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12.1 Introduction

The seminal work of Bowie, Liithy, and Eisenberg (Bowie et al., 1991) on “the in-
verse protein folding problem” laid the foundation of protein structure prediction by
protein threading. By using simple measures for fitness of different amino acid types
to local structural environments defined in terms of solvent accessibility and protein
secondary structure, the authors derived a simple and yet profoundly novel approach
to assessing if a protein sequence fits well with a given protein structural fold. Their
follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al.,
1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein
fold recognition led to the development of a new brand of powerful tools for protein
structure prediction, which we now term “protein threading.” These computational
tools have played a key role in extending the utility of all the experimentally solved
structures by X-ray crystallography and nuclear magnetic resonance (NMR), pro-
viding structural models and functional predictions for many of the proteins encoded
in the hundreds of genomes that have been sequenced up to now.

What has made protein threading particularly attractive as a protein structure
prediction tool is the observation that the number of unique structural folds in nature
is a few orders of magnitude smaller than the number of proteins in nature (Finkelstein
and Ptitsyn, 1987; Bairoch et al., 2005). Although this is still not a fully resolved issue,
both theoretical and statistical studies (Murzin et al., 1995; Brenner et al., 1996; Li
etal., 1996, 1998, 2002; Wang, 1996; Orengo et al., 1997; Holm and Sander, 1996a;
Zhang and DeLisi, 1998) suggest that the number of unique structural folds in nature
ranges from a few hundred to a few thousand. Clearly this is a significantly smaller
number than the number of proteins in nature — as we understand now, the number of
different living organisms on earth could range from millions to hundreds of millions
(May, 1988). Since each organism often has at least thousands of different proteins
encoded in its genome, the total number of different proteins in nature is at least in
the tens of billions or possibly significantly higher, even without considering protein
variants such as alternatively spliced proteins. This disparity suggests an effective
paradigm for possibly solving all protein structures through combining experimental
and computational approaches, that is, to solve structures of proteins with unique
structural folds using the expensive and time-consuming experimental techniques
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and computationally model the rest of the proteins using the experimental structures
as templates. This is the key strategy currently being employed by the worldwide
Structural Genomics efforts (Gaasterland, 1998; Skolnick et al., 2000; Baker and
Sali, 2001).

The basic idea of protein threading is to place (align or thread) the amino
acids of a query protein sequence, following their sequential order and allowing
gaps, into structural positions of a template structure in an optimal way measured by
fitness scores outlined above. This procedure will be repeated against a collection
of previously solved protein structures for a given query protein. These sequence—
structure alignments, i.e., the query sequence against different template structures,
will be assessed using statistical or energetic measures for the overall likelihood of
the query protein adopting each of the structural folds. The “best” sequence—structure
alignment provides a prediction of the backbone atoms of the query protein, based
on their placements in the template structure. Currently, protein threading is being
widely used in molecular biology and biochemistry labs, often for initial studies
of target proteins, as it may quickly provide structural and functional information,
which could be used to guide further experimental design and investigation.

As a prediction technique, protein threading has a number of highly challeng-
ing computational and modeling problems. These include (a) how to effectively and
accurately measure the fitness of a sequence placed in a template structure, (b) how
to accurately and efficiently find the best alignment between a query sequence and a
template structure based on a given set of fitness measures, (c) how to assess which
sequence-structure alignment among the ones against different template structures
represents a correct fold recognition and an accurate (backbone) structure predic-
tion, and (d) how to identify which parts of a predicted structure are accurate and
which parts are not. As researchers find more effective solutions to these and other
challenging problems, we expect that protein threading will play an increasingly
significant role in structural and functional studies of proteins.

12.2 Protein Domains, Structural Folds,
and Structure Space

As of now, over a million protein sequences have been determined (Bairoch et al.,
2005), among which ~30,000 have had their tertiary structures experimentally
solved (Dutta and Berman, 2005). Given that there could be at least tens of bil-
lions of different proteins in nature as discussed above, one interesting question,
particularly relevant to the idea of protein threading, is how many unique protein
structures or structural folds these proteins might have adopted.

To answer this question, we need to first look at the basic structural units of
proteins, called protein domains (Wetlaufer, 1973; Richardson, 1981). Protein do-
main is extensively discussed in Chapter 4 of this book. Here we describe briefly
the concept of a domain from the perspective of threading. A structural domain is a
distinct and compact structural unit that could fold independently of other domains.



12. Protein Structure Prediction by Protein Threading 3

While many proteins are single-domain proteins, there are proteins with two, three,
or even more structural domains (Ekman et al., 2005). Our study shows that in
the FSSP (Fold classification based on Structure-Structure alignment of Proteins)
nonredundant set (Holm and Sander, 1996b) of the PDB, 67% of the proteins have
single domains, 21% have two domains, 7% have three domains, and the remaining
5% have four or more domains (Xu et al., 2000a). This distribution may not nec-
essarily reflect the actual domain distribution for all the proteins in nature as the
set of known protein structures in PDB might have overrepresented small proteins
due to the relative ease in solving these structures. For eukaryotic organisms, it was
estimated that at least two-thirds of their proteins are multidomain proteins (Gerstein
and Hegyi, 1998; Gerstein, 1997, 1998; Doolittle, 1995; Apic et al., 2001a,b). This
number is somewhat smaller for bacterial and archaeal organisms but still repre-
sents a significant percentage of all their proteins. Previously domain partition of
multidomain proteins was typically done manually. To keep up with the rate at
which protein structures are being solved, there is a clear need for more automated
domain-partitioning methods to process the newly solved structures. Currently com-
puter programs are being used for partitioning a protein structure into individual
domains. Popular programs for this purpose include DALI (Dietmann and Holm,
2001), DomainParser (Xu et al., 2000a), and PDP (Alexandrov and Shindyalov,
2003).

A protein domain could be part of different protein structures, through com-
bining with other domains. Figure 12.1 shows an example of a domain in differ-
ent proteins. Both proteins, RNA 3'-terminal phosphate cyclase and glutathione
S-transferase, have the thioredoxin fold domain, which has two layers, one with two
a-helices and one with four antiparallel B-strands, although some details differ in
the two proteins. The parts other than the thioredoxin fold domain in the two pro-
teins have no structural relationship. Since domains are the basic structural units
of proteins, current studies on the number of unique structural folds in nature have
been carried out on protein domains rather than whole proteins (hereafter, the term
“proteins” will refer to single-domain proteins for simplicity of discussion).

To estimate the number of unique folds of proteins, one popular approach is
through examining all protein families and the relationships between protein families
and unique structural folds. Using the definition of SCOP classification scheme
(Murzin et al., 1995; Brenner et al., 1996), a protein family represents a group of
orthologous proteins (Makarova et al. 1999; Gerlt and Babbitt, 2000; Tatusov et al.,
2000; Gelfand et al., 2000). The number of protein families in nature could possibly
be estimated through finding orthologous gene groups covering all the genes in
the genomes that have been sequenced. One such estimate suggests that there are
23,100 such protein families (Orengo et al., 1994). This number has been used in
later studies on estimating the number of unique structural folds in nature. Other
studies estimate this number to be in the tens of thousands (Koonin et al., 2002).
Whether it is 23,100 or some other number ranging from 10,000 to 50,000, the
idea is that all proteins in nature fall into one of these families. The estimation on
the number of unique structural folds is obtained through estimating the number of
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(b)

Fig. 12.1 An example of the same domain (thioredoxin fold domain shown in red, thick ribbons)
appearing in different protein structures. (a) RNA 3’-terminal phosphate cyclase (PDB code 1qmi,
chain A), with the thioredoxin fold domain in residues 185 to 279. (b) Glutathione S-transferase
(PDB code 1k0d, chain A), with the thioredoxin fold domain in residues 109 to 200.

families that each structural fold covers and studying the coverage distribution by
all the known structural folds.

One of the estimates by Zhang and DeLisi (1998) suggests that the number
N of unique structural folds is probably around 700. This estimation is based on
the observation that the number of structural folds covering X number of protein
families follows a power-law distribution, with X being a variable. In essence it says
that a few structural folds each cover many families (e.g., TIM barrel fold covers
31 protein families) while many structural folds each cover only a small number of
families; more generally, the number of structural folds decreases as their coverage
of protein families increases. Specifically, Zhang and DeLisi proposed a formula
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which matches well with the known protein families and structural folds. Let M
and N represent the number of families and the number of unique folds in nature,
respectively. The probability that a fold covers exactly x families is given by

P, =(1—-M/NY ' M/N.

Let M; and N; be the numbers of protein families and unique structural folds cur-
rently having solved structures, respectively. Through a simple algebraic transfor-
mation, Zhang and DeLisi showed that

VA M, N,
Ms_(l _MS/M)NS’

which is used to estimate the number of unique structural folds. Using the known
numbers of M; = 736 and N; = 361 at the time of the estimation, they estimated
that V is roughly about 700, which many researchers will argue to be too small (see
following for more discussion).

Similar estimations have been made by other researchers, estimating the size
of N ranging from a few hundred to a few thousand (Orengo et al., 1994; Wang,
1996), based on somewhat different assumptions. Coulson and Moult (2002) recently
developed a new model for estimating N, based on the work of Zhang and DeLisi.
Using the more recent data on the numbers of genes, gene families, and structural
folds, they argued that there are two “special” cases that have not been treated
well by previous estimation models. Based on their argument, they consider that
there are three classes of structural folds, which are termed unifolds, mesofolds, and
superfolds. Unifolds represent structural folds that each covers only one family of
proteins, superfolds represent structural folds, each of which covers many structural
folds, and mesofolds represent structural folds in between. For example, TIM barrel
covers 31 families, while many unifolds exist in SCOP. Based on their observation,
they argued that previous models such as Zhang and DeLisi did not fit well with
the data of unifolds and superfolds. So a new piecewise model was then developed
which treats unifolds, mesofolds, and superfolds, separately.

Using this new model, Coulson and Moult (2002) estimated that less than
20% of the protein families belong to unifolds, while 20% of the families belong
to a few dozen superfolds and the rest of the protein families belong to mesofolds.
Considering that the estimated number of protein families ranges from 10,000 to
50,000 (or 23,100 as one of the popular estimates suggests), we can infer that the
number of unifolds ranges from 2,000 to 10,000. The number of mesofolds could
be estimated using the Zhang and DeLisi model, based on the sizes of M; and N,
after excluding the unifolds and superfolds. Hence, Coulson and Moult concluded
that the most probable size for the number of mesofolds is about 400. The number of
superfolds is believed to be very small, possibly in the range of low dozens. Overall
this model suggests that over 80% of the protein families fold into a little over 400
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structural folds, the majority of which are already known, while the rest of the protein
Sfamilies each belongs to a unique unifold.

The implication of this estimation is that about 80% of the protein families are
amenable for structural modeling using protein threading techniques, assuming that
at least one protein in each of the meso- and superfolds has its structure solved. If
experimental facilities for structure solution will strategically select their solution
targets to maximally cover all the meso- and superfolds, we could expect that at
least 80% of the protein families will be structurally modelable in the near future.
This is exactly the strategy that the National Institute of Health (NIH) is using in its
Protein Structure Initiative (http://www.nigms.nih.gov/psi/). For the remaining 20%
of protein families, it might take some time to have at least one solved structure in
each of the unifolds. Hence, the threading technique will be less applicable for this
class of proteins, at least in the near future.

There are a number of popular schemes and associated databases for clas-
sification of proteins into structural folds, including SCOP (Murzin et al., 1995),
CATH (Orengo et al., 1997), and FSSP (Holm and Sander, 1996b). These classifi-
cation schemes classify all solved protein structures into different structural folds
and subclasses of structural folds. The classification of protein structures is essen-
tially achieved through grouping protein structures into clusters of similar structures,
which can be done computationally through structure-structure alignments (Holm
and Sander, 1996a).

SCOP (Murzin et al., 1995; Brenner et al., 1996; Andreeva et al., 2004) groups
all protein structures essentially into a three-level classification tree. At the top level,
SCOP (SCOP1.65) currently consists of about 800 structural folds, each of which is
further divided into superfamilies and then into families. While a family represents
a group of orthologous proteins, a superfamily represents a group of homologous
proteins, possibly made of multiple families. Currently SCOP consists of about 1300
superfamilies and about 2400 families. Among the 800 structural folds, 489 have only
one family each, which might represent unifolds; and 9 cover a large number of fami-
lies each, which are considered as superfolds by Coulson and Moult. One thing worth
noting is that among the 800 SCOP folds, only 36 represent membrane proteins. This
is a reflection of the fact that only 2% of all the solved protein structures are mem-
brane proteins (http://blanco.biomol.uci.edu/Membrane _Proteins xtal. html ). This
suggests that threading is generally not applicable to structure prediction of mem-
brane proteins, at the present time.

SCOP’s hierarchical classification of structural folds provides a convenient tool
for applications of threading methods, as query proteins falling into a SCOP protein
family are generally expected to have accurate structure predictions, while proteins
with structural homologues in a SCOP superfamily will have a good chance to have
the correct structural folds identified and some portions of their backbone structures
predicted accurately. In general, it still represents a challenge to correctly identify
the structural fold by a threading method if a query protein only has a structural
analogue (i.e., similar structure but not homologous) in SCOP.
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12.3 Fitting a Protein Sequence onto a Protein Structure

The realization that protein structures are clustered into structural folds in the struc-
ture space and the number of such clusters is possibly quite smali has led to a new way
of predicting protein structures in a more efficient and effective manner. The general
belief is that different proteins fold into similar 3D shapes because at some level,
they share similar interaction patterns among their residues and between the residues
and the environments. It has been shown that these interaction patterns could pos-
sibly be captured using simple statistics-based energy models as exemplified by the
earlier work of Eisenberg and colleagues (Bowie et al., 1991; Fischer et al., 1996a,b;
Fischer and Eisenberg, 1996), the work of Sippl and colleagues (Sippl, 1990), and
others (Jones et al., 1992; Rost et al., 1997). These simple statistics-based energy
functions have been used, for many cases, to distinguish the correct structural folds
from the incorrect ones and to distinguish the correct placements of the residues
in a query protein into the structural positions of a correct structural template from
the incorrect ones. Placing the (backbone atoms of) residues of a query protein into
the correct structural positions in a correct structural fold gives a prediction of the
backbone structure of the query protein. To accomplish this, one would need two
capabilities: (a) an energy function whose global minimum will correspond to the
correct placement of residues into the correct structural template, and (b) a compu-
tational algorithm that can find the global minimum of the given energy function.
We explain the basic idea of developing such energy functions in this section and
leave the algorithmic issues to the next one.

In their earlier work (Bowie et al., 1991; Fischer et al., 1996a,b, Fischer and
Eisenberg, 1996), Eisenberg and colleagues demonstrated that simple residue-based,
instead of atom-based, energy functions could provide substantial discriminating
power in separating good from poor placements of individual residue types into
different structural environments, justifying the usage of residue-based energy func-
tions. In their work, structural environments are simply defined in terms of two param-
eters, solvent accessibility so/ and secondary structure ss. Specifically the quantity
sol of solvent accessibility is discretized into a number of intervals, say 30—40%
exposed to the solvent. A secondary structure could be a helix, a beta-strand, or a
loop, or it could be defined in terms of more refined categories of secondary struc-
tures, say including different types of turns. Then a structural environment for each
residue in a template structure could be defined using (sol, 5), say (0~10% exposed,
alpha-helix). Statistics could be collected from a collection of solved protein struc-
tures about how frequent a particular type of amino acid appears in a particular
structural environment as we just defined. This can be done by going through all
protein structures under consideration to count the number of occurrences of each
amino acid type in each encountered structural environment. If we consider, say,
three levels of solvent accessibility, {exposed, intermediately exposed, buried}, and
three types of secondary structures, we will have nine types of structural environ-
ment. Under this assumption, the result of counting the numbers of occurrences
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above will be a 20 by 9 table, with each of the 20 rows representing an amino acid
type and each of the 9 columns representing a structural environment.

Based on the collected statistics, we can build a simple preference model to
measure how preferred a particular amino acid type is to a particular structural
environment. This can be done using the following measure:

- In(0; ;/E; j),

where O;; represents the observed frequency of amino acid type i in structural
environment j and E;; represents the expected frequency of amino acid type i in
structural environment ;. In the work of Eisenberg and colleagues, E; ; is estimated
using the frequency of amino acid type i in all proteins under consideration. Hence,
if an amino acid type i has a higher frequency in a particular structural environment j
than its frequency overall, it will be assigned a negative score -In(O; ;/ E; ;); otherwise
it will get a positive score or zero (when O;; = E; ;). The higher O ; is compared to
E; j,the more negative the corresponding energy is. A popular name for this type of
energy function is singleton energy. By performing statistical analysis on a database,
one can get the scoring function using the above formulation for the 20 amino acid
types appearing in the nine structural environments. Table 12.1 shows such a scoring
function, as described in Xu et al. (1998).

Table 12.1 The scoring function for the 20 amino acid types in three secondary structure
types with three solvent accessibility levels. The three solvent accessibility types are buried,
intermediate, and exposed, from the left column to the right for each secondary structure

type.

Residue Helix Sheet Loop

-0.741 -0.007 —0.181 —-0.430 0.642 1367 0223 0235 0.070
1.010 —0.687 —0344 0995 -0479 0340 1.406 -0.199 -0.190
0.840 0221 0042 0483 0344 0743 0.656 —0.247 —-0.795
1.113 0243 -0376 0907 0250 0.853 0850 -—-0.228 —0.783

-0.389 0539 2179 —-1208 0492 2651 —0489 0.119 1249
0.587 —-0428 —-0573 0.618 0.058 0221 1220 0.067 -0.449
1.074 -0.442 -0.842 1.168 -0.029 0.282 1773  0.218 -0.527
0317 1234 1010 -0.161 0.714  1.167 —0.116  0.040 —0.849
0335 —-0217 0.199 -0.127 —-0.265 0.848 0.519 -0387 -0.117

-0.686 —0.001 1.198 1316 —0.156 1295 0.182 0408  0.996

-0.902 -0.178 0.987 0930 0256 1.672 0.009 0229 0977
2.021 -0212 0.743 1818 —0.209 -0.008 2611 0.107 0.696

-0.858 0378 0.872 —-0.825 0230 1215 0208 0242 0.692

—0.585 0.089 1.146 -1.040 -0.168 1.085 -0.060 0.079 0911
1.126  0.698 0.723 0.845 0704 1287 -0.041 -0.621 —0.646
0328 0454 0.111 -0.079  0.088 0445 0373 -0.073 ~0.612
0302 0247 0341 -0.211 -0419 0.126 0350 -0.014 -0.377

—0468 -0270 1493 -0.816 -0.307 1.843 —0.082 0.041 0.797

—0.149 —-0285 0991 -0.690 —-0.704 0919 0461 -0292 0.723

-0491 0251 1053 -1352 —-0324 0983 0.196 0382 0.737

<<RZEHOMZRCO—=IOHOQUZ R >
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When building such statistics-based energy functions, one needs to be careful
in selecting the data set for statistics collection. For example, some proteins in SCOP
(or in PDB) have more homologous structures than the others, which could possibly
lead to biased statistics. To remove this type of statistic bias in our data set, one needs
to remove homologous structures in the data set for statistics collection. There are a
number of databases for this purpose, such as the nonredundant sequence representa-
ttves in FSSP, PDB-select (Hobohm et al., 1992), and PISCES (Wang and Dunbrack,
2003), where no two proteins have higher than a certain level of sequence similarity.

Another statistics-based energy function widely used in threading programs is
often called pairwise interaction energy. 1t measures the preference of having two
particular types of amino acids that are spatially close. One particular form of such
an energy function was developed by Sippl (1990). The basic idea of this energy
function is to compare the observed frequency of a pair of amino acids within a
certain distance in solved protein structures with the expected frequency of this pair
of amino acid types in a protein structure. The basic idea of such an energy function
comes from statistical mechanics where the probability P; of having a pairwise
interaction between residues i and j has the Boltzmann correlation to its energy g,.*j
(Gibbs free energy), defined as

P = exp ——g'*’ Z
Y kT ’

where k is the Boltzmann constant, 7 is the temperature, and Z is a partition function.
When using a residue-averaged state as a reference state g(P), a knowledge-based
potential can be derived using

PE
ok - 2}
gif—gij_g—_len(—F)'

Specifically, if No(i, j) and Ng(i, j) represent, the observed and expected numbers
of amino acid types i and;j within a certain distance, respectively, we can use the
following to measure the preference of having these two types of amino acids close
to each other:

—In(No(i, j)/Ne(, j)) -

While No(i, j) can be collected by going through the protein structures in the sample
set, an accurate estimation of Ng(i, j) represents a challenge. There have been a
number of proposed models for estimating this quantity. Among these models, the
simplest one is the “independent reference state” model (Xu et al., 1998), in which
Ng(i, j) is estimated as follows:

2 No(i, k)3, No(j, b

NE(i’j)z Zi,jNO(i’j)
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Table 12.2 Pairwise scoring functions between 20 amino acid types

22 —62 -42 2
33 7 11 28 -192
3 -6-20 7 19 -11
12 -56 -14 14 12 1 7
1 -8 -10 =27 9 -7 -3-29
6-26 6-45 —19 27 37— 7 -45
-11 11 35 32 15 24 29 18 29 -33
24 2 25 24 20 -16 -28
12 31 -20 -5 25-18—-67 10 5 19 18 12
-7 30 31 21 5 3 14 1 -1 —-1-11 30-49
-6 6 20 28 37 23 11 16 -10 =20 -2 -27 -21
17 -3-21 -3 11 -8-10 -7 -6 37 22 -5 3 -2-21
17 - 8 -22 =30 1 -16 =21 —-19 -13 21 27 -6 19 11 —16 —18
6 6-23-20 37 -15-21 -7-24 11 22 -2 16 28 —10 -22 -21
5-15 -2 10 5 -1 16 -7-21 -2 8 3 -1 3-43 13 9 -2
5—-13 5 27 6 -9 27 6 3-16 -9 -31-17 -1 -8 10 16 —-10 -1
-11 17 30 43 20 18 23 20 20-23-22 27 -5 -4 5 27 7 10-11-32
A R ND C Q E G H I L K M F P S T W Y V

<SR-~ TTomOoO Qg Zw
|
%
[\*]
(=%
(9% ]
N
W
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Table 12.2 shows a scoring function for the preference between 20 types of amino

acids using the above formulation (Xu et al., 1998).
There are more sophisticated models for defining the reference state, one of

which is the uniform distribution model (Sippl, 1990; DeWitte and Shakhnovich,
1996; Lu and Skolnick, 2001; Samudrala and Moult, 1998), as discussed later. These
more complex models take more factors into consideration in building the reference
state, hence making the energy models more likely to be accurate.

In addition to using physics- or statistics-based energy functions, researchers
have incorporated evolutionary information into energy model building. One of
the earlier major improvements in energy function modeling is the incorporation
of sequence profile information (Panchenko et al., 2000; Zhou and Zhou, 2005)
derived from homologous proteins into the energy models outlined above. It was
noticed that when using a sequence profile of a protein family (or superfamily) rather
than a single (query) protein sequence, threading accuracy could be significantly
improved (Panchenko et al., 2000; Zhou and Zhou, 2005). The very basic idea of this
generalized approach is that rather than asking the question “will protein sequence
A fit well with structural fold B?” we ask the more general question “will the whole
family of protein A fit well with structural fold B?” Clearly if done properly, this
approach could iron out some of the spurious predictions, caused by the appearance
of specific individual sequences. Now a threading problem becomes a fitting problem
between a sequence profile and a structural fold. A sequence profile is defined in
terms of a multiple sequence alignment of the members of the query protein’s family
(or superfamily), with each element being the frequency distribution of the 20 amino
acid types in this aligned position rather than a specific amino acid. To generalize
the aforementioned energy functions to take into account the profile information, we
can simply use the relative frequency of each amino acid in the position-dependent
distribution as a weight factor when calculating the energy values for each amino acid
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or amino acid pairs, and then sum over all possible amino acids or amino acid pairs.
Specifically, let P; be the relative frequency of amino acid type i ina particular aligned
position with }_ P; = 1.0. Then the Eisenberg type of energy can be calculated as

=Y Pn(0:;/E: ).

Similarly, pairwise interaction energy could be generalized as follows:

~ > PiPjIn(NoG, j)/NeG. /).
Lj

Other types of energy functions have also been used in existing threading programs,
including fitness scores between specific amino acids and the secondary structures
in the template structure and threading alignment gap penalties. Typically these
energy scores are combined using a simple weighted sum while often the scaling
factors are empirically determined, based on some training data.

It has been observed that distance-dependent pairwise interaction energy could
provide more accurate threading results than distance-independent models as out-
lined above. A distance-dependent energy could be estimated as follows:

g = 1 Mot o)

v NG, j.r)
where r is the distance between residues i and j (possibly measured between their
C-beta atoms), No(i, j, ) is the observed number of pairs of residues (i, ;) within
a distance bin from r — Ar/2 to r + Ar/2 in a database of folded structures for
some bin width Ar, and Ng(i, j, r) is the expected number of pairs (i, j) within
the same distance bin. The challenging issue in accurately estimating the inter-
acting energy #, ;) is how to estimate Ng(i, j, 7). Under the assumption that
we are dealing with an ideal infinite liquid-state system within a volume V' and
residues are distributed uniformly (Sippl, 1990; DeWitte and Shakhnovich, 1996;
Lu and Skolnick, 2001; Samudrala and Moult, 1998), Ng(i, j, r) can be estimated
using

Ne(, j,r)= N;-N; - (4nr®Ar) /V,

where N; and N; are the numbers of amino acid types iand j in the protein database,
respectively. Researchers have realized that this model needs to be corrected when
dealing with finite systems like a protein structure, to make the model more accurate
when used in threading programs. Two particular corrections are made in the DFIRE
(distance-scaled ideal gas reference state) energy model (Zhou and Zhou, 2002),
a popular energy function for threading. In the first correction, DFIRE used r*
instead of 2, considering that the number of interaction pairs in a finite system
could not actually reach the level of 72 as in an infinite system, where a < 2 is
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determined through minimizing the distribution fluctuation of interaction distance on
a set of training data. In the second correction, DFIRE assumes that only short-range
interactions need to be considered. That is, interaction energy becomes zero when
the distance between the interacting pairs is beyond a cutoff distance 7,;. After these
corrections, the interaction energy could be estimated using the following formula:

NO (l’ j’r)
—'Tlln N\ Ay s ¥ S Feyr
ﬁ(i,j,r) = (—) NO (l, jv rcut)
Yeur Arcut
0 ) r > Feut

where constant m is related to the system temperature and can be determined empir-
ically.

These simple energy models have played key roles in making threading pro-
grams as popular and as useful as we have seen today. While they have been used
to help to solve many structure prediction problems, the limitations of these simple
models have also become quite clear as we have seen from the recent CASP pre-
diction results—the improvement in prediction accuracy has been only incremental
in the past few CASPs (Kinch et al., 2003). One of the key reasons for the incre-
mental improvement comes from the crudeness of the threading energy functions.
Currently, the algorithmic techniques for protein threading have advanced to a stage
that should be able to handle more sophisticated energy models in the threading
framework, which could lead to more accurate predicted structures. We can expect
that more detailed and more physics-based energy functions will emerge in the near
future as the field is clearly in need of more accurate energy models for protein
threading.

12.4 Calculating Optimal Sequence—Structure Alignments
The general form of threading energy function could be written as follows:
oEy +BE, + Egp,

where E; measures the overall fitness of putting individual residue types into specific
structural environments, E, measures the total interaction energy among pairs within
the cutoff distance, and E, represents the total penalty for the gaps in a sequence—
structure alighment. The scaling factors « and £ are typically determined empirically
through optimizing the performance of a threading program on a representative set
of protein pairs. With the optimized « and /8 values, the goal of threading is to find an
alignment (or placement) between a query protein sequence and a template structure
that optimizes the energy function.

In a sense, protein threading is like sequence—sequence alignment as it finds an
alignment between a sequence of amino acids and a sequence of structural positions
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in a 3D structure. What makes threading more difficult than a sequence align-
ment problem is the pairwise interaction energy term E,. For a sequence align-
ment problem, a simple dynamic programming can guarantee to find the global
optimal alignment between two sequences as the problem formulation follows the
principle of optimality (Brassard and Bratley, 1996). This type of simple dynamic
programming algorithm does not work for a threading problem as the global opti-
mal threading alignment could not be easily reduced to a small number of optimal
threading alignments for the partial problems as in a sequence alignment problem.
Intuitively, a simple dynamic programming approach, like the one used for sequence
alignment that goes from the starts of the sequences to their ends and extends par-
tial optimal alignments to include more elements at each step, will not work for
protein threading as at each current point, we do not know what residues will be
available to be assigned to future structural positions, which might have interac-
tions with the previously aligned positions. Such interactions will have a global
impact on a sequence—structure alignment. It is such a global nature of the problem
that makes the threading problem more challenging from the algorithmic point of
view.

There have been a number of studies attempting to understand the “intrinsic”
difficulty, or computational complexity, of the threading problem. Under the assump-
tion that all pairwise interactions need to be considered, the threading problem was
proved to be an NP-hard problem by a number of authors (Lathrop, 1994; Calland,
2003). While these mathematical proofs provide some evidence that the problem is
computationally difficult, they might not be particularly relevant to the true difficulty
of a threading problem as previous studies have shown that pairwise interactions be-
yond certain cutoff distances (.g., 10-12 A between C-beta atoms) do not contribute
to fold recognition and threading alignment (Lund et al., 1997; Melo and Feytmans,
1997; Xuet al., 1998; Zhang and Skolnick, 2004), and hence need not be considered.
As of now, it remains an open problem regarding whether the threading problem,
using a distance cutoff for pairwise interactions, is polynomial-time solvable. The
challenging issue in studying the “intrinsic” computational complexity of a thread-
ing problem with a cutoff for pairwise interactions is that we do not have a good
and realistic characterization for the overall interaction patterns for such a threading
problem.

Because of the algorithmic challenges, earlier threading programs have em-
ployed various heuristic strategies for solving the optimal sequence—structure align-
ment problem. One particular strategy is called “frozen approximation” (Westhead
et al., 1995). The basic idea is that it uses a dynamic programming approach to
find a sequence—structure alignment and uses an approximation scheme to calcu-
late the interaction energy. When the algorithm assigns an amino acid to a specific
structural position from the beginning to the end of the query sequence during the
dynamic programming procedure, it calculates the relevant interaction energy using
the amino acids in the template structure rather than assigned amino acids from the
query protein, for all the unassigned structural positions up to the current point of
the dynamic programming procedure, within a certain cutoff distance. Intuitively the
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algorithm should work to some degree in capturing some of the interaction “patterns”
encoded in the query protein sequence as some of the position-equivalent residues
between the native structure and the native-like template structure should have sim-
ilar physicochemical properties, suggesting the validity of the frozen approximation
scheme. Practical applications have also confirmed that the frozen approximation,
while not guaranteeing global optimal threading alignment, does have an advantage
over threading programs that do not consider pairwise interactions (Westhead et al.,
1995; Skolnick and Kihara, 2001; Zhang et al., 1997).

A number of rigorous threading algorithms have been developed that guarantee
to find the global optimal threading alignments, measured in terms of energy func-
tions that consider pairwise interactions. These include a divide-and-conquer algo-
rithm employed in the PROSPECT threading program (Xu and Xu, 2000) and an
integer programming algorithm used in the RAPTOR program (Xu et al., 2003a,b). It
was convincingly demonstrated, through applications of these programs at the CASP
contests (Xu et al., 2001; Xu and Li, 2003), that threading programs with guaranteed
global optimality do have an advantage over programs without this property. One
particular advantage of such programs is that they can be used to rigorously bench-
mark a proposed energy function. When using programs without such a guarantee
to assess an energy function, it will be difficult to decide whether it is the energy
function or the lack of rigor in the threading algorithm that has resulted in a subpar
performance by a particular energy function. The following provides some detailed
information about three types of threading algorithms.

12.4.1 PROSPECT

The basic idea of the divide-and-conquer algorithm in PROSPECT (Xu and Xu,
2000) can be outlined as follows. The algorithm first divides the query protein
sequence into two subsequences and also divides the template structure into two
substructures by cutting at one of its loop regions. Then it tries to find the globally
optimal threading alignments between the first subsequence/substructure pair and
between the second subsequence/substructure pair, respectively. When calculating
pairwise interaction energy for each “half” of the sequence-structure alignment
problem, we might need information about which amino acids are assigned to which
structural positions in the other “half” of the problem. To facilitate this calculation,
the algorithm uses a simple data structure for each structural position L in the current
substructure, that keeps a list of structural positions in the other substructure that
are close enough to L to have interactions with the amino acid to be assigned to it.
Figure 12.2 depicts schematically the situation where each of the two substructures
has a number of structural positions, which are close enough to structural positions in
the other substructure so that their alignments with amino acids need to be considered
when calculating the interaction energy in the other substructure. These structural
positions can be considered as extended parts of the other substructure (shown as
extended arms for each substructure in Fig. 12.2). The difference between these ex-
tended parts and the original positions of a substructure is that when doing alignment
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Fig.12.2 Schematic illustration of the divide-and-conquer algorithm of PROSPECT. The blocks
represent core secondary structure elements, and curved lines indicate interactions between linked
secondary structures.

between the substructure and the corresponding subsequence, we do not have any
knowledge about which amino acids are assigned to these positions in the other sub-
structure. Hence, the optimal threading alignment for each substructure/subsequence
pair depends on the optimal threading alignment for other substructure/subsequence
pair. This codependence relationship makes the problem challenging.

In PROSPECT, this problem is overcome using the following strategy: con-
sider all possible combinations of amino acids possibly assigned to these extended
positions (in the other “half” of the problem); and then solve an optimal thread-
ing alignment problem for each substructure/subsequence pair under each possible
combination of amino acid assignments to these extended structural positions. As-
sume that we can solve the optimal threading problem for each pair of (extended)
substructure/subsequence and for each combination of such an assignment. Then it
can be checked that the global optimal threading alignment for the whole structure
and sequence must be the union of two optimal threading alignments for the two
extended subproblems, under one specific combination of the amino acid assign-
ment to the extended part of each subproblem. This realization lays the foundation
for the divide-and-conquer algorithm of PROSPECT as it allows reducing a whole
threading problem to two smaller threading problems. If we can solve the smaller
threading problems, the whole threading problem can be solved by simply going
through all combinations of the amino acid assignments to the extended parts for
each subproblem to find the one that gives the overall best combined score. During
the “conquer” step, it needs to make sure that the two optimal solutions, to be com-
bined, to the subproblems is consistent. To solve a smaller threading problem, we can
apply the same divide-and-conquer strategy to reduce it to even smaller problems.
This procedure can continue until the size of the problem is small enough that it can
be solved using a brute force exhaustive search strategy.

The trick is how to make this algorithm run efficiently. Note that if not done care-
fully, the number of possible combinations of assignments needed to be considered
could be very large. In PROSPECT, (sub)structures are divided in such a way which
minimizes such a number of combinations, through cutting at the “weakest” link with
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the least interactions between two substructures (Xu et al., 1999). The overall compu-
tational complexity of the divide-and-conquer algorithm is dominantly determined
by the thickest link among all weakest links throughout the bipartitioning of a pro-
tein structure into a series of small structures during the whole divide-and-conquer
scheme. Intriguingly, we found that this thickest link is generally a small number for
the vast majority of the solved protein structures (Xu et al., 1999), making the actual
computing time of PROSPECT threading practically acceptable. This observation
has also raised an interesting question: “Is there something special about the topol-
ogy of protein structures, which could be further and more rigorously exploited for
efficient threading algorithm development?”

12.4.2 RAPTOR

RAPTOR uses a more general framework to rigorously solve the threading problem
(Xu et al., 2003a,b) than PROSPECT. It formulates a threading problem as a linear
integer programming (LIP) problem. It uses an integer variable (“0” or “1”) to rep-
resent if a particular residue in the query protein sequence is assigned to a particular
structural position. Then the set of all feasible solutions to a threading problem could
be defined in terms of a set of equalities or inequalities (called constraints), each
of which is defined in terms of the above and other integer variables. The global
optimal threading problem is then defined to find a feasible threading alignment
that optimizes a given energy function. Generally a linear integer programming
problem requires an exponential computing time to find an optimal solution, and
hence intractable for large-size problems. Branch-and-bound represents a popular
technique for solving linear integer programming problems. Typically, an integer
programming problem is first relaxed to a linear programming problem, i.e., vari-
ables could take real values as possible solutions. There are efficient algorithms
for solving linear programming problems as they are polynomial-time solvable
(Papadimitriou and Christos, 1998). If by chance the solution to the relaxed lin-
ear programming problem is all integral, a solution to the original linear integer
programming is found. Otherwise the linear solution will be used to constrain the
search space, through fixing one variable to “0” or “1” and then the algorithm iterates
this process until all solutions have integral values. An interesting observation made
is that for the vast majority of threading problems, this relaxation procedure stops
after a few iterations, solving the threading problem efficiently and also indicating
that threading problems seem to have a special structure in terms of the integer pro-
gramming formulation. Such special characteristics could possibly be utilized for
developing more efficient threading algorithms, using more specialized algorithmic
techniques.

12.4.3 Tree-Decomposition-Based Threading Algorithm

One particularly interesting technique which is being actively investigated by a
number of researchers is based on the idea of tree decomposition of an interaction
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graph representing possible alignments between a query sequence and a template
structure (Song et al., 2005; Xu et al., 2005). In a sense this type of technique
is a generalization of the divide-and-conquer outlined above. Tree decomposition
technique has been widely used for various graph-related optimization problems,
for example finding the maximum independent set and dominating set (Arnborg and
Proskurowski, 1989). We now provide a detailed description of one such algorithm
for solving the protein threading problem.

Using a tree decomposition algorithm, both the template structure and the query
sequence are represented as graphs; vertices denote core secondary structures (or
simply cores) and edges represent interactions between cores (two cores are con-
sidered to be in interaction if their shortest distance is within a predefined cutoff
distance). A sequence-structure alignment problem essentially corresponds to find-
ing an isomorphic mapping from the structure graph to a subgraph of the sequence
graph. The efficiency of the alignment hinges on the tree width of the structure
graph.

Intuitively, the tree width of a graph measures how much the graph is “tree-
like.” A graph can be represented as a “tree having thick trunks,” where the “trunk
thickness” is quantified by the tree width of the graph. This technique of “treelike”
representation for graphs is called tree decomposition. In a tree decomposition of
a graph, vertices of the graph are grouped into possibly overlapping subsets, each
of which is associated with a node in the tree. The maximum size of such a subset
corresponds to the tree width of the tree decomposition. Given a tree decomposition
of a structure graph with tree width ¢, a dynamic programming algorithm can be
employed to find the optimal sequence-structure alignment in time O(k' N?), for
some small integer parameter k and N being the number of amino acids in the
template structure. The alignment algorithm is very efficient since the tree width for
such structure graphs is small in general (by the nature of protein structures). For
example, among 3890 protein tertiary structure templates compiled using PISCES
(Wang and Dunbrack, 2003) only 0.8% of them have tree width ¢ > 10 and 92%
have ¢t < 6, when using a 7.5-A Cg — Cp distance cutoff for defining pairwise
interactions [see Fig. 12.5(a)]. We now provide the details of a tree-decomposition-
based threading algorithm.

12.4.3.1 Graph Representation

A sequence—structure alignment can be formulated as a generalized subgraph iso-
morphism optimization problem, for which both the template structure and the query
sequence are represented as mixed graphs that contain both directed and undirected
edges. We use V(G), E(G), and A(G) to denote the vertex set, the undirected edge
set, and the directed edge (arc) set of a mixed graph G, respectively.

The graph H for the template structure is constructed as follows: each vertex
in V' (H) represents a core, each undirected edge in E(H) represents the interaction
between two cores, and each directed edge (arc) in A(H) represents the loop be-
tween two consecutive cores (from the N-terminal to the C-terminal). For technical
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Fig.12.3 (a) Folded chain B of protein kinase C (PDB-ID 1AV) protein with eight core secondary
structures; (b) its corresponding structure graph.

convenience, both N- and C-terminals are presented as vertices. Figure 12.3 gives a
protein tertiary structure and its corresponding structure graph representation.

A query sequence is preprocessed so that for each core in the template, all
substrings (called candidates) of the query sequence that align well with the core
are identified (Xu et al., 2000). By representing each candidate as a vertex, a query
sequence can also be represented as a mixed graph. That is, each edge in E(G)
connects a pair of candidates that may possibly interact but do not overlap in the
sequence, and each arc in A(G) connects two candidates (from the N-terminal to the
C-terminal) that do not overlap. As in a structure graph, both N- and C-terminals are
represented as vertices in the sequence graph. Figure 12.4 illustrates the sequence
graph with a simple example.

The relationship between a core v in the template and its candidates in the query
sequence can be constrained using a mapping function M such that M(v) contains
all possible candidates of v. The less restricted M is, the more accurate the alignment
is expected to be and the more time it may take to compute. Xu et al. (1998) used
a similar approach in their divide-and-conquer threading algorithm, which can find
all suitable candidates for each core. The maximum size k£ = |M (v) | over all cores
v is called the map width of M, an important parameter for the alignment algorithm.

Now a sequence-structure alignment problem can be formulated as a problem
of finding an isomorphism mapping f between the structure graph and a subgraph of



12. Protein Structure Prediction by Protein Threading 19

1
(b) N< 4 ——6—C
2

Fig. 12.4 (a) Five alignment candidates of cores found after a preprocessing of the sequence,
among which overlapping candidates are <1,2>, <3,4>, and <4,5>, respectively; (b) the corre-
sponding sequence graph (edges are not shown, and arcs incident on N- and C-terminals are not
shown).

the sequence graph G such that the following sum of the alignment energy functions
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achieves the minimum, where E . is the alignment energy score (singleton
type of energy) between a core u in the template and its candidate f () in the se-
quence, E,,; represents interaction energy (pairwise interaction energy) between
residues (f(u), f(v)) assigned to cores (1, v), and Ej,, is the alignment score be-
tween the loop < u, v > in the template and the corresponding <f(u), f(v)> in the
sequence.

12.4.3.2 Tree Decomposition of Structure Graph

For a structure graph H, its tree decomposition (7, X) is defined by a tree topology
T, which is a binary tree, and a collection X = {Xj, X2, ..., X, }, where each X;
is a subset of V(H),called a bag for tree node i in 7. Any tree decomposition (7,
X) of a graph H should satisfy the following conditions: (a) | J X; = V(H); (b) for
any u, v forming an (un) directed edge in the graph, u and 9 are contained in the
same bag; and (c¢) the tree nodes whose bags contain the same vertex should form
a connected subtree of 7. Intuitively, a tree decomposition groups locally connected
vertices together into bags, and the set of vertices in the bag for each tree node can
actually separate the graph into two disconnected components. The tree width of a
tree decomposition is the maximum size of the bag associated with a tree node minus
one. The tree width of the graph is the minimum tree width over all possible tree
decompositions for the graph (Robertson and Seymour, 1986; Bodlaender, 1996).
There are algorithms of time O(cn) that can find an optimal tree decomposition
for a graph of n vertices, provided that the graph has a tree width ¢. However, the
constant ¢ may be too large for the algorithm to be practically useful. For structure
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graphs formulated in our current context, we found that fast heuristic algorithms may
produce tree decompositions with a tree width reasonably close to the minimum tree
width. The following describes one such heuristic algorithm for tree decomposition.

Given a structure graph, two undirected edges (representing two interactions
between cores) cross each other if the four cores involved interleave in their sequential
positions. To find a tree decomposition of the graph, an edge that crosses the greatest
number of other edges is selected and removed from the graph (but the endpoints
of the edge are kept). This process is repeated until the remaining graph does not
contain any crossing edges. The remaining graph is called an outerplanar graph
(Frederickson, 1991) that has tree width 2, whose optimal tree decomposition can
be found in linear time O ( |V(H )| + |E(H )| + |A(E))).

Based on the tree decomposition for the derived outerplanar graph, a tree
decomposition for the original graph can be constructed by adding u, for every
removed edge (u, v), to every bag on the shortest path from the bag containing u to
the bag containing v in the tree. For example, Fig. 12.5(b) gives a tree decomposition
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Fig. 12.5 (a) Tree width distribution of the structure graphs for 3890 protein tertiary structure
templates compiled using PISCES (Wang and Dunbrack, 2003). (b) A tree decomposition for
the structure graph given in Fig. 12.3(b), constructed by first removing edge (3,5), building a tree
decomposition for the remaining graph, and then putting vertex 3 (in the bold font) in node {1,5,4}
on the path from node {1,4,3} to {1,8,5}.
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of the structure graph in Fig. 12.3(b). In Fig. 12.5(b) the crossing edge (3,5) is first
removed and a tree decomposition is constructed for the derived outerplanar graph,
which is then extended to a tree decomposition for the original graph by placing
vertex 3 (in the bold font) in tree node bag {1,5,4} on the path from node {1,4,3} to
node {1,8,5}. This heuristic strategy produces a tree decomposition of size at most
2 + c if there are ¢ crossing edges removed. In actual applications, the obtained tree
decomposition in general has a much smaller tree width than 2 + c.

12.4.3.3 Tree-Decomposition-Based Alignment Algorithm

Once a tree decomposition (7', X) and a mapping constraint M are given, a dynamic
programming can be designed to traverse the tree to find an optimal alignment
between the template structure graph and a subgraph of the sequence graph G, as
follows.

In a bottom-up fashion, the algorithm establishes one table for each tree node
i. Such a table consists of # + 3 columns, where ¢ is number of vertices (i.e., cores)
contained in the bag for the tree node. Each row in the table is a combination f of
candidates for the ¢ cores constrained by M. The additional three columns store the
validity, the score, and the optimality for each such combination. The computation
of these three columns is performed by considering the cores in the present tree node
bag that also occurs in its child node bags and in its parent node bag.

In particular, the validity asserts that the combination f of the cores’ candidates
is legal not only for all cores in the present tree node bag X, but also consistent with
at least one valid combination in the tables of its two child nodes (if it has children).
The score for each combination f in the present table m is calculated as the sum
of the following three scores:

1. The alignment score of the core—candidate correspondences defined by the com-
bination f for the cores in X; only;

2. The maximum score over all combinations in the table m;, for the left child node
k which are consistent with combination f; and

3. The maximum score over all combinations in the table m ; for the right child node
J which are consistent with combination f.

The optimality column indicates if the score for each combination f is optimal over
all combinations with the same candidate choices as f for the subset of cores of X;
that also occur in its parent node bag.

Figure 12.6 illustrates the computation for a row in the table of an internal node
that has two child nodes. The optimal score over all combinations computed in the
table for the root of the tree T is the best alignment score. A recursive routine can be
used to trace back the corresponding optimal alignment.

12.4.3.4 Time Complexity Analysis

There are three steps to accomplish the structure template—target sequence alignment.
The time complexity for each step is analyzed in the following.
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Fig. 12.6 Computing dynamic programming table m; for internal node i based on the tables m;
and m; for its two child nodes & and j. Row f in the table m; is computed based on row g in m,
androw & in m ;. Rows g and h are consistent with f in the overlapping columns {u,, ... ,u, } and
in columns {uy,...,u, }, respectively; g and / are optimal over all rows in the respective tables
which have the same candidate combination for these overlapping columns.

The running time for the tree-decomposition-based structure-sequence align-
ment is O(k't*n), where k is the maximum number of candidates of a core, ¢ is
the width of the tree decomposition, and » = |V (H)|. This is because the tree de-
composition contains at most » nodes, each maintaining a table of at most O(k")
rows. For each row in the table, the combination of core—candidate correspondences
needs to be validated and a score is computed according to the objective function
given in Section 12.4.3.1 (by looking up precomputed values of the three alignment
energy functions Ecore, E pair, and Ejo,,). The former step needs 0(t2) and the latter
O(t* + 2t logh k) (note that the table for a child node can be ordered so as to facilitate
binary search by the computation for its parent node).

It takes O(nN) time to preprocess the target sequence of length N to construct
the sequence graph. Simultaneously, this step precomputes the values of alignment
functions E .. and E 4. The values of function Ej,,, can then be precomputed,
needing time O(k Ei:l I2) = O(knN), where I; is the length of the segment (be-
tween two candidates of cores) to be aligned to the jth loop in the structure, and / is
the total number of loops in the structure.

Putting together the time needed by the preprocessing, tree decomposition,
and the alignment gives us a loose upper bound O(k‘nN), or O(k' N?), for the total
time needed by the whole algorithm for the structure—sequence alignment part of
the threading. Based on preliminary computational results, the tree-decomposition-
based threading algorithm seems to run faster than both the divide-and-conquer and
the integer programming-based threading programs.
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12.5 Assessing Statistical Significance
of Threading Alignments

Protein threading is used mainly for two purposes: (a) identification of the correct
structural fold or folds from a collection of protein structures for a query protein and
(b) prediction of the backbone structure through identifying the correct assignment
(or alignment) of the amino acids of a query sequence to the structural positions
in the correct structural fold. In a way, protein structure prediction through protein
threading could be considered as a problem to find a global optimal threading re-
sult among many sequence-structure alignments. The threading algorithms outlined
in the previous section could only provide the best alignment between a query se-
quence and a particular template structure, i.e., a local optimum. The problem of
finding a global optimum from the many local optima for the threading problem
represents a highly challenging problem. The key reason is that the alignment scores
between a query sequence and different template structures are in general not com-
parable directly with each other. Some structures might tend to have higher baseline
threading scores than the others, no matter what query sequences are used. We can
think of this problem using the following analogy from local sequence—sequence
alignment problems. Suppose we have two “template” DNA sequences (consist-
ing of four different letters). We assume that one sequence is significantly longer
than the other one. For simplicity of discussion, we can regard the length of the
longer one to be infinite. It is not hard to convince ourselves that for a randomly
selected DNA sequence, its best (local) alignment with the longer sequence will
have a higher probability to have a better score than with the shorter sequence. The
reason is that the longer sequence, by chance, should have a higher probability to
have portions of its sequence similar to the query sequence, compared to the shorter
sequence. This indicates that the background alignment-score distributions for the
two “template” sequences are different. Hence, alignment scores against these two
sequences could not be compared with each other directly in a meaningful way.
Similar can be said about structural templates for protein threading. To compare
threading alignment scores, we need to first “normalize” the scores so that the qual-
ity of threading alignments against different templates could be compared with each
other.

For sequence-sequence alignments, there have been a number of methods de-
veloped for assessing the quality of an alignment through assessing the statistical
significance of its alignment score. The p-value calculation for BLAST represents
a popular method for such a purpose (Altschul and Gish, 1996). Developing rigor-
ous and effective statistical models for threading has proven to be more challenging
than sequence alignment problems. Hence as of now, there has not been a domi-
nating method, like the p-value calculation for BLAST, in estimating the statistical
significance of a threading alignment score.

Early studies on statistical significance analysis of threading results were mostly
empirical in nature. A representative of these studies was by Bryant and co-workers
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(Bryant and Altschul, 1995; Panchenko et al., 2000). In their model, they assume
that threading scores between a template structure and a large set of sequences of
the same length and with the same amino acid composition follow a Gaussian dis-
tribution, and have estimated the parameters of the Gaussian distribution through
-calculating these threading scores. Specifically, for a query sequence and a template
structure, they have generated a large number of sequences with the same length
and the same amino acid composition as those of the query sequence by randomly
reshuffling the query sequence and have used these sequences to estimate the pa-
rameters of the Gaussian distribution. With the estimated Gaussian distribution, they
then calculate the probability (p-value) that a random sequence would have a better
threading score than the score between the template and the query sequence. The
effectiveness of this p-value calculation was demonstrated through their success-
ful performance at the CASP3 contest (Panchenko et al., 1999). While effective,
the approach has a number of limitations which have limited its wider range of
applications. These limitations include (a) its high demand for computing time as
it requires solving a large number of threading problems involving the reshuffled
sequences and (b) its not well justified assumption that the threading scores follow
a Gaussian distribution.

It has been shown that the scores of optimal sequence-sequence and structure—
structure alignments generally follow extreme-value distributions (Levitt and
Gerstein, 1998). Based on the assumption that sequence—structure alignment scores
also follow an extreme-value distribution, Sommer et al. (2002) have recently de-
veloped another scheme for p-value estimation, in which parameters of the model
are estimated by fitting the threading scores against an extreme value distribution.
A key characteristic of the work is that it attempts to have a unified model for
threading problems involving different lengths and compositions of the proteins
involved.

Based on the random energy model (REM), Shakhnovich and co-workers sys-
tematically studied the distribution of threading alignment scores (Chen et al., 2003;
Mirny et al., 2000). REM provides an adequate description of equilibrium properties
of random heteropolymers, which assumes that for a query sequence, the energy of
a set of alignments, including the “native” alignment with energy £y and M decoys,
followed a Gaussian distribution with an average energy E,, and standard devia-
tion X. Assisted by a null hypothesis where the optimal native sequence-template
alignment should be the highest ranked, they proved that the threading scores for
random sequence-structure pairs follow an extreme-value distribution. A critical
energy E. was derived, which was a quantity in the REM, for characterizing the
probable lower boundary of the density of states and it represents the most probable
energy value of an optimal random sequence—structure alignment, which is deter-
mined by Eq. (12.1). They used another parameter € for the statistical significance
[Eq. (12.2)] based on E, corresponding to the relative energy gap for an alignment.
This € score has been tested for both gapless threading and limited-gap threading
results. They found that when € > 1, especially whene > 1.2, there was a significant
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energy gap between the optimal alignment and the decoy alignments.

E.=Eq— Y y2In(M/v2m), (12.1)

£_EN—'Eav_ EN_Eav
Ee=Ew  in(M/y2m)

(12.2)

Hence, this quality could be used as a measure for assessing the significance of a
threading alignment.

A good method for assessing the statistical significance of a threading score
should not only allow comparing threading results on the same footing but also
provide a way to indicate if a particular fold is possibly the correct fold for a query
sequence, without using other reference information.

12.6 Structure Prediction Using Protein Threading

A typical threading program consists of four key components from the implementa-
tion perspective: (a) a database of template protein structures, (b) an energy function,
often residue-based, (c) a threading algorithm that can find the optimal threading
alignment between a query sequence and a template structure, and (d) a method for
calculating “significance” scores of threading alignments.

12.6.1 Database of Template Structures

From the prediction accuracy point of view, the larger a template structure database
is, the more accurate we can expect the threading prediction will be. However, it
might not always be realistic to use the whole PDB database as the template database
due to the amount of time required to thread a query sequence against each PDB
structure. Often a template structure database consists of a representative subset of
all the structures in PDB, say PDB-select, which consists of PDB structures with
the “redundant” structures removed. Here “redundant” refers to structures that have
high sequence similarities to other structures in the database. To make prediction
more accurate, some threading programs employ a two-stage strategy: (a) thread
a query sequence against a representative structure database and to identify a few
possible native-like structures, and (b) thread the query sequence against all fam-
ily/superfamily members of the identified structures in (a). Certain preprocessing of
the template database might be needed for some threading programs. For example,
as we discussed in Section 12.4, protein structure needs to be represented as structure
graphs as required by the threading algorithm.
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12.6.2 Threading Energy Function

The majority of the current threading programs employ the types of energy functions
outlined in Section 12.3 or their variations. These energy functions are statistics,
rather than physics, based. They are used to distinguish correct structural folds
from the incorrect ones and to distinguish accurate alignments against the correct
structural folds from inaccurate alignments. Threading programs have been using
these simple energy forms, mainly because of the consideration of computational
efficiency and also partly due to the constraints of limited available structural data
for more sophisticated energy forms when such statistics-based energy functions
were first developed. As those simple energies began to reach their limits, we began
to see more physics-based energy functions developed, as we discussed in Section
12.3. We expect that as the threading algorithms become more efficient, we will see
more physics-based energy functions. We expect that one particular type of extension
to the existing energy functions is to consider multibody interactions, which have
been mostly ignored by existing threading programs. Recent studies have shown that
multibody interactions could help to improve the performance of threading programs
(Munson and Singh, 1997; Li and Liang, 2005), and hence should be considered.

12.6.3 Threading Algorithm

Existing threading programs employ various algorithmic techniques for solving the
sequence-structure alignment problem, including dynamic programming with en-
hanced heuristics (Westhead et al., 1995; Skolnick and Kihara, 2001; Zhang et al.,
1997), divide-and-conquer algorithm (Xu and Xu, 2000), and integer programming
(Xu and Li, 2003; Xu et al., 2003a,b). In this chapter, we presented a new class
of threading algorithm based on a tree decomposition of sequence and structure
graphs. While integer programming might represent the most general framework for
handling sequence-structure alignments, particularly so for threading problems con-
sidering multibody interactions, tree-decomposition-based algorithm could prove to
be more popular down the road because of its conceptual simplicity and computa-
tional efficiency. We expect that a class of more general threading algorithms will
begin to emerge to deal with more complex threading problems as the existing thread-
ing algorithms become faster and faster. This general class of threading algorithms
should be able to handle simultaneous backbone threading and side-chain packing
problems, leading to significantly more accurate capabilities in fold recognition and
protein structure prediction.

12.6.4 Assessing Prediction Reliability

Existing threading programs use various ideas and techniques to assess the “signif-
icance” of threading results. These methods include z-score calculation (Sommer
et al., 2002), normalized threading scores using techniques such as support vec-
tor machines or neural network (Xu et al., 2002; Ding and Dubchak, 2001), and
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Table 12.3 A list of major threading programs and their URLs

123D http://123d nciferf.gov/123D+. html

3D-PSSM http://www.sbg.bio.ic.ac.uk/~3dpssm/

FUGUE http:/fwww-cryst.bioc.cam.ac.uk/~fugue/

GenTHREADER http://bioinf.cs.ucl.ac.uk/psipred/

HMAP http://trantor.bioc.columbia.edu/hmap/

LOOPP http://cbsuapps.tc.cornell.edu/loopp.aspx

NCBI Threading Package http://nchi.nih.gov/Structure/RESEARCH/
threading.shtml

PROSPECT http://csbl.bmb.uga.edu/downloads/H#prospect

PROSPECTOR http://cssb.biology.gatech.edu/skolnick/

RAPTOR http://www.bioinformaticssolutions.com/
products/raptor/

UCLA-DOE Structure Prediction Server http://fold.doe-mbi.ucla.edu/

more rigorous calculations of p-values based on statistical models (Panchenko et al.,
2000; Bryant and Altschul, 1995). While useful to some degree, none of these meth-
ods have reached the level of performance comparable to p-value calculations for
BLAST sequence alignments (Altschul and Gish, 1996). This is possibly due to a
combination of the inadequacy of the existing threading energy functions for accu-
rate threading prediction and the lack of general understanding about distinguishing
characteristics between correct and incorrect native folds and between correct and
incorrect placements of amino acids into structural positions. Overall, compared to
other areas of protein threading, this is a somewhat underdeveloped area. New ideas
and techniques are clearly needed to fill the holes in this area.

Because of the importance of solving protein structures for functional studies
and the power of threading techniques, many protein threading programs have been
developed. Using these programs, a large number of protein structures have been
predicted prior to the solution of their experimental structures, providing highly
useful information for guiding experimental design in investigation of these proteins.
Examples of such predictions include an obese gene (Madej et al., 1995), vitronectin
(Xuetal.,2001),and a SARS protein (von Grotthuss et al., 2003). Table 12.3 provides
a list of popular threading programs and URLs for accessing these prediction tools.

We now summarize the highlights of some of these threading programs which
use different energy functions and different computational techniques, each of which
has its strengths and limitations.

PROSPECT (Xu and Xu, 2000; Kim et al., 2003): The PROSPECT program
employs a divide-and-conquer algorithm for rigorously solving the global optimal
threading problem, which employs a somewhat standard threading energy function,
including a singleton energy term and a pairwise interaction energy term plus a
secondary structure fitness score and a gap penalty score. For a typical threading
problem, it can find the best alignments against a template structure database of
20004 within a couple of days on a single CPU while it can virtually get a linear
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speed-up using multiple CPUs when the number of CPUs is smaller than the number
of structures in the template structure database. It achieves its computational effi-
ciency by taking advantage of the fact that protein structures generally have small
topological complexities (Xu et al., 1998) and through using a filtering procedure
to filter out “improbable” alignment positions for each core secondary structure in
the template structure. While this heuristic filtering works well for the vast majority
of the threading cases, it might filter out the correct alignment positions for some
cases. PROSPECT normalizes the threading scores, along with various parameters
of the template structure and the query sequence, using a support vector machine.
Then a z-score is calculated based on the “normalized” threading scores.

RAPTOR (Xu and Li, 2003; Xu et al., 2003a,b): The RAPTOR program for-
mulates a threading problem as a linear integer programming problem, and solves
the problem using a branch-and-bound method plus a standard integer programming
solver. RAPTOR employs the same energy functions of PROSPECT and uses a sim-
ilar approach for assessing the “statistical significance” of threading results to that
of PROSPECT. A unique feature of the program is that its threading algorithm is
more rigorous than that of PROSPECT as it does not use a heuristic filter to filter
out “improbable” alignment positions. For a typical threading problem, it takes min-
utes to hours to thread the query sequence against 2000 structures in its structure
database. Since the program is data-parallelizable, its speed-up is virtually linear
when running on multiprocessor computers.

GenTHREADER (Jones, 1999b) and an improved version mGenTHREADER
(McGuffin and Jones, 2003) use PSI-BLAST profile (Altschul et al., 1997) and
predicted secondary structures by PSIPRED (Jones, 1999a) for threading. It employs
a double dynamic programming strategy (Jones et al., 1992) in its threading program.
The algorithm does not treat pairwise interactions rigorously but its performance has
been among the top threading programs, indicating the effectiveness of this strategy.
A Web server for this program has been set up at http://bioinf.cs.ucl.ac.uk/psipred;.
A user in general can expect the return of a threading prediction in minutes. The
prediction program runs fast enough that it can be used for genome-scale protein
structure predictions.

PROSPECTOR (Skolnick and Kihara, 2001) recognizes native-like structural
folds using a hierarchical strategy for obtaining sequence profiles. It uses two types
of sequence profiles, one type derived using close homologous sequences whose
sequence identity lies between 35% and 90%, and another type constructed using
more remote homologous sequences with a FASTA E-value less than 10. Both types
of sequence profiles are incorporated into a typical threading energy as described
in Section 12.3 to screen a structural database. The program uses a dynamic pro-
gramming algorithm to find the best threading alignment, and employs z-scores for
assessing the significance of each threading alignment.

FUGUE (Shi et al., 2001) uses a typical threading energy function as de-
scribed in Section 12.3, with some unique features: (1) its structural environment
singleton term includes a term for hydrogen bonding status, and the singleton term
was derived from structural alignments in the HOMSTRAD database (de Bakker
et al., 2001; http://www-cryst.bioc.cam.ac.uk/homstrad/ }; (2) its gap penalties are
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structure-dependent based on solvent accessibility, its position relative to the sec-
ondary structure elements, and the conservation of the secondary structure elements;
and (3) its alignment is based on multiple sequences against multiple structures to
enrich the conservation/variation information. FUGUE uses dynamic programming
as its threading algorithm and employs z-scores to assess the statistical significance
of a threading result.

Since each of these threading programs has its own strengths and limitations,
a popular strategy for predicting a protein structure is to use multiple prediction
programs and combine their prediction results. Further discussion on this topic is
given in Chapter 17. We now use PROSPECT as an example to illustrate how to
use a threading program for predicting structures of SARS-CoV proteins (Wan
et al., 2005), which play a role in the development of the SARS disease. We used the
PROSPECT pipeline to survey all of the 11 Open Reading Frames (ORFs) in SARS-
CoV strain Urbani (GenBank ID: 30027617), one of the first SARS-CoV genomes.

Among the 11 ORFs, the S and M proteins play a key role in the virus infection
process. Interestingly, both the M protein and the S2 domain in the S protein are
predicted to adopt the fold of Ig-like beta sandwich. The structural similarity suggests
that the S2 domain and the M protein may be evolutionarily related through gene
fusion and duplication, although their sequences do not have significant similarity
after a long period of evolution. The threading results might explain how the M
protein interacts with the S2 domain, for the virus assembly: since the S2 domain
with the fold of Ig-like beta sandwich can interact with the S1 domain, the M protein
with the same fold could possibly interact with the S1 domain. This suggests that the
S1 domain may act as an on/off switch between the S2 domain and the M protein.
Such a mechanism may suggest that the M protein could also be involved in the
virus-host cell interaction. This hypothesis was supported by a recent study in the
murine hepatitis coronavirus study, which showed that glycosylation of the M protein
affected the interferogenic capacity of the virus (de Haan et al., 2004).

Threading programs have been used for genome-scale applications. A recent
study (Guo et al., 2004) performed structure prediction for all of the ORF's of Pyro-
coccus furiosus, which is found in the marine sand surrounding sulfurous volcanoes
and can grow at temperatures above 100°C. The microbe utilizes peptides, proteins,
and some carbohydrates as carbon sources. Its entire genome is about 2 Mb in
length with 2195 annotated ORFs. Out of a total of 2195 ORFs, 540 are predicted
to be membrane proteins, and 753 proteins can be predicted with structures in high
confidence, among which 190 ORFs cannot be detected using PSI-BLAST.

12.7 Improving Threading-Based Structure Prediction

Recent prediction results in CASPs indicate that even when the correct structural
folds are identified, the threading alignments could often be off. From the same
statistics, we found that the overall alignment accuracy has not been improved over
the past few CASPs. In addition, the alignment accuracy of the best CASP models
using templates with <30% sequence identity ranges from 60% to 90% (Venclovas
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etal., 2003). All these statistics suggest that there is significant room for improvement
in threading alignments. The prediction accuracy of the current threading programs
is mainly limited by the inaccuracy of statistics-based and residue-based threading
energy functions. While improving the threading energy functions represents one di-
rection to take for improving threading performance, other approaches may also help,
which include (a) application of partial experimental data as constraints in the thread-
ing process and (b) refinement of threaded structures using molecular dynamics and
energy minimization. We refer the reader to Chapter 11 for related discussions.

12.7.1 Application of Experimental Data as Threading Constraints

Often partial structural data is available for specific proteins before the determination
of the detailed structure of a protein. These partial structural data might be in the form
of (a) residue-residue distances such as disulfides between specific cysteines, (b)
specific residues involved in particular active sites, binding sites, or other functionally
important sites, (c) specific residues known to be on the surface of a protein structure,
or any other information providing geometric information about specific residues
in a protein structure. In addition to such information about specific residues, there
are experimental techniques that can be used to generate geometric information in
a systematic manner.

NMR represents one such technique. NMR methods solve a protein structure
through generating either distance restraints [called NOE, or nuclear Overhauser
effect, distances (Prestegard, 1998)] between different residues (or more specifi-
cally different atoms) or orientations of certain chemical bonds in a protein, called
residual dipolar coupling (Tolman et al., 1995). Then a protein structure is solved
through finding structural models that are consistent with the collected geometric
constraints and have their energy minimized. To accurately solve a protein structure
using NMR technique, it typically requires 15-20 distance restraints per residue
(Clore et al., 1993), which will require multiple NMR experiments. Partial distance
restraints could possibly be collected using fewer NMR experiments, possibly in-
volving labeling of specific amino acid types. Similar can be said about orientation
information collected through residual dipolar coupling experiments. While these
partial NMR data might not be sufficient for solving a protein structure accurately,
they provide highly useful constraints for protein fold recognition and backbone
structure prediction by a threading method.

Chemical cross-linking experiments provide another systematic approach to
generating partial structural information for a protein. In such experiments, chem-
ical cross-linkers, with customized arm lengths, are designed to link specific types
of amino acids within a certain distance range (Cohen and Sternberg, 1980). Such
experiments followed by tandem mass spectrometry experiments and data interpre-
tation could provide distance information between certain amino acids. Such an
approach has been used for structural data collection for both soluble and membrane
proteins (Yan et al., 2005), which have then been used for protein structure prediction
(Young et al., 2000).
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One way to use such structural information, such as distances or structural
locations, in a threading program is to add an energy term in the threading energy
function, which measures the consistency between the collected structural data and
a threading alignment. For example, if residues A and B are known to be within
a certain distance, then an energy term could be specifically designed to penalize
threading alignments which violate this particular geometric constraint. The energy
term could be designed so that the bigger the violation, the larger the penalty. Sim-
ilarly, if a residue X is known to be on the surface of a protein structure, an energy
term could be specifically designed for this knowledge so that it penalizes threading
alignments that do not put X into a surface position in the template structure, and
the amount of penalty could be designed to reflect the degree of violation of this
particular knowledge. To deal with all geometric constraints, we can design a new
energy term Eg,which is the sum of the individual penalty functions for all the
specific geometric constraints. The overall scaling factor for this new energy term
in a threading energy function could be empirically determined based on a training
data set, for which actual partial experimental data is available.

The effectiveness of applying such partial structural data in a threading pro-
gram has been documented in a number of studies (Xu et al., 2000b,c; Young et al.,
2000; Qu et al., 2004a,b). Table 12.4 shows a systematic study on improving the

Table 12.4 Improvement of threading performance using increasingly more NOEs

RMSD A/ rank vs. percentage of assigned ss

class  query temp 0 20% 40% 60% 80% 100%

1bbn Ient 16.2/29 6.5/11 6.5/4 6.5/2 6.4/3 5.3/11
litl 3inkC 13.1/7 6.6/2 9.211 6.6/2 3.51 3.52
o Iner 1imb3 3.8/57 3.0/11 3.0/6 3.0/5 3.0/4 3.0/4
1il6 1bgj 3.0/1 2.8/1 2.8/1 2.8/1 2.8/1 2.9/1
locd lcyj 3.4/1 3.3/1 331 3.3/ 3.3/1 3.3/1

1maj lagdB 8.8/37 10.3/34 10.4/34 10.4/18  9.0/14 9.0/9
Inct Ibec 14.7/1 14.2/1 14.2/1 14.2/1 14.2/1 14.2/1

B Ibla lhce 7.7/1 3211 3.2/1 2.4/1 241 2.4/1
1vhp icd8 4.5/1 4.0/1 4.0/1 4.0/1 4.0/1 4.0/1
1ghj liyu 2.0/1 2.0/1 2.0/1 1.8/1 1.8/1 1.8/1
1a7i 1gli 2.8/1 2.9/1 2.9/1 291 2.8/1 2.8/1

lafi 2acy 6.8/376  7.8/369  7.8/235  5.6/133  5.7/53  5.6/38
3trx 1a8y 4.1/1 2.9/1 2.1 2.8/ 2.1 2.1
/B likm 1dokB 2.12 2.012 2.01 2.0/ 2.0/1 2.01
3phy 1bv6 12.2/41 4.1/24 3.1/14 3.1/9 3.4/5 312
lerp 1byuB 2.6/1 2.2/1 2.2/1 221 221 2.2/1
1fht 2ula 4.5/ 221 2211 2.2/1 2.2/1 2.2/1

“Query” and “temp” represent the PDB codes of the query and template proteins, respectively. “RMSD/rank vs. per-
centage of assigned ss” are the Ca-RMSD between the experimental structure and the predicted structure using MODELLER
based on threading alignments for the alignable portions in the structure-structure alignment between the query protein and
the template, and the rank of the correct template structure among 667 templates. 0%, 20%, 40%, . . ., 100% represent the per-
centage of residues with secondary structure assignment, respectively. The highlighted numbers show improvement between
using no secondary structure information and using full secondary structure assignments.
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threading performance by incrementally increasing the number of NMR/NOE dis-
tance constraints used in a threading process. It is seen that distance constraints help
both fold recognition and threading alignment accuracy.

12.7.2 Improving Structural Quality through Molecular Dynamics
and Energy Minimization

In the best scenario, a threading program can provide an accurate prediction of
the backbone atoms of a protein structure, which is still a long way from having
a detailed all-atom structure. In the most general situation, a threading program
could provide a somewhat accurate structure for the backbone atoms in the core
secondary structures while predictions for the loop regions are often not accurate.
The reason is that threading predicts a structure based on a known template structure.
While the core secondary structures among homologous proteins are generally “well”
conserved, loops are often not. Hence, template-based loop predictions are generally
not accurate. Fortunately, existing methods for short loop prediction (< 14 residues)
have reached a level that the predicted loops could be as accurate as the predicted
core structure. For example, the recent work by Jacobson et al. (2004) has achieved
prediction_accuracy of 0.43 A for S-residue loops, 0.84 A for 8-residue loops,
and 1.63 A for 11-residue loops, using an accurate all-atom energy function and
hierarchical refinement protocol.

Potentially the predicted full backbone structure, after adding loop structures,
could be refined using an energy-based approach. To do this, one needs to put all the
atoms, backbone and side chains, into a structural model. One can use alignments
with the selected templates in fold recognition to produce a 3D atomic model through
homology modeling tools, such as MODELLER (Sali and Blundell, 1990), which
runs a protocol of energy minimization and molecular dynamics simulation to refine
a structural model. After a structure model is generated, one can apply structure
assessment tools such as WHATIF(Vriend, 1990) and PROCHECK (Laskowski
et al., 1993) to evaluate the packing and backbone conformations, the inside/outside
occupancies of hydrophobic and hydrophilic residues, and stereochemical quality of
a predicted structure. Based on this assessment, a user can pick the best among the
multiple structures derived from an alignment.

12.8 Challenging Issues

While widely used, the potential of protein threading as a protein structure and
function prediction technique is far from being fully realized. There are a number
of factors that have limited its wider range of applications. First, fold recognition
for structural analogues and some remote homologues is still challenging (Kinch
et al., 2003; Sippl et al., 2001). Such proteins might account for about 40% of all
proteins encoded in a typical genome according to our studies (Xu et al., 2003;
Guo et al., 2004). These structures are theoretically modelable using comparative
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modeling techniques such as protein threading, but the predictions typically gave a
low confidence level and the results may be wrong. Second, even when a correct fold
is identified, the accuracy of threading alignment has been about 60-90% for proteins
with less than 30% sequence identity with their template structures (Venclovas et al.,
2003). Novel ideas and new techniques are clearly needed now to make a major jump
in improving the prediction capability of the existing threading methods; this has
become quite clear based on the slow and incremental improvements in threading
performance in the past few CASP contests (Venclovas et al., 2003).

Energy Function

The current energy functions are generally coarse gained mainly to achieve fast
predictions. Given the significant advances in computer hardware and algorithm
development, it may be the time to use more sophisticated energy functions. For ex-
ample, multibody interactions and more physical energy functions may help improve
the threading prediction accuracy.

Threading Algorithm and Implementation

Although many theoretical studies have been carried out for threading algorithms,
there is still significant room for further improving the computational efficiency
of threading programs. Better search methods against structural templates using
advanced database techniques have not been explored thoroughly. More work can be
done at the implementation level in a similar way to the implementation of BLAST,
where many low-level operations were implemented in a highly efficient manner. In
addition, algorithmic development needs to address new types of energy functions,
such as new threading algorithms that could handle simultaneous backbone threading
and side-chain packing to fully take advantage of more detailed energy function
forms. Threading algorithms that could handle multibody interactions and energy
functions capturing more global properties (e.g., compactness) of proteins are clearly
underdeveloped.

Statistical Significance Analysis of Threading Results

Existing confidence assessments are either too time-consuming in computation or
not sufficiently accurate. More rigorous and faster assessment techniques for thread-
ing are clearly needed to achieve comparable performance to that of BLAST. As-
sessments of different alignments using the same fold were basically not studied.
Furthermore, identification of “reliable” versus “unreliable” parts of a threaded struc-
ture, and quantitative assessment of the structural deviations in terms of RMSD for
regions of predicted structures have not been achieved.

Consensus Building and Subdomain Threading

It has been found that using multiple fold recognition programs to build consen-
sus of structural template is an effective way to increase the prediction accuracy
(Lundstrom et al., 2001). Furthermore, one can thread subdomain structures and
use these substructures from different templates to build a new structure through
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a shotgun approach (Fischer, 2000, 2003). Currently a consensus was built by a
simple scheme of majority vote. Much statistics can be done to do this in a more
scientifically sound way. In addition, how to piece different substructures together
to form a global protein structure is another challenging issue. Further discussion
on consensus building and subdomain threading can be found in Chapter 17.

12.9 Summary

As a structure prediction technique, threading potentially applies to at least 80% of
all protein families. However, the application of threading to membrane proteins has
been very limited due to the lack of available structural templates. Threading tech-
niques have been widely used for various purposes in biological studies, including
(a) functional studies of proteins and experimental design (e.g., targeted mutagen-
esis) (Madej et al., 1995; Xu et al., 2001; von Grotthuss et al., 2003), (b) genome
annotation (Xu et al., 2003; McGuffin et al., 2004), (c) helping solve experimental
structures (Ye et al., 2004), (d) modeling protein complex structures (Lu et al., 2003),
(e) prediction of misfolded structure (see Chapter 9), and (f) protein design (Soren-
son and Head-Gordon, 1999). To further increase the utility of threading techniques
to meet the needs for genome-scale protein structure prediction to keep up with
the rate of genome sequencing and gene prediction, we clearly need a new genera-
tion of threading energy functions, threading algorithms, methods for assessing the
statistical significance of threading results, and refinement of threaded structures.

Suggested Further Reading

There are several comprehensive reviews and books on various aspects of threading.
Recent reviews related to threading include Fetrow et al. (2002) and Godzik (2003).
A number of books also provide some general coverage of threading and protein
structure predictions (Tsigelny, 2002; Jiang et al. 2002; Bourne and Weissig, 2003).
For scoring function, the readers can find more information in Chapters 2 and 3 of this
book. For more information about general protein structure and structure—function
relationship, we recommend Branden and Tooze (1999) and Lesk (2001).
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