx
. (8.1)

2In a comment to Kiefer’s paper.
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This is the expected squared deviation over the region3 R, normalized with
respect to the volume of R, the variance σ2, and the number of observations
in the experimental design n. An assumption in this criterion, to which we
will return when we show the opposing view in this debate4, is that the exp-
ected value assumes a uniform distribution of the x’s over R, that is, all points
inside R are considered equally important as they receive the same weight in
(8.1). In turn, non-uniform distributions were further considered by Box and
Draper [20].

Box and Draper suggested to evaluate J for designs whose coordinates are
standardized according to

xiu =
ξiu − ξi

si

where ξiu denotes the factor in original units and si denotes the standard devi-
ation of factor i (using a denominator of n) in the design (see Section 5.1 for
more on this coding convention). The coding convention “centers” the columns
in the sense that

∑n
u=1 xiu = 0. Letting K = [

∫
R dx]−1, we have

J =
nK

σ2

∫

R
E[ŷ − E(ŷ) + E(ŷ) − g]2dx

where the quantity E[ŷ] has been added and subtracted. After a couple of
straightforward steps we obtain

J =
nK

σ2

∫

R
E[ŷ − E(ŷ)]2dx +

nK

σ2

∫

R
(E(ŷ) − g)2dx

or
J = V + B

that is, the average or integrated squared error equals the average variance of ŷ

(the average prediction variance5) V , plus the average squared bias (B). Thus,
as pointed out by Box and Draper [21], one could design an experiment to:

1 minimize V . Box and Draper called the resulting designs “all variance”
designs;

2 minimize B. Box and Draper called these designs “all bias designs”;

3 minimize J .

3In this section we will assume, as Box and Draper did, that the region R is a (hyper)sphere. Some of the
results, in particular, rotatability, will critically depend on this assumption, as mention later on.
4As we will see below, this was one of the points raised by Kiefer in this debate [58, 78].
5Minimizing V alone has been called the integrated variance, or IV criterion, in the literature.
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One surprising result obtained by these authors is that B can be minimized if
the true unknown system is a polynomial model of order d2 and all we know
about this unknown polynomial model is its order, d2, with d2 > d1. Thus, the
parameters of the true model need not be known. In contrast, to minimize J

Box and Draper showed that the true parameter values are needed.
We will illustrate these ideas with the case d1 = 1, d2 = 2, and k = 1, that is,

one controllable factor. This was considered in [21], who actually considered
the case k ≥ 1. The case d1 = 2, d2 = 3 was considered by Box and Draper
in [22].

8.2 The Case of a First Order Model (d1 = 1) and Second
Order True Process (d2 = 2)**

Consider the case6 when there is one factor (k = 1). In this case, R is both a
“spherical region” and a “cuboidal” region of interest. The only factor is coded
into [−1, +1] = R. The fitted model (using least squares) is

ŷ = b0 + b1x (d1 = 1)

but suppose that the true system is such that

E[y] = β0 + β1x + β11x
2 (d2 = 2 > d1 = 1).

Since k = 1, the design matrix is simply D = [x1, . . . , xn]′ where it is assumed
the vector adds up to zero due to coding. For the assumed model,

X =

⎡
⎢⎢⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎥⎥⎦

,

and

J =
nK

σ2

{∫ 1

−1
(Var(b0) + x2Var(b1))dx

+
∫ 1

−1
(E(ŷ) − β0 − β1x − β11x

2)2dx

}

6This section has somewhat more advanced material and may be skipped on a first reading.
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where K = [
∫ 1
−1 dx]−1 = 1/2. Thus (see Problem 1),

(X ′X)−1 =

[
1
n 0
0 1

n[11]

]

where [11] =
∑n

u=1 x2
u is the second moment of the design (see Section 5.1).

This matrix implies that Var(b0) = σ2/n and Var(b1) = σ2/(n[11]). There-
fore, the V component of J is

V =
nK

σ2

∫ 1

−1

(
σ2

n
+ x2 σ2

n[11]

)
dx

=
1
2

∫ 1

−1

(
1 +

x2

[11]

)
dx = 1 +

1
3[11]

From this it can be seen that to minimize V alone, we should set [11] as large
as possible, i.e., we should spread the points of the experiment as much as
possible.

To find B in order to minimize it, we need the Alias matrix of the model (see
Section 3.6 for a description of the Alias matrix). For the assumed model we
have

X1 =

⎡
⎢⎢⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎥⎥⎦

,

and from the true process we have

X2 =

⎡
⎢⎢⎢⎢⎢⎣

x2
1

x2
2
...

x2
n

⎤
⎥⎥⎥⎥⎥⎦

.

Then, the Alias matrix is therefore

A = (X ′
1X1)−1X ′

1X2 =

[
1
n 0
0 1

n[11]

] [
n[11]
n[111]

]
=

[
[11]
[111]
[11]

]
.

Since E[β̂1] = β1 +Aβ2 (see Section 3.6) with β1 = (β0, β1)′ and β2 = β11,
we have that

E[b0] = β0 + [11]β11
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and
E[b1] = β1 +

[111]
[11]

β11

and therefore

E(ŷ) = E(b0) + E(b1)x = β0 + β1x + β11

{
[11] +

[111]
[11]

x

}
.

Thus, the average squared bias is

B =
nβ2

11

2σ2

∫ 1

−1
{[11] +

[111]
[11]

x − x2}2dx.

After some algebra we get

B =
nβ2

11

σ2

{
[11]2 − 2

3
[11] +

1
5

+
[111]2

3[11]2

}
. (8.2)

Clearly, B is minimized with respect to [111] by making [111] = 0. This
implies a symmetric design. If [111] = 0, the average squared deviation is

J = V + B = 1 +
1

3[11]
+

nβ2
11

σ2

{
([11] − 1/3)2 +

4
45

}

Thus, the value of [11] that minimizes J depends on β11. Thus, we need to
know a true model parameter to minimize J .

Based on this development, Box and Draper [21] pointed out the following:

1 If B is negligible, one can minimize V by spreading the design points as
much as possible making [11] as large as possible. This tends to happen in
all “alphabetic” optimal designs which look at functionals of the covariance
of the fitted model parameters;

2 To minimize B, make [111] = 0 (a symmetric design, recall that the third
moment is a measure of skewness) and from (8.2) choose [11] = 1/3, which
implies points will be less spread than in an “all variance” design;

3 A sensitivity analysis in the unknown quantity
√

nβ11/σ shows that the “all
bias” optimal value of [11] = 1/3 gives values of J that are (typo) very
close to their optimal (minimum) value had the parameter β11 been known.
Unless V is much larger than B, an all bias design should be chosen (see
Table 8.1).

This result generalizes for any number of factors. The most general result
stated in [21] is the following.
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Table 8.1. Sensitivity analysis on the true unknown standardized parameter
√

nβ11/σ for the
case k = 1, d1 = 1, d2 = 2. Table gives the optimal value of [11] if this parameter were known;
the corresponding minimum J , and the J value that one gets when using the “all variance” and
“all bias” solutions instead ([11] = 1 and [11] = 1/3) (Source: [117])

√
nβ11/σ V/B [11] J (opt.) J([11] = 1.0) J([11] = 1/3)

0 ∞ 1.0 1.333 1.333 2.0
4.5 1 0.388 3.718 11.521 3.798
7.0 0.4 0.359 6.316 27.465 6.355

All Bias Result. B is minimized when all design moments of order up to d1+d2

equal the moments of a uniform distribution over R.
This is a sufficient condition to minimize B, but not necessary, as there may

be other designs without this property that could minimize B. The necessary
and sufficient condition that must be met to minimize B is

M−1
11 M12 = µ−1

11 µ12

where

M11 = (X ′
1X1)/n is the design matrix of moments up to order 2d1;

M12 = (X ′
1X2)/n is the design matrix of moments of orders d1 + 1 to

d1 + d2;

µ11 = K
∫
R x1x′

1dx is the region matrix of moments up to order 2d1, and

µ12 = K
∫
R x1x′

2dx is the region matrix of moments of orders d1 + 1 to
d1 + d2

(here, xi is a vector of controllable factors in model form that corresponds with
the columns in matrix Xi). Thus, one way, but not the only way, when this
condition is achieved is to make M11 = µ11 and M12 = µ12.

A few specific corollaries of this general result are as follows.

Corollary 1. (Box and Draper [21].) If d2 = 2 and we fit a model of order
d1 = 1 in k factors then B is minimized with a first order orthogonal design
with [ii] = 1/(k + 2), that is, well inside R.

Corollary 2. (Box and Draper, [22].) If d2 = 3 and d1 = 2, then B is
minimized when moments up to order 5 equal those of a uniform distribution
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over R. In particular, if R is a k-dimensional sphere, the uniform distribution is
over such a sphere, and the design that minimizes B is a rotatable design (see
Chapter 5).

In all of these cases, these authors conclude that the “all bias” designs are
close to those obtained from minimizing the averaged squared error J . “If
simplification is to be made in the design problem, it might be better to ignore
the effects of sampling variation rather than those of bias” [20].

8.3 The Optimal Design Argument
The results in the previous section have been well disseminated among the

applied statistics community. Since this book is tailored to such an audience, it
is important that the contrary position be also explained.

In [78], Kiefer begins by indicating that the cited conclusion by Box and
Draper “has been accepted with a generality which it does not deserve, and
which I doubt that Box and Draper would agree”. The reasons for this are both
matter of principle and matters of understanding the assumptions behind the
Box and Draper analysis. With respect to the former, Kiefer indicates that “if
fitting a quadratic, even knowing that this is incorrect, the statistician presum-
ably believes B is relative small; otherwise he would fit a cubic or at least let
the data determine what type of curve he should fit” [78]. This seems to be con-
firmed by Vining and Myers [154] who mention that “one should not be overly
concerned with model misspecification if the amount of bias is of a magnitude
that results in a large power of detection by the standard lack of fit test”.

With respect to the underlying assumptions, Kiefer points out that the de-
signs recommended by Box and Draper depend on the choice of a uniform
probability distribution over R, where “there is nothing particularly com-
pelling” about it [78, 58]. Different distributions over R will yield different
designs. To this, however, Box and Draper [20] replied, indicating that if the
uniform distribution is replaced by a weighting function that has spherical con-
tours, with highest weight in the center (e.g., symmetric multivariate normal)
then the “all bias solution” will still call for a rotatable design for the case
d1 = 2, d2 = 3. This, of course, will not be the case for a non-symmetric
distribution.

A second interesting comment found in [58] is that the Box and Draper
criterion J is an average criterion over R, whereas the appropriateness of such
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criterion could be debated, for example, why not minimizing instead the maxi-
mum of the squared error over R? Kiefer points out that a design that performs
well under the J criterion may perform bad with respect to a maximum squared
error criterion. Looking at the maximum of J seems to imply (as pointed out
by Vining and Myers [154]) that one should consider how well the design per-
forms over every portion of the region of interest. This comment has resulted in
the work conducted during the 1990’s on variance dispersion graphs (VDG’s),
see Section 5.6.

An interesting specific result found by Kiefer and his co-workers was to
show that for mixture experiments (i.e., experiments defined over a simplex,
see Section 5.8), the Box-Draper recommendation of giving bias more consid-
eration when choosing a design is not justified when d1 = 2 and d2 = 3. This
is relevant, as optimal design theory (in particular D-optimal designs) has been
used more often in mixture than in non-mixture designs.

One last comment about the generality of the Box-Draper recommendations,
which can be seen in action from the above result by Kiefer on mixture experi-
ments, is that it depends on the form of the region R. If R is a cuboidal region,
then a rotatable design does not minimize B. This was noted by Box and Draper
[20]. As mentioned by Myers and Montgomery [117], rotatability is of interest
mainly for a spherical region of interest.

8.4 Conclusions
The debate between bias and variance when deciding on an experimental

design, and in general, between the applied school of experimental design and
the optimal design school, still reappears in the literature every now and then.
A consensus among most authors in industrial practice, however, appears to be
that D-optimal designs are extremely useful when the design region is highly
constrained, a situation common in mixture experiments, and when there is a
good level of confidence about the assumed model. Even in non“mechanistic”
situations where polynomial models are used as empirical local approxima-
tions, D optimal designs have been found useful, provided the region of the
design is not too large compared to the area of operability of a process. A case
in point is Robust Parameter Design (see next chapter), where a model that
incorporates a quadratic polynomial in the controllable factors and interac-
tions in the noise and control factors (see 9.1) has been found useful in many
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practical experiments. Optimal design theory is also very useful for the design
of split-plot designs [64]. Another area where D-optimal designs have been
found to be very useful is to determine additional experimental runs that aug-
ment a given design and resolve effects that are confounded in 2k−p fractional
factorial designs.

Experimental design is a multicriteria decision making problem, and it is up
to the experimenter to decide what are are his/her priorities and, hence, his/her
design criteria and constraints. There are several optimality criteria one could
select (see Chapter 5), to which one could add other practical considerations.
This is a point emphasized by Box and Draper [20], who give a list of practical
considerations when choosing a design. These considerations include the abil-
ity to detect bias of a specific kind (e.g., ability to perform a curvature test) or
of a general kind (e.g., ability to perform lack of fit tests). Also, minimizing the
number of runs is almost always an important consideration in practice. Sym-
metry, balance, number of levels per factor, geometry of the region R, etc., are
all constraints that can easily be accommodated by properly chosen constraints
in optimization algorithms for experimental design. We refer readers to Section
5.7.8 where good practices are given when using D-optimal designs.

As mentioned by Kiefer, the ability to detect bias is, from a practical per-
spective, a very important feature of a good design. This makes more sense
than designing with respect to a specific “primary” model M1 but to desire pro-
tection against a second specific “secondary” model M2. Some recent work has
suggested to find a design for a family of potential models using a weighted D-
optimality criteria [68] but it is not clear how to a priori assign the weights.
A way to do this is to use Bayesian techniques, in which a first design is run
and used to evaluate the posterior probability of each of the models entertained.
These probabilities can then be used to design a second experimental design
that protects against each potential model according to the posterior probabil-
ities of each model. See Section 12.6 for a description of how to compute
posterior probabilities for different models given an initial design. The overall
approach may be costly in terms of number of runs. A related body of work
is the extensive literature on Bayesian D-optimal designs. In Section 12.9 we
describe a simple Bayesian modification of D-optimal designs developed by
DuMouchel and Jones [50] that protects against model misspecification.
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A final note is that if bias is an overwhelming preoccupation, the experi-
mental design problem approaches that of a “computer experiment” performed
with a deterministic simulation or engineering program. In this case, specific
designs have been proposed to take into consideration bias only concerns (see
Section 14.2 for an introduction).

Once we have reviewed the bias vs. variance debate, we move on to discuss
an important class of process optimization problems in the next part of the book.

8.5 Problems
1 Find the X ′X matrix and its inverse for the case d1 = 1, d2 = 2, k = 1.

2 Suppose that in a response surface study we have fitted the one factor model
ŷ = β̂0+ β̂1X , but the true response is given by E[y] = β0+β1X +β11X

2.
The region of interest is −1 ≤ X ≤ 1. In this RSM study, the purpose is
to use the predictor of the slope of the response. Find the integrated mean
square error J = V + B for the slope of the response. (Hint: the true slope
is β1 + 2β11X and the estimated slope is β̂1). Based on your results, what
guidelines can be given about a design that minimizes V or B for the slope?

3 Consider the case where we have k = 3 factors, and we want to fit a
first-order model. It is desired to minimize the integrated square bias (B) of
the estimated response. It is desired to have protection against bias due
to a second order model. The region of interest is the cuboidal region
−1 ≤ Xi ≤ 1 for i = 1, 2, 3.

a) Find moment conditions that minimize B.

b) Suppose that in a) above we wish to use a full factorial with 4 center
run replicates. What is the factorial distance (from the design center) that
minimizes B? Use the results developed in part a).



PART IV

ROBUST PARAMETER DESIGN AND ROBUST
OPTIMIZATION



Chapter 9

ROBUST PARAMETER DESIGN

The secret of my success in competitions was to be prepared against everything.
—Al Oerter1

Just as success in competitive sports, finding process settings and product
design parameters that are “prepared” against any eventuality or uncertainty is
also the basic idea followed in industry to obtain robust processes and prod-
ucts. In this chapter we consider robustness with respect to variation in uncon-
trollable factors, also called noise factors, a problem that has received the name
“Robust Parameter Design” (RPD), a term coined by Taguchi. Genichi Taguchi
[149], a textile engineer with a training in statistics, introduced a series of in-
novative ideas in designed experiments and process optimization which have
had strong influence in the way we look at process optimization today. Some
of Taguchi’s ideas and concepts have been criticized by several authors, mainly
in the USA. This chapter first discusses the main ideas behind Taguchi’s app-
roach to the RPD problem. In later sections, we describe how the same goals
and ideas introduced by Taguchi can be approached using response surface
techniques, including techniques developed relatively recently in answer to the
controversy created by Taguchi in quality control and Applied Statistics circles.

One basic idea in Taguchi’s approach to process optimization is that, while a
process is in operation, not all factors are controllable. There is a need in prac-
tice to develop on-line process control mechanisms to compensate against such

1American athlete, 4 times consecutive discus olympic gold medal (1956, 1960, 1964, and 1968).
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“disturbances”, or, as Taguchi called them, “noise factors”. This is evidently
not a new idea in engineering. What was a very useful idea was to propose
that in experiments in industry, under carefully controlled conditions, many if
not all of these noise factors can be manipulated and hence, used in a designed
experiment. One should then vary these noise factors, which are uncontrollable
and noisy while the process operates, and see which system configuration in
the controllable factors is the most insensitive, or robust, to the noise factor
variation.

Taguchi distinguishes System design, Parameter design, and Tolerance
design. System design is a general approach to designing a process that includes
defining its objectives and goals. In industry this concerns developing the con-
cept of a particular product and its functionality based on perceived market
needs. Parameter design involves defining responses of interest to the goals
of the system and optimize them with respect to their mean and variation.
Tolerance design corresponds to controlling the variables that have been op-
timized in the Parameter design step by controlling the factors that affect
them. Roughly speaking Parameter Design and Tolerance Design correspond
to Process Optimization and Process Control, as described in Chapter 1, with
optimization preceding control.

There is no doubt that Taguchi took the Robust Parameter Design idea from
standard engineering practice, and this explains in part its popularity in practice.
For example, in the design of electronic circuits, engineers have for many years
conducted simulations in which uncontrollable factors are varied randomly and
the most resistent or insensitive design is chosen. The merit of Taguchi was to
introduce this concept in experimental design, and to propose a method, which,
although flawed in several ways, generated considerable thinking and newer
techniques to solve such “robust parameter design” problems.

The idea of robustness has been around in the Statistics literature for many
years as well. Robustness typically has referred to models and methods and
the conclusions based on such models that are insensitive to variation in the
assumptions. However, robustness with respect to variations in uncontrollable
noise factors (both occurring during manufacturing and while the product is
being used by end customers) was a new concept introduced by Taguchi2.

2There is a lot of controversy about what are the real contributions by Taguchi, and whether even his idea on
robustness has been proposed by earlier writers than him or not. G. Box points out that the idea of robustness
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A robust design of a product or process is one in which two different types
of factors are varied: controllable factors and noise factors. Noise factors can-
not be changed or varied during operation of the process or while the product
is used in the market place. For example, instances of noise factors in a dis-
crete manufacturing process are ambient temperature and humidity, two factors
that can certainly be controlled by placing a machine tool in a “clean room” in
order to conduct the experiments (such a facility will in general be extremely
expensive for regular production in traditional metal machining manufactur-
ing). Noise factors might also be user-dependent, or relate to variables that
occur in the marketplace, once a product is used. An instance of these is in
the design of car components. The driving habits or terrain conditions a car or
car component will experience once bought by the end customer are certainly
uncontrollable for the manufacturer, but they can be varied or simulated in an
experiment for the purposes of designing a robust vehicle.

9.1 Optimization Approaches Suggested by Taguchi
Taguchi further distinguishes between factors that have a location effect, i.e.,

factors that change the mean of the quality characteristic or response, and fac-
tors that have a dispersion effect, i.e., factors that affect the variance of the
process.

An important message here is that we should always consider the distribution
of the quality characteristic when optimizing a process. Taguchi suggested to
look at the first two moments of the distribution of a random variable in a pecu-
liar and quite flawed way using signal to noise ratios, which we describe next.
Before doing that, let us comment on the experimental strategy Taguchi rec-
ommended for robustness. These are crossed arrays, experiments that results
from the product of two DOE, one in which controllable factors are varied and

of a production process to environmental variation was probably first mentioned by Michaels in a 1964 paper
[100], but as pointed out by Box, the paper did not get much attention [25]. The paper by Michaels also was a
first reference on the potential of split plot designs to model the relation between products and environmental
variation (see Section 9.3 below), with detergent manufacturing used as an example. This anticipated much
of the recent work on split plot designs for use in RPD. However, the section where Michaels covers these
ideas is rather short (half a page) and it was probably because of this that his paper went mostly unnoticed.
Apart of the fairness of Taguchi’s critics with respect to the actual techniques used by Taguchi, for the most
part quite fair, critique of Taguchi’s idea of robustness to noise factors have followed the famous adage that
says that when someone proposes something new that others dislike for some reason, first it is said that it is
wrong, then it is said it is unnecessary and trivial, and finally, it is said that it is important but someone else
did it before. Criticisms of Taguchi’s robustness idea seem to have gone through all 3 stages.
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Figure 9.1. An instance of a crossed array experiment. Three control factors varied in the inner
array according to a 23 design (larger cube) crossed with a 23 design used to vary the three noise
factors in the outer array (smaller cubes)

one in which noise factors are varied (see Figure 9.1). In the figure, eight runs
of the inner array, the 23 DOE used to vary the control factors, are crossed with
the eight runs of a 23 outer array used to vary the noise factors. The resulting
DOE has 64 runs (the smaller dots on the figure), if run unreplicated. We will
comment about the properties of these designs below. For the time being let
us note that these designs may result in a large number of runs due to “cross-
ing”. Because of this, the Taguchi orthogonal designs that are suggested are
frequently fractional factorial designs of low resolution, but this brings other
type of problems. The approach is intuitive, however, in the sense of “simulat-
ing” variation in the uncontrollable factors at different locations in the space of
the controllable factors (inner array).

Assuming a crossed array has been run, Taguchi suggested to consider three
types of problems, which correspond to minimization, maximization, and the
case the response has a target value:

1 “Smaller the better”. Here it is suggested to select the solution as the factor
combination in the inner array that
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max SNS = −10 log
n0∑
i=1

y2
i

n0

where n0 is the number of runs in the outer array.

2 “Larger the better”. Here we pick as solution the inner array point that

max SNL = −10 log
1
n0

n0∑
i=1

1
y2

i

.

3 “Target is best”. Here Taguchi proposed a 2-step approach, which probably
has not been criticized enough. He suggests two cases:

(a) µy (mean of y) is not related to σy. In this case the 2 step approach is:

i Select some control factors3 that

max SNT1 = −10 log s2

where s2 is the sample variance taken over the outer array.

ii Select some other inner array factor (not varied before) to make

y ≈ T

where T is the target of the quality characteristic.

(b) If σy is proportional to µy, a case likely to occur in practice, then

i Select some control factors to

max SNT2 = −10 log
y2

s2

where y and s2 are the average and variance of the outer array
observations.

ii Select some other control factor, not varied before, to make

y ≈ T.

Since the standard deviation is proportional to the mean, the idea
is that the controllable factors will change the mean but will not
change the ratio y2

s2 much. Note how this is the only truly “signal to
noise” ratio.

3Ross [138] suggests to select all except one.
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Figure 9.2. Two very different data sets of size n0 = 4 that result in the same SNS value of
−13.97

In all cases, the logarithm and the negative are optimized so that all SN sta-
tistics are always maximized, regardless of the objective for the response (the
factor 10 is completely superfluous).

Signal to noise ratios have been criticized for several good reasons (for a
review, see the Technometrics issue edited by V. Nair [118]). In particular:

A data set with no outer array variability and one with considerable outer
array variability may result in the same SN statistic (Figure 9.2). This was
noted by Box [18]. The implication is that no Robust Parameter Design can
be done;

Factors may have both location and dispersion effects, so the proposed
2-step approach may simply be infeasible to do in practice.

The suggested 2-step approach seems more like wishful thinking than like a
general optimization strategy that solves trade-offs in as much as possible,
as formal multi-objective and non-linear optimization techniques do4.

The problems related to the crossed arrays will be discussed further in the next
section.

9.2 Control × Noise Interaction Effects
Some authors have suggested looking at 2-factor interaction plots for

interactions that occur between a controllable (C) factor and a noise (N )

4OR students with a strong optimization background always find this naive 2-step approach quite amazing.
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factor. The importance of these interactions is that it is assumed the non-
homogeneous variance found over the controllable factor space is due to the
presence of noise factors. If there is a significant C × N interaction, then one
can choose the value of the C factor to neutralize the variability transmitted by
the N factor. Interaction plots are useful for this purpose.

For instance, suppose we have conducted an experiment with 3 control fac-
tors (A, B, and C) and one noise factor (D) and let us suppose the AD interac-
tion turns out to be significant. We wish to maximize the response y. Suppose
the AD interaction plot looks as in Figure 9.3. We need to imagine what would
happen if factor D is left to vary randomly within its low and high value, un-
controlled, once the process is released to manufacturing or when the product
is sold and used in the market place. We can set factor A “in the factory”. If we
set A to its “low” value, this will result in wild variations of the response. If we
set A to its high value, we can see the response will vary little with variations
of the noise factor. This setting, by a happy coincidence, also results in higher
response settings. Hence, setting A = +1 is a solution to this maximization
problem that is robust with respect to variations in the noise factor D.

In this case we were lucky. If the problem had been instead to minimize the
response, then we would have not known how to proceed to achieve a robust
minimizing solution.

Y

high

D

A high

A low

low

Figure 9.3. A hypothetical control × noise interaction: A is controllable and D is a noise factor
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A key point to notice is that to reduce the sensitivity of the response to varia-
tions in the noise factors, we select settings for which the slope of the response
with respect to the noise factors (as displayed, e.g., on the control × noise
interaction plot) is flattest. This is exploited in more formal mathematical pro-
gramming approaches to solving robust parameter design problems, as shown
later in this chapter. We first take a closer look at experimental strategies that
have been proposed for RPD.

9.3 Experimental Designs Used in RPD
Crossed arrays of the type promoted by Taguchi can be shown to always

provide C × N interactions that are not aliased with main effects or other two
factor interactions [142]. As mentioned earlier, these interactions are vital in
any RPD study, because they allow us to neutralize the effect of the noise factors
– which are uncontrollable – by manipulating the controllable factors. If a
process has no significant C × N interactions or these interactions are aliased
and cannot be estimated clearly, the RPD problem cannot be solved.

However, although C × N interaction are estimable if using crossed arrays,
the designs themselves usually require a large number of runs. To reduce the
number of runs, fractional factorials are run in the control (inner) array. If this is
done, the usually important C ×C interactions will not be estimable. A simple
example used to demonstrate this problem (see Shoemaker et al. [142]) is an ex-
periment with three control factors (x1, x2, x3) and 3 noise factors (z1, z2, z3).
The inner array is a 23−1 with defining relation I = x1x2x3 and is crossed with
the outer array, a 23−1 design with defining relation I = z1z2z3. The 16 run
experiment then has a complete defining relation5 equal to

I = x1x2x3 = z1z2z3 = x1x2x3z1z2z3.

In this design:

C × C interactions are aliased with main effects, so all main effects are
estimable only if the C × C and the N × N are not existent;

the noise factor main effects are aliased with a N × N interaction (i.e.,
resolution = III among the noise factors);

5The complete defining relation of a crossed array can be found by taking all the possible products of the
generators in each of the inner and outer array and adding the inner/outer array generators themselves.
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The crucial C ×N interactions are better estimated as they are aliased only
with a 4-word chain of 3 and 4 letter interactions.

One could use a 23 as an inner array instead. This will allow to estimate
all C × C interactions and C main effects clear of any aliasing. If a 23−1 is
still used as outer array, the noise main effects will be aliased with N × N

interactions, as before. Each C × N interactions will be aliased only with one
3-letter interaction. However, the design is now 32 runs large.

An alternative (see Shoemaker et al. [142]) is to use a single or combined
array consisting of a 26−2 design with 16 runs and defining relation:

I = x1x2x3z1 = z1z2z3 = x1x2x3z2z3.

This design has mixed resolution:

It also has resolution III among the noise factors;

Each C × N interaction is aliased with a C × C interaction and 2 other 3
and 4 letter interactions (i.e., resolution IV in the control factors).

Thus, we have gained that the control main effects are not aliased with 2-factor
interactions. This is a clear advantage.

The previous example and similar examples of mixed resolution designs in
the literature do not provide a systematic way of finding designs with good alias
properties. A more systematic approach can be achieved by fixing the model
form. A useful model for RPD when the model is quadratic in the controllable
factors was proposed by Box and Jones [27] (see also [113]). Suppose there
are k controllable factors x′ = [x1, x2, . . . , xk] and r noise variables z′ =
[z1, z2, . . . , zr]. Then the model is:

Yi(xi, zi) = β0 + x′
iβ + x′

iBxi + z′iγ + x′
i∆zi + εi ∀i = 1, . . . , n (9.1)

where:

- Yi(xi, zi) is the value observed for the response in the ith experiment given
a fixed value of the noise variables, zi, and the corresponding values of the
controllable factors xi;

- {εi} is a set of normal i.i.d. random variables with zero mean and vari-
ance σ2

ε ;
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- β0, β, B, γ and ∆ are the model parameters. In particular, γ is a r × 1
vector with the noise factors main effects and ∆ is a k×r matrix containing
all the control × noise interactions.

Borkowski and Lucas [13] (see also [89]) proposed a family of composite
mixed resolution (CMR) designs. These designs consist of:

A 2-level fractional factorial design with:

– resolution V among the control factors;

– at least resolution III among the noise factors;

– no C × N interaction aliased with main effects or other 2-factor inter-
action;

2k axial runs in the control factors. Borkowski and Lucas used α = 1;

N0 center points.

The conditions imposed on the factorial part do not guarantee uniqueness.
Therefore, the additional criterion of minimum aberration was used by
Borkowski and Lucas [13] to find specific CMR designs. Table 9.1 is a sample
of some of the CMR designs presented by these authors.

Example. CMR Design. Suppose we feel model (9.1) is adequate for a
problem with 3 noise factors and 3 controllable factors. We can then use design
6A (Table 9.1), assigning the first 3 columns to the control factors and the last
3 columns to the noise factors. We add 6 axial points and some center runs to
complete the design (Table 9.2). �.

Table 9.1. Selected Fractions of CMR designs (source: Borkowski and Lucas [13])

Design k+r k Fraction Control Factors Noise Factors
4A 2 2 24 A, B C, D
5A 5 2–3 25–1

V A, B, C D, E=ABCD
6A 6 2–4 26–1

V I A, B, C, D E, F=ABCDE
7A 7 2–3 27–2

IV A, B, C D, E, F=ABCE,
G=ABCD

8A 8 2 28–3
IV A, B C, D, E, F=ABCE
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Table 9.2. CMR design based on the fraction 6A for 3 control and 3 noise factors

A B C D E F=ABCDE
−1 −1 −1 −1 −1 −1

1 −1 −1 −1 −1 1
−1 1 −1 −1 −1 1

1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 1

1 −1 1 −1 −1 −1
−1 1 1 −1 −1 −1

1 1 1 −1 −1 1
−1 −1 −1 1 −1 1

1 −1 −1 1 −1 −1
−1 1 −1 1 −1 −1

1 1 −1 1 −1 1
−1 −1 1 1 −1 −1

1 −1 1 1 −1 1
−1 1 1 1 −1 1

1 1 1 1 −1 −1
−1 −1 −1 −1 1 1

1 −1 −1 −1 1 −1
−1 1 −1 −1 1 −1

1 1 −1 −1 1 1
−1 −1 1 −1 1 −1

1 −1 1 −1 1 1
−1 1 1 −1 1 1

1 1 1 −1 1 −1
−1 −1 −1 1 1 −1

1 −1 −1 1 1 1
−1 1 −1 1 1 1

1 1 −1 1 1 −1
−1 −1 1 1 1 1

1 −1 1 1 1 −1
−1 1 1 1 1 −1

1 1 1 1 1 1
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Table 9.2. (Continued)

−1 0 0 0 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

If one is quite certain that model (9.1) is an adequate representation of
the response, then a D-optimal design is certainly a possibility that should be
considered.

9.4 Split Plot Designs and Robust Parameter Design
The difficulty with which a factor can be varied from run to run in an exper-

iment may restrict the number of times we change that factor in a DOE. This
implies a restriction on the randomization akin to blocking6. If randomization
restrictions exist, the ANOVA must take them into account. The resulting de-
signs are called split plot or split unit designs. In this section, we provide an
overview of split plot designs and their use in RPD.

As an instance of a split plot design in robust parameter design, consider a
car engine testing scenario [10]. A team of engineers wishes to study different
configurations of an engine (created according to a 2k−p design) and determine
their robustness with respect to noise factors that are varied according to a 2q−r

design. The noise factors are easier to vary, e.g., using different gasoline types.
However, to start an experimental run, each engine prototype needs to be placed
on a test stand. Considerable time is spent in setting up each test. Hence,
the engineers would prefer testing each engine prototype whose configuration
makes up a “point” in the inner array, at every combination of the noise factor

6Although as we will see shortly, this differs from blocking in that a factor is introduced between blocks.
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treatments, which are then tested in random order. Running the experiment in
this way (a split-plot) the engineering team will save setup time and cost.

Notice, however that this experiment:

1 is not completely randomized. Randomization occurs only at the outer array
(noise factors) level. This needs to be accounted for in the ANOVA;

2 has effects that will be estimated with different precisions. Intuitively, the
effects associated with noise factors will be estimated more precisely than
those related to control factors, since the different engines act as blocks.
This means that noise factors are contrasted within an experimental unit
that is more homogeneous (the same engine in this case). In contrast, the
different configurations (type of carburetor, filters, etc.) are applied to a
more variable kind of experimental run, namely, different engines.

A split-plot experiment can be thought of as a blocked experiment in which
a set of factors are introduced and varied from block to block (and hence, their
effects will be confounded with blocks).

Split-plot designs originated in Agriculture experiments. A large plot of land
may be an adequate experimental unit to apply a factor such as different pesti-
cides (e.g., pesticide application by airplane is inexpensive but has to be done
over large plots). However, the large plots or whole plots of land are unnec-
essary or inappropriate to apply other factors, such as type of seed, which can
be applied easily over small plots. Thus the whole plots are divided or split
in smaller subplots (or split-plots) of land, to which the easy to vary factors
can be applied. If our main interest is the effects of the seeds (subplot fac-
tor) rather than the effect of the pesticides (whole plot factor), then running the
experiment as a split plot will not only save money to the experimenter with
respect to a completely randomized experiment, but it will give also more pre-
cise estimators of the effects associated to the subplots. The “price to pay”, is
less precision in the whole plot factor effects.

Because of the two different “sizes” of experimental units, whole plot and
split plot factor effects need to be compared against different error terms to
determine their significance. Typically, variation between large units (whole
plots) is larger than variation between small units (split plots), because the latter
are more homogeneous than the former. Thus, the significance of the factor
that varies from whole plot to whole plot should be determined by comparison



236 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

against the whole plot experimental error. Likewise, the significance of the
subplot factor effects should be determined by comparison against the subplot
experimental error.

In industrial experiments, split plotting arises due to hard to vary factors.
These factors sometimes arise, as in the engine testing mentioned before, be-
cause of setup times in preparing a test of a prototype. In chemical industries,
split plotting arises because a large batch of a mix is first produced by vary-
ing the factors in a chemical formulation which can then be divided in smaller
batches for further experimentation with respect to other factors.

We now describe how to analyze split plot designs. We will start with
2-factor experiments.

9.4.1 Split-plot Designs with 2 Factors
Suppose an experimenter has two factors of interest in addition to a nuisance

factor (say, the day in which the experiments are conducted), the latter which
she wishes to block. The experiment was run following the split-plot design of
Figure 9.4.

A model useful to explain the response that is collected from this experiment
is as follows:

yijk = µ + bi + pj + ε′ij + qk + (pq)jk + εijk,

⎧⎪⎪⎨
⎪⎪⎩

i = 1, . . . , B

j = 1, . . . , P

k = 1, . . . , Q

(9.2)
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Figure 9.4. A two factor split-plot arrangement where there is a nuisance factor (days) that
needs to be blocked



Robust Parameter Design 237

Here, bi is the block i effect, pj is the effect of whole plot j, qk is the effect
of subplot k and (pq)jk is the interaction effect of the j level of the whole plot
factor and the k level of the subplot factor.

The factor applied over the whole plots has P levels (one per “whole plot”)
and a second factor is varied at random within each whole plot across Q levels,
one per subplot. The most important feature of model (9.2) is that there are two
error terms, ε′ij , which is the whole plot to whole plot error, and the subplot to
subplot error, εijk.

The sums of squares for all terms are computed in the same way as a com-
pletely randomized three factor experiment (see Appendix B for notation):

SSWP factor =
1

BQ

P∑
j=1

y2
•j• −

y2
•••

BPQ

SSSP factor =
1

BP

Q∑
k=1

y2
••k − y2

•••
BPQ

SSBlocks =
1

PQ

B∑
i=1

y2
i•• −

y2
•••

BPQ

SSBlocks*WP =
1
Q

B∑
i=1

P∑
j=1

y2
ij• −

y2
•••

BPQ
− SSBlocks − SSWP

SSWP*SP =
1
B

P∑
j=1

Q∑
k=1

y2
•jk − y2

•••
BPQ

− SSWP − SSSP

Assuming the blocks are random effects, the Blocks × Whole Plots interac-
tion sum of squares is the whole plot error sum of squares. The sum of squares
for the subplot error is obtained by subtraction. The corresponding degrees of
freedom are shown in Table 9.3.

Example. A 2-factor Split Plot design. Consider the engine testing sce-
nario described earlier. Suppose that 3 different engines are going to be tested
for emissions of CO, where the response is the PPM of CO in the exhaust gases.
It is of interest to test four gasoline additives (A,B,C,D) to determine a reduc-
tion in emissions. Since setting up an engine for testing requires considerable
setup time, the engineers decided to run the experiment as a Split Plot by test-
ing the four gasoline additives in each engine. Three replicates were taken, and
the experimental layout and observed responses are shown in Table 9.4. The
corresponding ANOVA, obtained using Minitab’s General Linear Model option
is as follows:
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Table 9.3. ANOVA for 2-factor Split-plot design with random blocks

Source d.o.f
Blocks (B − 1)
WP main effect (P − 1)
WP error (B − 1)(P − 1)
SP main effect (Q − 1)
WP × SP interaction (P − 1)(Q − 1)
SP error By subtraction: (B − 1)P (Q − 1)
Total BPQ − 1

Table 9.4. Experimental layout and data, 2-factor Split plot engine prototype experiment

Replicate 1 Replicate 2 Replicate 3
Additive 1 2 3 1 2 3 1 2 3

A 1386 3206 2147 2752 1417 2126 705 2103 1544
B 1276 2930 2316 2903 1823 1643 503 1921 1557
C 2200 2690 1680 3245 1207 1870 1439 1464 1196
D 1333 2384 1714 3013 1432 1911 565 1492 1233

Source DF Seq SS Adj SS Adj MS F P

Replicate 2 5099374 5099374 2549687 1.08 0.421

Engine 2 486149 486149 243075 0.10 0.904

Replicate*Engine 4 9435638 9435638 2358909 61.63 0.000

Additive 3 350917 350917 116972 3.06 0.055

Engine*Additive 6 1620242 1620242 270040 7.05 0.001

Error 18 689005 689005 38278

Total 35 17681326

Variance Components, using Adjusted SS

Estimated

Source Value

Replicate 15898

Replicate*Engine 580158

Error 38278
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The Replicates and Engines terms are tested against the Replicates × En-
gines interaction, which is a random effect and acts as the whole plot error. The
Additive and Engine × Additive terms are tested against the “error” term on the
table which corresponds to the subplot error, which is obtained by subtraction.
As it can be seen, the subplot factor (Gasoline additive) is significant, and so
is the Engine × Additive (WP × SP) interaction. This is good news for the
engineers, because it means they can select a gasoline additive to reduce the
emissions. This can be observed from Figure 9.5, from which it can be con-
cluded that additive type D reduces more consistently the emissions compared
to the other additives. Finally, notice that the variance components estimates
yield σ̂WP = 761 (from the Replicate × Engine term) and σ̂SP = 195 (from the
“error”, the subplot error, term). This is as expected: the WP to WP variance is
typically larger than the SP to SP variance. �

Mead [95] has pointed out that the gain in precision in the subplots in a split
plot design, over a completely randomized design, is smaller than the precision
lost in the whole plot effects. To see this, consider the two-factor split-plot
experiment with blocks in Table 9.3. If the experiment were run in a com-
pletely randomized way, the mean square against which every effect would be
compared for significance testing would be s2. This is a weighted average of
MSWP error and MSSP error with weights equal the degrees of freedom of these
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Figure 9.5. Engine type–additive interaction plot, engine testing example
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Figure 9.6. (MSWP error − S2)/(s2 − MSSP error) as a function of P and Q

mean squares. It can be shown (see Problem 1) that

MSWP error − s2

s2 − MSSP error
=

P (Q − 1)
P − 1

(9.3)

This is a measure of the gain in precision at the SP level at the expense of the
loss in precision at the WP level. Notice how the number of blocks does not
alter the relative precision of any estimate. In other words, the closer this ratio
is to one, the less we lose precision at the WP level relative to the gains at the
SP level. It is easy to see (see Figure 9.6) that (9.3) has a minimum at Q = 2.
Thus, to reduce the lack of precision problem at the WP “stratum”7 relative to
the SP stratum, one should reduce the number of subplots as much as possible.
Increasing the number of whole plots does help too, as mentioned by some
authors [64], but not as dramatically.

9.4.2 Split-plot Designs in 2-level Factorials and their use
in RPD

There has been considerable recent work on split plot designs applied to
Robust Parameter Design (see e.g., [10, 84, 64]). The Split-Plot nature of any

7A terminology used by some authors, e.g., Trinca and Gilmour [151].
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experiment arises naturally when one or more factors are hard to vary. Hard
to vary factors constitute the whole plot factors, while easier to vary factors
constitute subplot factors. In a RPD experiment, in most cases the control
factors are hard to vary, since they refer to the design of a product or process
(e.g., consider the engine testing scenario in the previous example). To save
cost, the RPD experiment is not run in a completely randomized (CR) way but
as a split-plot. The problem with such approach, as mentioned before, is that
the whole plot effects (the control factors in this case and their interactions) will
be estimated less precisely than if the experiment were run as a CR experiment.
To reduce this problem it has been suggested to increase the number of whole
plots. As shown in the previous section for the case of a two factor Split-Plot
design, reducing the number of subplots has a stronger effect in improving the
precision of the WP effect estimates. We now consider this matter for the case
of a general factorial experiment.

Consider the case of a 2k−p×2q−r crossed array used for RPD. As far as we
know, Taguchi did not recommend running crossed arrays in a Split-Plot man-
ner but rather emphasized that they should be run in a completely randomized
way. This, actually, is good advise: if an experiment can be run as a completely
randomized design, it should not be run as a Split Plot. Conversely, analyzing
a Split Plot experiment as a CRD can lead to conclude erroneously that whole
plot effects are significant and subplot effects insignificant. Furthermore, since
the C, C × C, and C × N effects are more important than the N and N × N

effects, only when the hard to vary factors are noise factors is when a Split-
Plot design (with noise factors varied in the whole plots) is recommended for
Robust Parameter Design. This was actually suggested by Michaels [100]. Un-
fortunately this will not always be possible to do in practice, as control factors
can be the harder to vary, like in the prototyping experiment mentioned earlier.

When control factors are extremely costly to vary, this will force the ex-
perimenter to run a Split Plot design with control factors varied in the whole
plots. In such case, the experimenter should try to maximize the number of
whole plots (i.e., use the largest 2k−p fraction for the inner array his/her budget
allows) and minimize the number of subplots (i.e., use the smallest possible
fraction 2q−r for the outer array. Notice how using a very small fraction for
the SP stratum enhances the precision (i.e., reduces variance), but at the cost of
aliases or bias. This is the ever present variance-bias tradeoff in experimental
design also present in Split Plot designs.
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Table 9.5. A 2 × 22 crossed experiment for the example

B − + − +
A C − − + +
− y11 y21 y31 y41

+ y12 y22 y32 y42

Table 9.6. The 2 × 22 Split Plot design with the errors of each observation

A B C i j errors
− − − 1 1 ε′1 + ε11

− + − 2 1 ε′1 + ε21

− − + 3 1 ε′1 + ε31

− + + 4 1 ε′1 + ε41

+ − − 1 2 ε′2 + ε12

+ + − 2 2 ε′2 + ε22

+ − + 3 2 ε′2 + ε32

+ + + 4 2 ε′2 + ε42

To illustrate the difference in precision of WP and SP effect estimates in a
factorial experiment, consider an experiment discussed by Bisgaard8 [10] and
shown in Table 9.5.

This is a 21×22 Split Plot design with factor A in the whole plot and factors
B and C in the subplots. A model for this experiment is

yij = f(xij) + ε′j + εij ,

{
i = 1, 2, 3, 4
j = 1, 2

where Var(ε′j) = σ2
WP and Var(εij) = σ2

SP and f(xij) denotes the effects of all
factors of interest (the important feature of the model is its two-error structure).
Table 9.6 shows the design, together with the errors that are part of each of the
observed responses if the experiment is conducted as a Split Plot.

From Table 9.6, it can be seen that the variance of the whole plot effect A is

Var(A) = Var

(
1
4

(
−4ε′1 + 4ε′2 −

4∑
i=1

εi,1 +
4∑

i=1

εi2

))
= 2σ2

WP +
σ2

SP
2

.

(9.4)

8Who we follow in this illustration.
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If instead the experiment had been run as a completely randomized experiment,
every observation would contain a WP and a SP error (ε′′ij = ε′i + εij), so

Var(A) = Var

⎛
⎝1

4

⎛
⎝

4∑
i=1

2∑
j=1

ε”ij

⎞
⎠
⎞
⎠ =

1
16

8(σ2
WP + σ2

SP) (9.5)

which evidently is less than (9.4). So, we get a more precise estimate for the
whole plot effects if the experiment is run in a completely randomized way. For
a subplot effect, say factor B, we have that

Var(B) = Var
(∑±εi1 −

∑±εi2

4

)
=

1
2
σ2

SP

since the whole plot error terms ε′j cancel out. This is evidently smaller than
(9.5) which is what we would get had the experimenter ran the design com-
pletely randomized.

In general, Bisgaard [10] shows that for a 2k−p × 2q−r crossed array run as
a Split Plot, a whole plot factor effect is estimated with variance

4
N

(2q−rσ2
WP + σ2

SP)

while a subplot effect is estimated with variance
4
N

σ2
SP.

Notice how to reduce the variance of the WP effects, 2q−r, the number of sub-
plots, should be as small as possible9.

In the practical analysis of crossed or combined arrays run as Split Plots,
all that is necessary is a rule to determine which effects should be compared
against the WP error and which effects should be compared against SP error.
Bisgaard [10] gives the following simple rule:

Effects involving only WP factors and aliases of these effects are tested by
comparing their sum of squares against the WP error. All other effects are
tested by comparing against the SP error.

It is furthermore suggested that two separate normal probability plots of the
effects should be used, one for WP effects and their aliases, the other for all the
other effects, to determine the significant effects.

Example. A crossed factorial array run as a Split Plot. A semiconductor
manufacturer wishes to run an experiment in one of their chemical-polishing-

9But also as noticed before, the smaller the SP fraction the more aliases or bias.
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machines in order to model the non-uniformity of the silicon wafers after pol-
ishing as a function of several factors. Eight factors of potential importance are
being considered. Difficult to control factors are A=Pad age, B=Incoming non-
uniformity, C=Type of Slurry, D=Conditioning of the machine, and E=Routing.
These are difficult to change either because they require considerable time
(e.g., change the type of polishing pads), or because they refer to properties
the wafers acquire before the current processing step (polishing). The three
remaining factors are F=polishing time, G=Down pressure, and H=RPM’s.
These are easier to vary as they are simply entered in the machine in order
to process the next run of wafers. Therefore, the engineers decided to run a
combined 28−2

V array (N = 64) in Split-Plot form10. The design uses genera-
tors G=ABCD and H=ABEF and is shown in Table 9.7. Notice how there are
25 = 32 whole plots. In each whole plot only one treatment combination in
A, B, C, D, and E is performed. Also, each whole plot contains two subplots,
where factors F, G, and H are varied.

In this design, the mean squares for the A, B, C, D, E, AB, AC, AD, AE,
BC, BD, BE, CD, CE, and DE effects will be compared against the whole
plot error, while the mean squares corresponding to all other effects will be
tested against the subplot error. �

9.4.3 Split Plot Model Estimation
In general, the individual effects from Split Plot designs will not be estimable

and hence the main goal in analyzing SP experiments is to conduct the appro-
priate tests of significance using ANOVA. This was discussed in the previous
sections. For designing optimal Split Plot designs it is necessary to know how
these models are estimated. Any split plot design and, in general, designs with
complicated structure of random and fixed effects can be analyzed using a lin-
ear mixed model [140, 64] of the form:

y = Xβ + Zγ + ε

where y is n × 1, X is n × p, β is p × 1, Z is n × W (where W denotes
the number of whole plots), γ is W × 1 and ε is n × 1. Here, ε ∼ (0, σ2

εIn),
γ ∼ (0, σ2

yIW ) and Cov(ε, γ) = 0W×n. In a Split Plot experiment, the vector
ε models the subplot error, the random vector γ models the whole plot errors

10If this were a completely randomized design, 64 runs would be considered a large experiment for most
people in industry, particularly semiconductor industry. However, the split-plot structure and its associated
savings actually allow to run larger experiments
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Table 9.7. A 28−2
V combined array run as a Split plot with A, B, C, D, and E as whole plot

factors and F, G, and H as subplot factors

Whole Standard Run
Plot A B C D E F G=ABCD H=ABEF Order Order

1 −1 −1 −1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 −1 1 1 −1 17 2

2 1 −1 −1 −1 −1 −1 −1 −1 2 3
1 −1 −1 −1 −1 1 −1 1 18 4

3 −1 1 −1 −1 −1 −1 −1 −1 3 5
−1 1 −1 −1 −1 1 −1 1 19 6

4 1 1 −1 −1 −1 −1 1 1 4 7
1 1 −1 −1 −1 1 1 −1 20 8

5 −1 −1 1 −1 −1 −1 −1 1 5 9
−1 −1 1 −1 −1 1 −1 −1 21 10

6 1 −1 1 −1 −1 −1 1 −1 6 11
1 −1 1 −1 −1 1 1 1 22 12

7 −1 1 1 −1 −1 −1 1 −1 7 13
−1 1 1 −1 −1 1 1 1 23 14

8 1 1 1 −1 −1 −1 −1 1 8 15
1 1 1 −1 −1 1 −1 −1 24 16

9 −1 −1 −1 1 −1 −1 −1 1 9 17
−1 −1 −1 1 −1 1 −1 −1 25 18

10 1 −1 −1 1 −1 −1 1 −1 10 19
1 −1 −1 1 −1 1 1 1 26 20

...
...

...
...

...
...

...
...

...
...

...
31 −1 1 1 1 1 −1 −1 1 47 61

−1 1 1 1 1 1 −1 −1 63 62
32 1 1 1 1 1 −1 1 −1 48 63

1 1 1 1 1 1 1 1 64 64

(one per WP), and Zij = 1 if the ith observation resides in the jth whole plot
(Zij = 0 if otherwise). With this, the covariance matrix of the observations is

Cov(y) = σ2
yZ

′Z + σ2
εIn ≡ V .

Because the variances are not constant for all observations, generalized least
squares (GLS) needs to be used, giving:

β̂ = (X ′V −1X)−1X ′V −1y (9.6)

with a covariance matrix of the GLS estimators given by

Var(β̂) = (X ′V −1X)−1 (9.7)
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In practice, the variance components σ2
ε and σ2

y are not known and must be
estimated [84]. The variance estimates are then plugged into (9.6–9.7). The de-
terminant of matrix X ′V −1X is used for the D-optimal design of split plot
designs and other complex DOEs, see [64]. In some important cases, the
GLS estimators reduce to the ordinary least squares (OLS) estimators (β̂ =
(X ′X)−1X ′y). Two such cases are saturated designs (i.e., designs for which
n = p) and crossed array designs. Therefore, OLS suffices for designing
D-optimal split-plot designs for RPD, provided the experimental design that
is desired is a crossed array. See Goos [64] for details.

9.5 Mean and Variance Estimation: A Dual Response
Approach to RPD**

Let us return to model (9.1) and its use for RPD11. We assume from now on
that RPD experiments are run completely randomized.

Once this model is fit12, we assume that the noise factors will vary either
while the process operates or when the product is used according to some
distribution with known mean equal to zero and known variance, i.e.,

z ∼ (0,Σz).

We can then obtain “dual” models for mean and variance of the response by
taking expectation and variance with respect to all the random variables in the
model, namely, the noise factors z and the uncontrollable error ε. This yields
functions of the controllable factors x only, which in principle can be used in a
non-linear optimization problem as discussed in Section 4.4. The two functions
are:

Ez(Y (x, z)) = β0 + x′β + x′Bx (9.8)

and
Varz(Y (x, z)) = (γ + ∆′x)′Σz(γ + ∆′x) + σ2

ε (9.9)

Although in principle historical data can be used to estimate Σz, the possi-
bility of errors in this estimate indicates the need for further research on this
aspect of the problem, which thus far has not been investigated.

Note how
∂(Y (x, z))

∂z
= (γ + ∆′x)′.

11This section has somewhat more advanced material and may be skipped on a first reading.
12Sections 9.5 and 9.6 are based on Miro and del Castillo [104].
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Thus, from (9.9) we can see that to minimize the variance of Y we need to make
this partial derivative as small as possible, ideally making it equal to zero. This
is directly related to our observation (Section 9.2) that the slope of the response
with respect to the noise factors should be minimized to minimize the variance
of Y .

In practice, all the parameters in model (9.1) are estimated from data. The
model is linear in the parameters, and the εi’s are i.i.d.. Therefore, all the usual
assumptions of linear regression are met (see Appendix A).

To estimate β0, β, B, γ and ∆ using Ordinary Least Squares, it is useful
to re-parameterize model (9.1) following a suggestion in Borror et al. [14]:

y = X∗β∗ + ε (9.10)

where y is a vector containing all the observations Yi(xi, zi) and X∗ is a matrix
with (k+1)(k+2)

2 + kr + r columns representing: the linear effects, the second
order interactions and quadratic effects for the controllable factors, the r linear
effects for the noise variables, and the kr interactions between the noise and the
controllable factors. Collecting all the terms associated with controllable fac-
tors and the intercept in one vector (x in “model form”, hence the superscript):

x(m) =
[
1 x1 x2 . . . xk x1x2 x1x3 . . . xkxk−1 x2

1 x2
2 . . . x2

k

]

(9.11)

The vector β∗ contains all the parameters present in equation (9.1), β0, β, B,

γ and ∆.
The least squares estimator of β∗ is then given by:

β̂∗ =
(
X∗′X∗

)−1
X∗′y.

We will denote by Ŷ (x, z) a prediction based on the fitted model (9.1) given
specific values of controllable (x) and noise (z) factors.

The symmetric matrix
(
X∗′X∗

)−1
, depicted in Figure 9.7, is the scaled

covariance matrix of β̂∗ and is made up of several submatrices relevant in
our discussion. We also need to further partition C(zx) into submatrices
corresponding to each controllable factor xi, i = 1, . . . , k. This partition is
presented in Figure 9.8.
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C(zx)=

z1x1 · · · zrx1 z1x2 · · · zrx2 · · · z1xk · · · zrxk

z1x1

C(zx)11 C(zx)12 · · · C(zx)1k

...
zrx1

z1x2

(
C(zx)12

)′
C(zx)22 · · · C(zx)2k

...
zrx2

...
...

. . .
...

...
z1xk(

C(zx)1k

)′ (
C(zx)2k

)′ · · · C(zx)kk

...
zrxk

Figure 9.8. The structure of of C(zx). From: [104]

To estimate Ez(Y (x, z)) and Varz(Y (x, z)) some authors suggest to to sim-
ply substitute the parameters in equations (9.8) and (9.9) by their respective
OLS estimators, β̂0, β̂, B̂, γ̂ and ∆̂, to obtain:

Êz(Y (x, z)) = β̂0 + x′β̂ + x′B̂x (9.12)

V̂ ar
(b)

z (Y (x, z)) = (γ̂ + ∆̂′x)′Σz(γ̂ + ∆̂′x) + σ̂2
ε . (9.13)

The estimator in equation (9.12) is an unbiased estimator of Ez(Y (x, z)).
However, the estimator in equation (9.13) is not an unbiased estimator of
Varz(Y (x, z)) because it is a quadratic function of γ̂ and ∆̂. Hence the “(b)”
superscript. To show this, we can take expectation of the quadratic form in
(9.13) over the parameter estimates γ̂ and ∆̂ to get (see, for example, [3,
p. 205]):

Eγ̂,∆̂

(
V̂ ar

(b)

z (Y (x, z))
)

= Eγ̂,∆̂

(
(γ̂ + ∆̂′x)′Σz(γ̂ + ∆̂′x) + σ̂2

ε

)

= (γ + ∆′x)′Σz(γ + ∆′x) + tr
(
ΣzVar γ̂,∆̂

(
γ̂ + ∆̂′x

))
+ σ2

ε

= (γ + ∆′x)′Σz(γ + ∆′x) + tr (ΣzP(x)) + σ2
ε (9.14)

where the variance matrix of the slope P(x) is obtained by partitioning ∆̂
column-wise and assuming an orthogonal experimental design (more about this
matrix below).
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An unbiased estimator for Varz(Y (x, z)) can be found by correcting for the
term with the trace in equation (9.14) in the following way:

V̂arz(Y (x, z)) = (γ̂ + ∆̂′x)′Σz(γ̂ + ∆̂′x) + σ̂2
ε (1 − trace(ΣzP)) .

(9.15)

This expression is the one frequently recommended as it is an unbiased estima-
tor for Varz(Y (x, z)) (see [117]). Miro et al. [104] showed how an equivalent,
but more revealing expression for P(x) can be found by partitioning ∆̂ row-
wise instead of column-wise:

P(x) = Var γ̂,∆̂

(
γ̂ +

[
δ̂
′
1·δ̂

′
2· · · · δ̂

′
k·

]
x
)/

σ2
ε

= Var

(
γ̂ +

k∑
i=1

xiδ̂
′
i·

)/
σ2

ε .

where each δ̂′
i· is a r×1 vector that contains the columns of ∆. The variance of

the slope has simpler forms under some assumptions, which we now consider.
If the DOE renders i) N and N ×C effects orthogonal, and ii) N ×C effects

orthogonal to other N × C effects, we get:

P(x) = Cz +
k∑

i=1

x2
i C(zx)ii

where the scaled covariance matrices of γ̂ and δ̂i· are given by Cz (Figure 9.7)
and C(zx)ii

(Figure 9.8), respectively. Here, a scaled covariance matrix means
a covariance matrix that is divided by σ2

ε .
An even simpler form of the variance of the slope can be obtained as

follows. If the DOE renders all the N × C interactions with the same stan-
dard error13 then all the δ̂i·’s have the same covariance matrix. Therefore, let
Cδ = C(zx)ii

∀i = 1 . . . k, denote this common covariance matrix. Then we
have that P(x) reduces even further to:

P(x) = Cz + (x′x)Cδ.

13Most of the response surface experimental designs, especially of the mixed resolution type that have
been recommended for use in the dual response approach to RPD [15], [13], [117] have this property, see
Section 9.3.
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In this case, an alternative expression of the unbiased estimator of the variance
can be found as:

V̂arz(Y (x, z)) = (γ̂ + ∆̂′x)′Σz(γ̂ + ∆̂′x)

+ σ̂2
ε

⎛
⎜⎝1 −

⎛
⎜⎝tr (ΣzCz) +

(
x′x

)
tr(ΣzCδ)︸ ︷︷ ︸

Bias correction term

⎞
⎟⎠

⎞
⎟⎠ . (9.16)

The unbiased estimator in (9.16) explicitly states how the “bias correction term”
increases with the squared distance from the origin in coded units (x′x). Thus,
for settings of the controllable factors far away from the origin, the variance
estimate (9.16) can be negative. This can also happen if the part of the model
containing noise factors does not fit well. We now illustrate some of the afore-
mentioned computations which will be used in later sections in this chapter.

Example. Computation of P(x) and (X∗′X∗)−1. Borror and Mont-
gomery [15] analyze the data set presented in Table 9.8, which corresponds
to a CMR design with k = 4 and r = 3. The fitted response surface has
an R2 statistic of 0.945, which implies a relatively good fit. We illustrate the
computation of the (X∗′X∗)−1 and the P(x) matrix with this design.

Table 9.9 shows the corresponding (X∗′X∗)−1 matrix, indicating which
terms each column and row corresponds to. Let us assume that from historical
experience, the noise factors have a variance covariance matrix equal to:

Σz =
1

7.5

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦

Since all C × N interactions have the same standard error, then (see
Table 9.9) we have that Cδ = 0.03125I3 = C(zxii) for i = 1, 2, 3. Therefore,
the covariance matrix of slopes is given by

P = Cz + (x′x)Cδ

=

⎡
⎢⎣

1
7.5

+ 0.01325
∑4

i=1
x2

i 0 0

0 1
7.5

+ 0.01325
∑4

i=1
x2

i 0

0 0 1
7.5

+ 0.01325
∑4

i=1
x2

i

.

⎤
⎥⎦

These computations will be used in the example shown in the next section. �
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Table 9.8. Composite Mixed Resolution Design for the example (from: Borror et al. [14])

x1 x2 x3 x4 z1 z2 z3 Y
1 1 1 1 1 1 1 411

−1 1 1 1 1 −1 −1 269
1 −1 1 1 1 −1 −1 106

−1 −1 1 1 1 1 1 159
1 1 −1 1 1 −1 −1 258

−1 1 −1 1 1 1 1 257
1 −1 −1 1 1 1 1 216

−1 −1 −1 1 1 −1 −1 97
1 1 1 −1 1 1 −1 312

−1 1 1 −1 1 −1 1 150
1 −1 1 −1 1 −1 1 253

−1 −1 1 −1 1 1 −1 111
1 1 −1 −1 1 −1 1 56

−1 1 −1 −1 1 1 −1 35
1 −1 −1 −1 1 1 −1 204

−1 −1 −1 −1 1 −1 1 −47
1 1 1 1 −1 −1 1 175

−1 1 1 1 −1 1 −1 169
1 −1 1 1 −1 1 −1 152

−1 −1 1 1 −1 −1 1 163
1 1 −1 1 −1 1 −1 143

−1 1 −1 1 −1 −1 1 222
1 −1 −1 1 −1 −1 1 180

−1 −1 −1 1 −1 1 −1 136
1 1 1 −1 −1 −1 −1 109

−1 1 1 −1 −1 1 1 188
1 −1 1 −1 −1 1 1 174

−1 −1 1 −1 −1 −1 −1 164
1 1 −1 −1 −1 1 1 85
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Table 9.8. (Continued)

−1 1 −1 −1 −1 −1 −1 159
1 −1 −1 −1 −1 −1 −1 154

−1 −1 −1 −1 −1 1 1 67
2.65 0 0 0 0 0 0 17

−2.65 0 0 0 0 0 0 −54
0 2.65 0 0 0 0 0 398
0 −2.65 0 0 0 0 0 194
0 0 2.65 0 0 0 0 370
0 0 −2.65 0 0 0 0 237
0 0 0 2.65 0 0 0 379
0 0 0 −2.65 0 0 0 255
0 0 0 0 0 0 0 89
0 0 0 0 0 0 0 9
0 0 0 0 0 0 0 69

9.6 Robustness with respect to Noise Factors
and Parameter Uncertainty

If V̂ar
(b)

z (Y (x, z)) is minimized in a Robust Parameter Design problem, we
will be focusing only on the variance due to the noise factors. However, an
additional variance component not only in RPD but in any response surface
problem is due to the uncertainty in the parameter estimates. This was dis-
cussed in Chapters 6 and 7 without reference to RPD problems. In the context
of RPD, imprecise estimates of the parameters associated with noise factors

can result in negative values of V̂ar
(b)

z (Y (x, z)). Therefore, a natural exten-
sion of the dual response approach for RPD shown in previous sections is to
introduce the additional variance of the parameters estimates into an objective
function that combines it with noise factor variance. Optimizing such function
will achieve a process that is robust with respect to noise factor variation and
with respect to uncertainty in the parameter estimates.

One such function is the variance of the predicted response, where the vari-
ance is taken with respect to the parameter estimates of the model and with
respect to the noise factors. As in the previous section, let β̂∗ denote the vector
containing all the parameters in the model of equation (9.1).
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Miro and del Castillo [104] propose to consider the objective:

Var
z, β̂∗(Ŷ (x, z)) = Var

z, β̂∗
(
β̂0 + x′β̂ + x′B̂x + z′γ̂ + x′∆̂z

)
(9.17)

which is the variance of the predicted response taking into consideration the
variability in the noise factors and in the parameter estimates.

If the parameter estimates associated with the controllable and noise factors
are orthogonal, then

Var
z, β̂∗(Ŷ (x, z)) = Var

z, β̂∗
(
β̂0 + x′β̂ + x′B̂x

)
+Var

z, β̂∗
(
z′γ̂ + x′∆̂z

)

(9.18)
Let x(m) denote the (k+1)(k+2)

2 vector containing the regressors associated
with the controllable factors. Then, since the argument of the variance operator
in the first term of (9.18) is not a function of z, this term is just the variance
with respect to β̂

∗
, given by:

Var
β̂∗

(
β̂0 + x′β̂ + x′B̂x

)
= σ2

εx
′(m)Cx(m)x(m) (9.19)

where Cx(m) is the upper left matrix of
(
X∗′X∗

)−1
, shown in Figure 9.7.

The second term of equation (9.18) can be found to be equal to (see
Problem 2):

Var
z, β̂∗

(
z′γ̂ + x′∆̂z

)
= σ2

ε tr(ΣzP) + (γ + ∆′x)′Σz(γ + ∆′x).

(9.20)
where tr denotes the trace (see Appendix C). Therefore, combining equations
(9.19) and (9.20) gives the variance of the predicted response:

Var
z, β̂∗(Ŷ (x, z))

= (γ + ∆′x)′Σz(γ + ∆′x) + σ2
ε

(
tr(ΣzP) + x′(m)Cx(m)x(m)

)
.

(9.21)

We need an estimator of this. An unbiased estimator was found by Miro
et al. as follows. From equation (9.14) we have that:

Eγ̂,∆̂

(
(γ̂ + ∆̂′x)′Σz(γ̂ + ∆̂′x)

)
= (γ +∆′x)′Σz(γ +∆′x)+σ2

ε tr (ΣzP)
(9.22)
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and therefore an unbiased estimator of (9.20) is given by:

V̂ar
z, β̂∗(Ŷ (x, z)) = (γ̂+∆̂′x)′Σz(γ̂+∆̂′x)+σ̂2

ε (x
′(m)Cx(m)x(m)) (9.23)

(see Problem 3). This is the function proposed in [104] to solve RPD problems.
That is, we minimize the estimated variance of the predictions. As indicated by
the subscripts, (9.23) considers the variability created both by the randomness
of the noise factors and by the uncertainty in the parameter estimates of the
fitted model.

Example. RPD based on the estimated variance of the predictions. Let
us consider again the data in Table 9.8. Assume as before that covariance matrix
of the noise factors is Σz = 1

7.5I3. The goal is to obtain process settings such
that the target of 200 units is achieved with minimum variance. In this example
we will compare the estimated prediction variance, V̂ar

z, β̂∗(Ŷ (x, z)), com-

puted using equation (9.23), with the biased estimator V̂ar
(b)

z (Y (x, z)) from
equation (9.13) and with V̂arz(Y (x, z)) from equation (9.16). These objec-
tives were minimized subject to Êz(Y (x, z)) = 200 and x′x ≤ 7 (this is the
square of the radius of the experimental region). Matlab’s fmincon routine was
used for this purpose, although given the small number of decision variables
any general purpose non-linear programming technique can be utilized, such as
the Generalized Reduced Gradient (GRG) included in MS Excel’s Solver.

The optimal solutions for the three constrained minimization problems are
presented in Table 9.10. The column under x∗ contains the optimal settings of
the controllable factors for the respective objective. The value of the objectives
evaluated at their respective x∗ are listed under “Optimal Value”. The values
of the other objective functions for each optimal solution are also included in
the following three columns. σ̂

Êz(Y )
denotes the estimated standard error with

which the estimated expected mean of Êz(Y (x, z)) = 200 is predicted. These

values correspond to σ̂ε

√
x′(m)∗Cx(m)x(m)∗, where x′(m)∗ denotes the optimal

settings x∗ transformed to model form.
As it can be seen, the criterion V̂ar(Ŷ (x, z)) provides the smallest standard

error around the desired mean. This implies that the third solution on the table
is the most robust with respect to i) noise factor variation, and ii) parameter
estimation variability. Notice how from the R2 value (0.945) one would think
that ii) above would have little impact, when in fact the effect of the parameter
estimation variability is very dramatic. �
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(Ŷ

(x
,z

))
[0

.1
8,

0.
46

,−
1.

28
,

0.
96

]
18

90
18

01
37

0
18

.6



258 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

Compared with the solutions found with the other variance objectives, the
new objective allows us to find solutions for which the variance contribution
due to the noise factors is also small but in addition the predictive properties of
the fitted models are much better. Thus, we obtain a solution that is robust to
both noise factor variability and uncertainty in the model parameter estimates.

9.7 The Noise Factor Separation Criterion
for Experimental Designs Used in Robust
Parameter Design

In a recent paper [40] it was proposed to evaluate experimental designs used
for RPD based on how much one needs to separate the two levels of the noise
factors. The idea is that if noise factor levels are separated little, little or no in-
formation on the model parameters associated with them will be available. The
problem, in practice, is that wider noise factor levels, while convenient from a
model-fitting point of view, are frequently more expensive than narrower ones.
For example, a typical noise factor in machining and other discrete-part manu-
facturing processes is environmental temperature. Varying environmental tem-
perature in a RPD experiment over wide ranges will be more expensive than
using narrower ranges, given the increase in energy expense. As a second ex-
ample, consider experiments in a wind tunnel to design car components. Wind
speed is a noise factor that can be varied in such facility, with wider ranges
always associated with increasing cost. Even in case an increasing range in the
noise factor does not result in a significant increment in cost, there may be a
maximum range beyond which no experiment can be run (environmental tem-
perature and wind speed are also instances of such case). In addition, setting
the factor levels too far apart may result in model bias, i.e., over the experi-
mental region a more nonlinear model than assumed may hold (this is true for
all factors, not only for the noise factors). In summary, there is a trade-off be-
tween the goodness of the fit of the model (in particular, the part that depends
on the noise factors z), and the size of the experimental region in the noise fac-
tor space. The noise factor separation (NFS) balances these two aspects of the
trade-off.

Suppose we wish to fit model (9.1). The terms in the model that contain noise
factors (z) will be referred to as the noise part of the model. Usual practice
in response surface approaches to RPD is to let zi = ±1 represent plus or
minus one (or perhaps, two) standard deviation(s) of the distribution of the
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noise factors in original units (see [117, p. 562]). The NFS design criterion is
based on preferring designs that, other things being equal, require less extreme
noise factor levels in original units, i.e., less scaling.

We now explain how to compute the noise factor separation CD(τ) that
achieves a given expected mean square error (MSE) τ of the noise part of the
model for a given experimental design D. Following Section 9.5, let

P(x) = Var
γ̂,∆̂

(
γ̂ + ∆̂

′
x
)

. (9.24)

This is the r × r covariance matrix of the estimated slope of model (9.1) in
the direction of the r noise factors (i.e., Var(∂Y/∂z)), taken with respect to
the estimated parameters [14]. This quantity determines how well we estimate
the variance response (9.9), something essential for the success of any RPD
study [117]. It is also related to the quantities plotted on Variance Dispersion
Graphs for the slope [14], which plot the max, min, and average of the diagonal
elements of P(x) (i.e., P(x)ii for i = 1, 2, . . . , r) over spheres of different
radii in the controllable factor space.

The covariance matrix of the slopes relates to the expected mean square error
(MSE) of the noise part of the model as follows:

MSE((γ̂ + ∆̂′x)′z/σ2
ε ) = Var γ̂,∆̂

((γ̂ + ∆̂′x)′z)/σ2
ε

= z′P(x)z

where the first equality follows from the fact that (γ̂ + ∆̂′x)′z is an unbiased
estimator of (γ + ∆′x)′z and hence its variance equals the MSE.

As shown by Miro and del Castillo [104], the MSE of (γ̂ + ∆̂′x)′z/σ2
ε ,

averaged over all possible values of the noise factors z is then given by:

Ez

(
MSE((γ̂ + ∆̂′x)′z/σ2

ε )
)

= Ez(z′P(x)z)

= tr(ΣzP(x))
(9.25)

assuming, without loss of generality, that the coded noise factors have zero
mean. This is the case if we introduce the following coding convention of the
noise factors:

zi =
ξi − µξi

Cσξi

, ∀i = 1, . . . , r
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where ξi is the uncoded noise factor which has mean µi and variance σ2
ξi

and
C is a scaling factor. Then,

E(zi) =
µξi − µξi

Cσξi

= 0, Var(zi) =
σ2

ξi

C2σ2
ξi

=
1

C2
, ∀i = 1, . . . , r .

or, in vector notation:

E(z) = 0 , Var(z) = Σz =
1

C2
Ψξ (9.26)

where Ψξ is the correlation matrix of the noise variables measured in their
original units.

With this coding convention, a coded factor of zi = ±1 corresponds to orig-
inal (uncoded) noise factors separated ±C standard deviations apart. Thus,
larger values of C indicate more scaling and more noise factor separation in
uncoded units. From (9.25) and (9.26) the coding convention implies that the
expected MSE of the noise part of the model is:

Ez

(
MSE((γ̂ + ∆̂′x)′z/σ2

ε )
)

=
1

C2
tr(ΨξP(x)). (9.27)

In general, the expected MSE increases the farther the point x at which we
want to predict is from the origin. Therefore, it was suggested in [104] to look
at the expected MSE at xmax, the design point farthest away from the origin
of the controllable factor space. If τ represents the desired expected MSE for
the noise part of the model evaluated at xmax, the value of C that achieves it,
CD(τ), is obtained from(9.27) equating the right hand side to τ and solving for
C:

CD(τ) =
√

1
τ
tr(ΨξP(xmax)). (9.28)

Values of the scaling parameter C larger than the right hand side of (9.28)
will give expected MSE values lower than τ . The relation given by (9.28)
is a hyperbola that always has the shape indicated in Figure 9.9. Since the
quantity inside the trace in (9.28) is not a function of τ , if a design has smaller
CD(τ) for τ = τ0, it will have smaller C value for all τ . Therefore, one can
simply compare designs according to the NFS criterion by looking at their
performance at a single value of the expected MSE of the noise part of the
model, τ , on Figure 9.9.
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Figure 9.9. Illustration of the relation between the expected MSE of the noise part of the model
and the noise factor separation (scaling) factor C for two hypothetical designs. Source: [40]

To illustrate how an experimental design can be evaluated using the NFS
criterion CD(τ), suppose we have two designs, D1 and D2. One can vary
the amount of expected MSE desired by the experimenter for the noise part of
the model, τ , and see what noise factor separation C achieves such expected
MSE. Figure 9.9 illustrates this idea for two hypothetical designs. The shape
of the functions, which is always as in the figure, indicates that as the expected
MSE we desire goes down, the necessary scaling factor goes up, and with
it, the separation between the noise factors. For example, let us suppose we
wish to have an expected MSE of the noise part of the model of at most
20% the uncontrollable noise variance σ2

ε , thus τ = 0.2. To achieve this
expected MSE, design D1 requires a noise factor separation of C = 1.5 stan-
dard deviations, while design D2 provides the same expected MSE of 0.2σ2

for a noise factor separation of C = 4 standard deviations (thinner dotted
lines). Thus, we should prefer design D1 to design D2 (or, we shall say design
D1 is better than design D2 according to the noise factor separation (NFS)
criterion).
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An alternative and also useful interpretation of Figure 9.9 is the following.
Suppose we have set the noise factors 2.5 standard deviations apart. If we
conduct experiment D1, our expected MSE for the noise part of the model is
around 0.14σ2

ε . In contrast, if we conduct the experiment according to exper-
imental design D2 the MSE we should expect for the noise part of the model
is 0.3σ2

ε (thicker dotted line). Thus, D2 is inferior to D1 according to the NFS
criterion.

It can be shown easily (see Problem 5) that the C(τ) functions of two dif-
ferent designs will never “cross” (they can only coincide for the same DOE).
Therefore, it is not necessary to draw graphs like Figure 9.9 to compare designs;
a design D1 that is better (i.e., gives lower noise factor separation) than other
design for a given value of the expected MSE will be better for all expected
values of the MSE. Therefore, it suffices to compare the designs at a single
τ -value of the graph. del Castillo et al. [40] used the value CD(0.1), that is, the
noise factor separation required to get an expected MSE of the noise part of the
model of 0.1 times σ2

ε .

The noise factor separation criteria CD(τ) depends on several aspects we
can change in a design D:

the farthest controllable factor point in the design xmax;

how well D estimates the N × C interaction effects;

the correlation between N ×C and N effects and between each N ×C and
other N × C effects;

the design size (n).

del Castillo et al. [40] propose D-optimal designs for robust parameter
experiments subject to a NFS constraint. They also investigated some well-
known designs from a NFS point of view. A summary of their findings is as
follows:

Box-Behnken (BB) designs. These designs should not be used to fit model
(9.1) given the poor standard error with which they estimate the model
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interactions. This results in larger NFS values and low D and G efficiencies
than other much smaller designs.

CMR and modified CCD designs. With few exceptions, CMR designs
require smaller noise factor separation than other designs to provide an
expected MSE for the noise part of the model of 0.1σ2

ε at the farthest
point x. They almost always provide highest D-efficiency among the
designs on the list. These designs coincide with modified CCD’s for cases
(k, r) = (2, 2), (3, 2), (3, 3), (5, 3), (7, 4), and (8, 3).

Smaller designs: Small Composite Designs (SCD’s) and Hybrid (Roque
more). It was concluded that the SCD’s should not be used to fit model
(9.1). They require very large noise factor separation to improve the pre-
cision of the estimation of the noise part of the model. The same can
be said of the hybrid designs. These designs require considerable larger
noise factor separation to give good precision in the noise part of the
model.

For some new designs for RPD obtained using the NFS criterion in conjunction
with other criteria, see [40].

9.8 Multiple Response Robust Parameter Design**
As with most real optimization problems14, robust parameter design prob-

lems have multiple responses of interest. Here we present an approach due to
Miro and del Castillo [105] who extended the Dual Response approach to RPD
to the case of multiple responses.

Define a regression model with q responses, k controllable factors and r

noise variables in the following way:

Y︸︷︷︸
q×1

= Θ′︸︷︷︸
q×p

x(m)︸ ︷︷ ︸
p×1

+ ∆′︸︷︷︸
q×r(k+1)

z(m)︸ ︷︷ ︸
r(k+1)×1

+ ε︸︷︷︸
q×1

(9.29)

where Θ is a p × q matrix of coefficients for the controllable factors (each
column contains all the coefficients for one response) and x(m) is a p×1 vector
containing the regressors for the controllable factors in model form (there are
p = (k+1)(k+2)

2 such factors for a full quadratic model; as before, (m) stands
for x in “model form”):

14This section, based on reference [105], contains somewhat more advanced material and may be skipped
on a first reading.
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x(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x1

x2

...

xk

x1x2

x1x3

...

xk−1xk

x2
1

x2
2

...

x2
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.30)

The matrix ∆ is r(k + 1) × q and contains the first order coefficients
for the noise factors as well as coefficients for the controllable factor-noise
interactions. These terms are combined in a single matrix to avoid obtaining a
cross-covariance term when applying the variance operator. The matrix is:

∆ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βy1z1 βy2z1 . . . βyqz1

βy1z1x1 βy2z1x1 . . . βyqz1x1

βy1z1x2 βy2z1x2 . . . βyqz1x2

...
...

. . .
...

βy1z1xk
βy2z2xk

. . . βyqz2xk

βy1z2 βy2z2 . . . βyqz2

βy1z2x1 βy2z2x1 . . . βyqz2x1

βy1z2x2 βy2z2x2 . . . βyqz2x2

...
...

. . .
...

βy1z2xk
βy2z2xk

. . . βyqz2xk

...
...

. . .
...

βy1zr βy2zr . . . βyqzr

βy1zrx1 βy2zrx1 . . . βyqzrx1

βy1zrx2 βy2zrx2 . . . βyqzrx2

...
...

. . .
...

βy1zrxk
βy2zrxk

. . . βyqzrxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.31)

where βyixjzk
is the coefficient for the interaction between xj and zk for the ith

response. The first order coefficients for the noise factors are the βyizk
, hence
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the matrix is r(k+1)×q and compatible with the definition of z(m) that follows
next.

The vector z(m) is r(k + 1) × 1 and contains the noise factors and their
interactions with the controllable factors:

z(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z1x1

z1x2
...

z1xk

z2

z2x1

z2x2
...

z2xk
...
zr

zrx1

zrx2
...

zrxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.32)

Finally, the vector ε is q×1 and assumed normally distributed with mean 0 and
covariance matrix Σε, that is,

ε =

⎡
⎢⎢⎢⎢⎣

ε1
ε2
...
εq

⎤
⎥⎥⎥⎥⎦
∼ Nq(0,Σε)

Notice that equation (9.29) assumes that all the responses can be appropri-
ately modelled by functions of the same form, that is, by functions containing
the same significant parameters.
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Miro et al. assume that

z =

⎡
⎢⎢⎢⎢⎣

z1

z2
...
zr

⎤
⎥⎥⎥⎥⎦
∼ Nr(0,Σz)

with Σz known, possibly from historical data, similarly as in the univariate
RPD problem.

Using the previous assumption one can take expectation and variance oper-
ators in equation (9.29):

E(Y) = Θ′x(m). (9.33)

A multivariate approach equivalent to the one used by Box-Jones [27] and
Myers [113] for the univariate case is to take the variance operator in equation
(9.29) to obtain an equation useful to predict the variance of the responses once
the noise factors are not tightly controlled as they were during the experiments.
In other words we would get the q × q matrix:

Var(Y) = ∆′Cov(z(m))∆ + Σε (9.34)

where Cov(z(m)) is a [(k + 1)r × (k + 1)r] matrix shown in Figure 9.10.
The terms σzizj denote the covariance between zi and zj for i �= j and

σ2
zi

denotes the variance of zi. Note how if the noise factors are uncorrelated,
Cov(z(m)) is block diagonal. The matrix Cov(z(m)) can be written as:

Cov(z(m)) = Σz ⊗
[
x(l)x′(l)

]
(9.35)

where x(l) is formed by the first k + 1 elements of x(m), Σz is the covari-
ance matrix of the noise factors and ⊗ denotes the Kronecker or direct product.
Therefore, we have that:

Var(Y) = ∆′
[
Σz ⊗

(
x(l)x′(l)

)]
∆ + Σε (9.36)

which can be contrasted with its univariate counterpart given by equation (9.9).
In the remainder of this section the r(k + 1) × r(k + 1) matrix Cov(z(m)) =
Σz ⊗

(
x(l)x′(l)

)
will be denoted by Σ⊗

z .
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9.8.1 Estimation of the Mean and Variance Models,
Multiple Response Case

The following section parallels the single response description given earlier
(Section 9.5), and readers may want to contrast the material in this section
against that other section.

By simply substituting ∆,Θ and Σε by their respective unbiased estimators,
∆̂, Θ̂ and Σ̂ε in equation (9.33), we obtain an unbiased estimator for E(Y).
To see this let:

Ê(Y) = Θ̂′x

Then, we have that:
E(Ê(Y)) = Θ′x = E(Y).

The estimator of the variance-covariance matrix of the response, V̂ar(Y),
obtained from equation (9.36):

V̂ar(Y) = ∆̂′Σ⊗
z ∆̂ + Σ̂ε, (9.37)

is not an unbiased estimator of Var(Y). Similar steps can be followed as in the
univariate case (previous section) to obtain an unbiased estimator. That is, to
find an unbiased estimator of Var(Y), find the expected value of the “naive”
estimator in equation (9.37) and then, if possible, correct it by an unbiased
estimator of the bias. To do this, let δ̂.j be the jth column of ∆̂ and let σ̂ij be
the (ij)th element of Var(Y). We then have that:

σ̂ij = δ̂′
.iΣ⊗

z δ̂.j + σ̂εij

Expectation can be taken yielding:

E(σ̂ij) = δ′
.iΣ

⊗
z δ.j + tr

(
Σ⊗

z Σ
δ̂.iδ̂.j

)
+ σεij (9.38)

where Σ
δ̂.iδ̂.j

is the cross-covariance matrix between the vectors δ̂.i and δ̂.j .
From Press [129, pp. 233–234] it can be seen that this cross-covariance is:

Σ
δ̂.iδ̂.j

= σεij (X
′
∆X∆)−1

where X∆ is a matrix formed by the columns of the design matrix X cor-
responding to the regressors in z(m). Hence (X′

∆X∆)−1 is just the scaled
covariance matrix of any of the columns of matrix ∆̂. These two matrices are
better illustrated numerically in the example below. Note that every column
of ∆̂ has the same “scaled” covariance matrix, they just differ by a constant,
i.e. σεij .
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Substituting Σ
δ̂.iδ̂.j

in (9.38) we get:

E(σ̂ij) = δ′
.iΣ

⊗
z δ.j + σεij tr

(
Σ⊗

z (X′
∆X∆)−1

)
+ σεij (9.39)

Since the argument of the tr operator does not depend on i or j the result
presented in equation (9.39) can be extended to matrix form in the following
way:

E(V̂ar(Y)) = ∆′Σ⊗
z ∆ +

(
1 + tr

(
Σ⊗

z (X′
∆X∆)−1

))
Σε

Finally, an unbiased estimator of Var(Y) is given by:

V̂ar(Y) = ∆̂′Σ⊗
z ∆̂ +

(
1 − tr

(
Σ⊗

z (X′
∆X∆)−1

))
Σ̂ε (9.40)

In this case, the term tr
(
Σ⊗

z (X′
∆X∆)−1

)
is the bias correction factor

(compare with equation (9.16) for the univariate case).
Notice that if tr

(
Σ⊗

z (X′
∆X∆)−1

)
> 1, then the bias correction factor will

be negative and if the elements in this matrix are sufficiently large, then the un-
biased estimator will be given by a non-positive definite matrix. An equivalent
problem is also present in the univariate case where a similar correction is made
(see Section 9.5).

The possible non-positive definiteness of V̂ar(Y) arises from the fact that
equation (9.36) only takes into account the variance due to the noise factors
and the residual noise, not the variance in the estimation of ∆, a component
estimated by the term tr

(
Σ⊗

z (X′
∆X∆)−1

)
Σ̂ε

9.8.2 Solving the Multiple Response Robust Parameter
Design Problem

Similarly as in the univariate RPD problem, it may be of interest in some
applications to determine under which conditions the variability due to the noise
factors can be made equal to zero. Ideally, the user would desire to make all
the elements in ∆′Σ⊗

z ∆ equal to zero. Since this matrix is at least positive
semi-definite, to achieve such a goal it is sufficient to make all the diagonal
elements zero. That is, for this type of matrices, since |aij | ≤ √

aiiajj , if
aii = 0, then aij = 0 ∀j. Miro et al. [105] show how a zero covariance matrix
for the responses can only be obtained by making all the individual response
variances zero and that this requires the availability of rq controllable factors,
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which could be a large number in many practical situations. Even if such a
number of controllable factors exist, the inclusion of all of them in a single
experimental design will probably represent too many experiments. In addition,
the solution x∗ may lie outside the experimental region or could imply levels
of the controllable factors that are unattainable in practice.

Notice that even when Σz and Σε are diagonal matrices, i.e. when the noise
factors (z) and the residual noise (ε) are each formed by independent random
vectors, the correlation between two responses will not be zero if they happen to
interact with at least one common noise variable. Therefore, for the multivariate
case, an additional covariance structure will be generated by the noise factors.

Instead of looking at an unconstrained solution, we should seek a constrained
solution to the multivariate RPD problem. In analogy with the univariate case,
this involves constrained minimization of some scalar function of the covari-
ance matrix.

Scalar functions of matrices are common for the generation of optimal
designs according to various criteria (see Section 5.7). D-optimality minimizes
the determinant of the scaled covariance matrix (sometimes called the general-
ized variance) while A-optimality minimizes the trace. Press (1982) mentions
that other common scalar measures of internal scatter are (tr Var(Y)2)1/2 and
the difference between the highest and smallest eigenvalue of Var(Y). As it is
well-known, the determinant is proportional to the volume of a joint confidence
ellipsoid for Y [76].

With the exception of the determinant, which is discussed later in this
section, the minimization of either of the aforementioned scalar objectives
would be significantly impacted by the scaling of Var(Y). From equation (9.36)
we can see that a proper scaled covariance matrix of the responses can be
obtained by scaling the regression coefficients in ∆, which in turn can be
obtained by scaling the values of the responses used to fit the regression model.
Using Lp norms is a common technique used in multi-criteria optimization to
tackle this kind of problems, see for example Steuer [147] for a discussion on
this issue.

We can finally state the optimization problem in the following way:

min f (Var(Y))
subject to :

l ≤ E(Y) ≤ u
x ∈ X
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where u and l are q × 1 vectors containing upper and lower bounds for the
response, f(·) is a suitable scalar function and Var(Y) and E(Y) are given by
equations (9.36) and (9.33) respectively.

There has been considerable debate in the literature of “dual response
systems” about what constitutes the best formulation, in particular, whether
a MSE objective or a variance objective subject to constraints in the mean
would work better. The MSE considers both the variance and the “bias” of
the responses with respect to targets. The argument in favor of MSE is that by
sacrificing some bias, a considerable reduction of variance is obtained. This
argument is well-known to be true in estimation theory, but the RPD problem is
no ordinary estimation problem. The MSE objective is even more non-linear (a
quartic polynomial if the responses are quadratic), and simply minimizing the
variance subject to inequality constraints in the mean response(s) has a similar
behavior than minimizing the MSE, with the advantage of an easier to solve
optimization problem.

An advantage of using the determinant is that the optimization problem
defined previously is invariant to the scaling of the responses15 (see Problem
6). Being invariant to scaling is a strong advantage since it avoids the possi-
bility of having scale-dependent solutions. Therefore, using the determinant
as the scalar function has the advantages that it does not requires any type of
scaling, it considers the covariance structure in the responses, and it has the
practical interpretation of being proportional to the joint confidence ellipsoid
of the vector of responses. However, it requires the estimation of the complete
covariance matrix as stated in equation (9.40).

In contrast, using the trace has the advantage that it only requires the
diagonal elements of Var(Y), which can be estimated from the univari-
ate models. However, it does not consider the covariance structure and its
interpretation depends on the normalizing method used to bring the individual
variances to a common scale.

Example. Whey Protein Concentrates. Khuri & Cornell [76] report an
experiment performed to investigate the effects of heating temperature (x1), pH
level (x2), redox potential (x3), sodium oxalate (x4) and sodium lauryl sulfate
(x5) on foaming properties of whey protein concentrates. Measurements were
made on three responses, the whipping time (Y1), the maximum overrun (Y2)

15The value of determinant itself evidently changes with scaling, but the functional dependence on x is not
altered, hence the optimal solution obtained will not change depending on scaling.



272 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

and percent soluble protein (Y3). Table 9.11 contains the experimental design
and the multi-response data. Suppose that x1 and x3 are noise factors.

The ∆̂ and Θ̂ matrices were obtained after normalizing each response by
its corresponding L2 norm16 variables. If we set to zero any non-significant
parameter (avoiding non-hierarchical models), the corresponding matrices of
parameter estimates are as follows:

Θ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 Y2 Y3

Int. 0.1692 0.1812 0.1813
x2 0.0068 −0.0031 0.0145
x4 −0.0068 0.0037 0.0022
x5 −0.0030 0.0032 0.0032
x2x4 −0.0181 0 0
x2x5 0 0 0
x4x5 −0.0125 0 0
x2

2 0 −0.0022 −0.0071
x2

4 0 −0.0039 −0.0019
x2

5 0 0 0.0040

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 Y2 Y3

x1 0.0460 −0.0297 −0.0159
x1x2 0.0283 −0.0042 0
x1x4 0 0 0.004
x1x5 0.0113 −0.0062 0
x3 −0.0159 0.0097 0.0046
x2x3 −0.0102 0 0
x3x4 0 0 0
x3x5 −0.0091 0 0.0079

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The normalized estimated covariance matrix for the residuals of the fitted
models is given by:

Σ̂ε = 10−3

⎡
⎢⎣

3.2580 −0.7132 −1.3049
−0.7132 0.5304 0.3697
−1.3049 0.3697 0.6347

⎤
⎥⎦

16That is, using Yj/||Yj ||, j = 1, . . . , q to build up the response matrix Y.
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Table 9.11. Factor and Response Data for the Whey Protein Example. Source: Khuri and
Cornell [76]

Controllable Factors Responses
x1 x2 x3 x4 x5 Y1 Y2 Y3

−1 −1 −1 −1 1 4.75 1082 81.4
1 −1 −1 −1 −1 4.00 824 69.6

−1 1 −1 −1 −1 5.00 953 105.0
1 1 −1 −1 1 9.50 759 81.2

−1 −1 1 −1 −1 4.00 1163 80.8
1 −1 1 −1 1 5.00 839 76.3

−1 1 1 −1 1 3.00 1343 103.0
1 1 1 −1 −1 7.00 736 76.9

−1 −1 −1 1 −1 5.25 1027 87.2
1 −1 −1 1 1 5.00 836 74.0

−1 1 −1 1 1 3.00 1272 98.5
1 1 −1 1 −1 6.50 825 94.1

−1 −1 1 1 1 3.25 1363 95.9
1 −1 1 1 −1 5.00 855 76.8

−1 1 1 1 −1 2.75 1284 100.0
1 1 1 1 1 5.00 851 104.0

−2 0 0 0 0 3.75 1283 100.0
2 0 0 0 0 11.00 651 50.5
0 −2 0 0 0 4.50 1217 71.2
0 2 0 0 0 4.00 982 101.0
0 0 −2 0 0 5.00 884 85.8
0 0 2 0 0 3.75 1147 103.0
0 0 0 −2 0 3.75 1081 104.0
0 0 0 2 0 4.75 1036 89.4
0 0 0 0 −2 4.00 1213 105.0
0 0 0 0 2 3.50 1103 113.0
0 0 0 0 0 3.50 1179 104.0
0 0 0 0 0 3.50 1183 107.0
0 0 0 0 0 4.00 1120 104.0
0 0 0 0 0 3.50 1180 101.0
0 0 0 0 0 3.00 1195 103.0
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Suppose the covariance matrix of the two noise factors is known and
equal to:

Σz =

[
1.00 −0.25

−0.25 1.00

]

The bias correction factor is then given by:

1 − tr
(
Σ⊗

z (X′
∆X∆)−1

)
=

11
12

− 1
8

(
x2

2 + x2
4 + x2

5

)

The estimate of the covariance matrix of the responses is given by:

V̂ar(Y) =

∆̂′
[[

1.00 −0.25

−0.25 1.00

]
⊗
(
x(l)x′(l))

]
∆̂ +

(
11
12

− 1
8

(
x2

2 + x2
4 + x2

5

))
Σ̂ε =

10−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.73 + 3.39x2

+1.63x5 + 1.05x2
2

+1.01x2x5 + 0.26x2
5

−1.75 − 1.29x2

−0.83x5 − 0.13x2
2

−0.25x2x5 − 0.084x2
5

−0.92 + 0.20x4

−0.48x5 − 0.56x2

+0.12x2x4 − 0.13x2x5

+0.054x4x5 − 0.094x2
5

−1.75 − 1.29x2

−0.83x5 − 0.13x2
2

−0.25x2x5 − 0.084x2
5

1.12 + 0.27x2

+0.40x5 + 0.018x2
2

+0.052x2x5 + 0.038x2
5

0.59 − 0.13x4

+0.24x5 + 0.07x2

−0.017x2x4 + 0.008x2x5

−0.025x4x5 + 0.012x2
5

−0.92 + 0.20x4

−0.48x5 − 0.56x2

+0.12x2x4 − 0.13x2x5

+0.054x4x5 − 0.094x2
5

0.59 − 0.13x4

+0.24x5 + 0.07x2

−0.017x2x4 + 0.008x2x5

−0.025x4x5 + 0.012x2
5

0.31 − 0.14x4

+0.13x5 + 0.016x2
4

−0.016x4x5 + 0.062x2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+10−3
(

11
12

− 1
8

(
x2

2 + x2
4 + x2

5

))
⎡
⎣

3.2580 −0.7132 −1.3049

−0.7132 0.5304 0.3697

−1.3049 0.3697 0.6347

⎤
⎦

(9.41)
Observe how there is considerable control over the covariance matrix, since

the controllable factors are present in all the elements of the matrix.
Suppose the bounds for the expected responses are:

l = [−∞ 800 100]

u = [5.0 1100 ∞]

That is, the expected value of the first response is restricted to be less that 5.0
minutes, the expected second response between 800% and 1100% and the the
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third response should be higher than 100%. Suppose we choose to conduct the
optimization over a spherical region of radius 2 for the controllable factors, thus
we add the constraint: √

x2
2 + x2

4 + x2
5 ≤ 2

From Table 9.12 we note that the results using the trace are substantially
different to the ones obtained with the determinant. In fact, the correspond-
ing x∗ points are separated by a distance of 0.91 coded units which is quite
significant. The values of the objectives are also substantially different. The
trace of the covariance matrix obtained when the determinant is minimized is
about 58% larger than the one obtained when the trace is minimized. Similarly,
the determinant obtained when the trace is minimized is about 18% larger than
when the determinant is minimized.

Furthermore, notice that the solution obtained using the trace and the vari-
ances of the first and second responses are significantly close to each other.
Therefore, using the trace as objective may not capture the overall variability
of the vector of responses and could be affected by individual responses, espe-
cially if more than one of them is minimized close to the same point. This un-
derscores the importance of considering the complete covariance matrix instead
of the individual variances only, and demonstrates the benefits of the proposed
multivariate approach over using the univariate approach q times in parallel.
�.

9.8.3 Loss Function Approach to Multiresponse Robust
Parameter Design

Romano et al. [136] proposed a less general model for multivariate RPD than
(9.29) in which there is no correlation in the errors between different responses.
The correlation between the fitted responses, if any, originates only from the
common regressors. These authors propose a loss function objective function,
following earlier work in multiresponse RPD by Pignatiello [127] and Tsui
[152]. The loss function these authors propose is

L(x, z) = (y(x, z) − T )′C(y(x, z) − T )

where C is a squared matrix that models quadratic off target costs, and T is a
vector of targets for the responses. The expected value of this loss function is

E[L(x, z)] = E(y(x, z) − T )′CE(y(x, z) − T ) + tr(CΣy) (9.42)
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where Σy denotes the covariance matrix of the responses. This loss function
is evidently a sensible objective that in principle one could try to minimize
subject to constraints in the controllable factors, expected responses, etc, if it is
appropriately estimated. Unfortunately, the authors in reference [136] simply
used plug-in estimates to estimate this expected loss (giving a biased estimator),
and furthermore, neglected the variance transmitted by the noise factors to the
responses simply arguing that they are constant during the DOE. This misses
the main point in this chapter, in which after fitting the model, one should
consider the noise factors as random variables and should then try to neutralize
the variability transmitted by the noise factors.

9.9 Problems
1 Show that the expression (9.3) for assessing the statistical gains due to run-

ning an experiment in Split plot form, is true. (Hint: consider s2 a weighted
average of MSWP error and MSSP error and substitute in the left hand side
of (9.3).)

2 Derive expression (9.20) using the law of conditional variance.

3 Corroborate that (9.23) is unbiased for (9.20) by taking expected value.

4 The following experimental data relates to a semiconductor experiment
where the response is transistor gain [109]. It is desirable to hold the gain
within the 200 ± 20 range.

Response values for the noise factors:
z1 −1.0 1.0 −1.0 1.0
z2 −1.0 −1.0 1.0 1.0 Average Std. Dev.

x1 x2 x3

−1 −1 −1 118.9 65.7 95.3 92.4 93.08 21.77
1 −1 −1 153.7 229.4 119.9 251.5 188.63 62.07

−1 1 −1 196.7 170.9 234.2 166.6 192.10 31.06
1 1 −1 211.1 245.7 241.0 252.6 237.60 18.30

−1 −1 1 145.2 132.2 167.1 137.9 145.60 15.29
1 −1 1 125.4 201.6 185.5 267.3 194.93 58.36

−1 1 1 283.0 251.1 263.4 190.4 246.98 39.94
1 1 1 184.2 279.5 247.2 259.2 242.53 41.11
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Treating the outer array as replicates, do the following:

a) solve the RPD problem using the unbiased estimate of the variance

b) solve the RPD problem using the variance of the predicted response,
V̂ar

z,β̂
(ŷ(x, z))

c) do a ridge analysis on the variance response, using the variance of the
predicted response, V̂ar

z,β̂
(ŷ(x, z)).

5 Show that the C(τ) functions of two different designs D1 and D2 will never
“cross”, and that they can only coincide for the same DOE.

6 Let N be a q by q diagonal matrix containing the scaling or normalizing
factors for the q responses. Let the subscripts u and s refer to the un-scaled
and scaled versions of the associated variance matrices. Then show that∣∣∣V̂ars(Y)

∣∣∣ = |N′N|
∣∣∣V̂aru(Y)

∣∣∣. Thus, the determinant changes with scal-

ing, but the optimal solution x∗ obtained from minimizing
∣∣∣V̂ars(Y)

∣∣∣ will
be invariant to scaling as the functional dependence on x is not altered.

7 Repeat the Whey protein example assuming instead that x2 and x4 are the
noise factors. Use the same noise factor covariance as in the text.

8 Find an unbiased estimator of the loss function (9.42). Consider both the
noise factors and the parameter estimates as random variables when taking
expected values.



Chapter 10

ROBUST OPTIMIZATION**

Science is made of mistakes which are useful to make, because they lead, little by little, to
the truth.

—Jules Verne (1828–1905)

Something is always discarded when the results of experiment are trimmed down to fit
formulas and equations. That something, much or little, which is thrown away has
frequently been of scientific importance equal to what is retained in the mathematics.

—E.T. Bell (1883–1960)

10.1 Introduction
In this chapter1we discuss robustness from a more general perspective, that

of model building in general, without specific discussion of noise factors.
This notion of robustness in the sense of lack of sensitivity of an optimal
solution to variations in the model has always been a key idea in mathematical
modeling, and in particular, in mathematical programming. This differs from
environmental variation in the sense of Taguchi, as discussed in the previous
chapter. Thus, in this chapter, no “noise factors” are assumed to exist.

Practically since their inception, deterministic optimization techniques have
been concerned with sensitivity analysis, that is, what is the effect on the
optimal solution of a mathematical programming problem when some of the
coefficients in the formulation changes. More recently, the idea of robust

1This chapter contains somewhat more advanced material and may be skipped on a first reading.
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optimization has been promoted in the field of discrete optimization (see, for
example, [82]). In a recent paper, Xu and Albin [160] have adopted the ideas
in robust optimization to a RSM setting. The idea is to find a solution which is
as insensitive as possible, or robust, with respect to variations in the parameter
estimates. As it turns out, the Xu-Albin approach is related to techniques
discussed in previous chapters, in particular, to the idea of constructing a con-
fidence region on the optimal settings of a process (see Chapter 7). In contrast
to the discussion on confidence regions, the focus here is on finding a single
solution that a process engineer can use that is robust to uncertainty in the
model parameter estimates.

In this chapter we present the “Minimax Deviation method” for robust
optimization of Xu and Albin. This is a method that attempts to protect against
sampling variability of the parameter estimates in the model, hence it is a
frequentist method. We relate this method to confidence regions on the optimal
settings (Chapter 7) and to some other proposals for process optimization from
the area of Stochastic Programming.

A natural alternative to the Xu-Albin method is to employ a Bayesian
approach in which the uncertainty in the model parameters, considered as
random variables, is incorporated in the optimization. Such Bayesian approach
to process optimization is presented in Part V of this book.

10.2 Minimax Deviation Method
Suppose we wish to minimize a polynomial model f(x, θ) where the model

form is assumed known, but the p parameters θ unknown, and x represents the
k controllable factors.

If we ignore the sampling variability, we simply optimize f(x, θ̂), that is,
we simply optimize the fitted model where θ̂ = (X ′X)−1X ′y represents the
ordinary least squares estimates based on an N × p design matrix X which is
written with columns that match the terms in the polynomial model.

In the following we repeat the argument in Xu and Albin [160]. Suppose C is
the confidence region of the parameters θ, for some confidence level 1−α (see
Section 7.3). Let η(θ) = minx∈R f(x, θ), i.e., the best x within its feasible
region R, for some parameter vector θ ∈ C. We are interested in operat-
ing conditions x such that f(x, θ) − η(θ) is close to zero as the parameters
θ vary within their confidence region. That is, we want a solution which is
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insensitive, or robust, with respect to variations in θ. The problem is how to
achieve this. Xu and Albin propose the following minimax approach:

min
x∈R

max
θ∈C

{f(x, θ) − η(θ)} (10.1)

where η(θ) = minx∈R f(x, θ). The deviation f(x, θ) − η(θ) is the loss
incurred when choosing x if the true values of the parameters equals to θ.
Thus, maxθ∈C{f(x, θ) − η(θ)} is the largest loss that can be incurred
when we let θ vary within its confidence region. Finally, by choosing
minx∈R maxθ∈C{f(x, θ) − η(θ) we are choosing the x such that the
greatest loss is minimized, i.e., we find the operating conditions x such that the
deviation of f(x, θ) from its optimal value η(θ) is minimized.

Xu and Albin point out how this minimax optimization problem can be
written as

min z

s.t. f(x, θ) − η(θ) ≤ z, ∀θ ∈ C, x ∈ R

where z is a dummy variable. This is a semi-infinite mathematical program-
ming problem. It can be converted in the following finite mathematical
program:

min z

s.t. f(x, θ(i)) − η(θ(i)) ≤ z, i = 1, 2, 3, . . . 2p , x ∈ R (10.2)

where the θ(i) are 2p corner points of an approximated confidence region
constructed as follows:

θ(i) = θ̂ + Γ−1z(−1) (10.3)

where

Γ =
(X ′X)1/2

s
√

p Fp,N−p,α
,

the Z = [z(i)] = [(z1, z2, . . . , zp)] is a matrix that contains all the 2p factorial
combinations of a (2p) design with zj = ±1, and s is the square root of
the usual MSE estimate. The points θ(i) are the corner points of a tilted
rectangular approximation to the confidence region that better approximates
the true confidence region as it considers the correlation between the para-
meter estimates. The resulting optimization problem in (10.2) is a nonlinear
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optimization program if f(x, θ) is nonlinear in x. Just as in Section 7.3, it is
convenient not to estimate the intercept in the polynomial model, so we really
work with p − 1 parameters, i.e., the vector θ is (p − 1) × 1, where p is the
number of parameters βi in the polynomial model.

10.2.1 Relation with Confidence Regions on the Optimal
Settings

In the PCD approach to finding a confidence region on x∗, the optimal
settings of a constrained response surface problem (see Section 7.3), the right
hand side of the confidence interval for η(θ) − z(x)′θ is given by

max
θ∈C

min
w∈R

{(z(w) − z(x))′θ}

= − max
θ∈C

{z(x)′θ − min
w∈R

z(w)′θ}. (10.4)

Thus, if f(x, θ) = z(x)′θ, i.e., if the model is linear in the parameters as we do
assume, then the expression above is just the negative of the inner maximization
in (10.1), namely, −maxθ∈C{f(x, θ)− η(θ)}. In the PCD method, we want
to find all x such that (10.4) is negative, because if this is true we can reject
Ho : η(θ) − z(x)′θ = 0 at x and therefore x is not in the confidence region
(CR) for x∗. Recall that the CR for x∗ is made up of all x such that (10.4) is
greater than zero.

In the robust optimization approach (10.1), we are trying in contrast to make
the negative of (10.4) as small as possible over all x ∈ R. This is equivalent
to making (10.4) as large as possible for some x ∈ R. Thus, in the Maximim
deviation method, we are trying to find the operating conditions x for which
Ho : η(θ) − f(x, θ) = 0 is hardest to reject. This will be the most robust x

with respect to variation in θ ∈ C.
This gives a different interpretation of the robust optimization approach:

we are trying to find operating conditions x such that the “false alarm”
probability P (reject Ho |Ho is true) = P (Type I error) is minimized. Here Ho

simply says that the response value at x is indistinguishable from the optimum
response value.

Example. We consider the example in Xu and Albin [160] who presented a
simulated process where the true response, to be minimized, is given by

y = −2x1 − 6x2 − x1x2 + +0.5x2
1 + x2

2.
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This function is to be minimized subject to the following constraints:

x1 + x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

The minimum value of the true response subject to these constraints can be
easily found to be y = −19.6 obtained at x1 = 2.8, x2 = 3.2. To investigate the
performance of the Minimax deviation approach to robust optimization, Xu and
Albin simulated the response surface y for one hundred DOEs each consisting
of a 32 design. For each simulated response value, noise ε ∼ N(0, σ2) was
added. The simulated DOEs were repeated for 5 different values of σ: 0.5, 1,
2, 3, and 4.

For each simulated DOE, a full quadratic response was fitted. The fitted
responses were then optimized by simply finding the maximum of the fitted
response (what can be called the “Canonical” approach) and by using the Min-
imax deviation method. Finally, for each optimal solution x∗, the value of the
true response surface at x∗ was saved.

Table 10.1 shows the estimated means, medians, and standard deviations
of the response at the optimal settings obtained from both the canonical and
the minimax deviation approaches (α = 0.05 was used in the minimax app-
roach). Similar results were shown by Xu and Albin [160]; we utilized the
Matlab program MinimaxDeviationEnhanced.m (see below) to solve

Table 10.1. Mean, median, and std. deviation of the response surface obtained at the estimated
operating conditions with the “canonical” method, which neglects the sampling variability, and
the Minimax deviation method of Xu and Albin. The true minimum response surface value is
−19.6. Results based on 100 replications of simulated 32 designs

Canonical (standard) approach Minimax Deviation approach
σ µy median (y) σy µy median (y) σy

0.5 −18.5 −19.16 1.83 −18.37 −19.11 1.98
1 −15.43 −17.34 4.93 −15.62 −17.05 4.01
2 −8.18 −9.48 9.43 −11.14 −12.23 6.63
3 −6.56 −7.11 8.37 −8.9 −10.04 6.61
4 −4.94 −3.8 8.32 −7.69 −8.25 7.06
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for the optimal x∗ at each simulated DOE. As it can be seen from the Table,
for little noise (small σ) the average response is close to its true value of −19.6.
But as the noise level increases, the response values obtained at the estimated
optimal settings get significantly worse for both methods. However, the de-
terioration in the quality of the response values is considerably less dramatic
for the Minimax deviation method, indicating the robustness of the method to
parameter estimates uncertainty created by a noisy process.

10.3 Relation with Stochastic Programming Methods
in RSM

There have been proposals similar to the minimax deviation approach that
we comment briefly in this section. In a recent paper, Diaz-Garcia et al.
[47] propose to study a ridge-analysis problem using stochastic programming
techniques. Assuming a second order polynomial model Ŷ (x, β̂) has been fit,
the problem they suggest to solve is

min
x

Ŷ (x, β̂)

subject to

||x||2 ≤ ρ2

where

β̂ ∼ N(β, σ2(X ′X)−1) and
n − p)σ̂2

σ2
∼ χ2

n−p

and β̂ and σ̂2 are independent. This is a stochastic programming problem. The
authors suggest to transform this problem into an equivalent deterministic prob-
lem in the sense that a solution to the deterministic problem is also a solution
to the stochastic problem. One such equivalent deterministic problem is the
minimax problem

min
x∈R

max
ϑ∈Θ

E(Y (x, β)

where R = {x : ||x||2 ≤ ρ2} and

Θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
β

σ2

)
:

(β̂ − β)X ′X(β̂ − β) − pσ̂2Fp,n−p,α ≤ 0
and

(n−p)σ̂2

χ2
n−p,1−α/2

≤ σ2 ≤ (n−p)σ̂2

χ2
n−p,α/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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The solution suggested in [47] to this problem consists in solving two
optimization problems in tandem. First, solve2

max
ϑ

Y (x, β) = z′(x)β

subject to

(β̂ − β)X ′X(β̂ − β) − pσ̂2Fp,n−p,α ≤ 0

(n−p)σ̂2

χ2
n−p,1−α/2

− σ2 ≤ 0

σ2 − (n−p)σ̂2

χ2
n−p,α/2

≤ 0

.

Call the solution to this problem ϑ̂1 = (β̂1

′
, σ̂2)′. The second equivalent prob-

lem to solve is

min
x

z′(x)β̂1

subject to

||x||2 ≤ ρ2.

This minimax approach is similar to the Xu-Albin proposal. Both perform
an optimization over the confidence region of the parameter estimates. The
main difference is that the Xu-Albin problem suggests to solve a stochastic pro-
gramming problem for the minimax deviation from the true optimum response
function, η(θ), whereas the minimax approach of Diaz-Garcia et al. does not
consider robustness issues.

Other alternative stochastic programming approaches for the ridge analysis
problem are discussed in [47].

10.4 Computer Implementation of the Minimax Deviation
Method

The Minimax Deviation method requires the use of a computer to form
the set of constraints (10.2) and to solve the different optimization problems
involved. The Matlab program MinimaxDeviationMethod.m performs
these tasks3. It takes as arguments the experimental design matrix (X), the
vector of observed responses (y), the number of controllable factors (k), and the

2Although the authors do not suggest what value of x to use, one can use the solution to the standard ridge
analysis problem.
3This and other programs described in this text are available from the author’s personal web page.
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overall (Bonferroni) α level (alpha). The design matrix is not in model form,
and the program will automatically expand it to a full quadratic model (using a
different model requires re-coding of the first few lines). The function returns
the best operating conditions found using the Minimax deviation approach
(bestxRobust) and using the classical or canonical approach (bestxCanonical).
The function call is:

function[bestxRobust,bestxCanonical]

=MinimaxDeviationEnhanced(X,y,k,alpha)

The program uses the fmincon nonlinear optimization routine to solve the
different constrained minimization problems together with the lhsdesign

routine to generate initial starting points for the optimizer (the optimiza-
tion problem is in general a non-convex minimization problem). Therefore,
Matlab’s Optimization and Statistics Toolboxes are required.

In the example of the previous section, this program was used repeatedly
from a driving program that simulated the DOEs and the responses. The exam-
ple referred to the minimization of the response y subject to the constraints:

x1 + x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

In the program, these need to be specified for the fmincon optimizer to
consider them. The way to do this is to define the Ac matrix of constraint
coefficients and the bc vector of constraint right hand sides, and lower and
upper vectors of bounds on the x’s. For the constraints in the example, these
will be:

Lower=[0 0 -1e50];

Ac=[ 1 1 0];

bc=6;

(The third element of the Lower vector is the dummy variable z in the Xu and
Albin formulation). Upper bounds on the factors can similarly be defined in the
Upper vector.
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10.5 Problems
1 Use the Matlab program MinimaxDeviationEnhanced to find robust

operating conditions for the metal cutting experiment in Chapter 1. Suppose
the tool life needs to be maximized subject to the constraints −1 < x1 <

−0.5 (in coded units). Assume a full quadratic model for the response.

2 Repeat the previous problem for the “grade A” response in Table 2.6.

3 Repeat the previous problem for the “grade B” response in Table 2.6.
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BAYESIAN APPROACHES IN PROCESS
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Chapter 11

INTRODUCTION TO BAYESIAN INFERENCE

Probability is the most important concept in current science, especially as nobody has the
slightest idea what it means.

—Bertrand Rusell (1872–1970)

11.1 Introduction
Reverend Thomas Bayes, a Presbyterian Minister who lived in England in

the 18th century1 wrote a manuscript on “inverse probability” related to the
binomial distribution. This was published posthumously in 1763. Bayes’ goal
was to make probability inferences about the parameter of a binomial distribu-
tion. In 1774, Laplace stated what is now known as Bayes’ theorem in general
form, working independently.

Bayesian inference combines prior beliefs about model parameters with
evidence from data using Bayes’ theorem. There is a subjective interpretation
of probability in this approach, compared to the “frequentist” approach in
which the probability of an event is the limit of a ratio of frequencies of events.
The main criticisms of Bayesian analysis have been 1) that it is not objective
(a fact that has been debated for many years), and 2) that the required compu-
tations are difficult. The second criticism has been overcome to a large extent
in the last 10–15 years due to advances in integration methods, particularly,
Markov Chain Monte Carlo (MCMC) method. The object of this chapter is to

1Few biographical details are known about Bayes. for some of them, see Press [130].
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present an introduction to statistical inference problems from a Bayesian point
of view. This will lead us in the next chapter to Bayesian regression and its use
in process optimization.

11.2 Basics of Bayesian Inference
11.2.1 Notation

In this part of the book, θ will denote unobserved quantities or population
parameters of interest (θ will denote a vector of k such quantities), y will denote
observable quantities (data), which can be a vector (y, of n components); ỹ

denotes a future observation of the same nature as y, and X denotes an n ×
p matrix of explanatory variables or covariates. X contains the experimental
design.

Likewise, p(·) will denote a continuous density function, and the notation
w|y denotes a conditional random variable w given y (the data). The notation
P (·) will refer to the probability of some event defined over a sample space.
Sometimes we will simply write “data” for all the data obtained from an
experiment.

11.2.2 Goals of Bayesian Inference
The goal of Bayesian inference is to reach conclusions about a parameter θ

or future observation ỹ using probability statements conditional on the data y.
For doing this, we use three probability densities:

p(θ), the density of θ before observing any data. This is called the prior
density of θ is user-defined and should reflect whatever the user believes or
thinks the possible values of θ are (hence, it is subjective);

p(θ|y), the density of θ after observing experimental data, this is called the
posterior density of θ; and

p(ỹ|y), the posterior predictive density of a future observation y. This is
the density of a future, not yet observed response value y after we have
observed previous y′s from an experiment.

An important difference between Bayesian and Classical Statistics is as
follows. Bayesian inference considers all unknowns (parameters and future
observations) as random variables. Classical (frequentist) statistical inference



Introduction to Bayesian Inference 293

considers population parameters as fixed, but data as random (due to sampling).
As we discuss below, there is a tendency in Bayesian statistics to consider
unobservable parameters as intermediate variables not of interest per se, and to
consider inferences on observable quantities the ultimate objective of Statistics.

11.3 Bayes’ Theorem for Events
Let us first look at Bayes’ theorem in its most elementary form, that of simple

events. If events A, B, etc. occur in some sample space S, we have, from the
definition of conditional probability:

P (A|B) =
P (A ∩ B)

P (B)

and

P (B|A) =
P (A ∩ B)

P (A)
.

These expressions are true if and only if

P (A ∩ B) = P (A|B)P (B) = P (B|A)P (A)

from which

P (A|B) =
P (A)P (B|A)

P (B)
.

This gives the essence of Bayes’ theorem: if event B represents some addi-
tional information that becomes available, then P (A|B) is the probability after
this information becomes available, i.e., the posterior of A, and P (A) is the
probability before this information becomes available, i.e., the prior for A.

Suppose events Ai form a partition of S, that is,
⋂

alli Ai = S; Ai ∩Aj = �
for all i, j, i �= j. Then, the (“total”) probability of B is given by

P (B) =
∑
allj

P (B|Aj)P (Aj)

and therefore

P (Ai|B) =
P (Ai)P (B|Ai)∑

allj P (B|Aj)P (Aj)
. (11.1)

Expression (11.1) is what Laplace referred to as the problem of finding the
“inverse probability”: given that the “effect” B is observed, find which of
several potential “causes” was the true cause of the observed effect.



294 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

Evidently, there is nothing incorrect in Bayes’ formula, as it is derived from
the probability axioms. The debate concerns in the interpretation of the proba-
bilities involved. Classical statistics regards each probability in the formula as
the limit of the ratio of frequencies; Bayesian statistics regards each probability
as a subjective measure.

11.4 Bayes’ Theorem for Densities
The derivation of Bayes’ theorem for densities parallels that of the previous

section. If y denotes data and θ some parameter or vector of parameters, from
the definition of conditional density, we have that

p(y|θ) =
p(θ, y)
p(θ)

and

p(θ|y) =
p(θ, y)
p(y)

.

This implies the joint density is

p(θ, y) = p(θ)p(y|θ) = p(y)p(θ|y)

which implies

p(θ|y) =
p(θ)p(y|θ)

p(y)
(11.2)

where analogous to the total probability of an event

p(y) =
∫

all θ
p(θ)p(y|θ)dθ. (11.3)

Equation (11.2) is Bayes’ law for densities. The denominator is usually not
computed since it is not a function of θ (which is integrated out in (11.3)) and
only makes p(θ|y) integrate to one in (11.2). Therefore, the Bayesian Statistics
literature uses the proportionality sign ∝ and Bayes’ formula, in its most
common form is:

p(θ|y) ∝ p(θ)p(y|θ). (11.4)

In words, the posterior is proportional to the product of the prior times the
likelihood of the data. Note that the posterior probabilities are therefore pro-
portional to the likelihood, and the likelihood is a central concept in classical
statistics, e.g., in maximum likelihood estimation. What we do is to modify the
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likelihood according to our prior beliefs of the parameter. If the prior is very
“flat”, Bayesian inferences will be very close to likelihood inferences.

Bayes’ formula provides a recursive mechanism for updating the posterior
distribution that is very useful in applications where the observations are
obtained sequentially. As each new observation is obtained, the posterior is
updated treating the previous posterior as the prior, forming a chain:

p(θ) ⇒ p(θ|y1) ⇒ p(θ|y1, y2) ⇒ p(θ|y1, y2, y3) ⇒ · · ·

Evidently, the theorem assures that if more than one observation is obtained
at a time it is possible to “jump” two or more steps in the chain above, with
identical results, i.e., for example

p(θ) ⇒ p(θ|y1, y2)

will result in the same distribution that would be obtained if going from p(θ)
to p(θ|y1, y2) via p(θ|y1). The sequential application of Bayes’ theorem is a
central idea in some Engineering applications, for example, in Kalman filtering
(see Meinhold and Singpurwalla [97]).

To make inferences on an unobservable θ, we can simply look at the
posterior distribution p(θ|y). This provides a complete characterization of
our state of knowledge about the parameter and it is recommended to report
it, perhaps using a histogram from a simulation or graphs if a closed-form
expression exists. Still, there are some applications where a single value or
guess is needed about the unknown parameter, or an interval of possible values
is desired or needed. Such a single value is the analog of a classical “point esti-
mate”. Two usual Bayesian choices are the mode of the posterior distribution:

θ̂ = arg max p(θ|y),

which evidently implies a maximization problem, and the mean of the posterior
distribution

θ̂ = E[p(θ|y)],

which implies an integration. Each choice has different properties. For
example, the mean of p(θ|y) minimizes the expected square error. The mode
maximizes the expected utility function when there is a unit benefit if θ̂ = θ

and zero benefit if θ̂ �= θ.
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A Bayesian interval estimator of a parameter θ or Bayesian credibility
interval is given by the interval (a, b) such that P (a < θ < b|y) = 1 − α,
where 1 − α is the “credibility” level. This value, contrary to the confidence
level of a classical interval, is a probability, and gives an indication of how
probable it is that the parameter is contained within the computed interval. This
interpretation is easier to grasp than the long-run coverage interpretation of a
classical confidence interval. Sometimes, a “Highest Posterior Density” (HPD)
interval is desired, which is obtained from solving:

min b − a s.t.

∫ b

a
p(θ|y)dθ = 1 − α.

For symmetric unimodal distributions, this is always a symmetric interval
around the mode. For a multimodal distribution, HPD intervals are harder to
get.

To make inferences about a future observation, ỹ, we compute the posterior
predictive density as follows:

p(ỹ|y) =
∫

all θ
p(ỹ, θ|y)dθ

=
∫

all θ
p(ỹ|θ, y)p(θ|y)dθ

=
∫

all θ
p(ỹ|θ)p(θ|y)dθ (11.5)

where the last equality follows since ỹ and y are conditionally independent
given θ, that is, the parameters, if known, summarize the data. Similarly as
for unobservable parameters, we can use summarizing measures to provide
single estimates or intervals on ỹ. Again, simply looking at the whole posterior
predictive distribution is the most complete approach.

It is important to contrast the predictive density with the classical approach
of making predictions on ỹ. The classical approach uses p(ỹ|θ̂), the data density
evaluated at the maximum likelihood or least squares estimator, to make pre-
dictions. Unlike (11.5), this distribution does not account for the uncertainty in
estimating θ a crucial issue for process optimization, since, as mentioned before
(Chapters 6, 7, 9 and 10), different parameter estimates will result in different
optimal solutions2.

2Classical statistics can give an idea of the variability of the optimal solution due to parameter estimates, by
computing confidence regions on the optimum (see Chapter 7). These regions, while useful, have the classic
interpretation of being the region where the optimum could lie in hypothetical repeated experiments.
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The posterior predictive density is the basis of Bayesian predictivism, a
school of thought we now comment on.

11.5 Predictivism
It is helpful to think about the posterior predictive density as the probability

of a new observation ỹ averaged over all possible posterior values of the para-
meters the likelihood depends on. Thus, the predictive density is a weighted
average, with weighs equal to the posterior probability of the parameter values.

This weighted average is useful in scientific inference (see Press [130]), and
can be illustrated easily in the case there is a discrete number of alternative
“theories” we wish to test. Suppose θ = 1 means “Theory A is true” and
θ = 0 means “Theory B is true”, and only these two theories are entertained to
explain a phenomena. We collect measurements, and after observing the data
we compute

p(ỹ|data) = p(ỹ|θ = 1)p(θ = 1|data) + p(ỹ|θ = 0)p(θ = 0|data)

which is the predictive probability of a new observation ỹ.
Predictivism is a school of thought in the philosophy of science that postu-

lates that the value of a scientific theory is measured by its ability to predict
some phenomena, regardless of its ability to provide a mechanism that explains
it. This idea is particularly useful in applied science and engineering. Within
Bayesian statistics, predictivism states that the important quantities are the
observable ones, not the unobservable ones (parameters). The posterior
predictive density is the means to make predictions about and test a hypothesis.
The counterpart of “model diagnostics” in Bayesian Statistics are based on
the posterior predictive densities. In this type of diagnostics, we compare
simulated predicted ỹ’s using the posterior predictive density versus the data,
and see how similar they look. If the data is very different than the simulated
responses, it is an indication our model fails to represent reality well. We now
turn to how to perform such simulations.

11.6 Simulation of Posterior Quantities
It is surprisingly easy to compute posterior probabilities of functions of ran-

dom variables. Given p(θ|y) and p(ỹ|y), we can obtain posterior probabilities
for functions of θ or ỹ as complex as needed.
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Table 11.1. Simulation of the coefficient of variation

Draw number Parameters (θ) CV
1 µ1, σ1 µ1/σ1

2 µ2, σ2 µ2/σ2

...
...

...
m µm, σm µm/σm

Example. To find the posterior distribution of the coefficient of variation
CV= µ/σ of a N(µ, σ2) distribution, let θ = (µ, σ)′. Given p(θ|y) we can
simulate instances of θ as shown in Table 11.1.

To perform the simulation of the posterior of the parameters, a widely used
“trick” if the joint posterior is difficult to get analytically3, is to note that:

p(µ, σ2|y) = p(µ|σ2, y)p(σ2|y).

Thus an algorithm for the simulation of the posterior of the CV will look like
this (see Table 11.2 and Figure 11.1 for a Matlab implementation4):

1 collect n observations and compute y and s2;

2 simulate σ2|y;

3 simulate µ|σ2, y;

(pairs of simulated values above give µ, σ2|y)

4 compute µ/σ;

5 goto 2 until we iterate N times.

In Figure 11.1, the values y = 100 and s2 = 10 were observed based on a
sample of size n = 5. Note how p(µ|σ2, y) is centered around y = 100 since
the prior distribution was “flat” (more on this later in this chapter). �

3The joint posterior is not so difficult to obtain in this case, but we will use this simpler case for illustration
of this approach.
4To be more precise, and as it will be seen later, the program generates σ2|y ∼ Inv − χ2(n − 1, s2) (an
inverse chi squared distribution) and µ|σ2, y ∼ N(y, σ2/n). This is based on noninformative priors.
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Table 11.2. Matlab simulation program for the posterior distribution of CV = µ/σ

function [coeff,theta,sigma2]

=CV(noOfSimulations,ybar,n,s2);

for i=1:1:noOfSimulations

x=chi2rnd(n-1);

sigma2(i)=(n-1)*s2/x;

theta(i)=normrnd(ybar,sqrt(sigma2(i)/n));

coeff(i)=theta(i)/sqrt(sigma2(i)/n);

end;
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Figure 11.1. MATLAB simulation of the coefficient of variation of a Normal distribution, N =

10, 000. Left: p(σ2|y); center: p(µ|σ2, y); right: p(CV |y)

11.6.1 How to Simulate the Posterior Predictive Density
If the integral required to compute the posterior predictive density is hard to

obtain, simulation is helpful. If p(ỹ|θ) and p(θ|y) are available, simulation is
an easy alternative. To simulate

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ

we do the following:

1 simulate a value of θ from p(θ|y);

2 simulate a value of ỹ from p(ỹ|θ);

3 Go to 1 unless N iterations are reached. A histogram of the N ỹ’s charac-
terizes ỹ|y.
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11.7 Choice of Prior Distribution
The most common and valid criticism in Bayesian Statistics is the question:

“Where did the prior come from?” Any prior needs to be justified in practice.
Three important choices of priors are:

1 Conjugate priors

2 Non-Conjugate priors

3 Non-informative priors (these are non-conjugate as well).

Conjugate priors. If F is a class of sampling distributions p(y|θ) and P is
a class of prior distributions for θ, p(θ), then P is said to be conjugate for F if:

p(θ|y) ∈ P ∀ p(y|θ) ∈ F , p(θ) ∈ P.

In words, this means that the prior and the posterior distributions of the
parameter have the same form (with different parameters), so conjugacy is
a closure property. The main merit of conjugate priors is that it simplifies com-
putations, particularly in sequential applications of Bayes’ theorem. With these
distributions, the integral we need to compute for the posterior has a familiar
form, hence the computational advantage. However, in many applications
“tuning” a conjugate prior to reflect the knowledge of the user is a difficult
problem, or the conjugate priors may not be able to reflect this knowledge.
While there is some literature on “elicitation of priors” (see e.g., Kadane et al.
[73] for the case of a regression model, which is our main emphasis in the next
chapter), elicitation has had little impact on statistical practice.

Non-conjugate priors do not have the closure property of conjugate priors;
they result in posteriors that have a different parametric form than the prior.
Until recently, they were not discussed frequently in the literature, given
the hard integrals involved. With the advent of Markov Chain Monte Carlo
(MCMC) methods in the last decade, these priors have been use more often as
they could be chosen to better reflect prior knowledge of the parameters.

Non-informative priors are non-conjugate, and try to reflect a situation
where there is a complete lack of knowledge about a parameter. Therefore,
they are called “objective priors” by some authors, and the resulting analysis
is called objective Bayesian analysis. In applied problems, complete a priori
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ignorance hardly exists in an experiment, so a non-informative prior should in
practice be regarded as an approximation to a situation where little is known
a priori [28].

We will consider determining non-informative priors for location and scale
parameters of a distribution, so we need the following definitions.

Let p(y) be any pdf. A location-scale family of density functions has the
form:

1
σ

p

(
y − µ

σ

)

where −∞ < µ < ∞ is a location parameter and σ > 0 s a scale parameter.
That is, µ shifts the location of the distribution on the y axis and σ stretches
(contracts) the graph of p(y) if σ > 1 (σ < 1). In either case, changing these
parameters does not change the shape of the distribution. Examples of location-
scale distributions are the normal distribution and the double exponential. If
σ = 1, then a density of the form p(y − µ) is called a location density, and if
µ = 0 a density of the form p(y/σ)/σ is called a scale density.

11.7.1 Non-informative Priors
It is tempting for a beginner in Bayesian Statistics to think of the Uniform

distribution as an ideal candidate for a noninformative prior. It is important to
realize that a uniform distribution over a finite range is informative in the sense
that values of the parameter are excluded (if the prior is zero over some range,
the posterior will be zero over that range). Such a prior was used by Bayes.

Laplace introduced the principle of insufficient reason for which he implied
that in the absence of any information about a parameter, all values should
be equally likely. Jeffreys generalized this reasoning into what is called the
invariance principle. We will focus on invariance as a principle of finding
non-informative priors, but readers should be aware that there have been many
other approaches put forward to define a non-informative prior (see Kass and
Wasserman [74] for an excellent review). In particular, there is a lot of debate
about what “non-informative” means, and this has resulted in the agreement
that the non-informative priors used are more for convenience than as a true
description of lack of information. They should be used as “reference priors”
in the sense of being a default choice that makes sense in the situation when one
knows little about a parameter. Unfortunately, some Bayesian software (e.g.,
Winbugs) do not allow non-informative priors.
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A summary of the non-informative priors we will use is as follows:

1 For parameters θ defined over a finite range of possible values R ⊂ R,
define the prior of θ to be uniform in R. An example of this was proposed
by Bayes himself, who used a uniform (0, 1) on the binomial proportion
parameter p;

2 For parameters θ defined over all reals R, use a Uniform (−∞,∞) distrib-
ution as prior;

3 For parameters θ defined over the positive real line R
+ ⊂ R, define a prior

for log θ to be Uniform in (−∞,∞);

4 When trying to setup a non-informative prior in multiple parameters θ =
(θ1, θ2, . . . , θk)′, apply the criteria 1–3 above to each parameter individu-
ally. This means that the parameters are independent a priori.

Evidently, only the first case above gives a proper prior distribution. Cases
2 and 3 lead to improper prior distributions, that is, density functions which do
not have a finite integral. These improper priors can lead to proper posteriors
in important cases as we will show shortly. However, proper posteriors will
not always result, so one should always check that the posterior is proper when
using improper priors.

The important thing in practice, however, is that a non-informative prior
should be flat where the likelihood is non-negligible. See Figure 11.2, where
a “flat” but proper prior is set on a parameter where the likelihood of the data
given the parameter is non-negligible. Since we cannot know the location of
the likelihood before the data is collected, we will not be able to use such a
flat, proper prior, because we will not know where to locate it a priori. Instead,
we use the improper priors in cases 1 and 2, which evidently are “everywhere
uniform” over the possible values of either θ (case 1) or log θ (case 2). The
improper prior should be seen as a useful device to approximate the ideal case
of Figure 11.2.

We now justify the choice of improper priors (cases 2 and 3 above) in more
mathematical detail.
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likelihood

“flat prior”

parameter 
values

Figure 11.2. Hypothetical likelihood for a parameter θ defined over all reals, and a flat but
proper prior density

11.7.2 Derivation of Invariant Non-informative Priors**
Location parameter.- Suppose5 we observe a random variable

Y = X + c

where c is any real constant and where X is a random variable with a location
density with location parameter θ, with possible values over all reals. Then Y

is a location density with location parameter η = θ+ c that can also take values
over all reals. If we wish to setup a non-informative prior probability density on
θ because we have complete ignorance of its true value, we should also setup
a prior that should be equally non-informative for η. How to quantify “equally
non-informative” has been debated for years. Jeffreys’ invariance argument
says that if we do not know anything about θ, since the origin or coordinates
is arbitrary (e.g., we could have chosen Kelvin or Celsius degrees to measure a
temperature) then whatever probability we assign to the event θ ∈ A where A

is an arbitrary interval over R, we should assign the same probability for η ∈ A.
That is, we want to set a prior in either θ or η such that, for any interval A:

P (θ ∈ A) = P (η ∈ A).

Figure 11.3 shows a case where the prior probability assignment does not obey
this criterion. Note how

P (η ∈ A) = P (θ + c ∈ A) = P (θ ∈ (A − c))

where A − c means we subtract c from all points in A. Therefore, for a non-
informative prior we must have that

P (θ ∈ A) = P (θ ∈ (A − c)).

5This section contains somewhat more advanced material and may be skipped on a first reading.
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A

A

θ

η=θ+C

Figure 11.3. A prior on a location parameter θ which is not invariant with respect to a shift in
location, i.e., P (θ ∈ A) �= P (η ∈ A)

In terms of the densities involved, the invariance principle requires that the
priors satisfy: ∫

A
p(θ)dθ =

∫

A−c
p(θ)dθ. (11.6)

Applying the change of variable theorem6

∫

A−c
p(θ)dθ =

∫

A
p(θ − c)dθ

so we have, from (11.6), that
∫

A
p(θ)dθ =

∫

A
p(θ − c)dθ.

This can be true only if
p(θ) = p(θ − c) ∀ θ. (11.7)

In particular, if θ = c, we get p(c) = p(0), as in Figure 11.4. This can only
be true if p(θ) is constant for all θ ∈ R. Therefore, the noninformative prior
density for a location parameter θ ∈ R is

p(θ) ∝ constant over (−∞,∞).

Evidently, this results in an improper prior.

6See Appendix D.
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Figure 11.4. Illustration of expression (11.7) for θ = c

Scale parameters. If someone is totally ignorant on a scale parameter, then
she should set the probability of the parameter being in the interval (1,10),
for example, equal to the probability of the parameter being in the (10,100)
interval. This implies a flat prior in the logarithm of the parameter. More in
detail, suppose we observe

Y = cX (c > 0)

where X is a random variable with scale density with parameter σ > 0. Apply-
ing the transformation of random variables theorem (see Appendix D) we have
that Y = cX implies X = Y/c = w(Y ), so d/dy w(y) = 1/c, and

pY (y) = pX(x)
∣∣∣∣
1
c

∣∣∣∣ = σ−1pX

(
y

cσ

)
1
c

.=
1
η
pX

(
y

η

)

which is also a scale density with scalar parameter η = cσ > 0.
Since the scale of measurements (e.g. kilograms or grams) is arbitrary, a

non-informative prior should not change with changes in the scale (invariance
principle). That is, the following probability statement should hold:

P (σ ∈ A) = P (η ∈ A) ∀ A ⊂ R.

In words, in the absence of any prior knowledge about the scale parameter, the
probability of the parameter being inside any interval should be the same as
the probability of a transformed scale parameter being inside the same interval.
Since η = cσ we must have

P (η ∈ A) = P (σ ∈ A/c) = P (σ ∈ A) ∀ c > 0
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where the division means to divide each point in A by c. Following a similar
argument as in the location case, we want to set the prior density such that

∫

A
p(σ)dσ =

∫

A/c
p(σ)dσ.

Applying the change of variable theorem, we get
∫

A/c
p(σ)dσ =

∫

A
p

(
σ

c

)
1
c
dσ,

which can be true only if

p(σ) =
1
c
p

(
σ

c

)
∀ σ > 0.

In particular, if we choose σ = c, we get

p(σ) =
1
σ

p(1).

Therefore, the non-informative prior density for a scale parameter σ > 0 is

p(σ) ∝ 1
σ

.

This prior will be invariant to changes in scale. It is also improper, but for
important cases (although not always) the posterior is proper.

Example. Illustration of change of scale on prior. Suppose A = (1, 2)
and consider other intervals A/c. Then the non-informative prior on a scale
parameter σ looks like Figure 11.5, where we have illustrated the probability
P (σ ∈ A/c) for c = 0.5, 1, and 2. For c = 1 we get P (σ ∈ A), but for all other
cases we get P (η ∈ A) since η = cσ. All the shaded areas are equal to ln(2)
numerically. This implies that P (σ ∈ A) = P (η ∈ A), as required. The lower
part of the figure illustrates how each of the areas in the p(σ) density graph map
into the areas in the log σ scale, where the prior is improper uniform. �

It should be pointed out that the non-informative priors derived in this section
are not unique. Since they are improper integrals, any multiple of them will be
equally acceptable. This does not reduce the utility of these priors as approx-
imations to the situation where there is little knowledge about a parameter,
provided the resulting posterior is proper.
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Figure 11.5. Illustration of invariance of noninformative prior for a scale parameter σ > 0 and
the corresponding prior in the transformed log σ space. In the figure, A=(1, 2)

11.7.3 Jeffreys’ Non-informative Priors**
The idea of using a formal rule to define a non-informative prior is due to

Jeffreys7. He used the concept of invariance as a formal rule. Thus far we have
not used a well-defined notion of invariance. We now define it more formally.
Invariance principle. If some rule led to p(θ) as a noninformative prior for θ,
the same rule should lead to

p(φ) = p(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣ (11.8)

7This section contains somewhat more advanced material and may be skipped on a first reading.
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as a noninformative prior for φ, where φ = h(θ) is a one to one transformation.
If this is true, posterior inferences based on p(φ) will be the same as those made
on p(θ).

Thus, what we request is that the conclusions we reach in our analysis do
not change if we transform the parameter. This occurs only if the prior for a
transformed quantity is consistent with the transformation of random variables
formula (see Appendix D). The principle implies, in particular, that regardless
of the origin and scale of measurements of quantities of interest, which are
always arbitrary, the conclusions that we reach or inferences we make will be
invariant.

Jeffreys then showed that a prior that meets the invariance principle is:

p(θ) ∝ I(θ)1/2 (11.9)

where I(θ) is Fisher’s information for the parameter θ, defined by:

I(θ) = −E

[
d2log p(y|θ)

dθ2
| θ

]
.

This criterion, when applied individually to location and scale parame-
ters as in the previous section, results in p(θ) ∝ constant and p(σ) ∝ 1/σ,
respectively8.

It is easy to see9 that Jeffreys criterion (11.9) satisfies the invariance principle
(11.8).

Suppose φ = h(θ), and write p = p(y|θ). Then, from the chain rule for
differentiation,

d log p

dθ
=

d log p

dφ

dφ

dθ
.

Therefore,

I(θ) = −dφ

dθ
E

(
d log p

dφ

d log p

dφ

)
dφ

dθ
= I(φ)

(
dφ

dθ

)2

.

Thus,

I(θ)1/2 = I(φ)1/2

∣∣∣∣
dφ

dθ

∣∣∣∣ .

8It is interesting to note that for the binomial parameter p (proportion), the prior we recommended earlier is
U(0,1) (equivalent to a Beta(1,1)) but Jeffreys’ criterion (11.9) yields a Beta(1/2,1/2).
9This proof is presented in Zellner [162] who attributed it to M. Stone.



Introduction to Bayesian Inference 309

This implies that if we set p(θ) ∝ I(θ)1/2 and use the same rule for setting a
prior on φ, then

p(φ) ∝ I(φ)1/2 = I(θ)1/2

∣∣∣∣
dθ

dφ

∣∣∣∣ ∝ p(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣

and this satisfies the invariance principle.
For multiple parameters θ = (θ1, θ2, . . . , θk)′ Jeffreys’ prior is

p(θ) ∝ |I(θ)|1/2 (11.10)

(the square root of the determinant of Fisher’s information matrix), where

Iij = −E

[
∂log p(y|θ)

∂θi∂θj

]
, i, j = 1, 2, . . . , k.

However, when I(θ) is not diagonal, this would imply that a priori, the para-
meters are dependent, and this is counter to our intuition of a noninformative
prior on the parameters. Therefore, Jeffreys suggests that instead of using crite-
rion (11.10), one should use his scalar criterion (11.9) one parameter at a time.
This implies we assume the multiple parameters are a priori independent, and
individually noninformative, but do not follow jointly the concept of what a
“non-informative prior” should be according to Jeffreys himself.

Jeffreys made some efforts to justify the prior 1/σ for a scale parameter
σ > 0 on grounds other than on invariance. In particular, since

∫ ∞

0

dσ

σ
= ∞

he argued that the value to represent certainty is infinity, rather than unity, which
is an equally arbitrary choice. Furthermore, he then notices that

∫ a

0

dσ

σ
=
∫ ∞

a

dσ

σ
= ∞

which imply that
P (0 < σ < a)
P (a < σ < ∞)

is undetermined. This, Jeffreys argued, was a nice indication of our lack of
information about σ, since in contrast, for the prior p(σ) ∝ constant we have
that this ratio is zero, an indication that we do know something about σ.
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This line of argument is not very solid, since for Jeffreys prior for a scale
parameter10,

P (a ≤ σ ≤ b)
P (b < σ < ∞)

= 0

so it is more probable that σ > b than a ≤ σ ≤ b. Therefore, the best justifica-
tion of Jeffreys’ priors is through the invariance principle.

11.7.4 Other Approaches to Setting Non-informative Priors
As it should be clear from the previous section, one problem with non-

informative priors of the type suggested by the invariance principle is that
a prior that is flat or uniform in one parametrization (i.e., transformation of
parameters) might not be so in another (e.g., consider the case of the prior for
a scale parameter). A question is: on which parametrization should we assign
a uniform or flat prior? In other words, on which transformed parameter space
should p(h(θ)) be proportional to a constant?

Box and Tiao [28] suggested an answer to this question. They noted that
the transformation h(θ) over which we should have a “locally uniform prior”11

should make the likelihood data translated. That is, the likelihood changes with
the transformation, and what we require according to this criterion is that only
the location of the likelihood changes with the data in the transformed space
defined by h(θ). A data translated likelihood has the form p(θ|y) = g(h(θ) −
f(y)) where g is a known function of the data y. Thus, these authors suggest
to pick a h(θ) that achieves this type of likelihood, and then set p(h(θ)) ∝
constant.

Finding a transformation that yields a data-translated likelihood is not always
possible, e.g., in some multiparameter applications. For the Normal distribu-
tion discussed above this criterion does yield the same priors as the invariance
principle. In multiparameter situations Box and Tiao suggest to rely on some
other argument leading to Jeffreys’ rule ([28, p. 53]).

Other approaches to defining a non-informative prior have been derived from
the idea of measuring the information of the prior distribution using Shannon’s
entropy. This certainly makes sense since defining what we mean by “lack of

10This counterargument was made by J. Neyman [120], who was not fond of Bayesians.
11“These authors refer to the improper U(−∞,∞) prior as “locally uniform”, following Jeffreys.
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information” is the fundamental difficulty faced in objective Bayesian analysis.
See [74] for this and other approaches for setting priors in Bayesian analysis.

11.8 Inferences on Normally Distributed Data (Known
Variance)

We know present some examples of Bayesian inference to illustrate the pre-
vious developments. Consider data that is normal: Y ∼ N(θ, σ2) with σ2

known and θ unknown. This is probably not very realistic in practice, but it is
a useful first simple model to illustrate the ideas. Suppose, also for simplicity,
that we observe one data point. The likelihood for one observation is

p(y|θ) =
1√
2πσ

e
1
2σ

(y−θ)2 .

11.8.1 Analysis with a Conjugate Prior
The conjugate prior for normal data is

θ ∼ N(µ0, τ
2
0 )

where we assume that the “hyperparameters” µ0 and τ0 are known. That this is
a conjugate prior for the normal can be seen because the posterior density is an
exponential in a quadratic form in θ, which turns out to be a normal:

p(θ|y) ∝ p(θ)p(y|θ) ∝ e
− 1

2

[
( y−θ

σ )2
+

(
θ−µ0

τ0

)2
]

which can be simplified by completing the square12 in θ to:

p(θ|y) ∝ e
− 1

2τ2
1

(θ−µ1)2

, thus θ|y ∼ N(µ1, τ
2
1 )

where the posterior mean is:

µ1 =
1
τ2
0
µ0 + 1

σ2 y

1
τ2
0

+ 1
σ2

and the posterior variance follows the relation:

1
τ2
1

=
1
τ2
0

+
1
σ2

.

12Recall this means we get a perfect binomial square of the form (θ − c)2. Once this is done, we treat
anything not a function of the random variable as a constant, which is not shown due to the use of the
proportionality sign.
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Thus the posterior mean is a weighted average of the prior mean and data, with
weights equal to the precisions (i.e., the inverse of the variances). The posterior
precision is the sum of the prior precision and data precision. The posterior
mean can also be interpreted as:

µ1 = µ0 + (y − µ0)
τ2
0

σ2 + τ2
0

so we can say that the prior mean is adjusted towards the observed y. Similarly,

µ1 = y − (y − µ0)
σ2

σ2 + τ2
0

so some authors (e.g., [60]) say that the data “shrinks” towards the prior mean.
Some interesting cases are:

If τ2
0 = 0 then µ1 = µ0, i.e., the prior mean is “infinitely precise” and

dominates;

if σ2 = 0 then µ1 = y, i.e., the data is “infinitely precise” and dominates;

if y = µ0 then µ1 = µ0 = y, i.e., the data and prior means agree and so
does the posterior mean;

if τ2
0 → ∞ then µ1 → y, i.e., we approach a “non-informative” prior on the

mean parameter.

The posterior predictive density is obtained from

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ ∝
∫

e−
1

2σ2 (ỹ−θ)2 e
1

2τ2
1

(θ−µ1)2

dθ

∝
∫

e
1
2
θ2

(
1

σ2 + 1

τ2
1

)
+θ

(
ỹ

σ2 +
µ1
τ2
1

)
− 1

2

(
ỹ2

σ2 +
µ2
1

τ2
1

)
dθ

Integrating with respect to θ yields

p(ỹ|y) ∝ e
− 1

2

(
ỹ2

σ2 +
µ2
1

τ2
1

)
e

1
2

(
ỹ

σ2 +
µ1
τ2
1

)2(
1

1/σ2+1/τ2
1

)

Completing the square in ỹ in the exponent gives:

p(ỹ|y) ∝ e
− 1

2

(ỹ−µ1)2

σ2+τ2
1
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Therefore, the posterior predictive density is given by

ỹ|y ∼ N(µ1, σ
2 + τ2

1 ).

Case of several observations. If n independent and identically normally-
distributed data points are observed, the posterior of the mean is

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)
n∏

i=1

p(yi|θ)

∝ e
− 1

2τ2
0

(θ−µ0)2 n∏
i=1

e−
1

2σ2 (yi−θ)2

∝ e
− 1

2

[
1

τ2
0

(θ−µ0)2+ 1
σ2

∑n

i=1
(yi−θ)2

]

Completing the square on θ (placing terms not a function of θ in the propor-
tionality constant):

P (θ|y1, y2, . . . , yn) = p(θ|y) = N(µn, τ2
n)

where the first equality follows because the sample mean y is a sufficient
statistic, i.e., the posterior is only a function of the data through the sample
average. Here we have that

µn =
1
τ2
0
µ0 + n

σ2 y

1
τ2
0

+ n
σ2

and the posterior precision is:

1
τ2
n

=
1
τ2
0

+
n

σ2
.

Note how as n → ∞ or as τ0 → ∞, µn → y and τ2
n → σ2/n. This coincides

with the frequentist results.

Example. Inferences on normal distributed data, variance known.
Suppose σ2 = 50 is known from previous experience, and we take n = 5
observations from which y = 370. Figure 11.6 shows the results for a con-
jugate prior θ ∼ N(500, 22) distribution. The prior is very precise, and the
posterior has a mean close to the prior mean (µn = 462.85, τn = 1.69).
The posterior predictive density also has mean equal to µn = 462.85 but its
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Figure 11.6. Inferences on normally distributed data, σ2 known, “informative” conjugate prior,
y = 370, n = 5. Left: p(θ); center: p(θ|y); right: p(ỹ|y)
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Figure 11.7. Inferences on normally distributed data, σ2 known, “less informative” conjugate
prior, y = 370, n = 5. Left: p(θ); center: p(θ|y); right: p(ỹ|y)

standard deviation is
√

σ2 + τ2
1 = 7.27. Therefore, the prior dominates the

likelihood.
In contrast, Figure 11.7 shows the corresponding results for a conjugate prior

θ ∼ N(500, 1002), a much flatter distribution. The prior is relatively imprecise,
and the posterior has a mean close to the data mean but with larger variability
(µn = 370.12, τn = 3.16). The posterior predictive density also has mean
equal to µn = 370.12 with standard deviation equal to

√
σ2 + τ2

1 = 7.74.
Here, the data dominates the likelihood. �

11.8.2 Analysis with a Non-informative Prior
For the normal model with σ2 known, consider now the non-informative

prior
p(θ) ∝ constant.

The posterior after n observations is

p(θ|y1, y2, . . . , yn) ∝ p(y1, y2, . . . , yn)p(θ)

= p(y|θ)
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∝ e−
1

2σ2

∑n

i=1
(yi−θ)2

= e−
1

2σ2 [nθ2−2θ
∑

yi+
∑

y2
i ]

= e−
n

2σ2 (θ2−2θy+
∑n

i=1
y2

i /n).

Completing the square on θ in the exponent (placing constant terms in the
proportionality constant):

p(y|θ) ∝ e−
n

2σ2 (θ−y)2 .

Therefore,
θ|y ∼ N(y, σ2/n) (11.11)

which evidently is a proper posterior. Note how we also obtain this distribution
in the conjugate prior case when τ0 → ∞.

11.9 Inferences on Normally Distributed Data,
Both Parameters Unknown

We will only sketch the main results for a non-informative prior. For two
unknown parameters, we apply Jeffreys rule one parameter at-a-time, i.e., we
assume a priori that the parameters are independent:

p(θ) ∝ constant and p(σ2) ∝ 1/σ2

which yields
p(θ, σ2) = p(θ)p(σ2) ∝ 1/σ2.

The joint posterior distribution is obtained by making use of the expression:

p(θ, σ2|y) = p(θ|σ2, y)p(σ2|y)

where, if σ2 is given, we have shown (see equation (11.11)) that for a noninfor-
mative prior on θ

θ|σ2, y ∼ N(y, σ2/n).

We can also show13 that

σ2|y ∼ Inv − χ2(n − 1, s2).

13The Inv−χ2(v0, σ2
0) (scaled inverse chi-squared) distribution is the distribution of σ2

0v2
0/χ2

v0
, i.e., it is

the inverse of a usual χ2 distribution with v0 degrees of freedom that is scaled by the quantity σ2
0v2

0 , hence
its name. This is a particular case of an inverse gamma distribution.
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With these two distributions, the joint posterior can easily be simulated. (Note
how the distribution of σ2|y is analogous to the classical (frequentist) result
(n − 1)s2/σ2 ∼ χ2

n−1 where s2 is the random variable. In the Bayesian case,
σ2 is the random variable.)

The marginal posterior for the mean is

θ|y ∼ tn−1(y, s2/n)

where the statistics y and s2 are sufficient. The distribution is a noncentral t
distribution with location parameter y and scale parameter s2/n. (Note this
implies the Bayesian result:

θ − y

s/
√

n
∼ tn−1

a central t, where θ is the random variable. Compare this with the classical
result:

y − θ

s/
√

n
∼ tn−1

where y is the random variable.)
The posterior predictive distribution is given by:

p(ỹ|y) =
∫ ∫

p(ỹ|θ, σ2, y)︸ ︷︷ ︸
N(θ,σ2)

p(θ, σ2|y)dθdσ2

which can be approximated by simulation:

1 Draw (θ, σ2) from p(θ, σ2|y):

(a) draw σ2 from σ2|y ∼ Inv − χ2(n − 1, s2);

(b) draw θ from θ|σ2, y ∼ N(y, σ2/n);

2 draw ỹ from ỹ ∼ N(θ, σ2)

3 goto 1 until we have iterated N times.
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The integral can also be solved analytically, after some algebra, yielding

ỹ|y ∼ tn−1

(
y,

(
1 +

1
n

)
s2
)

.

If known in closed-form, the predicted density can be simply graphed and
reported. Alternatively, it can be simulated as the following example shows.

Example, inferences on normal data, both parameters unknown. Suppose
we collect 10 observations from which y = 100 and s2 = 20. We then simulate
the predictive density of a new observation, ỹ|y, using a) the distributions of
σ2|y and θ|σ2, y, and b) using the t distribution directly. Table 11.3 shows
the corresponding Matlab code. Figure 11.8 shows histograms obtained us-
ing the marginal distributions; Figure 11.9 shows the corresponding pos-
terior predictive density generated directly from the t distribution’s closed
form. The two simulated predictive densities are practically the same as ex-
pected. The distribution of σ2|y is an scaled inverse chi-square, with expected
value v0/(v0 − 2)s2 = 25.7 and mode at v0/(v0 + 2)s2 = 16.36 where
v0 = n − 1 = 9. Although in this case using the closed form of the predictive

Table 11.3. Matlab simulation program for the posterior predictive density ỹ|y, normal data,
both parameters unknown, non-informative prior. The program uses both the distributions of
σ2|y and θ|σ2, y and the t distribution directly

function [ynew1,ynew2,theta,sigma2]

=predictiveDensity(noOfSimulations,ybar,n,s2);

for i=1:1:noOfSimulations

x=chi2rnd(n-1);

sigma2(i)=(n-1)*s2/x;

theta(i)=normrnd(ybar,sqrt(sigma2(i)/n));

ynew1(i)=normrnd(theta(i),sqrt(sigma2(i)));

% Use instead the direct formula (a non-central

t dist.)

ynew2(i)=ybar+sqrt(s2*(1+1/n))

*normrnd(0,1)*sqrt(n)/sqrt(x);

end;
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Figure 11.8. Inferences on normally distributed data, θ and σ2 unknown, non-informative
prior, y = 100, s2 = 20, n = 10. Left: p(σ2|y); center: p(θ|σ2, y); right: p(ỹ|y)
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Figure 11.9. Predictive density (p(ỹ|y)) obtained by simulating directly from the t distribution,
θ and σ2 unknown, non-informative prior, y = 100, s2 = 20, n = 10. Compare with Figure
11.8 c)

density is easy, this illustrates a useful approach to generate the distribution of
ỹ|y when no closed-form expression exists. �

11.10 Problems
1 Consider the first Matlab program for the determination of the posterior

of the CV of a normal with both parameters unknown (we used non-
informative priors). Modify it such that you can compute the posterior
distribution of the Cpk statistic, a common “capability” statistic used in
quality control defined by:

Cpk =
min{(USL − θ), (θ − LSL)}

3σ
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where USL and LSL are two known constants (lower and upper spec-
ification limits of the quality characteristic y). The response or quality
characteristic y is assumed N(θ, σ2) with both parameters unknown.
Assume non-informative priors in both parameters. Give a listing of the
program and sample output for the following case: LSL = 38, USL = 62,
and a sample of size 15 yield y = 53.1 and s2 = 1.95. Use a histogram
to show the simulated distribution. [Note: this shows the power of the
Bayesian approach, as the sampling (frequentist) distribution of this statistic
is rather complex].

2 An engineer uses a measuring gauge with a known standard deviation of
0.12 to take nine independent measurements of a quality characteristic.
The measurements can be reasonably assumed N(θ, 0.122) with unknown
mean. The sample mean of the observations is 17.653. Find a 99% cred-
ible interval on the (future) tenth measurement (this is called a Bayesian
tolerance interval). Assume a non-informative prior.

3 Suppose Y ∼ N(θ, 1) and we take three independent observations y1 = 2,
y2 = 3, and y4 = 4. Assuming your prior for the mean θ is N(3.6, 22), find
the posterior distribution of θ.

4 Suppose we measure the tensile strength of a metal specimen for which it is
known its mean tensile strength is 50 units. We are interested in determining
the variance of the tensile strength measurements for a capability analysis.
The measurements are assumed N(50, σ2). Twenty tensile strength mea-
surements were taken from which v =

∑20
i=1(yi − 50)2/20 = 17.4. Using

a non-informative prior, find the mode of the posterior distribution of σ2.



Chapter 12

BAYESIAN METHODS FOR PROCESS
OPTIMIZATION

What experimenters take for granted before they begin their experiments is infinitely more
interesting than any result to which their experiments lead.

—Norbert Weiner (1894–1964)

The mainstream literature on Response Surface Optimization is classical or
“frequentist” given that it considers parameters as unknown constants that need
to be estimated from data. The sampling variability or experimental error is
reflected in the sampling distributions of the estimates. This sampling variabil-
ity can (and should) be considered in optimization, see Chapter 7. In contrast,
the Bayesian approach to statistical inference considers model parameters (and
in fact, any unknowns) as random variables. This has considerable advantages
over the classical approach when optimizing a process based on a fitted model,
since depending on the estimated parameters different optimal conditions will
be determined. In the Bayesian approach, the uncertainty in the model’s para-
meters is directly incorporated in the analysis. Prior knowledge (which can be
considerable, in agreement with Weiner’s quote above) can be incorporated, if
desired, into the optimization process. Otherwise, non-informative priors can
be used for optimization purposes.

This chapter presents Bayesian linear regression models and its use in
process optimization, with the minimum number of technical details, without
sacrificing understanding of the main ideas for readers not familiar with
Bayesian Analysis.

321
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In this chapter, we will first give results needed to understand Bayesian
regression models and their use in optimization problems. One such problem is:

max
w∈R

∫

A
p(ỹ|data,w)dỹ

where ỹ is a q × 1 vector of future responses, w is a vector of controllable fac-
tors, and A is a specification region for the q responses. Solving such optimiza-
tion problem provides a solution that satisfies the specifications or tolerances
on the responses of interest. We consider application of these ideas to factorial
and mixture experiments. A related problem is when to stop experimenting,
which can be solved using a Bayesian approach due to Gilmour and Mead [61],
and is presented here.

Another problem we will discuss from a Bayesian point of view is that
of Robust Parameter Design. Here, noise factors z are treated as random
variables, so optimization of the problem above is carried out with an additional
integration over the noise factors, i.e., w is split into (wc, wnc), the controllable
(optimizable) factors and the non-controllable factors; the latter are integrated
out of the objective function according to some prior distribution.

Finally, we would like to investigate Bayesian model-robust optimization
problems. Suppose we have a family of m potential models Mi that adequately
explain some process. Optimizing each model independently may lead to very
different solutions. If we can compute P (Mi|data), the posterior of model i,
then we could solve1

max
w∈R

∑
all i

∫

A
p(ỹ|Mi, data,w)dỹ p(Mi|data),

the model-averaged posterior probability of satisfying the constraints A. We
will focus on the case of a single response of interest and on models linear in
the parameters.

12.1 Bayesian Linear Regression and Process Optimization
Consider a normal linear regression model with p regressors x1, x2, . . . , xp

which themselves can be nonlinear transformations of underlying controllable
factors. For example, x3 = x1x2, or x4 = log(x2), etc. We assume we have

1As we will see, the solution to this problem is not equivalent to averaging the solutions w∗
i obtained from

optimizing each model Mi independently.
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conducted N “experiments”, an experiment consisting on observing the values
of the p regressors together with the value of the response, y. In this section,
we assume a single response is of interest. The N experimental conditions are
gathered in a N × p matrix

X = [xij ]

which we will call the “design matrix” in what follows (this will include the
actual N × k design matrix if there are k underlying factors). Put the observed
response values in an N × 1 vector y. If the assumed normal model is valid, it
should be valid for all N observations, so for each observation i we can express
the response as

yi|β, X = β1xi1 + β2xi2 + · · · + βpxip + εi

where we assume ε ∼ N(0, σ2) and β denotes the p × 1 vector of parameters.
The response is then assumed to be the result of two effects: the first one,
which we can explain, is due to the p regressors, the second one, which we
cannot attribute to any of the p factors, we thus model it as a random variable
with mean zero and constant variance. The two sources of uncertainty, due to
not knowing the parameters, and due to not knowing the intrinsic variability of
the errors of the model, need to be considered in any inference problem. This
is achieved by using the Bayesian approach.

Based on this model we have that

E[yi|β, X) = β1xi1 + β2xi2 + . . . + βpxip

and
Var(yiβ, σ2, X) = σ2.

In many applications, x1 is assumed to be one, and the model has an intercept2.
We can summarize the model by saying that

y|β, σ2, X ∼ N(Xβ, σ2I).

12.1.1 Analysis with a Non-informative Prior
Under a standard (Jeffreys) non-informative prior, Bayesian estimates

and standard errors coincide with classical results. However, even this non-
informative case is of considerable value for predictive inference, in particular,
for applications in process optimization, as will be shown later.

2Models for Mixture experiments usually have no intercept.
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The non-informative prior for the parameters of this regression model is a
Uniform distribution in (β, log σ) or

p(β, σ2|X) ∝ 1
σ2

.

We assume both parameters are independent a priori. Note that we indicate
that the design is given, since we can design the experiment before deciding on
the prior. Because of this, in regression cases it is also customary to define the
prior taking advantage of our knowledge of the design. The resulting design
is called a “g-prior”, and was proposed by Zellner [161]. We will use g-priors
in our discussion of model-robust optimization. In this section we instead use
non-informative priors.

The likelihood for the N observations under the assumed Normal model is

p(y|β, σ2, X) =
1

(2π)N/2σN
e−

1
2σ2 (y−Xβ)′(y−Xβ)

so the posterior (∝ prior × likelihood) is

p(β, σ2|y, X) ∝ 1
(σ2)N/2+1

e−
1

2σ2 (y−Xβ)′(y−Xβ). (12.1)

The marginals for each parameter can be obtained by integration. For example,
the marginal density for β is obtained from

p(β|y, X) ∝
∫ ∞

0

1
(σ2)N/2+1

e−
1

2σ2 (y−Xβ)′(y−Xβ)dσ2

∝ [(y − Xβ)′(y − Xβ)]−N/2

Add and subtract Xβ̂ in each parenthesis, where β̂ = (X ′X)−1Xy makes
the right hand side equal to

= [(y − Xβ̂)′(y − Xβ̂) + (β − β̂)′X ′X(β − β̂)]−N/2

=
[
(N − p)s2 + (β − β̂)′X ′X(β − β̂)

]−N/2

=

[
1 +

(β − β̂)′X ′X(β − β̂)
(N − p)s2

]−N/2

[(N − p)s2]N/2

︸ ︷︷ ︸
a constant

∝
[
1 +

(β − β̂)′X ′X(β − β̂)
(N − p)s2

]−(N−p+p)/2

(s2|X ′X|−1)−1/2

︸ ︷︷ ︸
another constant
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which has the form of a multivariate t distribution (see Appendix D) with
degrees of freedom v = N − p:

β|y, X ∼ tN−p(β̂, s2(X ′X)−1).

Similarly, we can obtain the posterior marginal distribution of σ2 by
integrating (12.1) over β, obtaining a scaled inverse chi-square distribution
(see Appendix D):

σ2|y, X ∼ Inv χ2(n − p, s2).

The posterior predictive density is obtained as follows3. Let ỹ be a new
observation (a scalar) to be obtained at point w, a p × 1 vector. We then need
to compute:

p(ỹ|y, X, w)

=
∫ ∫ ∞

0
p(ỹ|β, σ2, y, X, w)p(β, σ2|y, X)dσ2dβ

∝
∫ ∫ ∞

0

1
(σ2)(N+1)/2+1

e−
1

2σ2 [(y−Xβ)′(y−Xβ)+(ỹ−w′β)2]dσ2dβ

∝
∫

dβ

[(y − Xβ)′(y − Xβ) + (ỹ − w′β)2](N+1)/2

where

(y − Xβ)′(y − Xβ)′ = (N − p)s2 + (β − β̂)′XX(β − β̂)

and β̂ = (X ′X)−1X ′y.
A common trick in Bayesian statistics is to identify the integrand of an

integral that looks hard as a known density. If this is possible, it provides a
mechanism to find a closed-form expression for the integral, as we now show
by example.

The denominator in the last integral can be written as

[C3 + (β − C1)′C2(β − C1)](N+1)/2

3We follow the derivation by Press [129] to do this.
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where

C1︸︷︷︸
p×1

= (X ′X + ww′)−1(X ′Xβ̂ + ỹw)

C2︸︷︷︸
p×p

= X ′X + ww′

C3︸︷︷︸
1×1

= (N − p)s2 +
(ỹ − w′β̂)2

1 + w′(X ′X)−1w
.

Thus we can write

p(ỹ|y, X, w) ∝
∫

dβ

[C3 + (β − C1)′C2(β − C1)](N+1)/2

which has an integrand with the form of the Kernel 4 of a matrix T distribution
(see Appendix D). Since the multiple integral is over all possible values of β,
and the integral of the kernel times the constant of a matrix T equals to one, the
integral of the kernel (only, without the constant) must equal the inverse of the
constant of a multivariate T, namely (using the notation from Appendix D):

1
k(m,l1,l2)

|P |(m−l2)/2|Q|l2/2

where we have the equivalences P−1 ⇔ C3, T ⇔ (β − C1)′, Q−1 ⇔ C2,
l1 = 1, l2 = p, and m = N + 1. Using these equivalences in the latter
expression, we notice that only C−1

3 (i.e., P ) is a function of ỹ, the random
variable, so everything else can be treated as a constant. We thus have that

p(ỹ|y) ∝ 1
|C3|(N+1−p)/2

=
1

C
(N+1−p)/2
3

where recall that

C3 = (N − p)s2 +
(ỹ − w′β̂)2

1 + w′(X ′X)−1w
.

Therefore, the predictive density is

p(ỹ|y) ∝ 1
⎡
⎣1 + 1

N−p
(ỹ−w′β̂)2

s2

(
1+w′

(
X ′X

)−1
w
)
⎤
⎦

(N+1−p)/2

4The Kernel of the density is the part of the density function which is a function of the random variable, the
rest being a constant or functions or constants.
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which is a univariate Student t density (see Appendix D):

ỹ|y ∼ tN−p(w′β̂, s2(1 + w′(X ′X)−1w)).

Note that this implies that

Var(ỹ|y) =
N − p

N − p − 2
s2(1 + w′(X ′X)−1w)

which is the sum of two components: the first one, proportional to s2,
is due to intrinsic (sampling) variability; the second one, proportional to
s2(w′(X ′X)−1w), represents variance due to the uncertainty in the parameters.

If we want to predict the next several M observations, it can be shown,
following a similar approach, that the vector of predicted responses ỹ has
density

ỹ|y ∼ tN−p(Wβ̂, s2(I + W (X ′X)−1W ′))

which is an M -dimensional student t density where ỹ is a M × 1 vector of
future values of the response and W is a M × p matrix that gives the M points
at which we wish to predict, where the columns of W are in model form in
correspondence with the columns of X .

A final useful result is the predictive region for a vector of future responses
ỹ, given by:

(ỹ − Wβ̂)′(IM + W (X ′X)−1W ′)−1(ỹ − Wβ̂)
(N − p)s2

∼ FM,N−p.

Points ỹ of the space of the responses that have a left hand expression less than
FM,N−p,α constitute the (1 − α)100% predictive region. The interpretation
of this region is the Bayesian one: this region contains the predicted response
values with probability 1 − α.

Example. Computation of a predictive region. Montgomery [110] gives
a chemical experiment in which three responses are of interest: the yield of
the process, the viscosity of the chemical, and the molecular weight. In this
example we will consider the yield response. Two underlying factors are
controllable, the reaction time and the temperature, and we fit a quadratic
polynomial. The X matrix containing the design (a rotatable CCD) and the
observed responses are shown in Table 12.1.
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Table 12.1. Data for a chemical experiment

Int. x1 x2 x1x2 x2
1 x2

2 y1=yield y2=viscosity
1 −1 −1 1 1 1 76.5 62
1 −1 1 −1 1 1 77 60
1 1 −1 −1 1 1 78 66
1 1 1 1 1 1 79.5 59
1 0 0 0 0 0 79.9 72
1 0 0 0 0 0 80.3 69
1 0 0 0 0 0 80 68
1 0 0 0 0 0 79.7 70
1 0 0 0 0 0 79.8 71
1 1.41421 0 0 2 0 78.4 68
1 −1.41421 0 0 2 0 75.6 71
1 0 1.41421 0 0 2 78.5 58
1 0 −1.41421 0 0 2 77 57

Suppose we wish to compute a 95% prediction region for the yield response
obtained at the points (0.389, 00.306) (the optimal point estimate obtained from
a least squares fit) and (−1,−1), in coded units. The W matrix is then given by

W =

[
1 .389 .306 .1190 .1513 0.0936
1 −1 −1 1 1 1

]

The 95% prediction region is shown in Figure 12.1. The Maple 9 command:

> plot3d(Transpose(<y1,y2>-W.B).MatrixInverse(eye2+W.

MatrixInverse(Transpose(X).X).Transpose(W)).(<y1,y2>-W.B)/

((13-6)*s^2)-8.64,y1=70..90,y2=70..90,view=-100..0);

creates the plot, where the user should previously specify the values of
s, B, X, y, W and the “eye2” matrix (identity matrix of dimension 2).
The prediction at the first point evidently results in higher yields than at the
second one. The prediction is also more precise at the first point than at the
second, as it can be seen for the slightly larger elongation in the vertical direc-
tion. However, the region is not too large, a consequence of the excellent fit of
the quadratic polynomial. �
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Figure 12.1. 95% prediction region for the yield response at points (0.389, 0.306) and
(−1,−1), respectively

Example. Optimization of a single response process. Consider now the
use of the predictive density for optimization purposes. Consider again the
chemical experiment data of the previous example, and let the response of
interest be the viscosity. The process engineer wishes to know the operating
conditions that would maximize the probability of the viscosity being between
62 and 68 units. To do this, we need to solve:

max√
2≤x1,x2≤

√
2

∫ 68

62
p(ỹ|y)dỹ

where the region over we wish to vary the two controllable factors ranges
from −

√
2 to

√
2 in coded units, given the central composite design that was

used. Section 12.10 discusses the MATLAB (v. 7) program maxArea.m

that performs the optimization. Since the objective function is not concave,
the fmincon nonlinear optimization solver is run from a set of initial points
selected according to a random latin hypercube. For the viscosity response,
we have that the highest probability found is 0.7305 at w1 = 0.0852, w2 =
0.7845, so the solution is well inside the experimental region. �

12.1.2 Analysis with a Conjugate Prior
The non-informative regression model has the limitation that N > p, other-

wise, the X ′X matrix is not invertible. The conjugate case does not have this
limitation, as it incorporates prior information that, when added to X ′X , makes
the resulting matrix invertible. Here we present the derivation of the posterior
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distribution of the parameters (including σ2 as an unknown) using a conjugate
prior5.

The prior distribution can be written as

p(β, σ2|X) = p(β|σ2)p(σ2)

where

p(β|σ2) ∝ A
1/2
0

(σ2)p/2
e−

1
2σ

(β−β0)′A0(β−β0)

(or β|σ2 ∼ N(β0, σ
2A−1

0 )), and

p(σ2) ∝ 1
(σ2)v0/2+1

e−
v0σ2

0
2σ2

(or σ2 ∼ Inv χ2(v0, σ
2
0)).

Therefore, the joint prior is a Normal-Inv χ2(β0, σ
2
0A

−1
0 ; v0, σ

2
0):

p(β, σ2) ∝ 1
(σ2)(v0+p)/2+1

e−
1

2σ2 [v0σ2
0+(β−β0)′A0(β−β0)].

The likelihood of n observations is

p(y|X, β, σ2) ∝ 1
(σ2)n/2

e−
1

2σ2 [(y−Xβ)′(y−Xβ)].

Therefore, the posterior distribution is

p(β, σ2|y, X)

∝ 1
(σ2)(n+p+v0)/2+1

e−
1

2σ2 [v0σ2
0+(β−β0)′A0(β−β0)+(y−Xβ)′(y−Xβ)].

(12.2)

In analogy with the way we parameterized the prior, we should be able to
write the posterior as a Normal-Inv χ2(βn, σ2

nA−1
n ; vn, σ2

n). To achieve this
we develop the products in the exponent:

(β − β0)
′A0(β − β0) + (y − Xβ)′(y − Xβ)

= β′A0β − β′A0β0 − β′
0A0β + β′

0A0β0

+y′y − y′Xβ − β′X ′y + β′X ′Xβ

= β′(A0 + X ′X)β − 2β′(A0β0 + X ′y) + y′y + β′
0A0β0. (12.3)

5We follow Zellner [162] in this section.
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Define
An = A0 + X ′X

and complete the square on β in (12.3):

(12.3) = [β − A−1
n (A0β0 + X ′y)]′An[β − A−1

n (A0β0 + X ′y)]

+ y′y + β′
0A0β0 − [A−1

n (A0β0 + X ′y)]′AnA−1
n (A0β0 + X ′y)

= (β − βn)′An(β − βn) + y′y + β′
0A0β0 − βnAnβn

where
βn = A−1

n (A0β0 + X ′y).

Therefore, with this exponent and in analogy with the joint prior (12.1), we can
write the posterior as

p(β, σ2|y, X) ∝ 1
(σ2)(n+v0+p)/2+1

e−
1

2σ2 [vnσ2
n+(β−βn)′An(β−βn)]

where
vnσ2

n = v0σ
2
0 + y′y + β′

0A0β0 − β′
nAnβn

and
vn = n + v0.

Integrating with respect to σ2 from 0 to ∞, we get:

p(β|y, X) ∝ [vnσ2
n + (β − βn)′An(β − βn)]−(n+v0+p)/2

∝
[
1 +

1
vn

(β − βn)′
An

σ2
n

(β − βn)
]−(vn+p)/2

(12.4)

which has the form of a Student t distribution:

β|y, X ∼ tvn(βn, σ2
nA−1

n ).

Note how the non-informative posterior of β is obtained when v0 = −p and
A0 = β0 = σ2

0 = 0. Also, for increasingly larger values of v0 we get a more
concentrated density on σ2.

12.2 A Stopping Rule for Process Optimization
Based on the Conjugate Prior Regression Model

Gilmour and Mead [61] present an interesting Bayesian approach to deter-
mine if it is worth performing more experiments when the goal is to optimize a
response. The answer to such question evidently provides a stopping criterion
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for a sequence of designed experiments. Suppose we have k controllable factors
and a single response we wish to maximize. Our goal is to find xmax, the
settings that maximize the response. Suppose y = Y (x) + ε, where the ε’s
form a sequence of i.i.d. N(0, σ2) random variables and Y (x) represents the
expected response.

Gilmour and Mead propose to estimate the quantity

L(x̂max) = Y (xmax) − Y (x̂max) (12.5)

the difference between the maximum true expected response and the expected
response at the estimated maximizer. If this quantity, the expected gain, is
small, it implies our current estimate of the optimum is providing a good solu-
tion, and this implies that conducting further experiments is not be warranted.
The problem, evidently, is that we do not know Y (xmax), the true response
maximal value. The proposal of Gilmour and Mead is to estimate it from the
posterior distribution of the parameters as follows.

Suppose the form of the expected response is a quadratic polynomial:

E[Y (x)] = b0 + b′x + x′Bx. (12.6)

Then, we know that

xmax = −1
2
B−1b and x̂max = −1

2
B̂

−1
b̂. (12.7)

Therefore, substituting xmax into (12.6) we get

Y (xmax) = b0 −
1
2
b′B−1b +

1
4
b′B−1BB−1b

= b0 −
1
4
b′B−1b.

Similarly, substituting x̂max in (12.6) we obtain

Y (x̂max) = b0 −
1
2
b′B̂

−1
b̂ +

1
4
b̂
′
B̂

−1
BB̂

−1
b̂.

Therefore, the difference gives

L(x̂max) = −1
4
(b′B−1b − 2b′B̂

−1
b̂ + b̂

′
B̂

−1
BB̂

−1
b̂). (12.8)

Gilmour and Mead [61] suggest to simulate b and B from the posterior
distribution of the parameters (assuming a conjugate prior6), β|y, X . The

6Gilmour and Mead used a conjugate model assuming the variance σ2 is known; in the example below we
use a conjugate prior on all parameters, including σ2.
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“hatted” parameters are least squares estimates. From each generated value
of the parameters a value of L(x̂max) is computed. The set of all generated
values of L(x̂max) approximate its posterior distribution. From this posterior
distribution, quantities of interest, such as the median of the expected gain or
some percentile like Pr(L > l0) can be easily obtained. If the current data
and prior indicate that the estimated optimal operating conditions are far from
the optimum, this is evidence there is a potential benefit to be obtained from
performing additional experiments.

Example. Gilmour and Mead [61] demonstrate their approach with the fol-
lowing experiment, taken from Montgomery [110]. The experimental data is
shown on Table 12.2, and the analysis will be conducted assuming first that
only the part of the experiment labeled “experiment 1” is run, then the runs

Table 12.2. Experimental design used to illustrate Gilmour and Mead’s stopping criterion

Exp. # x1 x2 x3 Response (y)
1,2,3 −1 −1 −1 66
1,2,3 −1 1 1 60
1,2,3 1 −1 1 70
1,2,3 1 1 −1 100
1,2,3 0 0 0 113
1,2,3 0 0 0 100

2,3 −1 −1 1 70
2,3 −1 1 −1 78
2,3 1 −1 −1 80
2,3 1 1 1 75
2,3 0 0 0 118
2,3 0 0 0 88

3 −1.682 0 0 100
3 1.682 0 0 80
3 0 −1.682 0 68
3 0 1.682 0 63
3 0 0 −1.682 65
3 0 0 1.682 82
3 0 0 0 100
3 0 0 0 85
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labeled experiment #2 are conducted, etc. Suppose that initially, the prior on
the parameter estimates has a mean of β′

0 = (100, 0, 0, 0, 0, 0, 0,−6,−6,−6),
with prior variance equal to σ2

0 = 10 and A0 = I . We will repeat the analy-
sis for various values of the degrees of freedom, v0, with smaller values of v0

providing flatter (less informative) priors.
Drawing 10,000 simulated values of the posterior distribution of β|y, X ,

and substituting these into expression (12.8) provides and approximation to the
posterior distribution of the potential gains, L(x̂max). From these, it is easy
to compute useful quantities. For example, since the distribution of L(x̂max)
is very skewed and non-negative, estimates of its mean will be hard to obtain.
Much better estimates are obtained, for a relative low computational cost, for
the median of L(x̂max), and some percentile, for example, P (L(x̂max) > 5).
Table 12.3 shows the results, utilizing different priors. The Matlab program
ComputeGainConjugate.m (see Section 12.10) was used to carry out the
computations. It is important to point out that those realizations of β|y, X that
did not result in a concave function Y (x) were discarded, since in those cases
the maximum is not defined7.

The results in the table clearly show that we gain more from further
experiments the less we know initially, i.e., the median of L(x̂max) and
P (L(x̂max) > 5) both increase as the prior distribution gets flatter (i.e., as v0

decreases). Thus, if we are very confident in our prior, the L(x̂max) criterion
indicates there is very little we will gain from experiments, and this is accord-
ing to our intuition. The problem, as always in Bayesian analysis, is if our
prior is adequate. A sensitivity analysis on the prior, similar to that shown
in Table 12.3 is suggested to determine the “robustness” of our conclusion of
whether or not to stop experimenting. In this example, it seems that after the
first experiment it is still worth performing further experiments, but after the
third experiment (which completes the central composite design) there seems
to be not much more we could gain from further experiments.

Note how in the last column we show the classical non-informative (Jeffreys)
case, for which the X ′X is invertible only after the 3rd experiment, when
N > p. For that column, v0 = −p, and in addition, A0 = β0 = σ2

0 = 0.

7This follows the recommendation in Gilmour and Mead [61]. It could be argued that non-concave cases, if
exist, point out to the possibility that the function is a saddle with non-negligible probability, and this should
be taken into account perhaps utilizing the Ridge Analysis technique. However, we will not show the details
of such approach here.
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Table 12.3. Results of Gilmour and Mead’s technique. Table shows median of L(x̂max) and
P (L(x̂max) > 5) obtained from 10,000 simulations of a conjugate prior Bayesian regression
model, assuming σ2 unknown, using increasingly flatter priors

Exp. # v0 =1000 100 10 1 −10

1 0.6511, 0.0288 0.7619, 0.0436 1.4793, 0.1747 2.4411, 0.3009 N/A, N/A

2 0.3567, 0.0112 0.5379, 0.0365 1.2224, 0.1488 1.6445, 0.2214 N/A, N/A

3 0.0881, 0.0004 0.1891, 0.0046 0.5475, 0.0413 0.7295, 0.0681 1.5783, 0.1724

12.3 Bayesian Multivariate Regression and its Use
in Process Optimization and Robust Parameter Design

We now extend the univariate Bayesian regression approach of the previous
section to the case there are q responses. The model is:

yk︸︷︷︸
(q×1)

= B︸︷︷︸
(q×p)

xk︸︷︷︸
(p×1)

+ uk︸︷︷︸
(q×1)

k = 1, 2, . . . , N

uk ∼ N(0,Σ) k = 1, 2, . . . , N

Let X be the N × p design matrix formed by stacking the N xk’s, one per run.
The model can then be written as Y = XB′ +U , a N × q matrix of responses
made up by the N yk’s, one per row. Matrix U is also N × q, and formed
similarly from the uk’s.

We want to predict a new observation ỹ at new settings w. With the predic-
tive density we will be able to

max
w∈R

P (ỹ ∈ A|data, w)

where A is some specification region for the responses [125]. The derivation
of the predictive density for the multivariate case is analogous to the univariate
case. A summary of the results follows.

Under the usual (i.e., Jeffreys) non-informative prior on B and Σ, namely,

p(B,Σ) ∝ p(B)p(Σ)

where p(B) ∝ constant, and

p(Σ) ∝ 1
|Σ|(q+1)/2
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so that
p(B,Σ) ∝ 1

|Σ|(q+1)/2
,

the posterior predictive distribution of ỹ is:

P (ỹ|y, X, w) ∝ 1

(1 + 1
v (ỹ − B̂w)′H(ỹ − B̂w))−

v+q
2

where

v = N − p − q + 1

H =
v S−1

1 + w′(X ′X)−1w
is a q × q matrix,

B̂
′

= [(X ′X)−1X ′Y ]′ ⇔ B̂ = Y ′X(X ′X)−1

and S = (Y − XB̂)′(Y − XB̂) is also a q × q matrix.

In other words,
ỹ|y, X, w ∼ tv(B̂w, H−1)

which is a non-central multivariate student t distribution (see Appendix D) with:

E[Ỹ |data, w] = B̂w

and

Var[Ỹ |data, w] =
v

v − 2
H−1 (v > 2 ⇒ N > p + q + 1).

With this predictive posterior density we can compute, for any w:

P (ỹ ∈ A|y, X, w) =
∫

A
P (ỹ|y, X, w)dỹ.

This integral turns out to be easy to compute, as the multivariate t distribution
is easy to simulate using Monte Carlo methods:

1 simulate u ∼ N(0, H−1), a p × 1 vector;

2 simulate c ∼ χ2
v;

3 let ỹ = u
√

v
c + B̂w

4 iterate to get a sample (multivariate) histogram
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Figure 12.2. Histograms of the marginal densities of the viscosity and yield (left and right,
respectively) responses, from 10,000 samples at point x1 = x2 = 0

Example. Computation of a multivariate predictive probability. Consider
the chemical experiment data in the previous section. Assume we are interested
this time in modelling the yield and viscosity responses simultaneously.
In particular, suppose that the process engineer is interested in computing
P (yield > 80 and 62 < viscosity < 68) at the origin (x1 = x2 = 0).
The Matlab program SimulateMultiPred.m (see Section 12.10) com-
putes this probability for this problem, using the Monte Carlo simulation just
described. The estimated predictive probability is equal to 0.1552, based on
10,000 simulation draws. Figure 12.2 shows histograms of the marginal distri-
butions of viscosity (ỹ2) and Yield (ỹ1). As it can be seen, there is no much area
in the viscosity histogram from 62 to 68. Since there are two responses only,
a nice way to visualize the reason for the low joint probability is to prepare a
scatter plot of the simulated y1 and y2 (Figure 12.3). The estimated probability
is given by the draws that fell in the boxed region divided by 10,000, the total
number of draws. �

12.3.1 Advantages of the Bayesian Predictive Approach
Using the Bayesian predictive density for process optimization offers several

advantages over classical approaches [125]:

1 It considers uncertainty in parameters. Classical methods for process
optimization provide a single point estimate where the process should be
run. This, however, neglects the variability of the parameters estimates.
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Figure 12.3. Simulated Bivariate predictive density for yield (y1) and viscosity (y2) obtained
from 10,000 samples at point x1 = x2 = 0. Boxed region corresponds to specification region
A = {(y1, y2) : y1 > 80, 62 ≤ y2 ≤ 68}

If a different experiment is run and a model is fitted using OLS, then
a different optimum is obtained. If a confidence region on the optimal
point is provided8 (something not done much in practice), this can only be
interpreted in the classical sense of being a region that would result after
repeated sampling and optimization, but not as a region that contains the
optimum with some probability;

2 It considers correlation between responses. One of the central problems in
the optimization of multiple response functions based on regression models
is that the responses may be correlated, and it is not clear how to account
for this correlation. In the classical approach, the correlation can be ac-
counted when fitting the models, but then the optimization step neglects the
correlation. The Bayesian predictive approach considers the whole multi-
variate distribution of the responses, hence it takes into account explicitly
the correlation between the responses at the optimization step;

3 It is “objectively” Bayesian. The predictive densities presented here were
based on non-informative priors. This means that no strong priors are used.
If necessary, however, prior elicitation methods for regression models (see
[73]) can be used (Kadane et al.’s elicitation is based on asking questions

8See [126].



Bayesian Methods for Process Optimization 339

about the responses, not about the parameters, making their procedure much
more practical);

4 It can tell how “sweet” a “sweet spot”, obtained through controur plots, is. It
is a widely accepted practice to draw contours plots of OLS-fitted responses
and use the plots to locate a “sweet spot” where analysts think the process
can be run. However, the probability of observing future responses in that
“spot” is not known. The predictive approach can be used to compute such
probability. Not surprisingly, for multiple responses these probabilities can
be very low, given that the contour plots are based on models for the mean
of each response;

5 It can be used for more general optimization problems, such as:

max
w∈R

P (g(Ỹ )|data, w)

for any scalar function g(•). For example: P (D(Ỹ ) > d|data, w) gives
the probability that the overall desirability function exceeds some value d

(recall that the desirability method, widely used in RSM, does not provide
a measure of how likely it is to have a “desirable” response at the opti-
mum operating conditions). Another example is P (Q(Ỹ ) < r|data, w),
the probability that a quadratic cost function does not exceed some value r.

6 It allows to do a “pre-posterior” analysis. If the maximum posterior prob-
ability is low for a given process, it could be due to a) very stringent con-
straints on the responses, and/or due to b) poor model fit. A “preposterior
analysis” (see Peterson [125]) allows us discern between these two situa-
tions, determining if further experiments would improve P (g(Ỹ )|data, w)
through better models.

7 It is easy to add noise variables, providing a Bayesian approach to multi-
variate Robust Parameter Design.

Example. Evaluation of the probability of conformance in the desirability
method. Consider Derringer and Suich’s [45] classic tire tread compound
problem (Table 4.7). In this example, there are q = 4 responses and p = 3
controllable factors (no noise factors). The DOE used was a CCD, with N = 20
runs. Full quadratic polynomials were fitted to all four responses using OLS.
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The solution using the authors’ desirability method, based on

max
w

D(w) =

⎛
⎝

q∏
j=1

dj(Yj(w))

⎞
⎠

1/q

gives the point w∗ = (−0.050, 0.145,−0.868)′. Figure 12.4 shows the desir-
ability function contour plot.

Using the predictive density approach with region:

A = {120 < y1 < ∞, 1000 < y2 < ∞, 400 < y3 < 600,

60 < y4 < 75}

(same as specified in Derringer and Suich) we get that P (Ỹ ∈ A|data, w∗) =
0.47. This means that with current DOE data and regression models, chances
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Figure 12.4. Desirability function contour plot, Derringer and Suich tire tread compound
example
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Table 12.4. Marginal probabilities of satisfying the specifications, Derringer and Suich
example

One rep. 2 reps. 3 reps.
P (120 < ỹ1 < ∞|data, x∗) 0.68 0.83 0.90
P (1000 < ỹ2 < ∞|data, x∗) 0.67 0.82 0.89
P (400 < ỹ3 < 600|data, x∗) 0.99 1.0 1.0
P (60 < ỹ4 < 75|data, x∗) 0.99 1.0 1.0

are very low (lower than flipping a coin) that the “optimum” w∗ will satisfy
the design constraints. A preposterior analysis can be conducted by pretending
we have more data than we actually have. For example, we could repeat the
X matrix and change the degrees of freedom accordingly, to simulate the
effect of more data. This assumes we have repeatability of the data in the
sense that the new data being implicitly simulated in this way would result in
exactly the same β̂ and s2 least square estimates as the old data9. However, if
for this very optimistic scenario the probability of meeting the constraints is
still too low, we know that the constraints are too demanding, and no further
experiments are justified unless the “design” of the product or process under
study changes. For the tire tread compound example, we have that with
two replicates we get P (ỹ ∈ A|data, w∗) = 0.68 and we three replicates
P (ỹ ∈ A|data, w∗) = 0.80. Therefore, it seems that models can benefit from
running further experiments. The marginal probabilities of conformance of
each response are shown in Table 12.4. It is clear that the problem is with the
fit of the first two responses. Note how the point estimate at the optimum con-
ditions obtained with the desirability method give response values well inside
the specification region A: ŷ1 = 129.5, ŷ2 = 1300, ŷ3 = 465, and ŷ4 = 68. �

12.3.2 Inability of the Frequentist Approach to Provide
a Probability of Conformance

In classical (frequentist) regression, a prediction interval is constructed from
the pivot

e√
V̂ar(e)

=
ỹ|w − ŷ|w

s
√

1 + w′(X ′X)−1w
∼ tN−p.

9Recall that the data enters the posterior predictive density only through the β̂ and s2 estimates.
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where the point estimate for the next observation ỹ at point w is ŷ|w = w′β̂ =
Ê[ỹ|w]. That is, we take the prediction error, ỹ|w − ŷ|w, divided by its
estimated standard error, which leads to a Student t distribution. This is used
to setup a valid prediction interval on ỹ|w, but notice that we still have that
the distribution of the future observation is simply ỹ|w ∼ N(w′β, σ2). The
t distribution so obtained is for the prediction error, where ŷ|w is random.
The distribution of the pivot coincides with the predictive density of ỹ under a
non-informative prior. However, the fundamental difference is that in the
Bayesian approach the probability measure is associated to ỹ|w, not to ŷ|w =
w′β̂, which in the Bayesian setting is simply a constant. But a probability
measure on ỹ that relates to our model is what we need to compute “reliabili-
ties” (i.e., probabilities of conformance) of the form P (ỹ|data, w ∈ A), where
A is a region defined by product specifications, as in the example. Therefore,
there is no way to compute a probability of conformance for ỹ from the predic-
tion intervals (or regions, in case ỹ is multivariate), in the classical-frequentist
approach. In the frequentist approach, the best we can do is compute the
probability of conformance of ŷ, the predicted response (see Section 9.5 for
a specific proposal on how to compute the mean and variance of ŷ in RPD
taking into account the estimation variability). From a frequentist perspective,
ỹ, the next or future response value is simply a normal random variable defined
by the assumed regression model, and has the same distribution as any other
observation yi has before experimental run i is conducted.

12.4 A Bayesian Approach to Robust Parameter Design
In this section we return to the Robust Parameter Design problem, discussed

in Chapter 9 from a variety of frequentist approaches. Here we look at some of
the same problems as in Chapter 9 but from a Bayesian perspective. Consider
the model proposed in [27, 116], equation (9.1). Recall we classify factors as
controllable (x) and uncontrollable (noise) z. It is assumed that during design
and experimentation all factors are controllable. For optimization, we let the
noise factors vary randomly according to some distribution. The Box-Jones-
Myers dual response model is

y = βo + x′β + x′Bx + z′γ + x′∆z + ε (12.9)

where x is a k × 1 vector of controllable factors, z is a r × 1 vector of noise
variables, and ε ∼ (0, σ2

ε ).
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A Bayesian approach for this problem uses the predictive densities derived
earlier in this chapter with w′ = (x, z). The noise factors are integrated with
respect to their assumed density, while we optimize with respect to x only:

p(x) = max
x∈R

∫
p(ỹ ∈ A|X, y, w = (x, z))p(z)dz.

If p(x) is large, we have obtained a robust solution. Otherwise, we can ana-
lyze the reason for a low probability using the preposterior approach sketched
before. The following example illustrates this procedure.

Example. Addition of noise factors: Bayesian Robust Parameter Design,
single response. Myers and Montgomery [117] give a Semiconductor manu-
facturing process in which there is a single response, 2 controllable factors, and
2 noise factors. A CCD was run (no axial runs were used in the noise factors).
The model (12.9) was fitted to the data giving:

Ŷ (x, z) = 30.37 − 2.9x1 − 4.13x2 + 2.6x2
1 + 2.18x2

2 + 2.87x1x2

+2.73z1 − 2.33z2 + 2.33z3 + 0.27x1z1 + 0.89x1z2

+2.58x1z3 + 2.01x2z1 − 1.43x2z2 + 1.56x2z3

Assuming that E[z] = 0 and Σz = I3, then:

Ez[Ŷ (x, z)] = 30.37 − 2.92x1 − 4.13x2 + 2.60x2
1 + 2.18x2

2 + 2.87x1x2

and10

Varz[Ŷ (x, z)] = 19.26 + 3.20x1 + 12.45x2 + 7.52x2
1 + 8.52x2

2 + 2.21x1x2.

We are told that the manufacturer wants Ez[Ŷ (x, z)] < 30 and
√

Varz [Ŷ (x, z)]

< 5.5. The classical approach finds a feasible region by superimposing the
contour plots of the responses. Figure 12.5 shows the “sweet spot” where it
seems the constraints will be met.

Let us apply the Bayesian predictive approach to a point x within the “sweet
spot”, say x′ = (0, 0). At this point, p(0 < ỹ < 30|data, x) � 0.48.

If we instead maximize with respect to the controllable factors, we obtain
maxx p(0 < ỹ < 30|data, x) = 0.61 at x′ = (0.1, 0.8). A histogram of
the predictive density of ỹ at this point is shown in Figure 12.6, together with a
contour plot of the predictive density for all x.

10Readers will notice that this variance is the biased estimator of the variance that was discussed in Chapter 9,
Var(b)z [ŷ(x, z)]. We use this estimator to illustrate how the “sweet spot” approach, with the usual variance
estimator, performs when evaluated using a Bayesian formulation.
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Figure 12.5. Contour plots of mean and variance responses, semiconductor manufacturing
example
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Figure 12.6. Left: Histogram of the predictive distribution at (0.1, 0.8); right: contour plot of
p(ỹ|data, x), semiconductor manufacturing example

In this case, a preposterior analysis [125] does not show a significant increase
in p(x) as the number of replications increases, indicating the problem is that
the constraints are unrealistic. This is evident from looking at the histogram in
Figure 12.6, where it can be seen that p(0 < ỹ < 30|data, x = (0.1, 0.8)) �
0.6. Thus, under the current process conditions and specifications, no robust
solution is possible. For example, if we change the specifications to A =
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{0 < ỹ < 35} instead, maxx P (0 < ỹ < 35|data, x) = 0.867 is obtained
at (0.20, 0.0). We note from the left figure in Figure 12.6, that for the current
specification A = {0 < ỹ < 30}, no benefits will result from reducing Σz

either, since process centering is more important. �

Example. Bayesian Robust Parameter Design, multiple responses. Miro
et al. [106] consider the Bayesian optimization of a High Pressure Liquid Chro-
matography (HPLC) process, critical in the pharmaceutical industry. It is of
interest to study the potential effect that two controllable factors, temperature
and pH, and one noise factor, the % IPA, have on four responses: Rs, RunTime,
S/N Ratio, and Tailing. A Box-Behnken design on the three factors was run
with three center points. Second order polynomials were fit using OLS with
very good results (R2 > 0.98). Assume the % IPA varies as a N(0, 0.01) ran-
dom variable during manufacturing, and let the specification region of the four
responses be

A =
{
yRs ≥ 1.8, yTime ≤ 15, y

S/N
≥ 300, 0.75 ≤ y

Tail
≤ 0.85

}
.

The Bayesian optimization results in w∗ = [Temp∗, pH∗]′ = [0.4822, 1.0]′

for max P (Ỹ ∈ A|data, w∗) = 0.9622. Figure 12.7 shows a contour and 3D
plots of the posterior probability of conformance. As it can be seen, there is a
“ridge” on the function along the x2 (pH) controllable factor, which indicates
that only the temperature has a significant effect on the performance of the
process. �
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Figure 12.7. Left: Contour plot of the posterior probability of conformance to specifications,
HPLC example. Right: 3D plot. Source: [106]
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12.5 A Connection with Process Control**
There are interesting connections11 between the Bayesian regression model

presented here and process control. Among others, Press [129] and Zellner
[162] treat this matter in detail.

Consider a multivariate “target is best case” with T a vector of targets for the
q responses. Suppose there is a quadratic off-target cost and a quadratic cost of
adjusting the process. The assumed predicted loss is:

L(yn+1) = (yn+1 − T )′G(yn+1 − T ) + (xn+1 − xn)′J(xn+1 − xn)

where, following common practice in control applications, we write yn+1 for
the next observation of y, and we use xn+1 to denote the next settings for the
controllable factors. G and J are user-defined square matrices that represent
the off-target and adjustment costs. Then the expected predicted loss is:

E[L(yn+1)] =
∫

L(yn+1)p(yn+1|data,wn+1)dyn+1.

Suppose we can partition the vector of factors as x′ = [x(1)|x(2)], with q1

controllable factors and q2 uncontrollable factors. Likewise, partition B̂,
(X ′X)−1, and J accordingly.

Our goal is to
min
x(1)

E[L(yn+1)]

i.e., minimize the expected cost with respect to the controllable factors. Under a
noninformative prior on the parameters, this problem turns out to have a closed-
form solution given by ([129, 162]):

x
(1)∗

n+1 =

[
B̂(1)

′
GB̂(1) +

tr(Σ̂G)
(v − 2)(N − p)

D(11) + J (11)

]−1

×[B̂(1)
′
G(T − B̂(2)x

(2)
n+1) −

tr(Σ̂G)
(v − 2)(N − p)

D(12)(x(2)
n+1

+J (11)x(1)
n ) + J (12)(x(2)

n − x
(2)
n+1)]

The value of this formulation is that we can think of the uncontrollable fac-
tors as “noise factors”. Therefore, we can measure, forecast or simulate the
future values of the uncontrollable factors, x

(2)
n+1 and use the expression above

11This section can be skipped on a first reading without loss of continuity.
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to determine the optimal setting for the controllable factors, in a manner similar
to Robust Parameter Design.

12.6 Model-Robust Process Optimization**
Suppose12 M1, M2, . . . are several models of the form:

y = x′β + ε, ε ∼ N(0, σ2)

that fit the data “well”. We wish to

max
x∗∈R

p(L < ỹ < U | data, x∗)

but we wish to account for all models. Optimizing each model separately may
result in different, conflicting optimums. Bayesian model averaging can be
used to account for all models. In this approach, posterior probability densities
of the response are conditioned on a particular assumed model Mi. These prob-
abilities can then be combined, or averaged, via the posterior probabilities of
each potential model being true. In order to do this, define the model-average
(posterior) predictive density as

MAP = p(ỹ|x, y) =
∑
all i

p(ỹ|x, y, Mi) p(Mi| y).

where p(Mi|y) is the posterior probability of each model, which are explained
below. If we have the means of computing the MAP, then we can maximize its
integral:

max
x∈R

∫ U

L
p(ỹ|x, y) dỹ

= max
x∈R

∑
all i

∫ U

L
p(ỹ| x, y, Mi) dỹ p(Mi| y)

Rajagopal and del Castillo [131] adopted the model priors πj , j =
1, 2, . . . , k described by Meyer and Box [99]. These are based on the prior
probability of each factor i being active. Let fi denote be the number of active
factors in model i.

Then, assume that a priori,

p(Mi) =
∏

j∈Mi

(πj)
∏

j′ /∈Mi

(1 − πj′)

12This section is based on Rajagopal and del Castillo [131] and presents material at a relatively more
advanced level.
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where “j ∈ Mi” means factor j is active in model i, etc. Note that if πj = π

for all j = 1, 2, . . . , k, then p(Mi) = πfi(1 − π)k−fi .
With this prior, the model posterior is obtained from Bayes’ theorem:

p(Mi|y) =
p(y|Mi) p(Mi)∑

all i p(y|Mi) p(Mi)

where the “marginal likelihood” is

p(y|Mi) =
∫ ∫

p(y|Mi, σ
2, βi) p(σ2, βi|Mi)dβidσ2

and where the likelihood is

p(y|Mi, σ
2, βi) ∝ σ−n exp{− 1

2σ2
(y − Xiβi)

′(y − Xiβi)}.

Let ri be the number of terms in model Mi and let ti be the number of terms
excluding the intercept. Here, Xi is a n × ri design matrix.

To setup a prior distribution on the parameters, recall that when using OLS,
Var(β̂) = σ2(X ′X)−1, so it seems it makes sense to let the prior variance
of each βi depend on X ′

iXi. At the same time, it makes sense to include an
additional parameter to allow us to “tune” how flat we want this prior. This is
called a “g-prior”, common in regression analysis13. Thus, we assume that a
priori,

βi ∼ N(0,Σi σ2), p(σ2) ∝ 1
σ2

and p(βi, σ
2) = p(σ2) p(βi)

where

Σ−1
i = (X ′

iXi)V i, where V i =
1
g

(
0 0
0 Iti

)

Note that as g → 0 we get higher precision; as g → ∞ we get a flat prior.
Also note that for a null model (i.e., a model with only the intercept), ri =
1, ti = r − 1 = 0, so V i = 0. This implies that Σ−1

i = 0, thus, for the
intercept

p(β0) ∝ constant.

In summary, we use a non-informative prior on the intercept and on σ2, and a
g-prior on all other β’s.

The reason we use a non-informative prior only on the intercept and not on
all the parameters (as in previous sections) is that since we are doing model

13G-priors were proposed by Zellner [161].



Bayesian Methods for Process Optimization 349

comparisons, a non-informative prior on all parameters will result in the null
model being the most probable a posteriori. This is clearly not useful since with
such a model there is no possibility of any optimization.

For the assumed model and priors, Meyer and Box [99] showed that the
marginal likelihood is:

p(y|Mi) ∝ γti |Σ−1
i + X ′

iXi|−1/2S
−(n−1)/2
i

where they used the slightly different parametrization

g

γ
V i = Σ−1

i or
1
γ

(
0 0
0 Iti

)
= Σ−1

i

thus γ2 has the same effect as g. With this, omitting the denominator in Bayes’
formula, we get

p(Mi|y) ∝ πfi(1 − π)k−fiγ−ti |Σ−1
i + X ′

iXi|−1/2S
−(n−1)/2
i where

Si = (y − Xiβ̂i)
′(y − Xiβ̂i) + β̂i

′
Σ−1

i β̂i

is the sum of squares and where the posterior point estimate of β is

β̂i = (Σ−1
i + X ′

iXi)−1X ′
iy.

Note how if γ2 → ∞ we get the OLS estimator.
Under the stated priors and model assumptions, Rajagopal and del Castillo

[131] show that

p

⎛
⎝ ỹ − w′β̂i

σ̂i

√
1 + w′(Σ−1

i + XiXi)−1w
< t | Mi,w,y

⎞
⎠=

1
2

[
1 + It2/(v+t2)

(
1
2
,
v

2

)]

(12.10)

where Iz(a, b) is the incomplete beta function, v = n−1, and σ̂2 = Si/(n−1).
With this and p(Mi|y) we can easily compute the cumulative MAP and get an
optimal, model-robust solution.

12.6.1 Selection of the Hyperparameters and Family
of Models

In the previous formulation, there are two hyperparameters that need to be
defined by the user: π and γ. Rajagopal et al. show how for a given choice of
γ, the influence of π on the solutions is not significant. They used π = 0.5,
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which is informative in that it implies that half of the factors are expected to be
included a priori in each model.

To select γ, the most critical hyperparameter, these authors followed an
approach proposed by Meyer and Box [99] in which γ is selected such that
it minimizes p(M0|y), the posterior probability of the null model. This is, in
fact, not a purist Bayesian approach but an “Empirical Bayes” approach, as the
prior is data-based.

Finally, a question concerns what do we mean about “all models”. A prac-
tical answer is that by all models we mean models within a family or families
of models we choose from which we compute p(Mi|data) for all members of
these families. The probabilities need to be normalized by making them add up
to one.

An example illustrates this procedure. Another example (on a mixture
experiment) is presented in [131].

Example. Model Robust Optimization of a semiconductor process.
Consider an experiment on a chemical vapor deposition (CVD) process used
in semiconductor manufacturing [36]. The goal of the experiment was to
investigate the Uniformity and Stress responses. This examples illustrates
the model-averaging approach on the first response. The central composite
inscribed (CCI) design that was used and the experimental data are shown
in Table 12.5. There are two controllable factors: Pressure and ratio of the
gaseous reactants H2 and WF6 (denoted by H2/WF6). The goal was to
minimize the response, as a smaller value of “Uniformity” indicates a more
uniform layer being deposited on a wafer. The models considered included
combinations of main effects, two-way interactions and quadratic effects. In all
the models higher order effects were included only if the corresponding main
effect(s) is(are) present in the model. Table 12.6 lists these models along with
their least square regression statistics and posterior probabilities. The prior on
the factors, π, was set at 0.5 and a value of γ = 2 minimized the posterior
probability of the null model.

Models with P (Mi|data) > 0.0254 were used for model averaging as
they accounted for 95% of the probability. Based on these models and within
the region {−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}, the MAP was maximized for
ỹ ∈ (−∞, 5) at the point (1.0000,−0.9198) yielding a maximum probability
of conformance of 0.8851. The optimum values of the controllable factors
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Table 12.5. Design and experimental data for the CVD process (from [36])

Coded Pressure Coded H2/WF 6 Uniformity
1 0 4.6
0 0 6.2

0.71 −0.71 3.4
−0.71 0.71 6.9

−1 0 7.3
0 0 6.4

−0.71 −0.71 8.6
0 −1 6.3

0.71 0.71 5.1
0 1 5.4
0 0 5

Table 12.6. Least square regression statistics and posterior probabilities for competing models
for the CVD example. From [131]

Model constant A B AB A2 B2 R2 R2
Adj S.E. P (Mi|data)

1 1 1 1 1 0 0 0.8703 0.8148 0.6145 0.2827
2 1 1 0 0 0 0 0.7186 0.6874 0.7982 0.2396
3 1 1 1 1 1 0 0.8715 0.7858 0.6607 0.1080
4 1 1 1 1 0 1 0.8703 0.7839 0.6637 0.1053
5 1 1 0 0 1 0 0.7198 0.6498 0.8449 0.0907
6 1 1 1 0 0 0 0.7285 0.6607 0.8316 0.0671
7 1 1 1 1 1 1 0.8716 0.7431 0.7235 0.0416
8 1 1 1 0 1 0 0.7297 0.6139 0.8871 0.0254
9 1 1 1 0 0 1 0.7285 0.6122 0.8891 0.0250
10 1 1 1 0 1 1 0.7298 0.5496 0.9581 0.0098
11 1 0 0 0 0 0 0.0000 0.0000 1.4276 0.0035
12 1 0 1 0 0 0 0.0099 −0.1001 1.4974 0.0009
13 1 0 1 0 0 1 0.0099 −0.2376 1.5882 0.0003
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obtained by maximizing the individual predictive densities, and the maximum
value of the predictive density for the individual models for ỹ ∈ (−∞, 5) are
given in Table 12.7. It can be seen that for all the models the optimum value
of x1 is 1, but the optimum setting for x2 can vary anywhere from −1 to 1.
Figure 12.8 shows the surface plot of the cumulative posterior predictive den-
sity of the response in the region (−∞, 5) for different possible values of the
control factors. In order to better understand the importance of maximizing the
MAP, Table 12.8 shows the probabilities of conformance, P (−∞ < ỹ < 5)
for various cases of the true model and the assumed model. The table shows

Table 12.7. Optimum for individual models for the CVD example. From [131]

Model no. P (M i|data) x∗
1 x∗

2 z∗

1 0.2827 1 −1 0.9665
2 0.2396 1 N/A 0.8132
3 0.1080 1 −1 0.9569
4 0.1053 1 −0.9017 0.9618
5 0.0907 1 N/A 0.7776
6 0.0671 1 1 0.8477
7 0.0416 1 −0.9018 0.9464
8 0.0254 1 1 0.8178
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Figure 12.8. P (ỹ ∈ (−∞, 5)) as a function of x1 and x2 for the CVD example. From [131]
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the value of P (L ≤ ỹ ≤ U |Mi,y, x1, . . . , xk) where Mi is the true model and
control factors x1, . . . , xk are set at their optimal values obtained from max-
imizing this probability using the assumed model. Thus, for example, if the
assumed model is model 1, then the probability of conformance is maximized
at the point (1,−1), as shown in Table 12.7, yielding a probability of 0.9665.
However, this is actually the probability of conformance only if the true model
is also model 1. If, for example, it so happens that the true model is model 8,
then the probability of having ỹ ∈ (−∞, 5) is actually 0.7043 when using the
solution point (1,−1), obtained with the wrong model. Similarly, the last col-
umn on the table shows P (L ≤ ỹ ≤ U |Mi,y, x1, . . . , xk) for the true model,
evaluated at the solution x1, . . . , xk obtained from maximizing the MAP. Based
on the column statistics, it can be seen that operating at the point which max-
imizes the MAP has highest average probability of conformance (and among
lowest std. deviation of this probabilities) compared to probabilities provided
by solutions obtained by assuming single one of the competing models. The
MAP also has higher minimum probability of conformance, thus it improves
the worst-case scenario (worst true model). Therefore, it is seen that regardless
the true process model (within the assumed family of models), the solution ob-
tained using the model-average approach provides an operating point that gives
relative high probabilities of conformance. It is in this sense that we can say the
solutions obtained are robust to the uncertainty in the form of the true model14.

Table 12.9 shows the sensitivity of the solution with respect to the chosen
parameters γ and π. It is seen that the sensitivity of the solution to π is depen-
dent on γ. At the value of γ chosen, the optimal controllable variables as well
as the optimal predictive density are insensitive to the choice of π. �

12.7 Model-Robust Optimization with Noise Factors
It is possible to perform model-robust optimization based on the MAP

approach while at the same time protecting against variations in the noise fac-
tors. The solutions thus obtained are robust with respect to variations in the
model form, uncertainty in the parameters in each model, and variation in the
noise factors themselves. An additional numerical integration on the MAP is

14Note that models 2 and 5 are independent of the second factor, x2 (H2/WF6). In the table, for the
columns associated with these two models, the probabilities of conformance were evaluated at the point
(1, 0).
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Table 12.9. Sensitivity of solution with respect to parameters π and γ for the CVD example.
Source: [131]

γ π x∗
1 x∗

2 z∗

0.5 0.25 1 −1 0.4878
0.5 0.50 1 −1 0.5191
0.5 0.75 1 −1 0.5218
1 0.25 1 −0.9151 0.7149
1 0.50 1 −0.9154 0.7487
1 0.75 1 −0.9154 0.7621
2 0.25 1 −0.9684 0.8428
2 0.50 1 −0.9198 0.8851
2 0.75 1 −0.9198 0.9094
5 0.25 1 −0.7760 0.8438
5 0.50 1 −0.7928 0.8992
5 0.75 1 −0.7930 0.9305
10 0.25 1 −1 0.8090
10 0.50 1 −0.5696 0.8557
10 0.75 1 −0.5995 0.8967

100 0.25 1 −0.9072 0.5563
100 0.50 1 0.5146 0.7038
100 0.75 1 0.7584 0.7944

performed over the distribution of the noise factors. See Rajagopal, del Castillo
and Peterson [133].

12.8 Bayesian Optimization with Mixture Models
We now consider Bayesian optimization of processes that can be described

as mixtures of components (see Section 5.8). Berliner [8] studied a specific
Bayesian optimization problem where a product is formulated as a mixture that
results in an easy to solve quadratic programming problem (i.e., the objective
function is quadratic and the constraints are linear). He assumes a simple first
order model

E(y) = α0, +α1z1 + · · · + αpzp (12.11)
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where 0 ≤ zi ≤ 1, i = 1, . . . , p, and
∑p

i=1 zi = 1. A “Target is best” scenario
is assumed, so Berliner calls this problem a “control” problem, although as it
will be evident, this is an optimization and not an on-line control problem in
the sense described in Chapter 1. We let y denote deviations from some target
T and rewrite (12.11) as follows:

E(y) = α0

p∑
i=1

zi

︸ ︷︷ ︸
=1

+
p∑

i=1

αizi =
p∑

i=1

(α0 + αi)zi ≡
p∑

i=1

θizi (12.12)

so that θi = α0 + αi. We assume a preliminary model like (12.12) has been fit.
The model in vector form, for all n observations can then be written as

y = Zθ + ε, ε ∼ N(0, σ2Ip)

so that the least squares estimator is

θ̂LS = (Z ′Z)−1Z ′y

and as we known, θ̂LS ∼ N(θ, σ2(Z ′Z)−1), a density function we denote as
f(θ̂LS |θ, σ2).

The optimization problem posed by Berliner is to minimize the square of a
future observation, y = θ′x + e, where x = (x1, . . . , xp) is such that 0 ≤
xi ≤ 1, i = 1, . . . , p,

∑p
i=1 xi = 1 and e ∼ (0, η2), the error of the future

observation, is assumed independent of θ̂. The expected loss function is then

E(y2) = Eθ,e(θ
′x + e)2 = E(θ′x)2 + η2

so that the loss is L(θ, x) = (θ′x)2.
At this point, let us introduce a prior for the parameters, π(θ, σ). The poste-

rior of the parameters is then

π(θ, σ2|θLS) =
f(θ̂LS |θ, σ2)π(θ, σ2)∫

f(θ̂LS |θ, σ2)π(θ, σ2)dθdσ2
.

Note how the dependency on the data of the posterior is through the least
squares parameter estimates. The marginal posterior of θ is

π(θ|θ̂LS) =
∫

π(θ, σ2|θ̂LS)dσ2
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thus θ|θ̂LS ∼ (µ(θ) = θ̂LS , C(θ)) where C(θ) is the posterior covariance
matrix of θ. If σ2 is known, then C(θ)) = σ2(Z ′Z)−1.

The problem can now be stated in terms of the posterior expected loss:

min L(θ̂LS) =
∫

(θ′x)2π(θ|θ̂LS)dθ

subject to:
xi ≥ 0, x′1 = 1

where 1 denotes a vector of ones. Since (θ′x)2 = x′(θθ′)x, we have that

l(θ̂LS) = x′B(θ̂LS)x

where B(θ̂LS) = C(θ̂LS) + µ(θ̂LS)µ(θ̂LS)′.
Therefore, we can finally write the problem we wish to solve as (omitting

the dependencies on the least squares estimates):

min x′Bx (12.13)

subject to
xi ≥ 0, x′1 = 1.

As noted by Berliner, this is is a quadratic programming problem which has a
unique solution (global minimum) if B is positive definite.

Example. Gasoline blending. Berliner [8] illustrates his approach with an
example on gasoline blending. Here the response y is the octane level of the
blend as a function of five different components. The variance of the octane is
assumed known and to equal 0.25. The desired octane target value ranged in
the (97,101) interval, so we will use a target of T = 99 in what follows. The
experimental data is shown in Table 12.10.

We first compute the OLS estimates:

θ̂LS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.45
−0.85

8.88
−4.24

2.72

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Table 12.10. Gasoline blending Data used by Berliner [8]. To obtain y, subtract T (99) to the
“response” column

z1 z2 z3 z4 z5 response
0.000 0.000 0.350 0.600 0.060 100.0
0.000 0.300 0.100 0.000 0.600 101.0
0.000 0.300 0.000 0.100 0.600 100.0
0.150 0.150 0.100 0.600 0.000 97.3
0.150 0.000 0.150 0.600 0.100 97.8
0.000 0.300 0.049 0.600 0.051 96.7
0.000 0.300 0.000 0.489 0.211 97.0
0.150 0.127 0.023 0.600 0.100 97.3
0.150 0.000 0.311 0.539 0.000 99.7
0.000 0.300 0.285 0.415 0.000 99.8
0.000 0.080 0.350 0.570 0.000 100.0
0.150 0.150 0.266 0.434 0.000 99.5
0.150 0.150 0.082 0.018 0.600 101.9
0.000 0.158 0.142 0.100 0.600 100.7
0.000 0.000 0.300 0.461 0.239 100.9
0.150 0.034 0.116 0.100 0.600 101.2
0.068 0.121 0.175 0.444 0.192 98.7
0.067 0.098 0.234 0.332 0.270 100.5
0.000 0.300 0.192 0.208 0.300 100.2
0.150 0.150 0.174 0.226 0.300 100.6
0.075 0.225 0.276 0.424 0.000 99.1
0.075 0.225 0.000 0.100 0.600 100.4
0.000 0.126 0.174 0.600 0.100 98.4
0.075 0.000 0.225 0.600 0.100 98.2
0.150 0.150 0.000 0.324 0.376 99.4
0.000 0.300 0.192 0.508 0.000 98.6
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and

(Z ′Z)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

9.41 1.78 0.66 −1.62 −1.48
1.78 3.23 0.48 −1.03 −1.15
0.66 0.48 3.38 −1.39 −0.44

−1.62 −1.03 −1.39 1.11 0.46
−1.48 −1.15 −0.44 0.46 0.92

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The B(θ̂LS) matrix is then given by

B(θ̂LS) = σ2(Z ′Z)−1 + θ̂LS θ̂
′
LS

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2.68 −1.11 12.90 −6.24 3.85
−1.11 0.92 −7.49 3.53 −2.38
12.90 −7.49 79.13 −37.78 24.18
−6.24 3.53 −37.78 18.07 −11.53

3.85 −2.38 24.18 −11.53 7.48

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which is positive definite, and hence, a unique solution exists. Solving the
optimization problem (12.13), we obtain the solution15

x∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0660
0.1597
0.1553
0.4343
0.1847

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with an expected loss value of 0.00263. The solution turns out to be insensitive
to considerable variations in the prior estimate of σ (see Problem (5)). �

12.9 Model-Robust Bayesian Experimental Design
DuMouchel and Jones [50] proposed a simple Bayesian D-optimal criterion

for experimental designs that protects against potential terms that one suspect
may exist in the model. The model is then composed of two classes of terms: q

potential terms and p primary terms we are more certain of their significance.
The coefficients of the primary terms are assumed to have a diffuse (improper)
prior with zero mean and infinite variance since no specific direction of their

15Any gradient-based optimization method will suffice as convergence to the global minimum is guaranteed
in this example.



360 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

effect is assumed. The coefficients of potential terms, in contrast, are assumed
a proper distribution with zero mean and a finite variance of τ2σ2 that limits
their actual effect. Here, τ is a tuning constant selected by the user/experimenter.
As one increases τ , the variance of the prior distribution τ2σ2 increases, and
this implies one is expecting the potential terms to have increasingly larger
effects and therefore be part of the “true” model we expect to correspond to the
the actual process under study.

In this formulation, the Bayesian parameter estimates (obtained from the
posterior distribution of the parameters) are given by:

β̂bayes = (X ′X + K/τ2)−1X ′Y

where K is a square matrix (of dimensions equal to those of X ′X , that is,
(p+q)×(p+q)) that has zeroes everywhere except at the q diagonal entries that
correspond to the potential terms, where K contains ones. Since the covariance
matrix of the parameter estimates is

σ2(X ′X + K/τ2)−1,

DuMouchel and Jones [50] suggest to find experimental designs that maximize
the determinant

|X ′X + K/τ2|.

If τ2 is small, then the prior is quite concentrated around zero, and the designs
that will result will be close to the usual D-optimal designs for a model that
contains the more certain terms (see Chapter 5). As τ2 increases, the resulting
Bayesian D-optimal designs will provide designs that are increasingly more
appropriate to fit a model that also contains the potential terms. A “default”
value of τ = 1 was suggested in the absence of any other prior information
[50].

12.10 Computer Implementation of Some Bayesian
Optimization Methods

In this section we briefly describe some of the programs used in this chapter.
They are all available at the author’s personal web page.
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Matlab Program for the Bayesian Optimization of a Single
Response Process
The MATLAB program maxArea maximizes the probability that a response
lies between two bounds, ylow and yhigh. The vector of observed responses,
yvec and the Xd matrix containing all the corresponding regressors (in model
form) need to be specified. The program call is

maxArea(Xd,yvec,ylow,yhigh)

The program requires Matlab’s Statistics and Optimization toolboxes. It
calls the area function, which computes the area under a noncentral t dis-
tribution, and the noncentralT function, which evaluates the noncentral T
density function.

Matlab Program for the Implementation of Gilmour
and Mead’s [61] Stopping Criterion
The Matlab program ComputeGainConjugate implements Gilmour and
Meads [61] approach for the computation of the expected gain after con-
ducting a series of designed experiments. It assumes a quadratic polyno-
mial, a maximization problem, and a conjugate prior on the parameters of
the model. The program returns an array with the posterior of L(x̂max),
for all simulated cases (LAll), and for those cases which resulted from
concave Y (x) functions, discarding the non-concave ones (LNeg). The
function requires the X matrix with the columns in the following order: k

main effect columns, k(k − 1)/2 2-factor interaction columns in the order
x1x2, x1x3, . . . , x1xk; x2x3, x2x4, . . . , x2xk; . . . xk−1xk; and k columns for
the pure quadratic terms. This matrix and the y vector should be zeroes if one
wishes to compute the expected gains before running any experiment, in which
case the program will use only the prior distribution. The function call is:

[LAll,LNeg]=ComputeGainConjugate(X,y,Beta0,A0,v0,

sigma02,noOfSimulations,k,N)

where Beta0, A0, v0, and sigma02 define the prior distribution (see
Section 12.1.2) and the rest of the function parameters are self-explicatory.
This function requires Matlab’s Statistics toolbox.
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Matlab Program for the Integration of the Bayesian
Multivariate Predictive Density
The Matlab program SimulateMultiPred computes the posterior proba-
bility that p responses fall within two bounds given by vectors low and high
at a given point x. It assumes a non-informative prior and a quadratic response
model for all responses. The function call is

[Ytilde,prob]=SimulateMultiPred

(X,Y,x,noOfSimulations,low,high);

The matrix X has the experimental design in model form (a column of ones,
all main effects, all 2-factor interactions and all pure quadratic columns.
The matrix Y contains is the response values for all the responses, one per
column. The point x is not in model form, it only has the coordinates of all the
controllable factors. The program returns prob, the posterior probability of
conformance, and Ytilde, a vector of predictive densities at x obtained from
simulating (specify noOfSimulations). The program requires Matlab’s
Statistics toolbox.

This program can be easily extended into a program that finds the point x at
which the posterior probability of the responses falling between their bounds is
maximized.

12.11 Problems
1 Derive the marginal posterior density of β, the vector of parameters in a

linear regression model. That is, derive the density of β|Y , X . Assume
non-informative priors.

2 Consider a 3-factor CCD run with one center point and α = 2. The fac-
torial part is a 23 and a full quadratic model is going to be fit. The 15
observations of the response are: 45.9, 60.6, 57.5, 58.6, 53.3, 58, 58.8,
52.4, 46.9, 55.4, 55, 57.5, 56.3, 58.9, and 56.9. These correspond to the
factorial runs (in standard order), followed by the −α, +α axial runs for
each factor, followed by the center point. Using non-informative priors,
find the posterior predictive density of the next response value assuming
non-informative priors. Give a 95% credible interval on this density at the
point x′ = (−1.4, 2.6, 0.7).
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3 Consider the following data for the sales of a product (y) as a function of
R&D spending (x), both in million of dollars:

y x

25 0.10
25 0.15
25 0.20
50 10.00
50 20.00
50 32.00
50 40.00
100 50.00
100 60.00
100 64.00
100 64.00
120 75.00
200 75.00
300 100.00
350 128.00
350 128.00
400 150.00
500 256.00
700 300.00
700 300.00
1000 400.00

If a simple first order model y = β0 + β1x + ε with ε ∼ N(0, σ2) is going
to be fit to these data, find a 95% credible interval for the next sales value
which we could predict if x = 500 is spent in R&D. Use non-informative
priors in all parameters (β0, β1, σ).

Solve:

a) analytically, i.e., from the closed-form expression of the predictive
density;

b) from simulating the predictive density by simulating, in turn, the posterior
of the parameters and the likelihood function.
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In each case, show a plot of the predictive density and indicate the limits of
the credible interval.

4 Consider the metal cutting example in Chapter 1 and the ComputeGain-
Conjugate Matlab program. Use this program to find the expected gains
in that optimization exercise using Gilmour and Mead’s method:

a) before running any experiment;

b) after running the factorial points;

c) after running the axial points but before running the center points;

d) after running the center points.

In all cases, assume the following prior: β′
0 = (10,−5,−5,−5, 0, 0, 0,

0, 0, 0), σ2
0 = 5 and A0 = I . Solve each case for increasingly flatter priors.

5 Solve the gasoline blending mixture optimization problem of Section 12.8
for: σ = 0.40 and T = 99, σ = 0.25 and T = 101, and σ = 0.40 and
T = 101.



PART VI

INTRODUCTION TO OPTIMIZATION
OF SIMULATION AND COMPUTER MODELS



Chapter 13

SIMULATION OPTIMIZATION

Experiments are mediators between nature and ideas.
—Johan Wolfgang Goethe (1749–1832)

13.1 Introduction
This book thus far has focused on the optimization of industrial processes

where a physical system or process exists and needs to be improved. There is
a growing awareness in the Statistics and Engineering literature for the need
and usefulness of methods for the optimization of models of such physical
processes. The models are a surrogate of a process or product, used to study and
improve it with no active intervention and faster experimentation. When opti-
mizing a simulation model, the optimal solution obtained from the simulation is
implemented in the real system. Evidently, the model must be an accurate rep-
resentation of the system under study. We will not delve into the deep subject
of simulation modeling and validation, for which a very large body of literature
exists (see e.g., the books [83, 4, 143]) and is outside the scope of the present
book. Our purpose in this chapter is to provide an introduction to some of the
techniques that are useful in the optimization of simulated systems.

One peculiarity of a simulated process is that it does not need so much human
attention as a real or physical process. It has been emphasized by Response
Surface authors that RSM methods must be carefully used and should not
be thought of as a computer algorithm that is blindly applied. The process
of knowledge discovery entails a continuous interplay between planning and

367
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conducting an experiment and analyzing the results of the experiment, planning
further experiments and so on [25]. This process also applies to a simulated
system, and traditional RSM techniques have been widely used in simulation
optimization. However, given that we work with a computer model rather than
with a physical system, the optimization of a simulated system can be done in a
more automatic way, and more formal algorithmic methods are also applicable.

In this chapter, we first introduce optimization methods based on stochastic
approximation techniques. Given their algorithmic form, these methods are
sometimes appropriate for simulation optimization. Contrary to RSM methods,
which are much less mathematically structured, the kind of stochastic optimiza-
tion methods described here are known to converge to a stationary point under
certain conditions, in a similar way that nonlinear programming techniques are
known to converge for the optimization of deterministic functions. The last
section discusses the statistical test of the Karush-Khun-Tucker (KKT) neces-
sary optimality conditions, which provides a stopping criterion in constrained
simulation optimization problems.

13.2 Newton’s Method and Stochastic Approximation
Consider first Newton’s method for solving for the root of a function, i.e.,

find x (a scalar) such that f(x) = 0 is true. Here f(x) is a deterministic
function from � to �, in other words, f(x) can be measured without error. The
recursive equation that is known to converge to the root is given by

xn+1 = xn − f(xn)
f ′(xn)

(13.1)

where f ′(x) = df(x)/dx is known analytically. In this setting, convergence
simply means that xn → θ as n → ∞ (where θ is the closest root to x1). The
recursion is equivalent to steepest descent applied to f(x).

The seminal work of Robbins and Monro (RM) [135] extended such
approach to a stochastic function, that is, assume y = y(x) = M(x) + ε where
ε is a random variable with E[ε] = 0 so M(x) = E[y|x] is the regression of y

on x, a function which can be nonlinear in x. No parametric assumptions are
made on the form of M(x). Suppose we want to find a root of the equation
M(x) = 0. Neither M(x) nor M ′(x) are known analytically, and we cannot
observe M(x) directly, we can only observe y(x). Suppose that instead of
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using (13.1) (which is not possible to use since the functions needed are not
available to us) we use the recursion (sometimes called the “RM process”):

xn+1 = xn − any(xn) (13.2)

where the sequence {an}∞n=1 needs to be determined and x1 is selected arbi-
trarily. This recursion determines an experimental design on the factor space (a
one dimensional space when x is a scalar) that will seek the root of the equa-
tion. Robbins and Monro asked a very simple question: under what conditions
on M(x), ε, and {an}∞n=1 do we have convergence of the sequence of experi-
mental factor levels {xn}∞n=1 to the root of M(x) = 0, let us call it θ? In their
original paper, they showed that, if

a)

an → 0,
∞∑

n=1

an = ∞

b)
∞∑

n=1

a2
n < ∞

c) the regression function is such that M(x) ≤ 0 if x < θ and M(x) ≥ 0 if
x > θ,

d) the distribution function of ε has zero mean and bounded tails,

then using (13.2) we have

lim
n→∞

E[(xn − θ)2] = 0

i.e., they show convergence in mean square of xn to the root θ. A sequence
that satisfies the first two conditions is the harmonic series an = 1/n =
{1, 1/2, 1/3, . . .}. Condition a) is needed because otherwise the search could
stop before finding a root. Condition b) is needed to eventually eliminate the
“noise” in the observations. Some of the assumptions under which mean square
convergence is achieved were simplified and clarified by Dvoretzky [51]. In
particular, instead of assumption d) it is only necessary that E[ε] = 0 and
σ2

ε(x) < ∞. Note that the variance can be non-homogeneous, a condition of
considerable interest in response surface methods. The Dvoretzky conditions
imply both MS convergence and convergence of xn to θ with probability one.
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Note how these conditions are sufficient, and therefore, several authors have
come up with slightly different sufficient conditions (see [145] for a recent
account).

13.3 Stochastic Gradient
Following a suggestion by Robbins and Monro, Kiefer and Wolfowitz [79]

proposed to apply Robbins and Monro’s stochastic approximation approach
to finding the root of M ′(x) = 0, i.e., for finding the stationary point θ of
the regression function that is known to have a maximum (or a minimum, as
desired). Since the slope of the regression function is not observable directly,
they propose to use instead:

xn+1 = xn + an
y(xn + cn) − y(xn − cn)

cn
(13.3)

(if we wish to minimize we subtract the second term instead). Kiefer and
Wolfowitz showed that xn as above converges in mean square to θ if

an → 0, cn → 0,
∞∑

n=1

an = ∞,
∞∑

n=1

ancn < ∞,
∞∑

n=1

a2
nc2

n < ∞

(13.4)
besides of some regularity conditions on M(x).

Blum [12] extended this procedure to the multivariate case, of particular
interest in realistic process optimization problems.

We now present the algorithmic details of a multivariate generalization of
Kiefer and Wolfowitz’ stochastic gradient, following Spall [145], who refers to
the following method as the Finite Difference Stochastic Approximation (SA)
method.

Suppose we observe y(x) = L(x) + ε(x), where x is a k × 1 vector of
controllable factors and L(x) is some loss function we wish to minimize, with-
out loss of generality. Thus, we cannot measure the loss directly, we only have
noisy measurements where ε(x) is the process noise. The multivariate recur-
sion, analogous to (13.3), is given by

xn+1 = xn − anĝn(xn) (13.5)

where the gradient estimate is given by

ĝn(xn) =

⎡
⎢⎢⎣

y(xn+cn1(1))−y(xn−cn1(1))

2cn...
y(xn+cn1(k))−y(xn−cn1(k))

2cn

⎤
⎥⎥⎦ (13.6)
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and where 1(i) is a k × 1 vector with a one in position i and zeroes elsewhere.
Spall [145] suggests the following scheme for the “gains”, an and cn:

an =
a

(n + 1 + A)α
, cn =

c

(k + 1)γ

and suggests the values 0.6 < α ≤ 1, 0.1 < γ < 0.5, α − γ > 0.5 (choices
suggested by Spall that meet these conditions are α = 0.602 and γ = 0.101).
The value of c is suggested to be around the standard deviation of the noise term
(σε) and the value of A is suggested to be about 10% the number of iterations
one wishes to apply the procedure. The key recommendation for c has the merit
of scaling the procedure and to make it insensitive to the noise. If the noise vari-
ance is unknown, and the value of c is far from the actual σ2

ε , the performance
will be much different (see example below). Spall also suggests to calibrate the
parameter a such that the initial change of the controllable factors, as given by
aĝ0(x0)/(1 + A)α, is as desired, although no recommendation about how to
choose this desirable value is given, other than suggesting it should be small.
Evidently, larger values of a will increase the “step size”.

Example. Maximization of a quadratic function. To illustrate the multi-
variate stochastic gradient method, let us consider the function L(x) = 773.8−
7.2x1 + 8.2x2 + 166.5x2

1 + 189.9x2
2 which is observed with additive error

ε ∼ N(0, 102). The factors are coded using x1 = (ξ1−275)/50 and x2 = (ξ2−
158.9)/50. The function L(x) is negative definite, and the maximum is at ξ′ =
(276.08, 157.82), in original units. The parameters α = 0.602, γ = 0.101,
a = 0.9 were used for 500 iterations, thus A = 50. The initial point ξ′0 =
(200, 100) was used with the “‘perfect” value of c = σε = 10. Figure 13.1
shows 10 realizations of the search process. The search stops slightly earlier
than the exact maximum. Using 1000 iterations and keeping all other para-
meters equal reaches the maximum. Suppose instead that σε is unknown and
we use instead c = 1 < σε = 10. The same figure shows 10 realizations of
the SA process if started from the point ξ′0 = (350, 100). As it can be seen,
the performance is much more erratic. �

13.4 Stochastic Perturbation Stochastic Approximation
The stochastic gradient method approximates the gradient of the function

by running the process at 2k points forming a “star”. Spall [144] noted that
the number of function evaluations, or simulations in simulation-optimization
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Figure 13.1. Trajectories of the stochastic gradient search, 500 iterations in each trajectory.
The 10 trajectories on the left started from ξ′

0 = (200, 100) with c = σε; the 10 trajectories on
the right started from ξ′

0 = (350, 100) with c = 1 < σε which makes the method very sensitive
to the large errors

applications, can be reduced by a factor of k if only two measurements are
taken at each iteration. The method, called Stochastic Perturbation Stochastic
Approximation (SPSA), uses the same basic iteration (13.5) while estimating
the gradient using instead

ĝn(xn) =

⎡
⎢⎢⎣

y(xn+cn∆n)−y(xn−cn∆n)
2cn∆n1

...
y(xn+cn∆n)−y(xn−cn∆n)

2cn∆nk

⎤
⎥⎥⎦ (13.7)

where ∆n is a k × 1 random perturbation with certain properties that allow for
convergence. The easiest way to satisfy such conditions, and it seems the most
popular choice of distribution for ∆, is a symmetric Bernoulli distribution of
the form

∆i =

{
−1 with prob. = 0.5
1 with prob. = 0.5

for i = 1, 2, . . . , k.
Since the numerator in each entry of the ĝn(xn) vector is the same,

only two function evaluations are necessary per iteration. This makes the
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method specially attractive for cases where each function evaluation (i.e., each
simulation) is very expensive or too time consuming to conduct. The ratio of
the number of function evaluations in the SPSA algorithm to that of the SA
algorithm is therefore 1/k.

Spall [145] suggests using the same scheme for the an and cn gains as in
stochastic gradient. Thus, if the standard deviation is known, setting c = σε

scales the algorithm and makes it very robust against noise.
The key insight behind the SPSA algorithm is that average gradient infor-

mation can be built across “experiments” and that it suffices to use only two
observations per experiment or iteration of the method.

Example. Maximization of a quadratic function. To illustrate the SPSA
algorithm, consider the same example we used to demonstrate the SA algorithm.
Figure 13.2 shows trajectories similar than those in Figure 13.1 under similar
conditions. As it can be seen, the behavior is very similar, although SPSA
utilizes exactly half the number of function evaluations (500/2, since k = 2).
�

ξ1

ξ 2
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Figure 13.2. Trajectories of the SPSA search, 500 iterations in each trajectory. The 10 trajecto-
ries on the left started from ξ′

0 = (200, 100) with c = σε; the 10 trajectories on the right started
from ξ′

0 = (350, 100) with c = 1 < σε. In either case the behavior is approximately similar to
that of the SA search, but SPSA uses half (250) function evaluations
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13.5 Statistical Test of KKT Optimality Conditions in
Simulation Optimization**

Consider1 a stochastic (perhaps, discrete event) simulation of a system e.g.,
a simulation model of a manufacturing process. Such system can have multi-
ple responses of interest, probably correlated, of unknown form. Suppose the
ultimate goal is to solve, via simulation-optimization the following problem:

min E[Y0(x, r)] (13.8)

subject to: E[Yh(x, r)] ≥ ah, h = 1, 2, . . . , m − 1, (13.9)

where x is a k × 1 vector of controllable factors and r is a pseudo-random
number sequence used in the simulation program that gives randomness to the
functions. This problem is also relevant in Response Surface Methodology
where physical experiments are conducted, but we will confine ourselves to the
simulation optimization scenario in this section.

The way to solve problem (13.8–13.9) using a simulation code is to perform
experiments (simulations) at different settings x and hope to find a point which
satisfies the Karush-Kuhn-Tucker (KKT) necessary conditions for optimality
(see Appendix C):

β−0;0 = B−0;Jλ λ ≥ 0

where β−0;0 is the gradient of the goal function, B−0;J is the k×J matrix with
the gradients of the J binding (active) constraints, and λ is a J × 1 vector con-
taining the Lagrange multipliers. Recall that the KKT conditions are necessary,
that is, if x optimal, x satisfies KKT. This also implies that if the KKT condi-
tions do not hold at x, then x is not optimal (so we need to keep searching).
The question is how to test these conditions from noisy experimental data.

In a recent paper, Bentovil et al. [9] proposed an effective method to test the
KKT conditions in a simulation optimization problem for problem (13.8–13.9).
It is assumed that a region in the space of controllable factors have been reached
(perhaps by a line search technique such as steepest ascent) where second order
models are adequate for all response functions in the problem. The procedure
is as follows:

1 Run the simulation using DOE around the point of interest that allows to fit
quadratic models to all the responses.

1This section contains somewhat more advanced material and may be skipped on a first reading.
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2 Perform a statistical test for determining all binding constraints (using a
t-test). This gives J . Perform also a lack of fit test.

3 If all models fit well, then test the KKT conditions. The test is:

H0 : E(β̂−0;0 − B̂−0;J λ̂) = 0

vs. a two sided alternative. Since the statistic β̂−0;0 − B̂−0;J λ̂ is quite
non-linear and does not have a known distribution, we approximate its
distribution via Parametric Bootstrapping [53].

The parametric bootstrapping approach is used to test the hypothesis as
follows:

1 From the fitted models and the covariance matrix of the parameter estimates
of the objective function and active constraints, simulate (i.e., resample)
R instances of the bootstrapped parameters, namely β̂

∗
−0;0, B̂∗

−0;J and
compute

λ̂∗ = (B̂∗′
−0;J B̂∗

−0;J)−1B̂∗′
−0;J β̂

∗
−0;0.

2 With the R bootstrapped values compute the errors e = β̂
∗
−0;0 − B̂∗

−0;J λ̂∗

and form the multivariate Empirical Distribution Function (EDF) of the
errors.

3 If 0 is not inside the 100(1 − α)% bootstrapped confidence region for

η = E[β̂−0;0 − B̂−0;J λ̂],

formed by the α/2-percentile and the 1 − α/2-percentiles of the EDF of
the errors, then reject H0 at the current point (i.e., KKT conditions do not
hold).2

We need to test also that λ ≥ 0 to complete the KKT conditions. This can
be done with a binomial test from the bootstrapped λ̂∗’s (see [9]).

The rationale for this procedure is the geometrical meaning of the KKT con-
ditions (see Appendix C). The conditions state that at the point of interest the

2One conservative but easy way to do this is to test that each element ei of e falls inside the individual
confidence interval given by the (α/2)/k and 1 − (α/2)/k percentiles of the ith coordinate of the EDF.
This is called a Bonferroni approach for multiple confidence regions and is conservative since the overall
confidence level will be greater or equal than 100(1 − α%).
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gradient of the objective function is a linear combination of the gradients of the
constraints that are active. If zero is inside the confidence region of the errors η,
it means that such linear combination holds statistically (i.e., with 100(1−α)%
confidence) at the current point of interest.

Example. Consider a “synthetic” problem presented in [9]. We wish to solve
the following problem:

Min E[(d1 − 8)2 + (d2 + 8)2 + ε0]

subject to:
E[(d1 − 3)2 + d2

2 + d1d2 + ε1] ≤ 4

E[(d2
1 + 3(d2 + 1.061)2 + ε2] ≤ 9

where the errors are multivariate normal with Var(ε0) = 1, Var(ε1) =
0.152, Var(ε2) = 0.42, and Cov(ε0, ε1) = 0.09, Cov(ε0, ε2) = 0.12, and
Cov(ε1, ε2) = −0.006. The optimal point is d∗ = (2.5328,−1.9892)′ which
corresponds to point A in Figure 13.3. We test at points A, B, C, D. The test
should reject the null hypothesis (which says that the KKT conditions do hold
at a certain point) α % of the times at point A, and it should reject it much more
often at the other points (with point B being a “better” candidate than point D,
which is the worst). This gives and indication of the power of the test.

The results of the performance of the bootstrapping approach for this prob-
lem are shown in Table 13.1. A N = 12 run Central Composite Design was
run around each of the 4 points A, B, C, and D. Two different α values were
tested, 5% (R = 2000 was used) and 10% (R = 1000 was used). As it
can be seen from the table, the method rejects the optimum point α % of the
times, as expected. Furthermore, the farther the other 3 points are from being a
KKT point, the higher rejection rate of the hypothesis. This indicates adequate
performance of the bootstrapping test. �

The performance of the bootstrapping approach depends on the “signal to
noise” ratio, that is, on the amount of noise the errors εi contain relative to the
size of the region where the experimental design is run. But it should be pointed
out that no method will work well when the noise overwhelms a process; in
such case the KKT conditions are not testable.

An example where the bootstrapping method was applied to an Inventory
System simulation is described in [9].
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E(w0) = 76
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E(w2) = 9

E(w1) = 4

Figure 13.3. Contour graph of the example problem. Point A is optimal, while the other 3
labeled points are not. From: [9]

Table 13.1. Results of the Bootstrapping KKT Test applied to the synthetic example

α=10%, R=1000 α=5%, R=2000
Point % rejects % rejects

A, (opt) 0.0942 0.0571
B 0.2208 0.1969
C 0.6509 0.5524
D 0.9976 0.9965

13.6 Problems
1 Write a Matlab program that implements the Stochastic Gradient procedure

for two factors. Test your program against the examples in this chapter.

2 Using the program in Problem 1, repeat the example in this chapter by only
changing the a parameter to be 5.0 (instead of 0.9). How different is the
behavior if the stochastic gradient method for the example?

3 Consider the function L(x) = 773.8−7.2x1+8.2x2+166.5x2
1+189.9x2

2+
20x1x2 which is observed with additive error ε ∼ N(0, 102). The factors
are coded using x1 = (ξ1 − 275)/50 and x2 = (ξ2 − 158.9)/50.
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a) Write a Matlab program that simulates this function.

b) Use the Matlab program you developed in Problem 1 to find a stationary
point using the Stochastic Gradient method. Start all runs from the point
ξ′0 = (200, 100) and use c = σε.

c) repeat part b) starting from ξ′0 = (350, 100) with c =< σε

Run the simulation/optimization process in b) and c) for 500 times.
Compare against the maximum of the expected response (L(x).)

4 Write a Matlab program that implements the SPSA method for two factors.
Test your program against the examples in this chapter.

5 Using the program in the previous problem, repeat the examples in this
chapter by only changing the value of parameter a to 5.0. How different is
the performance of the SPSA method for this example?

6 Consider again the function L(x) = 773.8 − 7.2x1 + 8.2x2 + 166.5x2
1 +

189.9x2
2 + 20x1x2 which is observed with additive error ε ∼ N(0, 102).

The factors are coded using x1 = (ξ1−275)/50 and x2 = (ξ2−158.9)/50.

a) Use the Matlab program you developed in Problem 3 to find a stationary
point using the SPSA method. Start all runs from the point ξ′0 = (200, 100)
and use c = σε.

b) repeat part a) starting from ξ′0 = (350, 100) with c =< σε

Run the simulation/optimization process in a) and b) for 500 times.
Compare against the maximum of the expected response (L(x).)



Chapter 14

KRIGING AND COMPUTER EXPERIMENTS

Science is nothing but the elaboration of a model for nature.
—Arturo Rosenblueth (1900–1970)

Engineering problems where complex computer codes need to be run in
order to obtain a solution are increasingly common. This could be, for example,
a finite-element program which evaluates certain physical properties of a
mechanical design. The finite element model is accurate and deterministic
in the sense that when run from the same settings it produces the exact same
outputs, but may take a long time to run. Still, a faster approximation (or
metamodel) of the computer code output is desirable, particularly for opti-
mization purposes, since optimization would require running the code several
times. The accuracy (bias) of such approximation is of prime interest. This
leads to a different problem of function approximation methods, closer to what
Chebyshev investigated in the XIX century. Kriging methods are one class of
popular methods to provide interpolation of complex, “expensive” functions
which can only be observed by running such a computer code1. This chapter

1In contrast with Chebyshev’s approximations, Kriging methods seek a best approximation in the mean
square error (MSE) sense. Interestingly, Chebyshev found the MSE criterion unsatisfactory for solving the
type of problems in the designs of machines he was interested in, since a machine component that exceeds
a tolerance, even by a small amount, would be intolerable; see [2, pp. 299–300]. Chebyshev and other
approximations, such as Fourier’s, seek approximation of a function in terms of combinations of other given
functions; Kriging approximates a function measured at a discrete set of points with a convex combination
of the observations that provides minimum MSE.

379
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provides an introduction to Kriging methods used for prediction. We also dis-
cuss experimental design issues for computer codes, in particular, space filling
designs used to reduce bias in the fitted model.

14.1 Kriging**
Kriging is a type of Spatial Statistical method useful for interpolation that

originated in geosciences2. The method was initially developed by D.G. Krige
and H.S. Sichel, a mining engineer and a statistician from South Africa, respec-
tively, in the early 1950’s, when classical statistics were found to be unsuitable
for estimating ore reserves. Krige improved his methods in the 1960’s in col-
laboration with G. Matheron, a French mathematician who coined the term
Kriging and developed the methods into the 1970’s and 1980’s. From a process
optimization perspective, Kriging can be applied for modeling response sur-
faces of simulation or expensive computer model output. This provides a sim-
plified model (of the computer models), which in turn can be optimized. Here
we provide an introduction to the basic Kriging methods. For a fuller treatment,
see the (by now classic) book by Cressie [35].

Let {x1, x2, . . . , xn} (or x ∈ �n) be “locations” where we observe data
{y(x1), y(x2), . . . , y(xn)}. In process optimization, the variables xi denote
the controllable factors of the simulation or computer model. It is supposed the
data are a realization of a stochastic process Y (·):

{Y (x) : x ∈ D ⊂ �k}.

In Ordinary Kriging one assumes the process generating the data obeys the
model

Y (x) = µ + δ(x), x ∈ D ⊂ �k (14.1)

where µ ∈ � is a non-random constant and δ(x) is a spatial stochastic process
with

E(δ(x)) = 0 for all x ∈ D

and Cov(δ(x1), δ(x2)) = C(x1 − x2) for all x1, x2 ∈ D (hence, δ(x) is said
to be a (multivariate) white noise process). Therefore, the covariance between
the errors obtained in two different locations depends only on the distance
between the two points being considered through the function C(·), called the

2This section contains relatively more advanced material.
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covariogram (this is analogous to the autocovariance function, see, e.g., [26],
[39], and hence C(0) = Var(Y (x)).) The processes δ(x) and Y (x) are there-
fore assumed to be second order (or weakly) stationary, with Y (x) such that

E[(Y (x)] = µ for all x ∈ D

and
Cov(Y (x1), Y (x2)) = C(x1 − x2).

Stationarity of Y (x) dos not guarantee Y (x) is ergodic. To be ergodic, and
hence, to be able to make valid inferences based on a single “observed path”
of the process, we must have C(x) → 0 as x → ∞. In most cases, this is a
reasonable assumption.

An important function in Kriging is

Var(Y (x1) − Y (x2)) = E[(Y (x1) − Y (x2) − E2(Y (x1) − Y (x2))2]

= E[(Y (x1) − Y (x2))2]

where the last equality follows since E(Y (x)) = µ for all x, thus,

Var(Y (x1) − Y (x2)) = 2γ(x1 − x2)

for all x1, x2 ∈ D, a function called the variogram. The quantity γ(x1 − x2)
is called the semi-variogram. Since

Var(Y (x1) − Y (x2)) = Var(Y (x1)) + Var(Y (x2)) − 2Cov(Y (x1), Y (x2))

and since Y (·) is covariance stationary, then

Var(Y (x1) − Y (x2)) = 2[C(0) − C(x1 − x2)] = 2γ(h)

where h = x1 − x2 is called the “lag” in analogy to time series analysis. Note
that γ(−h) = γ(h) and that γ(0) = 0.

The assumed form of the predictor at some point x0 ∈ D used in Kriging is

Ŷ (x0) = p(Y (x0)) =
n∑

i=1

λiy(xi),
n∑

i=1

λi = 1. (14.2)

Under these assumptions, the goal in Kriging is to find p(Y (x0)) by choosing
the λi in (14.2) such that the prediction provides minimum mean square error
(MMSE) prediction3, i.e., it should minimize

E[(Y (x0) − p(Y (x0)))2].

3Note that the optimal λi’s will depend on the point x0 at which we are predicting.



382 PROCESS OPTIMIZATION: A STATISTICAL APPROACH

Kriging predictions will thus constitute a “BLUE” (Best Linear Unbiased
Estimator) of the underlying process Y (x). Using a Lagrange multiplier m

and adding a constant 2 (for convenience as we will see later), the Lagrangian is

L(x0) = E[(Y (x0) − p(Y (x0)))2] − 2m

(
n∑

i=1

λi − 1

)
. (14.3)

After some algebra, it is easy to show (see Exercise 13) that

L(x0) = −
n∑

i=1

n∑
j=1

λiλjγ(xi −xj)+2
n∑

i=1

λiγ(x0 −xi)− 2m

(
n∑

i=1

λi − 1

)
.

(14.4)
Equating ∂L(x0)/∂λ and ∂L(x0)/∂m to zero, we obtain a system of n + 1
equations with n + 1 unknowns. Define

λ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...
λn

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

λ

m

)
,

γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ(x0 − x1)
γ(x0 − x2)

...
γ(x0 − xn)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

γ

1

)
,

and

Γ0 =

⎛
⎜⎜⎜⎜⎜⎝

γ(0) γ(x1 − x2) . . . γ(x1 − xn) 1
γ(0) . . . γ(x2 − xn) 1

. . . 1
symm. γ(0) 0

⎞
⎟⎟⎟⎟⎟⎠

≡
(

Γ 1
1′ 0

)
.

Thus, we have that
λ0 = Γ−1

0 γ0.

It can be shown, after some algebra (see Exercise 14) that

λ′ =

(
γ + 1

1 − 1′Γ−1γ

1′Γ−11

)′
Γ−1 = (γ − 1 m)′Γ−1. (14.5)
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so m = −1−1′Γ−1γ
1′Γ−11

. However, the semi-variogram γ(h) is unknown and
needs to be estimated from data. A common way of doing this is to use a
method of moments estimator:

2γ̂(h) =
1

|N(h)|
∑

N(h)

(Y (xi) − Y (xj))2, h ∈ �n (14.6)

where N(h) = {(xi, xj) : xi − xj = h, i, j = 1, 2, 3, . . . , n}, which is
unbiased (see [35, p. 69]).

The estimator γ̂(h) in (14.6) cannot be used to compute λ (and therefore,
it cannot be used to compute predictions p(Y (x0))) since it may be negative
definite, and it may thus yield non-sensical negative MSE’s (see [35]). Com-
mon practice is to fit a parametric model to γ̂(h) using least squares (which has
the advantage of not depending on the distribution assumptions, as MLE’s do).
The form of the parametric model ensures that the resulting estimator γ̃(h) is
positive definite.

One useful parametric semi-variogram model is the exponential model:

γ̃(h) =

{
c0 + c1(1 − exp(−||h||/a)) if h �= 0

0 if h = 0

where c0 is called the nugget (recall the mining origin of Kriging!), c0 + c1

is called the sill, and a is called the range. This is an instance of an isotropic
variogram model, which means it is assumed that the covariance between two
points depends only on their separation or “lag” ||h|| = ||x0−x1|| but not in the
direction of h. The nugget is supposed to capture discontinuities at the origin4

caused by “micro” variation, which in practice occur due to measurement error.

Example. Kriging interpolation of a complicated 2-variable function.
Suppose the (unknown) function

Y (x) = x8
1 + x5

2 − x2
1x

2
2

represents the output of a computer code which is of interest to model as a
function of two controllable factors.

The function is plotted in Figure 14.1. A space filling design (see Section
14.2) in the form of a grid −.8 ≤ x1, x2 ≤ .8 in increments of 0.4 was used

4That is, γ̃(h) → c0 as h → 0.
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Figure 14.1. Contour plot of the true function Y (x)

to run experiments to get measurements of Y (x). From these measurements,
γ̂(h) was estimated5, see Figure 14.2. A least squares fit of the exponential
model gives c0 = 0.02318, c1 = 1.5255, and a = 0.95. A contour of the pre-
dictions, obtained from (14.2) and from the fitted exponential semi-variogram
is shown in Figure 14.3. Figure 14.5 displays the variance of the predictions,
which, not surprisingly, increases inside the “pockets” left by the DOE points.
Finally, Figure 14.4 gives the observed Y (x) compared to the predictions ob-
tained by deleting observation i when this is the point being predicted. The
predictions are, in general, adequately following the shape of the true response
surface. �

14.1.1 Other Kriging Methods
A much more flexible model than (14.1) is obtained by assuming that the

process mean µ is a function of the controllable factors, namely,

Y (x) = µ(x) + δ(x).

5In this example, the Matlab software Easykrig v. 3.0 was used.
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Figure 14.2. Fitted Semi-variogram γ̂(h), exponential model

Figure 14.3. Contour plot of the predictions p(Y (x0) for −8 ≤ x1, x2 ≤ .8
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Figure 14.4. Validation of the predictions (observed vs. predicted) if predictions are made at
deleted points

Figure 14.5. Variance plot of the predictions p(Y (x0))
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Matheron (see [35]) studied such a model (called “Universal Kriging”) with

µ(x) =
p+1∑
j=1

fj−1(x)βj−1

where β′ = (β0, β1, . . . , βp) is an unknown vector of parameters, and f ′ =
(f0(x), f1(x), . . . , fp(x)) is a vector of known functions. With this setting,
the data Y can then be written as

Y = Fβ + δ

where F is a n × (p + 1) matrix whose (i, j) element is fj−1(xi).
The form of the predictor is

Ŷ (x0) =
n∑

i=1

λiY (xi)

with λ′F = f ′. Note how if p = 0 and f0(x) = 1, the latter condition reduces
to
∑n

i=1 λi = 1.
Optimal linear unbiased estimators for Universal Kriging and the associated

problem of how to estimate the variogram for this model are treated by Cressie
([35, Chapter 3]). The MATLAB Kriging toolbox DACE [86] allows for Uni-
versal Kriging modeling.

A simpler alternative to Universal Kriging has been proposed by Van Beers
and Kleijnen [153] who called their method Detrended Kriging. This can
be used with only ordinary Kriging methods. In this approach, the mean is
assumed to follow the model

µ(x) = S(x) + η

where S(x) is a known linear regression model (the “signal”) of the form
S(x) = β′x, and η is white noise, i.e., E[η] = 0 and Var(η) is a constant.
Under these assumptions, ordinary least squares can be used to estimate S(x)
from the data {xi, Y (xi)}i=1,...,n. The next step in this method is to apply
Ordinary Kriging to the detrended data set

{xi, Y (xi) − Ŝ(xi)}i=1,...,n.

Finally, the prediction at point x0 is given by the sum of the OLS prediction,
Ŝ(x0) = β̂

′
x0, and the ordinary Kriging prediction, i.e.,

Ŷ (x0) = Ŝ(x0) + p(Y (x0) − Ŝ(x0)).
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Van Beer and Kleijnen report good performance of their proposal, although
no direct comparisons with Universal Kriging were provided.

14.2 Space Filling Designs
In computer experiments, an experimental design X (an n×k matrix) spec-

ifies the n different computer runs, each at a particular set of k factor values.
As mentioned earlier, for deterministic computer codes, the main problem is
how to deal with the only source of uncertainty, namely, that associated with
the unknown response function(s).

Computer experiments are frequently conducted for optimization purposes.
For optimization, it is vital that a good representation of the unknown func-
tion be available over the whole region of exploration. This implies that “the
region of experimentation” equals the region of interest (see Chapter 1), and,
contrary to RSM, models are not local but global, fitted perhaps using Kriging
techniques, as discussed in the previous section. Here we give an introduction
to the main types of DOEs useful for deterministic computer experiments. For
a more detailed discussion see [139].

In order to reduce the bias of the functional approximation, a design that
places points evenly over the region of interest is desirable. We refer to such
designs as space filling designs6. We note that a peculiarity of space filling
design for computer experiments is that replication is unnecessary as the output
of the computer code is deterministic.

Assuming a cuboidal region of interest, some obvious choices of space filling
designs that are easy to implement are:

1 Random designs. These designs consist of n points generated at random
within the region of interest.

2 Random stratified designs. the n points are obtained by partitioning the
region of interest in n strata that covers the region. The one random point is
selected from within each strata.

3 Grid designs. each factor is tried at m equidistant levels and all factorial
combinations are tried, resulting in the n = mk points.

6One way of being more precise about what we mean by a space-filling design is to measure the discrepancy
between a k-dimensional uniform distribution and the empirical distribution of the design. See [139] for
details.
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The disadvantages of each of these designs are clear. Random designs may
not always cover the region of interest, even in the stratified form. Grid designs
may require a considerable number of runs to cover a region adequately for a
particular application.

Latin Hypercube sampling is a popular method to create DOEs in computer
experiments, so we describe them next.

14.2.1 Latin Hypercube Designs (LHD)
These designs are an extension of stratified designs in which a modification

is added as an effort to cover the region more evenly. LHDs are constructed
with the following method:

1 Partition each of the ranges of the k factors into n intervals (usually, these
are equally spaced, but if a subregion is of more interest, narrower intervals
can be defined in it.) This will give a total of nk “cells”. Initially, mark all
cells as “free”.

2 From al the free cells, select one at random, say cell c. Pick a random point
inside this cell (i.e., x ∈ c).

3 Mark all cells that agree with c on any of its coordinates as “used”, i.e.,
cross out (mark as used) all cells in the same row, column, etc. as cell c.

4 If n cells have been selected, stop. Otherwise, go to step 2.

LHDs have nice marginal properties, that is, they spread points evenly across
the whole range of each factor xi. However, the distribution in n-dimensional
space may not cover the region evenly enough.

Example. LHD design. Suppose we wish to construct a 10-point LHD for
2 factors, where 0 < x1, x2 < 1. Figure 14.6 shows the resulting design. �

LHDs have the obvious disadvantage, shared with all the simpler ran-
dom designs, of not always being space filling in k-dimensional space. For
example, for k = 2 all n observations could fall along the diagonal. Because
of this, LHDs are better used in generating candidate designs from where a
second space-filling criterion is used to make the final selection. One useful
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Figure 14.6. A Latin Hypercube Design for k = 2, n = 10

space-filling design is the maximim distance criterion. If the distance between
two points x1 and x2 is measured by the L2 norm, i.e.,

d(x1, x2) = ||x1 − x2|| =
k∑

i=1

(x1,i − x2,i)2

then a maximim design attempts to maximize the shortest distance between any
two points of a design D:

max min
x1,x2∈D

d(x1, x2)

where the outer maximization is over all possible designs. This criteria can
be combined with LHD by performing the maximization over a set of LHD
designs:

max
D∈LHD(m,k,n)

min
x1,x2∈D

d(x1, x2)

where LHD(m, k, n) is a set of m randomly generated LHD designs in k

dimensions and n points.
Matlab’s Statistics Toolbox provides the function lhsdesign which can

compute maximim LHDs. Its syntax is:

X=lhsdesign(n,k,‘criterion’,’name’,’iterations’,m)
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where writing ‘maximim’ for ‘name’ causes the function to return the best
maximim design among the m randomly generated LHD designs for the spec-
ified k and n.

Example. Maximim LHD. Figure 14.7 shows the maximim design returned
by Matlab when the lhsdesign function was used for the case n = 10,
k = 2, and m = 500. Figure 14.9 shows another maximim LHD obtained for
k = 3, n = 30 and m = 1000. This design is given also in Table 14.1. �

Matlab’s lhsdesign function also provides the minimum correlation cri-
terion (specify ‘correlation’ under ‘criterion’), in which the LHD design with
the least cross-correlations among the columns of the design is selected. If ρij

denotes the correlation between columns i and j, then this criterion is to choose
the LHD design which

min
k∑

i=1

∑
j>i

ρ2
ij

that is, this criterion minimizes the sum of the squares of the elements in the
upper triangular submatrix of the correlation matrix.

Example. Minimum Correlation LHD design. Figure 14.8 shows the
LHD design with minimum sum of squared correlations for the case k = 2,
n = 10, m = 500. The correlation between the two columns in the design
is ρi2 = −0.0303. In contrast, the designs in Figures 14.4 and 14.6 have
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Figure 14.7. The best of 500 Latin Hypercube Designs selected according to the maximin
criterion, k = 2, n = 10
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Figure 14.8. The best of 500 LHDs selected according to the correlation criterion, k = 2,
n = 10
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Figure 14.9. The best of 1000 LHDs selected according to the maximin criterion, k = 3,
n = 30. The design points are tabulated in Table 14.1

ρ12 = 0.2062 and ρ12 = −0.0715 respectively. The maximin LH design in
Figure 14.9 has ρ12 = −0.0606, ρ13 = 0.0119, and ρ23 = 0.0307.�

Another useful criterion (not available in Matlab) is to select the LHD design
that minimizes the discrepancy between the CDF of a k-dimensional uniform
distribution and the empirical distribution function of the LHDs. This is prob-
ably the best way to measure how “evenly” distributed the design points are in
n-dimensional space. See [139] for more details.
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Table 14.1. LHD design selected according to the maximin criterion, k = 3, n = 10 (best of
1,000 designs found). The points are plotted in Figure 14.9

x1 x2 x3

0.83499 0.63006 0.92565

0.65383 0.10002 0.47383

0.80295 0.74044 0.34035

0.24747 0.66924 0.99873

0.99496 0.81773 0.29391

0.53273 0.44827 0.95713

0.16312 0.27186 0.04758

0.04598 0.89490 0.77358

0.34713 0.50045 0.57538

0.09490 0.31505 0.22225

0.70612 0.18602 0.64322

0.22498 0.99756 0.86466

0.38874 0.86233 0.25347

0.01655 0.06310 0.82888

0.56870 0.37545 0.41761

0.16855 0.93766 0.19895

0.88678 0.21115 0.89353

0.42405 0.23683 0.13323

0.56503 0.36589 0.14200

0.76731 0.56474 0.56101

0.26825 0.78407 0.60739

0.67125 0.90397 0.01153

0.62966 0.02369 0.06788

0.92003 0.49889 0.72595

0.46534 0.14290 0.30186

0.13233 0.73322 0.46322

0.96488 0.63356 0.50532

0.48463 0.57789 0.38316

0.33041 0.09804 0.75094

0.73916 0.41550 0.69297

14.3 Problems
1 Create a 50 point LHD maximim design for two variables xi each with range

(−1,1) by using Matlab. Specify 500 iterations. Compute the correlation
matrix of the design columns.
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2 Suppose a computer program provides output of two variables that is
described by the function 8x4

1 + x3
2. “Sample” this function at each of the

points in the design of Problem 1.

3 Perform ordinary kriging with the sampled values in Problem 2. In
particular:

a) Using an exponential semi-variogram, give the fitted values of c0, c1,
and a

b) Show the plot of the kriging approximation

c) Validate the fitted model using the “deleted” predictions.

(Hint: use the EasyKrig Matlab program).

4 Create a 50 point LHD minimum correlation design for two variables xi

each with range (−1,1) by using Matlab. Specify 500 iterations. Compute
the correlation matrix of the design columns. Compare with the design in
Problem 1.

5 Sample the function in Problem 2 using the LHD min. correlation design of
Problem 4.

6 Repeat Problem 3 using the LHD minimum correlation design and the func-
tion data of Problems 4–5. Which kriging approximation seems better?

7 Create a 100 point LHD maximim design for three variables xi each with
range (−1,1) by using Matlab. Specify 500 iterations. Compute the corre-
lation matrix of the design columns.

8 Suppose a computer program provides output of three variables that is
described by the function x5

1 + x5
2 + x5

3 + x1x2 + x2x3 + x1x3. “Sample”
this function at each of the points in the design of Problem 7.

9 Perform ordinary kriging with the design and sampled values in Problems 7
and 8. In particular:

a) Using an exponential semi-variogram, give the fitted values of c0, c1,
and a

b) Show the plot of the kriging approximation

c) Validate the fitted model using the “deleted” predictions.

(Hint: use the EasyKrig program).
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10 Create a 100 point LHD minimum correlation design for three variables xi

each with range (−1,1) by using Matlab. Specify 500 iterations. Compute
the correlation matrix of the design columns. Compare with the design in
Problem 7.

11 Sample the function in Problem 8 using the LHD min. correlation design of
Problem 10.

12 Repeat Problem 9 using the LHD minimum correlation design and the func-
tion data of Problems 10–11. Which kriging approximation seems better?

13 Derive (14.4) from (14.3). Work out the binomial term and use the fact that∑n
i=1 λi = 1.

14 Derive (14.5). Hint: use the result:
(

A B

B′ D

)−1

=

(
A−1 + FE−1F ′ −FE−1

−E−1F ′ E−1

)
.
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Appendix A
Basics of Linear Regression

This appendix provides an overview of linear least squares estimates, model diagnostics, and
some tests of hypothesis relevant in response surface methods.

A.1 Ordinary Least Squares
In most experimental designs, the following information is collected from an experiment:

y1 x11 x12 · · · xik

y2 x21 x22 · · · x2k

y3 x31 x32 · · · x3k

...
...

...
. . .

...
yn xn1 xn2 · · · xnk

where n is the number of experimental runs and k the number of controllable factors. Thus,
for each observed response, we also measure and record the process settings under which the
observation was obtained, i.e., the levels of the controllable factors. Here it is assumed that
all controllable factors are quantitative; otherwise, some of the regressors need to be indicator
variables1.

Suppose we postulate a first order model as being true for all the n observations:

yi = β0 +

k∑
j=1

βjxij + εi i = 1, 2, . . . , n.

The least squares criterion finds estimates β̂0, β̂1, . . . β̂k such that we minimize the sum of
squared residuals:

R(β̂0, β̂1, β̂2, . . . , β̂k) =

n∑
i=1

ε̂2
i =

n∑
i=1

(
yi − β̂0 −

k∑
j=1

β̂jxij

)2

.

1To represent a categorical factor with k categories, k − 1 zero-one indicator variables are necessary.

399
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The function is convex, so its minimum is obtained from ∂R
∂βj

= 0, j = 0, .., k. This gives
a system of p = k + 1 equations in p = k + 1 unknowns, where p denotes the number of
parameters, which equals in this particular case the number of controllable factors plus one.
Unless we have chosen our controllable factor levels badly (something which will be made clear
shortly), this system of equations has a unique solution.

The matrix representation of the first order model and data is:

Y = Xβ + ε

where

Y =

⎡
⎢⎢⎢⎣

y1

y2

...
yn

⎤
⎥⎥⎥⎦ ,

X =

⎡
⎢⎢⎢⎣

1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

. . .
...

1 xn1 xn2 · · · xnk

⎤
⎥⎥⎥⎦

which includes the experimental design and is a n × p matrix in general,

β =

⎡
⎢⎢⎢⎣

β0

β2

...
βk

⎤
⎥⎥⎥⎦ ,

which is p × 1 in general, and

ε =

⎡
⎢⎢⎢⎣

ε1

ε2

...
εn

⎤
⎥⎥⎥⎦ .

The sum of squared residuals is:

R(β̂) = ε′ε = (Y − Xβ)′(Y − Xβ).

The normal equations are obtained from ∂R(β̂)

∂β̂
= 0 and yield

X ′Xβ = X ′Y .
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The least squares estimate of β is

b = β̂ = (X ′X)−1X ′Y (A.1)

where

X ′X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n
∑

xi1

∑
xi2 · · ·

∑
xik∑

x2
i1

∑
xi1xi2 · · ·

∑
xi1xik

. . .
...

...
. . .

...
symmetric

∑
x2

ik

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a p×p matrix of sum of crossproducts. The matrix (X ′X)−1 is also symmetric. This inverse
exists if rank(X) = rank(X ′) = p, i.e., if X is of full rank.

The residuals are obtained from the predicted observations:

Ŷ = Xβ̂ = Xb = X(X ′X)−1X ′Y ≡ HY

where H = X(X ′X)−1X ′ is a n × n symmetric matrix called the “hat” matrix in the regres-
sion literature, a term apparently coined by by John Tukey (so that we can remember that “y hat
equals hat y”). The matrix H is a projection matrix (see Appendix C).

The residuals of the fitted model are ε̂i ≡ ei = yi − ŷi, or

e = Y − Ŷ = Y − HY = (I − H)Y

where the matrix I − H is also a projection matrix.
Figure A.1 shows a geometric interpretation of the least squares residual. The vector Y is

in n-dimensional space, and the space spanned by the columns of X is a subspace of it, where
any vector of the form Xβ lies. The least squares criterion proposes to choose β̂ such that the
euclidean distance from Y to Ŷ = Xβ̂ is as small as possible. This in turn results in the length
of vector e to be the shortest possible one.

A closer look at the triangle formed by the three vectors Y , Ŷ and e indicates that that e is
orthogonal to the space spanned by col(X). This means that

X ′e = 0 = X ′(Y − Xβ̂)

from which we obtain the normal equations:

X ′Xβ̂ = X ′Y

and solving we get the ordinary least squares (OLS) estimate of β:

β̂ = (X ′X)−1X ′Y .

Furthermore,

Y = Ŷ + e
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Y

space spanned by
col(X)

e = Y - Y

Y = X β
Y = X β

Figure A.1. Geometric interpretation of least squares

thus we have partitioned the vector of observations into a vector on the space spanned by col(X)

and a vector on the space orthogonal to col(X). The proof of the orthogonality of e and Ŷ uses
the symmetry and idempotency properties (see Appendix C) of the hat matrix. We have that:

Ŷ = HY , and e = (I − H)Y .

Therefore,

Ŷ
′
e = Y ′H ′(I − H)Y = Y ′H(I − H)Y

= Y ′(H − H2)Y = 0.

We thus can see that the H matrix projects a vector onto the space spanned by col(X) while
the matrix (I − H) projects a vector onto the space orthogonal to that spanned by col(X).
The orthogonality of Ŷ and e is a consequence of certain assumptions made with respect to the
errors εi in the model. Therefore, this orthogonality is exploited in regression diagnostics, where
the objective is to check if the assumptions behind least squares estimation hold.

A.1.1 Properties of OLS Estimates
How good are the OLS estimates? Their “goodness” depends on certain assumptions being

true. In addition to assuming the general model form Y = Xβ +ε, there are three assumptions
made in basic linear regression with respect to the errors:

1 E[ε] = 0

2 Var[ε] = σ2I

3 ε ∼ N(0, σ2I)

If assumptions 1 and 2 hold, OLS are “BLUE” (Best Linear Unbiased Estimators). This means
that β̂0, . . . , β̂k have, individually, the smallest variances of all linear unbiased estimators of
these parameters, a result known as the Gauss-Markov theorem (an estimator T is linear if it is
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of the form T = l1y1 + l2y2 + · · ·+ lnyn where l1, l2, . . . , ln are some constants. An estimator
θ̂ is unbiased for θ if E[θ̂] = θ).

If assumption 3 is also true, then errors are independent, not only uncorrelated, and the OLS
are UMVUE (Uniformly Minimum Variance Unbiased Estimators), that is, they have the same
properties than in the BLUE case but for all classes of estimators (linear and nonlinear), evidently
a stronger result. Thanks to normality, we can make t and F tests of significance and construct
confidence intervals about the parameters. In addition, if all 3 conditions hold, we can show
that OLS estimators are MLE (maximum likelihood estimators), which have nice asymptotic
properties. This is a statement easy to prove:

Lemma A.1 If conditions 1-3 hold, the OLS (A.1) are MLE’s.

Proof. The joint probability function of the errors is

p(ε) ∝ 1

σn
e
−ε′ε

2σ2 .

Since Y = Xβ + ε, the likelihood function is

L(β|Y ) ∝ 1

σn
e
−

(
Y −Xβ

)′(
Y −Xβ

)
2σ2 =

1

σn
e
− R(β)

2σ2

which is maximized with respect to β when the sum of squares function R(β) is minimized
with respect to β �.

We can also show the following.

Lemma A.2 The OLS’s (A.1) are unbiased.

Proof.

E[b] = E[β̂] = E[(X ′X)−1X ′Y ] = (X ′X)−1X ′E[Y ]

= (X ′X)−1X ′E[Xβ + ε] = β �.

The variance-covariance matrix of the parameter estimates is:

Var[b] = Var(β̂) = Var[(X ′X)−1X ′Y ]

= (X ′X)−1X ′[Var Y ]X(X ′X)−1 = σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1.

Therefore, apart from a constant, the diagonal elements of (X ′X)−1 contain the variances of
each β̂j and the off-diagonal elements contain the covariances of the (βi, βj) pairs. Notice how
designing an X such that (X ′X) (and (X ′X)−1) are diagonal makes sense; these are the
so-called orthogonal designs.

Since the errors εi are normal, the observations are normal. The OLS are also normal, as they
are linear combinations of the observations. Putting together the previous results we have that

b = β̂ ∼ N(β, σ2(X ′X)−1).
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A.1.2 Estimation of σ2

If we wish to test hypothesis or compute confidence intervals on the β’s, σ2 needs to be
estimated. If conditions 1-3 hold, then the UMVUE of σ2 is

σ̂2 = s2 =
1

n − p

n∑
i=1

e2
i =

1

n − p
(Y − Xb)′(Y − Xb)

=
e′e

n − p
=

R(b)

n − p

where n − p are the degrees of freedom for error. This is not the MLE estimator, which has a
denominator of n instead and is biased.

Note that if biased estimators are allowed, then there might be estimators of β and σ2 that
may have lower MSE than the OLS estimators. Furthermore, despite the BLUE property of the
OLS estimates when conditions 1-2 hold, OLS estimates are not robust to non-normal errors.
Evidently, an abnormally large residual will have a large impact in the sum of squares, and it
may “lever” the fit in its favor, becoming a very influential observation. Thus, lack of normality
and abnormally large errors are a concern.

A.1.3 Estimation and Prediction in Regression
Suppose we fit a first order model. Let x′

0 = (1, x01, x02, . . . , x0k) be a point of interest
where we wish to investigate the response. Then, ŷ = Ŷ (x) = x′

0β̂ = x′
0b is a point estimator

of both of the following:

1 the mean of Y at x = x0, i.e., E[y|x0];

2 the next observation of y at x0, i.e., y(x0),

Note how these two quantities are fundamentally different. In classical (“frequentist”) statistics,
E[y|x0] is an unknown constant. In contrast, the next observation at x0 is a random variable
which is distributed as N(β′x0, σ

2).
Confidence intervals for each of these quantities are different. For the 1st case, a confidence

interval for E[Y |x0] is given by

ŷ(x0) ± tα/2,n−p σ̂
√

x′
0(X

′X)−1x0.

In the second case, a prediction interval for Y (x0) is given by

ŷ(x0) ± tα/2,n−p σ̂
√

1 + x′
0(X

′X)−1x0. (A.2)

Here, the quantity
√

Var(ŷ(x0)) =
√

Var(x′
0b) =

√
σ2x′

0(X
′X)−1x0 is used in case 1,

and
√

Var(y(x0) − ŷ(x0)) =
√

σ2 + σ2x′
0(X

′X)−1x0 (standard error of the prediction),
is used in case 2. Note how the latter contains the variance of the future observation (σ2) plus
the variance associated to our point estimate. Thus, the prediction interval will always be wider
than the confidence interval for the mean response. Finally, also note that the interval estimates
depend on both the experimental design and on the point on the controllable factor space at
which the estimate is desired.
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A.1.4 Analysis of Residuals and Influence Diagnostics
We use the residuals ei = yi − ŷi to determine if the assumptions made on the errors εi hold

true. The expected value of a residual is zero, since E[e] = E[(I − H)ε] = 0 (here one has
to remind the classical statistics concept that a statistic such as e is a quantity based on random
data, and therefore is a random variable itself prior to observing the data). The variance of the
residuals is

Var(e) = Var((I − H)Y ) = (I − H)Var(Y )(I − H)′ = σ2(I − H)

because (I − H) is idempotent. Thus, the variance of the ith residual is not a constant:

Var(ei) = σ2(1 − hii)

where hii is the ith diagonal element of matrix H . Compare this with the assumption of constant
variance on ε. The variance of the residuals depends on the experimental design. Similarly,

Cov(ei, ej) = −σ2hij ,

compared to no correlation between the εi’s. The relation between residuals and errors is:

e = (I − H)Y = (I − H)(Xβ + ε) = (I − H)ε

thus we can see that each residual is a function of all errors εj .
All of this implies that the ordinary residuals have different variances and are correlated, even

when the assumptions on the errors (constant variance, no correlation) are true. Because of this,
is it customary to transform the residuals to make their variance constant defining:

ri =
ei

s
√

1 − hii

, i = 1, . . . , n

which has a constant variance of one. This are sometimes called “standardized” or “studentized”
residuals, depending on the author. Their distribution is close to a Student t with n − p degrees
of freedom, but is not exactly t distributed. A problem with it is that if observation i is an outlier,
s will overestimate σ. A solution is to use instead the “R-student” residuals (called studentized
residuals or studentized deleted residuals, depending on different authors):

ti =
ei

s(i)

√
1 − hii

, i = 1, . . . , n

where

s(i) =

√
(n − p)s2 − e2

i /(1 − hii)

n − p − 1
, i = 1, . . . , n

is the standard deviation estimated from the data set after deleting the ith data point. ti will differ
from ri if observation i is influential. The R-student statistics are distributed as a Student t with
n − p − 1 degrees of freedom2. For n larger than p, a good rule of thumb to determine if an
observation is an outlier or not is that |ti| > 2.

2Here we point out that the ti’s (and the ri’s) may still be correlated.
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Not all outliers are influential. Influence depends also on leverage. To assess the leverage of
point i on ŷ, compute hii = x′

i(X
′X)−1xi, the ith element on the diagonal of the H matrix.

The hii values depend on the Euclidean distance from the centroid of all the design points to
point xi and on how dense the points are in the region where point i lies. The smallest convex
set containing all the design points is called the independent variable hull (IVH, see [32]). For
all x in the IVH (x need not be a design point),

x′(X ′X)−1x ≤ max
i

hii.

This follows because the left hand of the above equation are ellipsoids, and the ellipsoid passing
through the design point associated to max hii must contain all the IVH. This also implies, in
view of (A.2), that the point with the largest variance of a prediction must lie on the boundary of
the IVH. This point needs not be the point farthest from the centroid; as said before, the density
of points also matters. In general, the design point with largest hii value will be on the boundary
of the IVH in a region where the density of design points is relatively low. Predicting at a non-
design point such that x′(X ′X)−1x > max hii will imply an extrapolation outside the region
where the DOE was conducted on the controllable factor space.

The quantities hii are usually referred to as the “leverage” of a point. A design point with
large leverage will be located generally far from the area where most other design points are
located. Such point will therefore have the potential to “lever” the regression equation, pulling
it towards its y-value, if included in the data set (note that other definitions of influence exist).
An observation is influential if the parameter estimates change depending on whether or not the
observation is included in the data set. In general, observations associated with points with large
hii (high leverage) and a large R-student residual (ti) will be influential. A rule of thumb found
in regression books to determine if leverage is large is to compare all the hii values against its
average value, h. It can be shown that h = p/n. The rule of thumb calls point i a point of high
leverage if hii > 2h = 2p/n.

A useful statistic to determine influence is Cook’s “distance”, defined by:

Di =
(b − b(i))

′(X ′X)(b − b(i))

p s2
, i = 1, 2, . . . , n

where b(i) is a vector of OLS estimates obtained after deleting observation i. Di is a standardized
measure of the distance between the b and b(i) vectors, and gives a measure of the influence of
observation i. An easier and more revealing computing formula is

Di =

(
r2

i

p

)(
hii

1 − hii

)

which indicates that Di tends to be large when ri is large and when the distance to the centroid of
point i, measured by hii/(1− hii), is also large. The Di statistics are distributed as an F with p

and n− p degrees of freedom. A rule of thumb useful when n � p is that if point i has Di > 1,
then it should be considered an influential point. Influential points need to be investigated, and a
non-statistical decision needs to be made (perhaps together with the engineers familiar with the
process) as to whether one should include it in the analysis or not.
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A.1.5 Diagnostic Plots
Besides computing residuals and determining influential observations, it is also customary in

practice to plot some simple graphs that can be used to check the OLS assumptions. The most
important such diagnostic plots are:

Normal probability plot (NPP) of the residuals. Here we plot the ei’s to assess normality.
If n − p is large, we could plot the ri’s or the ti’s. Normality is needed to make statistical
inferences like t and F tests of significance and to build interval estimates. It is not necessary
for computing the OLS. However, the OLS are non-robust with respect to outliers, i.e., one
largely influential observation will “break them down”. Assessing normality from little data
(as in many small DOE’s) is very difficult, because the NPP itself has sampling error. It is
possible to plot normally distributed data by simulation and get very non-normally-looking
NPP’s. If data is clearly non-normal, robust estimation techniques should be used instead of
OLS. Bootstrapping techniques can also be used for non-normal inference [53].

Residual vs. fitted values. This plot is used to check that the variance of the errors is
constant. We plot ti vs. ŷi, expecting to see no relation since e (and t) is orthogonal to Ŷ .
Data transformations are usually employed to deal with non-homogeneous variance.

ei (or ti) vs. i. This is used to determine if errors are correlated. If they are, a time series
technique can be applied to model them, capturing the residual correlation. In some cases,
only pairs of certain residuals are correlated, and this may result in influential observations,
since deleting one point i could make some other residual ej to increase or decrease.

Residuals vs. factors. Here one plots the ei (or ti) vs. xj , the values of factor j, to see if
there is some higher order term (e.g., x2, say) that should have been included in the model.
This can also be done with respect to variables not in the model.

A.2 Testing Hypothesis on the OLS
A.2.1 Significance of Regression

The most basic test in regression, and perhaps the first thing to test, is

H0 : β1 = β2 = · · · = βk = 0

H1 : at least one βj �= 0

To do this test, we perform an Analysis of Variance (ANOVA), which consists in partitioning the
total sum of squares as follows:

SStotal = SSregression + SSerror

where the sum of squared “errors” (in reality, the residuals), is

SSerror = (Y − Xβ̂)′(Y − Xβ̂)

and since Xβ̂ = HY ,

SSerror = Y ′Y − Y ′HY = Y ′Y − Y ′Xβ̂.
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This formula measures deviations from the origin. It is common practice to measure deviations
from the average response, namely, yi − Y and assume that β0 �= 0, i.e., assume there is a
non-zero intercept. The corrected sum of squares are then

SStotal = (Y − Y 1)′(Y − Y 1) = Y ′Y − nY
2

SSregression = (Ŷ − Y 1)′(Ŷ − Y 1)′ = Y ′Xβ̂ − nY
2

SSerror = Y ′Y − Y ′Xβ̂

The test statistic is

F0 =
SSreg/(p − 1)

SSerror/(n − p)

which follows a Fp−1,n−p distribution under H0. If H0 is rejected, the variation modelled is
significantly greater than the unexplained variation.

An important statistic related to this test is

R2 =
SSregression

SStotal

which measures the proportion of total variation in the data explained by the model. Clearly,
0 ≤ R2 ≤ 1. This is a useful statistic to measure goodness of fit. However, R2 can be
artificially increased by either adding regressors (increasing p) or spreading the levels further
apart. The effect of each of this is to reduce the elements in (X ′X)−1, making SSerror → 0 so
SSregression → SStotal and thus R2 → 1. Thus, comparing models with different number of
parameters using the R2 statistic is not recommended, as it will favor larger models. Instead, to
compare models with different number of parameters it is better to use the adjusted R2 statistic:

R2
adjusted = 1 − (1 − R2)

(
n − 1

n − p

)

which does not necessarily increases as p increases since it takes into account the degrees of
freedom lost. Using R2

adjusted to compare different models usually results in same conclusions
as when comparing them based on the MSerror , which also considers the degrees of freedom.

Another useful statistics for model fit comparisons is the Predicted REsiduals Sum of Squares
(PRESS) defined as

PRESS =

n∑
i=1

(yi − ŷ[i])
2 =

n∑
i=1

e2
[i]

where ŷ[i] is the prediction given by a model fitted to all data except the ith observation yi

obtained at xi. Thus, this statistic is based on the idea of “leaving-one-out” (also called “jack-
nifing” technique). It is not necessary to refit the model to get ŷ[i], since it turns out that

e[i] =
ei

1 − hii

so PRESS is very easy to compute. A large value of PRESS indicates difficulties of the model
for prediction (of the data observed, in this case). If PRESS is much larger than the usual sum
of squared residuals, there may be outliers.
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A.2.2 Tests on Individual and Subgroups of Parameters
Rejecting the null hypothesis in the test of significance of regression implies there are some

non-negligible parameters, but it does not tell us which ones they are. A procedure for testing
for the significance of any group of parameters is now described.

For example, suppose we want to see which of the two following models fits better:

y = β0 + β1x1 + β2x2 + ε (A.3)

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε (A.4)

We can set the test:

H0 : β11 = β22 = β12 = 0 vs. at least one βij �= 0.

For performing these tests, we use the extra sum of squares principle (ESS). We should:

1 fit the most complicated model first (this is the full or complete model);

2 fit the simpler (restricted or reduced) model

The ESS principle indicates that

SSregression,full ≥ SSregression,reduced

where the difference SSreg,full − SSreg,reduced is due to the additional (extra) parameters not
in the reduced model. Intuitively, if this difference is large, then we should reject the null
hypothesis (i.e., we conclude that the extra parameters are significant).

Let

β =

(
β1

β2

)

where β1 has p − r rows and β2 has r rows (β1 always contains β0). The hypotheses are

H0 : β2 = 0 vs. H1 : β2 �= 0.

For the complete model, β̂ = (X ′X)−1X ′Y and

SSregression,full ≡ SSreg(β) = Y ′Xβ̂ − nY
2

which has p − 1 degrees of freedom (here, we use the notation SSreg(β) to emphasize the
dependence on the full model), and

SSerror(β) = Y ′Y − Y ′Xβ̂

which has n − p degrees of freedom.
The reduced model is

Y = X1β1 + ε

where X1 is formed from the columns of X corresponding to the parameters in β1. The OLS
of β1 is obtained in the usual form: β̂1 = (X ′

1X1)
−1X ′

1Y and

SS
reg(β1)

= Y ′X1β̂1 − nY
2
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which has p − r − 1 degrees of freedom. The regression sum of squares due to β2 given that
β1 is already in the model is:

SSreg(β2|β1) = SSreg(β) − SSreg(β1)

which has (p − 1) − (p − r − 1) = r degrees of freedom. This is the ESS, which measures the
increase in SS due to β2. If H0 is true then

F0 =
SSreg(β2|β1)/r

SSerror(β)/(n − p)

will be small. This statistic is distributed as a Fr,n−p if H0 is true.
If r = 1, we test for the individual significance of a single parameter. The corresponding

tests are called “partial F tests”. Since F1,n−p ≡ (tn−p)
2, the tests are equivalent to t-tests on

each parameter:

t0 =
β̂j

ŝtd.(β̂j)

where the standard error of each estimate is estimated by the square root of the diagonal elements
of the (X ′X)−1 matrix times s. It is important to note that these tests are for the significance
of parameter βj given that all other parameters are present in the model.

In RSM, we can use the ESS to test for curvature3. For example, suppose we wish to compare
models (A.3) and (A.4). The ESS is given by

SSreg(β12, β11, β22|β1, β2, β0) = SSreg(β1, β2, β12, β11, β22|β0) − SSreg(β1, β2|β0)

from which we can test H0.
The test for significance and the tests for subsets of parameters are particular cases of the

general linear hypothesis (GLH):

H0 : Cβp = w vs. H1 : Cβp �= w

where C is a r×p matrix of rank r and w is a r×1 vector of constants. For example, if C = I

and w = 0, we get the significance of regression test. The test statistics in the GLH is

F0 =
(Cβ̂p − w)′(C(X ′X)−1C ′)−1(Cβ̂ − w)

SSerror/(n − p)

which follows a Fr,n−p distribution under H0.

A.2.3 Test for Lack of Fit
A fitted model may exhibit “lack of fit” (LOF) even if it is significant according to the

significance of regression test and has a high R2 statistic. The reasons for lack of fit are mainly
two:

3This is not the single degree of freedom test of curvature shown later on.
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1 Factors were omitted but affect the response;

2 Higher order terms of factors already in the model were omitted but affect the response

The null hypothesis we consider is:

H0 : there is no lack of fit.

To test for LOF, an experimental design must satisfy the following requirements:

the number of distinct experimental points, m, should be such that m > p, i.e., we should
have a “non-saturated design”;

the design must have at least 2 replicates at one or more experimental point.

Let ni be the number of replicates at point i. The second requirement is then ni > 2 for some i.
We have that

n =

m∑
i=1

ni.

In this case, the ANOVA will proceed to partition the SSerror:

SStotal = SSreg + SSerror = SSreg + SSPure Error + SSLOF .

Thus, the error sum of squares is partitioned as follows:

SSerror = SSPE + SSLOF∑m

i=1

∑ni

j=1
(yij − ŷi)

2 =
∑m

i=1

∑ni

j=1
(yij − yi)

2 +
∑m

i=1
ni(yi − ŷi)

2

n − p = n − m + m − p

where ȳi =
∑ni

j=1
yij/ni and the last row above shows the degrees of freedom. The SSerror

measures variation in the residuals; the pure error sum of squares measures variation of the data
around their averages. We note that this term does not involve any parameter estimate, thus it
is model independent. As for the LOF term, the idea is that if there is no LOF, the predictions
should be close to the average responses at each point, and therefore SSLOF will be small. This
provides a test on H0, with test statistic:

F0 =
SSLOF /(m − p)

SSPE/(n − m)

which is distributed as a Fm−p,n−m if H0 is true. Notice that if a model fails the LOF test this
implies “something is missing”, but the test does not tell us what that is.

A.2.4 Single Degree of Freedom Test for Curvature
Depending on the DOE and the model to fit, the LOF sum of squares can be further parti-

tioned. A practical case is when we use a 2k factorial with center points to fit a 1st order model.
Then

m − p = 2k + 1 − (k + 1).
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From the binomial theorem, we have that 2k = 1 +
∑k

i=1

(
k

i

)
, thus the degrees of freedom

for LOF are

m − p = 2k + 1 − (k + 1) = 1 +

k∑
i=1

(
k

i

)
+ 1 − k − 1

or

m − p = 1 +

k∑
i=2

(
k

i

)
.

The “1” is a degree of freedom we can use to test for LOF due to “pure quadratic” terms that
should be in the model (i.e., a test of curvature); the rest of the terms are the m − p − 1 degrees
of freedom for all the possible interactions (of any order ≥ 2). Thus, we can split the LOF sum
of squares as LOF due to each of these components.

Example. Test for curvature. Suppose k = 2 and we use a 22 factorial to fit a first order
model. Thus, m = 22 + 1 = 5, p = 3, and m − p = 2 which can be split in one degree of
freedom for curvature and one degree of freedom for the x1x2 (or the “AB”) interaction. �

The partition of sums of squares and degrees of freedom in general is then

SSerror = SSPE + SSLOF = SSPE + SSint. + SSCurv.

(n − p) = (n − m) + (m − p) = (n − m) + (m − p − 1) + (1)

where the second row above indicates the degrees of freedom. The single degree of freedom
curvature test is a “quick and dirty” test, which can be applied whenever we run a 2-level factorial
(full or a fraction) with center points. The null hypothesis is quite peculiar:

H0 :

k∑
i=1

βjj = 0

tested versus a two sided alternative. The test statistic is based on the single degree of freedom
curvature sum of squares:

SScurvature =
nfnc(yf − yc)

2

nf + nc

where nf and yf are the number of factorial (corner) points on the design and the average
response at those points, and nc and yc are the number of replicates at the center point (“number
of center points”) and the corresponding average response at the center. If the factorial portion
of the experiment is not replicated, then n − m = nc + (m − 1) − m = nc − 1, and the test
statistic is

F0 =
SScurv./(1)

SSPE/(nc − 1)

which follows an F1,nc−1 distribution if H0 is true. We note how this test will not have much
ability to detect curvature in saddle functions, where some β′

jjs may be positive and some may
be negative, thus the sum may be close to zero.



Appendix B
Analysis of Variance

Analysis of Variance, or ANOVA, is a technique developed mainly by R. Fisher in the 1920s
to study statistical problems in genetics and improvement of crops. It corresponds to a gen-
eralization of the basic two-sample t-test to test for the equality of the means of two different
populations. The generalization allows to test for the equality of means from 2 or more popula-
tions. In this appendix we outline the main ideas of ANOVA at an introductory level, sufficient
to support the book sections where these ideas are utilized.

B.1 One Factor ANOVA, Fixed Effects
Suppose an experimenter is interested in comparing a different formulations of a new chem-

ical product. The production of this chemical is in batches, and the response of interest is some
property of the substance being produced, which can be measured in a metrology laboratory
after a batch is prepared. The experiment she conducts consists of replicating each of the for-
mulations by producing n batches of each formulation and taking a measurement of each batch.
However, the way the experiment is conducted is in a completely randomized way. By this we
mean that the order in which the an tests were conducted is at random. It also implies that the
raw materials used in each trial are selected at random, not following any given sequence1. The
experimental data can be arranged as in Table B.1. As shown on the table, let yij denote the ob-
served response measured from the the jth replicate of the ith formulation. Note how the different
formulations in our example correspond to different “levels” of the factor “formulation”, so we
are talking, in general, of a one factor experiment where the factor is varied across a different
levels or treatments, a terminology that has its origin in agriculture and medical applications of
ANOVA.

1We discuss randomization in Chapter 3.

413
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Table B.1. Typical data collected from a one-way (one factor) experiment

Level of the factor (treatment) Replication number:
1 y11 y12 . . . y1n

2 y21 y22 . . . y2n

...
...

...
...

...
a ya1 ya2 . . . yan

A model useful to model the response of such experiment is the effects model

yij = µ + τi + εij ,

{
i = 1, . . . , a

j = 1, . . . , n
(B.1)

where the εij ∼ N(0, σ2) are uncorrelated, and since they are assumed also normal, they are
actually assumed independent2. What this model expresses is that the effect of varying the
formulation can be represented by a constant (τi) that depends on the formulation. The other
constant on the right hand side (µ) is the overall mean response, and the εij are random errors
we cannot observe directly and that cannot be attributed to anything else in concrete but to
experimental error. This is a fixed effects model because the effect of the factor “formulation” is
modeled as a constant. An alternative formulation is to let τi be a random variable which would
result in a different model, called a random effects model. For the time being, we continue our
discussion of the fixed effects model.

Once the effects model is postulated, the hypothesis of interest for the experimenter in this
setting can only be whether the formulations (i.e., the different factor levels) make a difference
or not (i.e., whether they have a significant effect or not). The hypothesis is then:

Ho : τ1 = τ2 = . . . = τa = 0 (B.2)

or, if we define µi = µ + τi to be the mean response when the experiment was run at the ith
level,

Ho : µ1 = µ2 = . . . = µa = µ. (B.3)

Written as (B.2), the hypothesis says that there are no differences from formulation to formu-
lation, i.e., the effect of all treatments is the same and equal to zero. This is reflected if the
hypothesis is written as in (B.3): if there are no treatment effects (τi = 0 for all i) then this
implies that the mean response will be the same regardless of what treatment (formulation) we
choose.

A common interpretation of the treatment effects τi is that they are deviations from the overall
mean. That is, if

µ =

∑a

i=1
µi

a
(B.4)

2Note that the variance is assumed to be constant for all observations regardless of the treatment and equal
to σ2.
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then we must have that
∑a

i=1
τi = 0, and therefore, each τi models how much each treatment

(formulation) changes on average the response from the overall mean. Note how (B.4) imposes
a constraint in the values of the treatment effects; if some are negative this equation implies that
some other effects will be positive. As will be noted shortly, this is not the only interpretation
possible, and different “constraints” on the parameters can be introduced in the model to allow
their unique estimation, which will result in different interpretations.

To conduct the analysis of variance, most authors introduce the following ink-saving “dot
notation”:

yi• =

n∑
j=1

yij , yi• =
yi•
n

, i = 1, 2, . . . , a

and

y•• =

a∑
i=1

n∑
j=1

yij , y•• =
y••
N

where N = an denotes the total number of experiments. Thus, a dot in the place of a sub-
script replaces the summation operator over that subscript. When used with an overline, the dot
subscript replaces the operation of averaging over that subscript.

With this notation, the Analysis of Variance consists in partitioning3 the total variability in
the observed experimental data with the goal of trying to attribute the ways in which the data can
vary due to different causes or sources. In the simple one-way experiment we have discussed,
the potential sources of variability in the data are either because we are changing the levels of the
factor or because of some other unknown reason which we will call “error”. The total variability
in the data is measured by the total sum of squares4:

SStotal =

a∑
i=1

n∑
j=1

(yij − y••)
2.

We want to partition this sum in:

SStotal = SSfactor + SSerror.

To do this, add and subtract yi• inside the square of SStotal, rearrange, and compute all products
inside the square:

SStotal =

a∑
i=1

n∑
j=1

((yi• − y••) + (yij − yi•))
2 =

= n

a∑
i=1

(yi• − y••)
2 +

a∑
i=1

n∑
j=1

(yij − yi•)
2

= SSfactor + SSerror

3“To partition” is precisely the meaning of the word “analysis”.
4This is called the corrected sum of squares because it measures variability of the observed data around the
average of the data, so we are “correcting for the mean”.
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where the final expression follows because the crossproduct is zero. This analysis gives a strategy
for testing the null hypothesis (B.2) and determines whether or not there is a significant effect
due to the factor. We should compare the variability we can attribute to changing the factor
levels with the experimental error, and if the former is relatively large with respect to the latter,
we should conclude the factor has a significant effect (or we say it “is significant”). In such case
one would reject the null hypothesis, which indicates the factor has no effect. In order to do the
corresponding comparison, the sum of squares being compared, which are essentially measures
of variability, need to be on the same scale, because otherwise we would be comparing sums
with very different number of terms. The degrees of freedom of each sum serve to scale each
sum.

The degrees of freedom v of a sum of squares equals the constant such that E[SS/v] = σ2,
that is, it is the scaling constant that would make the sum of squares an unbiased estimator of the
experimental error variance. In practice, the degrees of freedom are the number of quantities that
are free to vary in a set of numbers for which we know one or more constraints. That is, suppose
we have the set S = {y1 = 5, y2 = 8, y3} with y3 unknown but we know that y = 5. Can y3

be any number we like? The answer is no because the average constrains the third element of
S to be equal to 2, in such a way that the 3 numbers average 5. Thus, if the average is given,
we say that set S has 2 degrees of freedom. If the average is not given we would say that S has
3 degrees of freedom.

The number of degrees of freedom is usually equal to the number of observations in a set
minus the number of parameters that have been estimated (in the example above, one parameter
was estimated, the mean). Applied to sum of squares, the number of degrees of freedom can
usually be obtained by inspection: it is the number of “data elements” in the sum that can vary
freely if the other quantities (usually averages) in the sum are given. Thus, we see that SStotal

has N − 1 degrees of freedom because the last of the yij’s is constrained by the overall mean;
SSfactor has a − 1 degrees of freedom, because the last one of the “data elements” in the sum,
the row averages yi•, is constrained by the overall average y•• (i.e., the average of the averages
is fixed). Finally, the sum of squares error has an − a = a(n − 1) degrees of freedom because
for each row average we lose one degree of freedom in the yij’s (we have an “data elements”
and a constraints). Note that

N − 1 = an − 1 = (a − 1) + (an − a)

so the degrees of freedom of the sums of squares add up as well.
The information computed in the analysis of variance is usually summarized in books and by

software according to an “ANOVA table” like that shown on Table B.2.
It is quite pedagogical to consider the simplest case when only a = 2 treatments are of

interest (i.e., two formulations; we will use the generic term “treatments” from now on). If
a = 2, the ANOVA table and the corresponding F test reduce to the familiar 2 sample t-test
where we test Ho : µ1 = µ2 against a two sided alternative. Recall that in such case the test
statistic is

t0 =
y1• − y2•

Sp

√
1

n1
+ 1

n2
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Table B.2. Analysis of Variance Table for a Single Factor Experiment, Fixed Effects Model

Source of variation Sum of Mean
Squares d.o.f. Squares F0

Factor (between treatments) SSfactor a − 1 MSfactor F0 =
MSfactor

MSerror

Error (within treatments) SSerror a(n − 1) MSerror

Total SStotal N − 1

where S2
p is the “pooled” variance estimator that results from combining the sample variance

estimators from each population, S2
1 and S2

2 , using the corresponding degrees of freedom in
each sample:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

If the null hypothesis is true, t0 ∼ tn1+n2−2. An ANOVA test for a = 2 should reduce to this
case. Let us see how this is true.

From our earlier discussion, we have that yij ∼ N(µi = µ + τi, σ
2). Let us assume for

simplicity that n1 = n2 = n.
Suppose first Ho is false; then the τi’s are not all zero, and the treatment means µi are not all

equal to each other. Consider a sample of n observations taken at random from the (hypothetical)
population corresponding to all observed responses that can possibly be obtained from when
treatment one is applied to the process. This is actually what we get when we replicate the
experiment n times and randomize the order of the runs and the assignment of treatments to
the experimental units utilized. Since a = 2, there are only two treatment effects, τ1 and τ2.
Following the convention given by the constraint (B.4), we must then have that τ1 = −τ2.

For the case a = 2 when µ1 �= µ2, we see that we have “separation” between the two
populations, i.e., the first sample, obtained from the first formulation, is centered around y1• and
this will differ, on average, from where the second sample, obtained from the second treatment,
is centered, namely, at y2•. If we look at the SSerror term in this case for i = 1 (say), we see that
the squared deviations are distances from each data point yij from the corresponding average of
that treatment, yi•. Confining ourselves only to this first treatment (i = 1), we have that if we
divide the sum of squares by n − 1, we get the sample variance of the first sample from it (what
we use in the 2-sample t test), since

S2
1 =

∑n

j=1
(y1j − y1•)

2

n − 1
.

Similarly, looking at the SSerror term for the second treatment (i = 2), we get, after dividing by
n − 1,

S2
2 =

∑n

j=1
(y2j − y2•)

2

n − 1
.
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The sum
∑2

i=1
in SSerror actually combines or “pools” these two sample variances, giving, in

effect, the estimator used in the t-test:

S2
p =

(n − 1)S2
1 + (n − 1)S2

2

(n − 1) + (n − 1)
= MSerror = σ̂2.

This estimator of σ2, the experimental error variance, is an unbiased estimator no matter whether
Ho is true or not.

Suppose now that Ho is true (and a = 2). In this case, µ1 = µ2 = µ and all treatments
means yi• will appear to be generated from a distribution with mean µ and variance σ2/n,
that is,

yi• ∼ N(µ, σ2/n).

Looking at the SSfactor term in the ANOVA decomposition of the total sum of squares, we see
that we can estimate σ2

y = σ2/n from it by dividing by a − 1:
∑a

i=1
(yi• − y••)

2

a − 1
= σ̂2

y = σ̂2/n.

Multiplying by n we get

n
∑a

i=1
(yi• − y••)

2

a − 1
=

SSfactor

a − 1
= σ̂2.

Thus, if Ho is true, we get a second unbiased estimator of σ2, this time from SSfactor . However,
if Ho is false, then the treatment means are “separated” and the distances

y1• − y•• and y2• − y••

which are squared in SSfactor , will overestimate σ2.
Therefore, the main idea of ANOVA is that:

when Ho is true, both MSfactor and MSerror are unbiased estimators of σ2;

when Ho is false, MSerror is again an unbiased estimator of σ2 but MSfactor will be an
overestimate of σ2 on average

The ANOVA concludes by testing for the equality of these variance estimators by means of the
F statistic:

F0 =
MSfactor

MSerror

which is distributed as an Fa−1, N−a distribution provided Ho is true. This test has a right tail
rejection area, since, if Ho is false, the numerator is expected to be larger than the numerator.

In the case when a = 2, if Ho is true we have that F0 ∼ F1, 2n−2 and since t20 ∼ F1, 2n−2

(from a well-known relation between the t and the F distributions) we see that the two sample t
test is indeed a particular case of the one way ANOVA when we only have two treatments.

B.1.1 A More Formal Justification of ANOVA
The previous intuitive argument requires we explain two aspects of ANOVA in more detail:

1 Why is an F statistic used?

2 Why is E[MSfactor] > σ2 if Ho is false and equal to σ2 if Ho is true?
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Let us answer the first question. If H0 is true, it can be seen, from basic properties of the χ2

distribution, that

SSfactor

σ2
∼ χ2

a−1.

Similarly, but independent of whether Ho is true or false,

SSerror

σ2
∼ χ2

N−a.

It is well known that ratios of independent χ2 random variables follow an F distribution. Do
these statistics follow independent χ2 distributions? The answer is positive and is an application
of a theorem by Cochran, a form which we state without proof next. It makes use of the fact that
sum of independent squared standard normals follows a χ2 distribution.

Theorem B.1 (Cochran’s theorem). Let Zi ∼ N(0, 1) i.i.d. for i = 1, 2, . . . , v so that
v∑

i=1

Z2
i ∼ χ2

v.

If
v∑

i=1

Z2
i = Q1 + Q2 + · · · + Qs (s ≤ v)

then each of the Qi ∈ {Q1, Q2, . . . , Qs} are independent χ2
vi

random variables if and only if

s∑
i=1

vi = v.

Thus, if we have scaled sums of squares of normally distributed data that add up with correspond-
ing degrees of freedom that adds up too, then the scaled sum of squares follow independent chi
squared distributions. Applied to a one-factor ANOVA, we have that

Q1 =
SSfactor

σ2
, v1 = a − 1

and
Q2 =

SSerror

σ2
, v2 = N − a.

Since v = N − 1 = v1 + v2 are the degrees of freedom of

SStotal

σ2
=

N∑
i=1

Z2
i = Q1 + Q2

then Q1 =
SSfactor

σ2 and Q2 = SSerror
σ2 are independent chi-squares.

Therefore,

MSfactor

MSerror
=

SSfactor

σ2 /(a − 1)

SSerror
σ2 /(N − a)

∼ χ2
a−1/(a − 1)

χ2
N−a/(N − a)

= Fa−1,N−a.

Thus, we would reject H0 if F0 > Fα,a−1,N−a. In the case when a = 2, since the square of a tv

random variable follows an F1,v distribution, we see that the ANOVA test includes the 2-sample
t test as a particular case.
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B.1.2 Expected Sums of Squares, Fixed Effects One Way
ANOVA

In this section we answer formally to the second question posed in the previous section,
namely: Why is E[MSfactor] > σ2 if Ho is false and equal to σ2 if Ho is true? To answer this
we need to find E[MSfactor] and E[MSerror].

Recall that
SStotal = SSFactor + SSError

or
SStotal =

∑∑
(yij − y••)

2 = n
∑

(yi• − y••)
2 +

∑∑
(yij − yi•)

2

The total sum of squares is:

SStotal =
∑∑

y2
ij − 2y••

∑∑
yij +

1

an
(
∑∑

yij)
2 =

∑∑
y2

ij −
y2
••

an

The treatment SS is:

SSfactor = n
∑

y2
i• − 2ny••

∑
yi• +

1

an
(
∑∑

yij)
2 =

1

n

∑
y2

i• − y2
••

an

Therefore,
SSerror = SStotal − SSfactor =

∑∑
y2

ij −
1

n

∑
y2

i•

We want to find E(MSfactor) = E
(

SSfactor

a−1

)
and E(MSerror) = E

(
SSerror

N−a

)
.

The model is yij = µ + τi + εij for i = 1, . . . , a; j = 1, 2, . . . , n, and N = an. Some useful
facts are that:

E(εij) = E(εi•) = E(ε••) = 0

E(ε2
ij) = σ2 E(ε2

i•) = nσ2 E(ε2
••) = anσ2

Then

E(SSfactor) = E
(

1

n

∑
y2

i•

)
︸ ︷︷ ︸

1

−E

(
y2
••

an

)

︸ ︷︷ ︸
2

Now,

1 =
1

n

a∑
i=1

E(nµ + nτi + εi•)
2 =

1

n

a∑
i=1

[(nµ)2 + n2τ2
i + nσ2] = anµ2 + n

∑
τ2

i + aσ2

Also,

2 =
1

an
E[(anµ + n

a∑
i=1

τi + ε••)
2] = anµ2 + σ2

Therefore,
E(SSfactor) = 1 − 2 = σ2(a − 1) + n

∑
τ2

i

and

E
(SSfactor

a − 1

)
= σ2 +

n
∑a

i=1
τ2

i

a − 1
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which is unbiased only if Ho true.
Similarly,

E[SSerror] = E(
∑∑

y2
ij)︸ ︷︷ ︸

3

−E
(

1

n

∑
y2

i•

)
︸ ︷︷ ︸

1

Here we have that

3 = E[
∑∑

(µ + τi + εij)
2] = anµ2 + n

∑
τ2

i + anσ2

so
E[SSerror] = 3 − 1 = σ2(N − a)

and
E[MSerror] = E

(SSerror

N − a

)
= σ2

which is always unbiased regardless of Ho being true or not.

B.1.3 Parameter Estimation in ANOVA Fixed Effects
Models

To estimate the a + 1 parameters in the one-way fixed effects model

yij = µ + τi + εij

we can try applying the least squares criterion. The sum of squared errors is

L =

a∑
i=1

n∑
j=1

ε2
ij =

a∑
i=1

n∑
j=1

(yij − µ − τi)
2.

From ∂L
∂µ

= 0 and ∂L
∂τi

= 0 (i = 1, 2, . . . , a) we get the system of “normal” equations (see
Appendix A):

Nµ +nτ1 + . . . +nτa = y••

nµ +nτ1 = y1•

nµ +nτ2 = y2•
...

...
...

...
...

...
nµ +nτa = ya•

This would appear as a system of a +1 equations with a + 1 unknown parameters, however, the
last a equations add up to the first one, so we really have a linearly independent equations. In
stark contrast with the least squares estimation of regressions models where the normal equations
are full rank, the normal equations in effects models are rank deficient or “less than full rank”.
As a consequence, there is an infinite number of solutions to this system of equations.

One way around this problem is to add an independent equation to the system above5. One
usual equation that is added is

a∑
i=1

τi = 0

5As will be mentioned later,a better approach preferred by most authors (see [140]) is to use a Moore-Penrose
generalized inverse which gives a unique solution.
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(which, as mentioned before, implies treatment effects are deviations from the overall mean µ).
With this equation, the solution obtained is

µ̂ = y••, τ̂i = yi• − y••, i = 1, 2, . . . , a.

A natural question to ask is if there is any notion of uniqueness in this solution method, since the
equation that was added is arbitrary. The answer is that no matter which equations are added to
the system of normal equations, there are certain functions of the parameters that can always be
estimated uniquely [140], the so-called estimable functions, such as: τi − τj , and µi = µ + τi.
In particular, predictions (point estimates) of the response, ŷij = µi are also uniquely estimated.

The effects model and the corresponding normal equations can be written using matrix no-
tation. Suppose, for illustration, that a = 2 and n = 3. Then the effects model (B.1) can be
written in the form of a linear regression model (see Appendix A) as follows:

y = Xβ + ε

or, if a = 2 and n = 3,
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y11

y12

y13

y21

y22

y23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

µ

τ1

τ2

⎞
⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε12

ε13

ε21

ε22

ε23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

An alternative way of writing the model is

y = (1a ⊗ 1n)µ + (Ia ⊗ 1n)τ + ε (B.5)

where 1k is a k × 1 vector of ones, Ik is a k × k identity matrix, and A ⊗B denotes the direct
or Kronecker product of two matrices. If A is r × c and B is s × d, the A ⊗ B is rs × cd and
is obtained by taking each entry in the A matrix and multiplying it by the complete matrix B,
i.e., A ⊗ B = [aijB] (see Appendix C).

The sum of squared errors is

L = ε′ε = (y − Xβ)′(y − Xβ)

and from ∂L/∂β = 0 we get the normal equations

X ′Xβ = X ′y.

The X ′X matrix is symmetric and has the following structure for a general balanced one way
ANOVA effects model: ⎛

⎜⎜⎜⎝

N n n . . . n n

n 0 n 0 . . . 0
...

...
...

...
...

...
n 0 0 . . . 0 n

⎞
⎟⎟⎟⎠ .
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Thus, the solution revolves around finding an inverse for X ′X . Since X has less than full rank
(the last a columns add up to the first one in the example above) this results in an X ′X matrix
that is rank deficient. We could add a constraint as mentioned earlier, but a better approach is to
use a generalized inverse [140] of X ′X . A generalized inverse6 of a matrix A is a matrix G

such that AGA = A. The solution7 found would be given by

β̂ = GX ′y

where G is a generalized inverse of X ′X . Methods for finding a generalized inverse are des-
cribed in [140]; see Appendix C for a brief review. There is no single generalized inverse for a
matrix, unless a Moore-Penrose generalized inverse is used (see Appendix C). However, there
are estimable functions that are uniquely estimated regardless of the generalized inverse used.
In particular, it can be shown that ŷ = Xβ̂ = XGX ′y is unique (i.e., the predictions are
invariant to the choice of G).

B.2 Random Effects Models
Situations occur when the levels of a factor in an experiment can be thought of as a sample

of levels taken from a population of possible levels. The quantity of interest will not be, as in
the fixed effects case, the average effect that the specific levels tried in the experiment would
have on the response, but rather the effect the population of levels would have on the variance
of the response. This is because if other levels had been sampled, we would have obtained other
effect in the response. Thus, it is more interesting to ask how much will these differences in the
response would be for all the possible levels that could be sampled. We then say the factor has
a random effect, as opposed to a fixed effect. Variance estimation of the effect is the main goal
whenever an experiment has random effects8.

Perhaps the best example of a factor having a random effect is batches of product. If some
properties of a product are being measured, and the production took place in batches, information
is collected from a random sample of batches taken from a large warehouse or simply from the
hypothetical population of all batches that can ever be produced, then “batches” can be thought
of as a random effect factor.

The data collected and the corresponding statistical model for the one-way random effects
model looks identical as in the fixed effects model (see equation (B.1)):

yij = µ + τi + εij ,

{
i = 1, . . . , a

j = 1, . . . , n

Here, however, it is traditionally assumed that

Var(τ) = σ2
τ , Cov(τi, τi′) = 0, i �= i′,

6Also called a pseudoinverse or g-inverse by some authors, and related to the Moore-Penrose inverse (the
definition given turns out to be first Penrose condition, see Appendix C and Searle’s excellent book [140]).
7Searle [140] points out that we should not call this an estimator, since it is arbitrary.
8Experiments with a mix of fixed and random effects are called mixed effects, as the Split-Plot designs
discussed in Chapter 9.
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and furthermore,

Cov(τi, εi′,j) = 0 for all i, i′, j

and since, as before, εij = σ2
ε , we have that σ2

y = σ2
τ+σ2

ε . Estimating the variance components
σ2

α and σ2
ε is the main goal in random effects models. The corresponding hypothesis being

tested is:

Ho : σ2
τ = 0

which, if true, would imply there is no random effect due to the factor. This means that for the
batch-production example, no matter which batches (levels) we chose at random, their effect on
the response will be the same, and hence, the variability of the response will not be affected.

The matrix formulation of the model has the same appearance as (B.1) or (B.5), but the
traditional assumptions are

Var(ε) = σ2
εIn

Var(τ ) = σ2
τIa

and Cov(ε, τ ) = 0n×a. With this, we note that the observations will not have all the same
variance, since from (B.5):

Var(y) = (Ia ⊗ 1a)σ2
τIa(Ia ⊗ 1n)′ + σ2

εIn.

The analysis of variance in the random effects model is based on the same partition of the
total variability as in the fixed effects case:

SStotal = SSFactor + SSError

where

SStotal =
∑∑

y2
ij −

Y 2
••
N

SSfactor =
1

n

∑
y2

i• − y2
••

an

and

SSerror = SStotal − SSfactor =
∑∑

y2
ij −

1

n

∑
y2

i•.

B.2.1 Derivation of Expected Mean Squares, One-way
Random Effects Model

We want to find E(MSfactor) = E
(

SSfactor

a−1

)
and E(MSerror) = E

(
SSerror

N−a

)
.

Recall the model is yij = µ + τi + εij for i = 1, 2, 3, . . . , a (selected at random);
j = 1, 2, . . . , n, and N = an. There are some new assumptions, compared with the fixed
effects case:

E(τi) = E(τ•) = 0

E(τ2
i ) = σ2

τ E(τ2
• ) = aσ2

τ

E(τiεij) = 0
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There are also the same assumptions for the errors terms as in fixed effects case, namely:

E(εij) = E(εi•) = E(ε•j = E(ε••) = 0

E(ε2
ij) = σ2 E(ε2

i•) = nσ2 E(ε2
••) = anσ2

We then have that

E(SSfactor) = E
(

1

n

∑
y2

i•

)
︸ ︷︷ ︸

1

−E

(
y2
••

an

)

︸ ︷︷ ︸
2

Now, let

1 =
1

n

a∑
i=1

E(nµ + nτi + εi•)
2 = anµ2 + anσ2

τ + aσ2

(compare to the fixed effects case: anµ2 + n
∑

τ2
i + aσ2). Also,

2 =
1

an
E[(anµ + n

a∑
i=1

τi + ε••)
2] = anµ2 +

n2aσ2
τ

an
+ σ2

= anµ2 + nσ2
τ + σ2

(compare to the fixed effects case: anµ2 + σ2). Therefore,

E(SSfactor) = 1 − 2 = σ2(a − 1) + σ2
τ (N − n)

(compare to σ2(a − 1) + n
∑

τ2
i ), and

E
(SSfactor

a − 1

)
= σ2 + nσ2

τ

this is unbiased only if Ho true (compare to σ2 +
n
∑a

i=1
τ2

i

a−1
for the fixed effects case).

Similarly, we have that for the sum of squares of the error term

E[SSerror] = E(
∑∑

y2
ij)︸ ︷︷ ︸

3

−E
(

1

n

∑
y2

i•

)
︸ ︷︷ ︸

1

Here we have that

3 = E[
∑∑

(µ + τi + εij)
2] = anµ2 + anσ2

τ + anσ2

(compare to anµ2 + n
∑

τ2
i + anσ2), so

E[SSerror] = 3 − 1 = σ2(N − a)

and
E[MSerror] = E

(SSerror

N − a

)
= σ2

Thus, MSerror is always unbiased, same as in the fixed effects case. The ANOVA informa-
tion is summarized in a table as in Table B.3.
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Table B.3. ANOVA table, one factor random effects model

Source of variation S.S. dof MS E(MS)

Factor n
∑a

i=1
(yi• − y••)

2 a − 1 MSfactor σ2 + nσ2
τ

(between treatments)
Error

∑a

i=1

∑n

j=1
(yij − yi•)

2 N − a MSerror σ2

(within treatments)
Total

∑a

i=1

∑n

j=1
(yij − y••)

2 N − 1

Therefore, following arguments similar than in the fixed effects case, to test Ho : σ2
τ = 0,

we compute:

F0 =
MSfactor

MSerror

Note how this is the same test statistic as in the 1-factor, fixed effects case, although the hypoth-
esis differ. However, for more than one factor, or for cases where we have a mix of random and
fixed effects, the test statistics will differ from those in the fixed effects model.

To determine which test statistic is needed to test a hypothesis when some factors are random,
we need to compute the expected mean squares, and from them determine which ratios allow us
to test the hypotheses of interest. See [141] for more information.

B.2.2 ANOVA Method of Estimating the Variance
Components

Another important objective besides testing Ho : σ2
τ = 0 is to estimate the variance com-

ponents. A simple method for doing so, proposed by Fisher himself, is known as the “ANOVA
method” of estimating the variance components. It is based on using the expected mean squares
and equating them to the observed mean squares. This gives a system of equations with all
the variance components as unknowns which is then solved. For the one-factor random effects
model we just showed that

E(SSfactor) = (a − 1)(nσ2
τ + σ2

ε)

and that
E(SSerror) = a(n − 1)σ2

ε .

After conducting an experiment, we substitute the observed sums of squares on the left hand
sides above and solve for the variance components. This yields,

σ̂2
ε =

SSerror

a(n − 1)
= MSerror

which is as we would have expected, and

σ2
τ =

(SSfactor

a − 1
− σ2

ε

)
/n =

MSfactor − MSerror

n
.
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These estimators can be shown to be unbiased, but the second estimator can be negative when-
ever MSerror > MSfactor , something that can or cannot happen in actual practice as it only
depends on the data. Because of this problem, the preferred method of estimation is REML
(Restricted Maximum Likelihood) or Bayes approaches, which avoid this situation. See [141]
for more information about these alternative estimation methods for variance components and
their properties.



Appendix C
Matrix Algebra and Optimization Results

The purpose of this appendix is to provide a summary of definitions and notation in both
linear algebra and optimization that are used in different places in the text.

C.1 Matrices
C.1.1 Basic Definitions

A matrix is a rectangular array of numbers called its elements. In this book, we confine
ourselves to the case where the elements are real numbers. Matrices are denoted by bold upper-
case letters. Its elements are denoted by a lowercase letter equal to that used for the matrix and
two subscripts, giving the row and column location of the element. Thus,

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ .

Thus A is a matrix having m rows and n columns, or a m × n matrix, where m and n are
the dimensions of the matrix. If m = n, the matrix is said to be squared, and if m = n = 1

the matrix is referred to as a scalar. Scalar variables are not denoted by bold letters. Matrices
with only one row are called row vectors and matrices with only one column are called column
vectors. Vectors will be denoted by bold lowercase letters.

The transpose of a m × n matrix is the n × m matrix A′ = C such that its elements are
cij = aji. A squared matrix is symmetric if A = A′. Note that (AB)′ = B′A′.

The sum of matrices is only defined for matrices of the same dimension. If A and B are two
m×n matrices, their sum is the m×n matrix whose elements are the sum of the corresponding
elements of A and B.

429
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The multiplication or product of two matrices, say a matrix A of dimension m × n and a
matrix B of dimension n × p equals the m × p matrix C such that its (i, j) element equals to

ci,j =

n∑
k=1

aikbkj .

Multiplication is only defined for matrices that are conformable, i.e., the number of columns in
A must equal the number of rows in B. Notice that in general, AB �= BA. Also, note that if
v is m × 1, then vv′ is conformable and gives a m × m matrix. Lastly, note that if v is n × 1

and A is n × n, then v′Av is a scalar.
Let x and y be two n × 1 vectors. The scalar or dot product of two vectors is defined as

x′y =

n∑
i=1

xiyi.

The norm of a vector x gives its length, is denoted ||x|| and equals
√

x′x. Two vectors are said
to be orthogonal if their dot product is zero, i.e., if x′y = 0 which geometrically it means the
angle between them is 90◦. The angle θ between two n-dimensional vectors x and y is given
by the expression:

cos θ =
x′y

||x||||y|| .

A set of vectors x1, x2, . . . , xk is said to be linearly independent if we cannot find scalars
α1, α2, . . . , αk, not all zero, such that

∑k

i=1
αixi = 0. Otherwise, the set of vectors is said

to be linearly dependent. The set of all vectors that are linear combinations of x1, x2, . . . , xk

is the span of these vectors, or the subspace spanned by the set of vectors. In this context, an
n-dimensional space of vectors is the set of all possible vectors with n elements. In this book
we only deal with n-dimensional Euclidean space, denoted R

n or En. A subspace S of R
n is

a subset of R
n that is closed under vector addition and scalar multiplication, i.e., if a and b are

two vectors and λ and µ are scalars, then λa + µb is in S.
The rank of a matrix is equal to the number of linearly independent columns which is also

equal to the number of linearly independent rows. A m × n matrix A is said to be full rank
if rank(A) = min(m, n). This minimum is the largest number of independent vectors in the
matrix. If rank(A) = m we say the matrix has full row rank and if rank(A) = n we say the
matrix has full column rank.

The trace of a square matrix A, denoted trace(A) or tr(A) equals to the sum of its diagonal
elements. Useful properties of traces are:

1 tr(AB) = tr(BA);

2 tr(A + B) = tr(A) + tr(B).

3 tr(x′Bx) where B is s square matrix equals to tr(Bxx′).

Let A be m × n and B be p × q. Their Kroenecker or direct product is defined as

A ⊗ B = [aijB]
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and is a mp × nq matrix. That is, to compute the direct product take each element of A and
multiply it by the whole matrix B. Interesting properties of this product are that (A ⊗ B)−1 =

A−1 ⊗ B−1 (provided the inverses exist), (A ⊗ B)′ = A′ ⊗ B′ and that the product has the
distributive property. The direct product does not have the commutative property.

Rules for differentiation.

1 Let y = b′x where b is a vector which is not a function of x. Then

∂y

∂x
= b.

2 Let y = x′x. Then
∂y

∂x
= 2x.

3 Let y = x′Bx where B is a square matrix. Then

∂y

∂x
= Bx + B′x.

C.1.2 Special Matrices
We denote by I the m×m identity matrix such that for any other m×n matrix A, IA = A.

I is a squared diagonal matrix (a matrix with non-zero elements only along the diagonal) with
diagonal elements all equal to 1. When the dimension of the identity matrix is not clear from the
context it is made explicit by a subscript, e.g., Im.

An orthogonal matrix is a matrix A such that A′A = I . In this case, all vector columns of
A are mutually orthogonal.

Let X be a n × p matrix of rank p. Let Sc be the space spanned by the columns of X .
Finally, let Y be an n×1 vector. The symmetric n×n matrix P = X(X ′X)−1X ′ is called a
projection matrix1 because when applied to any any vector Y , i.e., P Y , it projects Y from R

n

on to Sc, i.e., it expresses Y as a linear combination of the columns of X . If P is a projection
matrix, then I −P is also a projection matrix, which when applied to any vector Y projects this
vector onto the subspace orthogonal to span(X).

An interesting property of projections matrices is that they are idempotent. A matrix is
idempotent if A2 = AA = A, i.e., they are unchanged when multiplied times themselves.

C.1.3 Determinants and Matrix Inverse
The determinant of a n×n square matrix A, written either det(A) or |A|, equals the volume

of the n-dimensional (hyper) parallelepiped generated by the rows of A, provided the edges of
the parallelepiped come from the rows of A. It also equals the volume of the parallelepiped
generated by the columns of A, and the volume is the same as that generated by the rows.
Example. Suppose

A =

⎡
⎣

2 1 8

−5 6 3

7 4 3

⎤
⎦ .

1This is the “Hat” matrix used in regression analysis. See Appendix A.
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The parallelepiped generated by the three rows of this matrix is shown in Figure C.1. The volume
equals 448, and det(A) = −448, which gives this volume (the negative sign is due to the “left
handed” orientation of the edges; it implies A is not positive definite). �

It should be pointed out that two very different matrices can give the same determinant. This
is true even for sum of squares matrices. For example,

[
3 1

1 2

]
and

[
2.5 0

0 2

]

both have a determinant of 5, yet the rows of the second matrix generate a rectangle (with
orthogonal “edges”) while the first one generates a rombus.

The D-optimality criteria for experimental design (see Chapter 5) is based on maximizing the
determinant of a sum of squares matrix.
Computation of the determinant. The determinant of matrix A is given by

det(A) = ai1Ai1 + ai2Ai2 + · · · + ainAin

where the scalar
Aij = (−1)i+jdet (M ij)

X 3

X
1

X2

(7,4,3)

(-5,6,3)

(2,1,8)

Figure C.1. Volume of the parallelepiped generated by the rows of matrix A in the example
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is the cofactor that corresponds to the minor M ij which is a matrix formed by deleting row i

and column j from A.

Matrix inverse
The inverse of an n × n square matrix A is defined as a matrix A−1 such that AA−1 = I .

It is computed from

A−1 =
Acof

det(A)

where Acof is the n × n matrix of cofactors of A. This matrix may not exist; if det(A) = 0

the matrix is said to be non-invertible.

Some properties of the determinant and the inverse

1 det(I) = 1.

2 det(A) =det(A′).

3 det(cA) = cndet(A), where c is a scalar (and A an n × n matrix).

4 det(A−1) = 1/det(A).

5 if A has a row or column equal to zero, det(A) = 0.

6 If A is invertible, then det(A) �= 0. If A is singular, then det(A) = 0.

7 If det(A) < 0, then A is not positive definite.

8 If A and B are squared matrices of the same dimension, |AB| = |A||B|.

9 For an orthogonal matrix A, since A′A = I we have that A = A−1.

10 (AB)−1 = B−1A−1 provided the inverses exist.

The MATLAB command det returns the determinant of a square matrix A.

C.1.4 Generalized Inverses and Solutions of Systems
of Linear Equations

A generalized inverse or g-inverse of a matrix A is any matrix G that satisfies

AGA = A.

Note that a g-inverse as defined here may not be unique. Note also how this definition gener-
alizes (and therefore, it includes) the usual concept of an inverse, since if a square matrix A is
nonsingular, AA−1A = A so A−1 is also a g-inverse (and in this case, it is unique).

A set of linear equations Ax = y is consistent if any linear relations among the rows of
A also exist among the elements of y. A system of equations can be solved if and only if the
system is consistent.
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If Ax = y are consistent and have solution x = Gy, then AGA = A. Conversely, if G is
such that AGA = A, then Ax = y is consistent with solution x = Gy.

The Moore-Penrose g-inverse satisfies more conditions that make it unique. It satisfies:

AGA = A, GAG = G, (GA)′ = GA, and (AG)′ = AG.

G-inverses of symmetric matrices. In linear models, we are primarily concerned with the
X ′X matrix since we need to solve X ′Xβ = X ′y. In effects models we do not have a full
rank X matrix, and therefore X ′X is singular2. Hence we need to find a g-inverse of X ′X .
An important property of the g-inverse of X ′X is that if G is such g-inverse,

XGX ′

is invariant to the choice of g-inverse G. This means that in a linear model,

Ê[y] = ŷ = Xβ̂ = XGX ′y

is estimable, i.e., is uniquely estimated no matter our choice of G (see Appendix B).

Finding a G-inverse of a symmetric matrix
We wish to find a g-inverse of the squared, symmetric matrix A. Let B and C be two

orthogonal matrices that diagonalize A, namely,

BAC = ∆

where ∆ is diagonal. Then G = C∆−1B is a g-inverse of A. If we set B = E−1 and
C = E, where E is the matrix of eigenvalues of A, then ∆ is the diagonal matrix that has the
eigenvalues of A along the diagonal (see C1.5 below). Thus,

G = E∆−1E−1

gives the desired G-inverse.

Example. Find a g-inverse of the matrix

A =

⎡
⎣

2 4 5

4 3 6

5 6 7

⎤
⎦ .

We have that

E =

⎡
⎣

0.5916 0.6667 0.4534

−0.7807 0.3333 0.5286

0.2012 −0.6667 0.7177

⎤
⎦

and

∆ =

⎡
⎣

−1.5777 0 0

0 −1.0000 0

0 0 14.5777

⎤
⎦ .

2When X has full column rank, X′X is invertible.
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Thus

G = E∆−1E−1 =

⎡
⎣

−0.6522 0.0870 0.3913

0.0870 −0.4783 0.3478

0.3913 0.3478 −0.4348

⎤
⎦ . �

These computations are easily done in Matlab. The eig command returns matrix E and ∆

using
[E,Delta]=eig(A).

This is equivalent to the shorter and direct command pinv(A) which returns the g-inverse of
matrix A in one step.

C.1.5 Eigenvalues, Eigenvectors, and Quadratic Forms
Consider a square n × n matrix A. A scalar λ and a vector x that satisfy the nonlinear

equation

Ax = λx

(or (A − λI)x = 0) are called an eigenvalue and an eigenvector of A, respectively. Thus,
the scalar λ is able to “mimic” matrix A, hence the (German) name “characteristic” or “proper”
(eigen). For λ to be an eigenvalue, it is necessary and sufficient that A−λI be a singular matrix3

which implies that we can obtain the eigenvalues from the characteristic equation det(A −
λI) = 0. This gives a polynomial of order n in λ whose (possibly repeated) n roots are the
eigenvalues. To find the eigenvectors, solve (A − λI)x = 0. If in addition, A is symmetric,
then:

1 all eigenvalues are real numbers;

2 eigenvectors associated with distinct eigenvalues are orthogonal;

3 the eigenvectors of A span the n-dimensional Euclidean space R
n.

Let W be an n × n orthogonal matrix, i.e., W = [w1, w2, . . . , wn] where the wi’s span
the n-dimensional Euclidean space. Recall that for an orthogonal matrix, W ′ = W −1. Then
for an n × n matrix A we have that

W ′AW = W −1AW = W −1AW = W −1[Aw1, Aw2, . . . , Awn]

= W −1[λ1w1, λ2w2, . . . , λnwn]

= W −1

⎡
⎢⎢⎢⎣

λ1

λ2

. . .

λn

⎤
⎥⎥⎥⎦W .

3This is a consequence of the non-zero solutions we want for (A− λI)x = 0, which means that A− λI

has a nullspace with vectors other than zero, that is, A − λI has linearly dependent columns and this can
only happen if it is singular. Thus, we find the values of λ that make their determinant zero. That is, if for
any square matrix B we have Bx = 0 for x �= 0, this implies matrix B is singular.
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Thus we have a means to diagonalize a matrix A. This changes the basis, or coordinates, of the
space and re-expresses them in terms of the space spanned by the eigenvectors of A.

If A is n × n, the product x′Ax is a scalar and receives the name quadratic form. A is
positive definite if the quadratic form x′Ax is positive for all nonzero vectors x. The quadratic
form is positive semi-definite, negative definite and negative semi-definite if x′Ax ≥ 0, < 0,
or ≤ 0 for all x, respectively.

The connection between whether a matrix is positive definite or not and the eigenvalues can
be seen from the diagonalization process above. Let y = W −1x so x = W y. Then, from
x′Ax we get y′W ′AW y =

∑n

i=1
λiyi. Since the yi’s are arbitrary, A can only be positive

definitive (or positive semidefinite) if all its eigenvalues are positive (or nonnegative). If there are
mixed-sign eigenvalues, then A is indefinite and the associated paraboloid is a saddle function.

Properties of eigenvalues. In what follows, let λi denote the eigenvalues of a n× n symmetric
real matrix A.

1
∑n

i=1
λi = tr(A)

2
∏n

i=1
λi = det(A). It follows that if a square matrix has zero eigenvalues, it is singular.

C.2 Optimality Conditions
In this section we follow Luenberger [91]. For a function f of a n-dimensional vector x,

denoted f(x), the gradient is defined as

∇f(x) =

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

]′

provided the derivatives are continuous. If all second derivatives are continuous, the Hessian of
f at x is defined by the n × n symmetric matrix

F (x) =

[
∂2f(x)

∂xi∂xj

]
.

A point x∗ is a local minimum point of a function f if there exists an ε > 0 such that f(x) ≥
f(x∗) for all x within a certain distance ε of x∗ (i.e., for |x − x∗| < ε.) If f(x) ≥ f(x∗) for
all x, x �= x∗, then x∗ is a global minimum (point) of f .

Given a subset Ω of R
n, the vector d is said to be a feasible direction at x if there is some α

such that x + βd ∈ Ω for all β ∈ (0, α).

Theorem C.1 First order optimality conditions. Let Ω be a subset of R
n. If x∗ is a

local minimum point of f (which is defined on Ω), then for any n dimensional feasible direction
vector d at x∗ we have that ∇f(x∗)′d ≥ 0.

Notice this is a necessary condition, i.e., x∗ local minimum ⇒∇f(x∗)′d ≥ 0 if d is a feasible
direction. This condition says that at a local minimum, the angle between a feasible direction
vector and the gradient vector is less than 90◦. It is important to understand that this does not
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tell us anything about the reverse implication: such angle can be less than 90◦ at some point x,
yet x may not be a local minimum.

Corollary C.2 Consider the unconstrained case (i.e., Ω = R
n). If x∗ is a local mini-

mum point of f , then ∇f(x∗) = 0, i.e., at a local minimum the gradient vanishes.

This points out a potential problem of steepest descent methods that try to move the operating
conditions of a process along the direction implied by the gradient: as we approach a local
minimum, the gradient becomes smaller, and hence harder to estimate from noisy data. There
is an increasing need to use second order information as the optimization process approaches an
optimum point. A test for curvature followed by fitting a quadratic model (if needed) serves this
purpose. However, note that traditional RSM does not use second order information to move the
process in a direction of improvement, it uses such information only to locate a local optimum
(see [72] for an approach where second-order searches are used in RSM; the method, however,
has received little attention in the Engineering Statistics community).

Let x∗ be a point satisfying the nonlinear equality and inequality constraints

h(x∗) = 0, g(x) ≤ 0.

Let J be the set of inequality constraints for which gi(x
∗) = 0, i.e., J is the set of active

constraints. Assume there are p inequality constraints overall. Then point x∗ is said to be a
regular point if the gradient vectors ∇hi(x

∗) (for all m equality constraints i) and the vec-
tors gj(x

∗) = 0 for all j ∈ J are linearly independent. With this definition we can define
the Karush Kuhn Tucker (KKT) first order necessary conditions for optimality of a general
nonlinear programming problem.

Theorem C.3 Karush Khun Tucker (KKT) first order necessary conditions. Let x∗

be a local minimum point of the problem

minimize f(x) (C.1)

subject to h(x) = 0, g(x) ≤ 0. (C.2)

Suppose further that x∗ is a regular point. Then there is a p-dimensional vector λ and a m-
dimensional vector µ such that

∇f(x∗) + λ′∇h(x∗) + µ′∇g(x∗) = 0

µ′g(x) = 0

µ ≥ 0

The first equation can be rewritten as: ∇l(x∗) = 0, the gradient of the Lagrangian is the
zero vector. It means that the gradient of the objective function at x∗ can be expressed as a
linear combination of the gradient of the active constraints at x∗. The second expression is the
complementarity slackness condition, which says that both the Lagrange multiplier µi and the
inequality constraint gi(x) cannot be both greater than zero. These conditions together give a
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system of n + m + p equations in n + m + p unknowns that in principle can be solved. Note
that µi ≥ 0 but the λ’s are not restricted in sign. Again, these are all necessary conditions
for a local minimum, i.e., if x∗ is a local minimum, then these conditions are true. But more
importantly, it follows that if the KKT conditions are not true at a point x∗, then the point cannot
be a local minimum (and hence, a minimum). Thus the KKT conditions can be used to “test”
whether a point satisfies them or not; if a point does satisfies them, in a sense this increases it
“chances” of being an optimal point (see Chapter 13 for an application of this idea in simulation
optimization). However, the conditions may be true but x∗ may be not a local minimum. It is
also important that no assumptions are made on the functions f , h and g, other than they have
continuous derivatives. In particular, no convexity assumption is made. We now state the second
order conditions. In what follows, H and G are the Hessians of the equality and inequality
constraints, respectively.

Theorem C.4 Second order necessary conditions. Suppose f , h, and g have all con-
tinuous second derivatives. If x∗ is a regular point and a local minimum of problem (C.1-C.2),
then there is a m-dimensional vector λ and an p-dimensional vector µ, with µ ≥ 0 such that
the first order conditions hold and in addition the Hessian matrix

L(x∗) = F (x∗) + λ′H(x∗) + µ′G(x∗)

is positive semidefinite on the subspace M = {y : ∇h(x∗)′y =0, ∇gj(x
∗)′y =0 for all j =

∈ J}, where J = {j : gj(x
∗) = 0}, i.e., the space of the active constraints at x∗.

The condition on the Hessian (positive definiteness on M ) can be stated as y′L(x∗)y ≥ 0

for all y ∈ M . These conditions are necessary, and include the case when there are inequality
constraints that are active but have a zero Lagrange multiplier (these are “degenerate” inequal-
ity constraints). Sufficient second order conditions can also be stated, i.e., conditions that if
true guarantee that x∗ is a local minimum. These exclude the case of degenerate inequality
constraints, and hence the subpace M ′ below accounts for that.

Theorem C.5 Second order sufficient conditions. Suppose f , h, and g have all contin-
uous second derivatives. A point x∗ is a local minimum point of problem (C.1–C.2) if all of the
following holds:

1 x∗ is a regular point;

2 the first order necessary conditions are true;

3 the Hessian matrix of the Lagrangian

L(x∗) = F (x∗) + λ′H(x∗) + µ′G(x∗)

is positive definite on the subspace

M ′ = {y : ∇h(x∗)′y = 0, ∇gj(x
∗)′y = 0 for all j ∈ J ′}

where J ′ = {j : gj(x
∗) = 0, µj > 0}.
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Example. Illustration of optimality conditions in a mixture experiment. Suppose we
wish to solve the following problem

maximize 10 + x1 + 2x2 + x3 + x1x2 + x2x3 + x1x3

subject to
x1 + x2 + x3 = 1 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

We have that

∇f(x) =

⎡
⎣

1 + x2 + x3

2 + x1 + x3

1 + x2 + x1

⎤
⎦

so

F (x) =

⎡
⎣

0 1 1

1 0 1

1 1 0

⎤
⎦ .

Also,

∇h(x) =

⎛
⎝

1

1

1

⎞
⎠

and therefore H(x) = 03×3. Finally, we have that ∇g(x) = −I3. Note how none of F , ∇h,
H , or ∇g are functions of x, so they hold for any point x.

If we neglect for a moment the inequality constraints, the first order necessary conditions for
a maximum are ∇l(x) = ∇f(x) − λ′∇h(x) = 0, or:

1 + x2 + x3 − λ = 0

2 + x1 + x3 − λ = 0

1 + x2 + x1 − λ = 0

together with the equality constraint x1 + x2 + x3 = 1. Solving this system of equations yields
the unique solution x∗ = (0, 1, 0)′, λ = 2. This gives f(x∗) = 12 and h(x∗) = 1. Note how
this solution also satisfies the inequality constraints.

We can determine if this x∗ is indeed a local maximum by checking the second order
sufficient conditions (again, neglecting the inequality constraints). These indicate that the
Hessian of the Lagrangian,

L(x∗) =

⎡
⎣

0 1 1

1 0 1

1 1 0

⎤
⎦

must be positive definite on the space M = {y : ∇h(x∗)′y = 0} and since ∇h(x∗)′y =

y1 + y2 + y3 = 0, we have that

(y1, y2, y3)

⎡
⎣

0 1 1

1 0 1

1 1 0

⎤
⎦
⎛
⎝

y1

y2

y3

⎞
⎠ = −(y2

1 + y2
2 + y2

3).
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Thus, L is negative definite on M , and therefore x∗ = (0, 1, 0)′ is a local maximum. However,
note that any point that satisfies the necessary conditions also satisfies the sufficient conditions
(since they are not a function of x). Therefore, in this problem, the necessary conditions are also
sufficient. This is also true if we consider the inequality constraints, as shown next.

Now, if we consider in this problem the inequality constraints, the first order necessary
conditions are:

1 + x2 + x3 − λ − µ1 = 0

2 + x1 + x3 − λ − µ2 = 0

1 + x2 + x1 − λ − µ3 = 0

x1 + x2 + x3 = 1

µ1x1 = 0

µ2x2 = 0

µ3x3 = 0

and µi ≥ 0, i = 1, 2, 3. Solving the system of equalities above, we see that one of the solutions
is x∗ = (0, 1, 0)′ with λ = 2, and µ1 = µ2 = µ3 = 0. Thus, although the inequalities x1 ≥ 0

and x3 ≥ 0 are active at x∗, they are degenerate since their Lagrange multipliers are zero. Thus,
we see that this solution x∗ satisfies the first order conditions for the inequality constraint case.

Finally, we can check the second order sufficient conditions. In this case, M = {y :

∇h(x∗)′y = 0}, and this is also equal to M ′ = {y : ∇h(x∗)′y = 0, ∇gj(x
∗)′y =

0 for all j ∈ J ′} since the set J ′ = {j : gj(x
∗)′ = 0, µj > 0} = ∅. Similarly as before, we

find that L(x∗) is negative definite on M (and M ′) and therefore x∗ is at least a local maxi-
mum. Since the Hessian is not a function of x, this means that the necessary conditions are also
sufficient for any point x that satisfies them. �

In summary, optimality conditions can only guarantee whether a point is a local mini-
mum/maximum. Checking the sufficient conditions can be quite a difficult task in general
problems. Therefore, practically all gradient-based optimization methods stop at a “Karush-
Khun-Tucker” (KKT) point, i.e., at a point that simply satisfies the first order necessary
conditions. But since these are only necessary, the optimization method can converge to points
that are not even local minima/maxima. Thus, it is always a “hope” that a point that satisfies
the necessary conditions is a minimum/maximum, and this is reasonable in as much as these are
conditions that must be satisfied at a true local minimum/maximum, as the sufficient conditions
include the necessary conditions as a subset. Thus, if a point does not satisfy the KKT condi-
tions, it cannot be optimal. For this reason, numerical optimization algorithms for non-linear
programming are usually started from a grid of starting points, in an attempt to detect the global



Appendix C: Matrix Algebra and Optimization Results 441

optimum or at least find a good local optimum. Latin hypersquares (see Chapter 14) of initial
points are sometimes used for this purpose.

Evidently, the discussion in this section applies when we are dealing with a complicated, non-
convex function. If the objective function and the constraints are convex, specialized algorithms
exist that guarantee global optimality. See [5].



Appendix D
Some Probability Results Used in Bayesian Inference

This brief Appendix gives some results that are used in the book, mainly in Part V.

Change of Variable Theorem in Definite Integrals
Assume the composed function f ◦g is defined, f is continuous and g has a continuous derivative
on [a, b]. Then ∫ g(b)

g(a)

f(g)dg =

∫ b

a

f(g(x))g′(x)dx.

Transformation of Random Variables Theorem
Let X be a continuous random variable with density p(x) and assume Y = u(X) is a one-to-one
transformation from A = {x : p(x) > 0} to B = {y : p(y) > 0} with inverse transformation
x = u−1(y) = w(y). If the derivative d/dy w(y) is continuous and nonzero in B, the density
of Y is given by:

p(y) = p(w(y))

∣∣∣∣
d w(y)

dy

∣∣∣∣ .

Scaled Inverse χ2 and Inverse Gamma Distributions
The Inv−χ2(v0, σ

2
0) (scaled inverse chi-squared) is the distribution of σ2

0v2
0/χ2

v0 , i.e., it is the
inverse of a usual χ2 distribution with v0 degrees of freedom that is scaled by the quantity σ2

0v2
0 ,

hence its name. Its density is

p(θ) =
(ν/2)ν/2

Γ(ν/2)
sν θ−(v/2+1) e−νs2/(2θ), θ > 0

which has mean E(θ) = ν
ν−2

s2, (ν > 2), Mode(θ) = ν
ν+2

s2 and Var(θ) = 2ν2s4

(ν−2)2(ν−4)
,

(ν > 4).

443
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The conjugate prior for the variance of a normal is the Inverse Gamma distribution
(IG(α, β)), which density is

p(θ) =
βα

Γ(α)
θ−(α+1) e−β/θ, θ > 0

with mean E[θ] = β
α−1

, (α > 1), Mode(θ) = β
α+1

, and Var(θ) = β2

(α−1)2(α−2)
, (α > 2).

The Scaled inverse χ2 distribution is then a particular IG(ν/2, νs2/2) distribution, hence it
is the conjugate prior distribution for the normal variance.

Inverse Wishart Distribution
This is the conjugate prior distribution for the covariance matrix of a multivariate normal distri-
bution. It is the multivariate generalization of the scaled inverse χ2. If W is a p × p positive
definite matrix, then the IW density is

p(W ) =

(
2νp/2πp(p−1)/4

p∏
i=1

Γ
(

ν + 1 − i

2

))−1

|S|−ν/2|W |(ν−p−1)/2 e−
1
2 tr(S−1W )

with mean equal to E[W ] = νS.

(Scalar) Student t Density Function

p(t) =
Γ((v + 1)/2)

Γ(v/2)
√

vπσ

(
1 +

1

v

(
t − µ

σ

)2
)−(v+1)/2

where E(t) = µ = mode(t), Var(t) = v
v−2

σ2 (v > 2).

Multivariate Student t Density Function
A q × 1 random vector t is distributed as a (non-central) multivariate t if its density is

p(t) =
Γ((v + q)/2)

Γ(v/2)vq/2πq/2
|Σ|−1/2

(
1 +

1

v
(t − µ)′Σ−1(t − µ)

)−(v+q)/2

where E(t) = µ = mode(t), Var(t) = v
v−2

Σ (v > 2).

Matrix T Density
A l1 × l2 random matrix T follows a (central) matrix T distribution with parameters (v, P , Q)
if its density is

p(T ) =
k(v, l1, l2)

|P |v/2|Q|l2/2

1

|P −1 + T Q−1T ′|(v+l2)/2

where P is l1 × l1, and Q is l2 × l2 (Q > 0), and E(T ) = 0 = mode(T ), and Var(vec(T ′)) =
v

v−2
P −1 ⊗ Σ (a (l1 × l2) × (l1 × l2) matrix).
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54, 74, 82, 83, 85, 89, 109, 122, 151,
165, 170, 172, 410–412, 437

D

Data-translated prior, 310
D-efficiency, 141, 142, 145, 263
Defining relation, 56, 59, 62–65, 66–68, 71,

73, 230, 231
Degrees of freedom, 53, 74, 146, 181, 182,

184, 197, 204, 237, 239, 315, 325, 334,
341, 404–406, 408–412, 416, 417, 419,
443

Design Augmentation, 142, 143
Design of Experiments (DOE), 4, 11, 74
Desirability, 98–103, 106, 107, 339–341
Determinant, 137–139, 141, 142, 146, 153,

246, 270, 271, 275, 278, 309, 360,
431–433, 435

DETMAX, 139, 140, 142
D-optimal designs, 138, 139, 142, 144, 146,

151, 217, 218, 262, 360
Dual response approach to RPD, 246, 253,

263
Dual response system (DRS), 104, 271
Dual response, multivariate, 246, 253, 263,

266, 270, 275

E

Effect, 14, 17, 24, 37, 52, 54, 59, 73, 81, 117,
152, 195, 237, 424

Eigenvalues, 20, 87–89, 91, 93–96, 159,
193–196, 198, 199, 202, 207, 434–436

Eigenvectors, 87, 88, 91, 93, 194, 195, 207,
435, 436

Experiment, 3, 4, 7, 10, 12, 13, 19, 22, 31, 36,
45, 153, 180

Experimental designs, 45, 109, 110, 133, 230,
258, 359, 360, 399

2{k−r}, 54–62
2k, 49–54, 60–62, 65–69
Box-Behnken, 125–129, 145, 153, 262,

263
central composite, 118, 120
crossed array, 225, 226, 230, 241, 243, 246
for Robust Parameter Design, 230–234,

240, 241, 246, 258, 259
hybrid, 129–131, 153
mixture designs, 147, 151
Plackett-Burman, 54, 66–69, 142
response surface, 7, 11, 17, 21, 22, 74, 111,

151
split plot, 234–246

Experimental unit, 235
Extra sum of squares principle, 90, 409
Extrapolation, 190, 406

F

Face centered CCD, 133–135
Factor screening, 16, 33, 67, 68
2k factorial designs, 48–54, 60, 71
Factorial designs (see 2k designs)
First order model, 29–43, 45–83, 111, 112,

114, 142, 143, 181, 185, 188, 212, 355,
363, 399, 400, 404, 412

Fixed effects models, 421–423
Folding over design, 60, 62, 63, 65
2(k−r) fractional factorial designs, 54–60, 71
Fractional factorial designs (see 2(k−r)

designs)
Full fold over (reflection), 64

G

G-efficiency, 143, 144, 155
Generators, 58–60, 62–64, 83, 244
G-inverse (generalized inverse), 434
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G-optimal designs, 137, 144
Grid designs, 388, 389

H

Hard to vary factors, 236, 241
Highest posterior density (HPD) interval, 296
Hybrid designs (Roquemore’s designs),

129–132
Hyperparameter, 78, 311, 349, 350

I

Information matrix, 309
Inverse χ2 distribution, 315, 443
Inverse of a matrix, 433
Inverse Wishart Distribution, 444
IV designs, 64

J

Jeffreys’ priors, 309, 310

K

Karush-Khun-Tucker (KKT) conditions, 368
Kiefer-Wolfowitz equivalence theorem, 145,

146
KKT point, 376, 440
Kriging

methods, 379, 380, 384–388
detrended, 387
Universal, 387, 388

Kroenecker product, 83

L

Lack of fit test, 19, 34, 72, 89, 109, 216, 218,
375

Lagrangian, 32, 93, 94, 203, 382, 437–439
Latin Hypercube, 329, 389–391
Latin Hypercube Designs (LHD), 389–393

minimum correlation, 391
Leverage, 144, 146, 406

Location parameter, 301, 303–304, 316
Location-scale density, 301
Loss function, 275, 277, 356, 370

M

Machining process, 3, 7, 17
Matrix T density, 444
Maximum Likelihood Estimator (MLE), 403
Mean square, 74, 90, 182, 188, 206, 219, 239,

240, 244, 259, 369, 370, 381, 417, 424,
426

Minimal resolution IV designs, 64
Minimax Deviation Method, 280–285
Minimum aberration, 60, 232
Mixed resolution designs, 231
Mixture experiment, 147–152, 202, 203, 205,

206, 217, 322, 439
Model averaging, 347, 350
Model robust optimization, 322, 324, 350,

354
Moment matrix, 112, 114, 115, 120, 129
Multiple response optimization, 99
Multiple response RPD, 275
Multivariate regression, 335

N

Noise factor separation criterion, 258–263
Non-conjugate prior, 300
Non-informative priors, 300–303, 307, 310
Nonlinear programming, 104, 105
Normal probability plot, 54, 407
Noise factor, 229, 230, 234, 253, 258–263

O

Ockham’s razor, 29
One factor at a time (OFAT), 23–25, 76–81,

126, 128
Optimality Conditions (KKT conditions),

368, 374–376, 436, 438–440
first order, 436
second order, 436–440
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Ordinary Least Squares (OLS), 15, 35, 50,
102, 122, 246, 247, 399–401

Orthogonal matrix, 431, 433, 435
Orthonormal matrix, 194

P

Parameter uncertainty, 253–258
Partially Balanced Incomplete Block Design

(PBIB), 125–128
Plackett-Burman designs, 54, 66–69
Posterior distribution, 295, 298, 299, 315,

318, 319, 330, 332–334, 360
Posterior predictive density, 292, 296, 297,

299, 312–314, 317, 325, 347, 352, 362
Prediction Interval (regression), 341, 342, 404
Predictive region, 327
Predictivism, 297
PRESS, 89, 90, 408
Prior distribution, 300–302, 310, 330, 334,

348, 360, 361
Process control, 223, 224, 346, 347
Projection matrix, 401, 431
Projection properties, 65–68
Projectivity, 65–67
Pure quadratic effects, 14, 89, 118

Q

Quadratic form, 197, 249, 311, 436
Quality characteristic, 13, 70, 225, 227, 319

R

Random designs, 388, 389
Random effects models, 423, 424
Randomization, 69, 70, 234, 235
Random stratified designs, 388
Recursive parabolic stopping rule, 191
Region moments, 215
Region of operation, 12, 13, 16, 33
Replication, 388, 414

Residuals
standardized, 405, 406
studentized, 42, 405

Resolution III designs, 58, 62–65
Resolution V designs, 58, 65, 86, 137, 145,

232
Response Surface Methodology (RSM), 7,

374
Ridge analysis, 85, 93, 95, 97, 98, 104, 106,

107, 159, 193, 208, 278, 284
Robust Parameter Design (RPD), 7, 10, 185,

223, 224, 228, 230, 234–236, 240, 241,
246, 253, 258, 263, 269, 275, 322, 335,
339, 347

Bayesian, 343, 345
Rotatability, 24, 109–111, 114, 115, 117, 120,

121, 129, 153, 217
Rotatable designs, 110–117, 123, 133, 153,

216, 217
RPD (see Robust Parameter Design)
Run, 3–5, 11, 18, 23, 24, 33, 35, 45, 46, 51,

54, 64, 65, 70, 75, 76, 86, 126, 143,
234, 335

S

SAS PROC RSREG, 92, 93
Scale parameter, 301, 305, 306, 308–310, 316
Scheffé polynomial, 150, 151
Second order model, 15, 17, 18, 20, 24, 33,

38, 75, 85–104, 109–152
blocking in, 122–125

Semiconductor process, 350
Semi-variogram, 381, 383–385
Sensitivity analysis, 214, 215, 279
Significance of regression test, 90, 188, 410
Simplex Lattice Design, 148–151
Simulation optimization, 367–378
Small Composite Design, 135–137, 263
Sources, 69, 323, 415
Space filling, 389
Space-filling designs, 380, 383, 388–390
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Sparsity of effects principle, 16, 54
Special cubic model (mixture experiments),

151
Split Plot designs, 71, 218, 225, 234–241,

244, 246
Standard order, 49, 55, 56, 60
Stationary point, 16, 17, 20, 30, 85–87, 91,

93, 95, 194, 196–199, 201, 202, 368,
370

Steepest ascent, 16, 17, 24, 25, 29–33, 38, 39,
122, 160–165, 168, 180–182, 184–190

Steepest descent (see steepest ascent)
Stochastic approximation, 9, 10, 368,

370–372
Stochastic gradient, 370–373
Stochastic Perturbation Stochastic Approxi-

mation (SPSA), 10, 371–373
Stochastic programming, 280, 284, 285
Stopping rule (factorial designs), 37, 38,

160–164, 179, 331
Student density, 327, 444
Subplots, 235, 239–241, 244
Sum of squares, 46, 47, 50, 74, 182, 188, 237,

243, 349, 403, 404, 407–412, 416–420,
425, 432

Synergistic interaction, 151

T

Taguchi methods, 38
Test for curvature, 48, 54, 74, 82, 83, 85, 109,

410–412, 437
Trace of a matrix, 275, 430
Transformation of random variables theorem,

305, 443
Treatment combination, 51, 61, 83, 244
Two factor interaction, 14, 24, 38, 63, 64,

79–81, 83, 86, 122, 125, 230

U

Uniform precision, 117, 119–122, 125, 153

V

Variance components, 239, 246, 424, 426
Variance dispersion graphs (VDG), 121, 132,

144, 217, 259
Variance Inflation Factors (VIFs), 146
Variance of the predictions, 110, 131, 256,

384

W

Whole plots, 235, 237, 240, 241, 244
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