A Distributed Architecture
for Massively Multiplayer Online Services
with Peer-to-Peer Support

Keiichi Endo!, Minoru Kawahara?, and Yutaka Takahashi®

! Kyoto University, Kyoto 606-8501, Japan (endo@sys.i.kyoto-u.ac. jp)
? Ehime University, Matsuyama 790-8577, Japan (kawahara@cite.ehime-u.ac. ip)
3 Kyoto University, Kyoto 606-8501, Japan (takahashi@i.kyoto-u.ac.jp)

Abstract. This paper deals with Massively Multiplayer Online Ser-
vices, users of which communicate interactively with one another in
real time. At present, this kind of services is generally provided in a
Client-Server Model, in which users connect directly with a central
server managed by a service provider. However, in this model, since
a computational load and a communication load concentrate on the
central server, high-performance server machines and high-speed data
links are required. In this paper, we propose an architecture for dis-
tributing the loads by delegating part of the server’s function to users’
machines, which is based on a Peer-to-Peer Model.

When we adopt a Peer-to-Peer Model, we face a security problem. In
our research, we let multiple machines of users manage the same data
and apply a decision by majority rule. This mechanism adds robustness
against halts of users’ machines and data tampering by malicious users
to the service.

Key words: peer-to-peer, cheat-proof, interactive, real-time applications

1 Introduction

In recent years, more and more people make use of those interactive services
such as online games, online chats, online auctions, and online trades, users
of which send and receive information in real time. In the services, many users
connected to the Internet share the database. In this paper, this kind of services
is called Massively Multiplayer Online (MMO) services.

At present, MMO services are generally provided in a Client-Server Model,
in which users connect directly with a central server managed by a service
provider. However, this model has a disadvantage that a computational load
and a communication load concentrate on the central server. High-performance
server machines and high-speed data links are required to provide an MMO
service in the model. Therefore, many researchers have devised methods to
provide the service in a Peer-to-Peer (P2P) Model. In a P2P Model, users
contribute CPU cycles, memories, and bandwidths to the service, and the load

Please use the following format when citing this chapter:

Lndo, K., Kawahara, M. and Takahashi, Y., 2007, in IFIP International Federation lor Information Processing, Volume 229,
Network Control and Iingineering for QoS, Security, and Mobility, IV, ed. Gaiti, D., (Boston: Springer), pp. 147-158.

148 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi

on the server machine is reduced. However, there are some problems to be
solved for a practical use. First, the service must have robustness against halts
of users’ machines. That is, the service must not be stopped or lose data by user’s
sudden disconnection. Second, the service must overcome network congestion.
Users’ machines are apt to get communication interruption over several seconds.
Finally, the service must not be influenced by cheating. Delegating part of the
server’s function to users’ machines increases the opportunities for illegal acts
such as data tampering.

In this paper, we try to solve the above-mentioned problems by letting
multiple machines of users manage the same data and applying a decision by
majority rule. We compare the proposed model with Client-Server Model and
an existing P2P Model by performance analysis. We focus mainly on MMO role
playing game services here, however, the model with appropriate modifications
can be applied to other services such as online chats, online auctions, and online
trades.

The rest of this paper is organized as follows. Section 2 presents related work.
In Section 3, we discuss our model. Section 4 describes the detailed algorithms
used in our system. Performance analysis is stated in Section 5. We conclude
and discuss future work in Section 6.

2 Related Work

Bucket Synchronization [1] is a distributed synchronization mechanism
which enables a P2P multiplayer game to maintain state consistency regard-
less of network delay. This mechanism divides time into fixed-length periods
and a bucket is associated with each period. A user sends an action message
to other users when he takes an action. Receiving the message, a user stores
it in the bucket corresponding to the period during which it was sent. Actions
in a bucket are executed to compute each user’s local view some time after the
end of the period for the bucket. The game Age of Empires is an example of
real applications based on Bucket Synchronization. This mechanism has several
problems about cheating. For instance, a user can unjustly gain an advantage
by deciding his action after getting the information of what other users do for
the current period, which is called lookahead cheat.

Lockstep Protocol [2] solves this problem by forcing each user to commit
all the actions for the current period before the actions are revealed. In this
protocol, each user at first sends a cryptographic hash of his action, instead of
the content of the action. However under the protocol, action delay, i.e. time
required for an action to be displayed on users’ screen after the action is taken
by a user, is longer than three times the latency of the slowest link between
any two users. Asynchronous synchronization is also suggested to shorten the
average of action delay, but it worsens jitter (how much action delay varies).
This property is unfavorable especially for game applications.

A Distributed Architecture for MMO Services with P2P Support 149

Adaptive Pipeline Protocol [3] improves the jitter by adjusting its parameter
to adapt to network conditions. However, the action delay under the protocol
is still rather long.

Reference [4] proposes a way to make action delay shorter by permitting
rollbacks when state data become inconsistent among users. However, displaying
wrong information temporarily is not acceptable for many kinds of applications.
Though it is possible to decrease the frequency that rollbacks are carried out at
the cost of action delay [5], the delay becomes too long if we attempt to make
the probability low enough because of network congestion.

NEOQ Protocol [6] achieves a shorter action delay without the need of roll-
backs by letting each user accept an action message from another user if the
majority of users receive it during a fixed-length period. Though this protocol
realizes a high-performance and cheat-proof system on a fixed topology, cheat-
proof processing methods of storing state data and user’s moving into another
group (what is called site in the next section) are not stated, and this problem
is probably difficult to solve. Moreover, users with high-latency data links are
not able to use the service. For those users, making use of the service with some
disadvantages due to the slow link would be better than being refused to use
the service. A service provider also would like to get as many users as possible,
provided that slow users do not cause other users inconvenience (e.g. longer
action delay).

In the architectures discussed above, each user manages state data which
he needs to know, and directly receives action messages from other users. We
call these user-centric architectures in this paper. The architecture has some
drawbacks. One of those is that a user must receive an action message with a
message header, which consists of an IP header etc., separately from each user.
That is quite inefficient especially in a game application where users frequently
send small packets to one another.

The following studies discuss server-centric architectures. In the architec-
ture, only one user has an authority to update a certain portion of state data,
which provides a consistent environment for all users.

Mercury [7] is a distributed publish-subscribe system for game applications.
The routing algorithm in this architecture takes O(n) hops on average, where
n is the number of users. References [8] and [9] reduce required routing hops to
O(logn) by the use of Distributed Hash Table. Reference [8] also achieves high
durability of state data by replicating them. In all these architectures stated
in this paragraph, each part of state data is exclusively managed by one user.
Therefore, these architectures have cheating problems such as data tampering.

3 Proposed P2P Model

The P2P Model we propose is similar to server-centric architectures stated
above, but differs in that multiple users manage each part of state data.

150 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi

Fig. 1. Model of managing a site.

Although the MMO service has many simultaneous users, a user can always
see a limited area, which is called a site in this paper. That is, there are some
sites in the service, and each user belongs to one of them. A user can move
from one site to another. User’s action is made known in real time to only those
users staying on the same site. This property makes it possible to transfer the
service function of a site to users’ machines. User’s machine managing a site is
called a Site Server.

Fig. 1 illustrates how Site Servers manage one site in our model. Each user
is connected with all the Site Servers which manage the site where the user is.
All the Site Servers managing the same site form a complete graph. When a
user takes an action, the user sends a message to all the Site Servers in order to
tell the action. Then, Site Servers update state data, which are classified into
two types: those of a user and those of a site. For instance, in a role playing
game service, the position of a user and information of items put on a map
(site) correspond to state data of a user and those of a site, respectively. When
updating state data, Site Servers synchronize processing order of users’ actions
to have the same state data as one another’s. Finally, the Site Servers notify
the users on the site of the update. For robustness against cheating, each user
accepts the update which the majority of the Site Servers send.

4 Algorithms
4.1 User’s Logging in
When a user starts using the MMO service, the first thing to do is to con-

nect! with the Administration Server. Then the Administration Server authen-
ticates the user.

1 All connections in our system are TCP connections.

A Distributed Architecture for MMO Services with P2P Support 151
4.2 Transferring the Service Function of a Site

While there are only a few users, the MMO service is provided in a nor-
mal Client-Server Model, i.e., the service functions of all the sites are in the
Administration Server. As the number of users increases, the load on the Ad-
ministration Server becomes higher and higher. Therefore, the service function
of a site is transferred to users’ machines on a certain condition. For example,
the transfer is carried out when the number of users on a site reaches a given
parameter. By this mechanism, the users’ machines, which are called “peers”
in the following discussion, gradually form a (Hybrid) P2P Network.

When the Administration Server decides to transfer the service function of
a site, it chooses Ngepver peers which the service function is delegated to, where
Ngerver 18 a fixed positive odd number. Although the selection can be made on
various strategies, currently we adopt a simple way, which is to make a random
choice from all the peers not managing a site yet. In order to decrease the
influence of cheating, the Administration Server also avoids selecting a user on
the site whose service function is about to be transferred.

4.3 Handling Action Messages

When a user takes an action except logging in or out, the user makes an
action message, which represents the user’s behavior. If the user is on a site
which is managed by the Administration Server, the user sends the message to
the server. After receiving the message, the server immediately processes it and
updates state data. The message can change not only state data of the user
but also state data of the site and/or those of other users on the site. Then, by
sending an update message to all the users on the site (or to users who have the
necessity of knowing the state update), the server lets the change of conditions
be known.

On the other hand, if the site is managed by Site Servers, the procedure
stated in the rest of this subsection is carried out. The user sends the action
message to all the Site Servers which manage the site. The message includes an
action number for identification. After receiving the message, each of the Site
Servers memorizes the user number, the content of the message, and the time
when the message is received. The clocks of the Site Servers are synchronized
in advance by a mechanism like NTP (Network Time Protocol) [10]. Unlike the
case of an Administration Server, the Site Server does not process the message at
this time. A mechanism which makes the processing order of action messages
the same between the Site Servers is required. In our system, the processing
order of action messages is determined using the median of the arrival time
at each Site Server. The reason why a median time is used is to diminish the
influence of cheat. The next paragraph shows the details.

At intervals of a fixed span Tiimesiot, @ Site Server sends a Timeslot Message
to all the other Site Servers of the same site. The message consists of the site
number, the transmission time (time stamp), and the sets of {user number,

152 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi

action number, arrival time} for all the action messages which are received
after the last transmission of a Timeslot Message. When a Site Server receives
a Timeslot Message, the server memorizes the message and updates state data
in the algorithm shown below.

1. From actions such that the information of them is received from at least
Nmajority Site Servers including the server itself, the server picks out the
actions whose Npajority-th earliest arrival times are older than any time
stamp of the last Timeslot Message from each Site Server. Numajority is 8
minimum integer which is greater than the half of the number of Site Servers
managing the same site, i.e.,

N, +1
Nmajority = Lv;r___. (1)

This step means that the server singles out the actions whose median arrival
times are determined. If there are not such actions, the update of state data
is not done.

2. The Site Server updates state data by processing the action messages cor-
responding to the picked actions in the order of Npajority-th earliest arrival
time. If there is an action message which the server has not received yet,
the server waits for the arrival of the message from the user who has taken
the action.

3. The server sends an update message to the users.

A user receives the same update messages in the same order from all the Site
Servers of the site unless there are malicious users or network congestion. The
user does not accept an update message until the user receives Nmajority update
messages with the same contents from different Site Servers for fear that the
MMO service should be attacked by some cheaters. After the update message
is accepted, the image on the screen is updated.

To reduce communication load, (Nmajority — 1) Site Servers actually sends
only a hashed value computed from an update message.

4.4 Overcoming Network Congestion

The algorithm stated in the foregoing subsection needs to be improved be-
cause the action delay is strongly affected by network congestion. For instance,
when Timeslot Messages from a Site Server to not less than Npajority Site
Servers are delayed, the service function of the site is stopped. We solve this
problem in the way stated below.

We let Tiimeous be a fixed span which is longer than Tijmesior. If & Site
Server has not received a Timeslot Message from another Site Server at Tiimeout
after the time stamp of the last Timeslot Message, the server sends a Timeslot
Request Message (TRM) to all the other Site Servers of the same site except the
server which the Timeslot Message has not come from. If a Site Server receives a

A Distributed Architecture for MMO Services with P2P Support 153

TRM, the server checks whether the server has received the requested Timeslot
Message before. If it has, the server sends back the requested message.

If the server receives TRMs from all the Site Servers which the server has sent
the TRM to, or if a given length Treq timeout has passed since the transmission
of the TRM, the server ignores the delayed Site Server for a period of Tignore-
Ignoring a Site Server means disregarding Timeslot Messages from the server
and performing ordering of users’ actions without the server when updating
state data. In this algorithm, a Site Server which is ignored by one Site Server
is ignored by all the other Site Servers of the same site, too. If the delayed
message is not received within the period of Tignore, the Administration Server is
requested to choose an alternative Site Server. This mechanism adds robustness
against halts of users’ machines to the service.

4.5 Switching Sites

When a user moves to another site, the user gets the IP addresses of the Site
Servers managing the site from the Administration Server. The Administration
Server receives the state data (or the hashed value of the state data) of the user
from all the Site Servers managing the current site. Then, after verifying the
rightness of the state data by comparison, the Administration Server sends the
data to all the Site Servers managing the destination site.

As already stated, it is undesirable for a site to be managed by a user on
the site. Therefore, if a user moves to a site which is managed by the user,
the Administration Server selects an alternative Site Server and orders the
moving user to send all the data concerning the site to the new Site Server. The
Administration Server also notifies the other Site Servers and all the users on
the site that the Site Server has been changed.

4.6 User’s Logging out

When a user finishes using the MMO service, the Administration Server
stores the state data of the user. In case that Site Servers have the data, the
Administration Server requests the Site Servers to send back the data and stores
the majority of them. If the user has a service function of a site, the user sends
all the data about the site to the Administration Server, and the Administration
Server gives the data to a newly selected Site Server.

5 Performance Analysis

5.1 Communication Load

In terms of communication load, we compare the proposed P2P Model with
Client-Server Model and NEO Protocol, which is considered to be one of the

154 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi

best user-centric architectures. If only unicast can be used, the total size of
messages a user has to send for one action in each model is:

Client-Server: Sheader + @, (2)
NEO: (n — 1){Sheader +a+ [(n — 1)/8] + Skey}v (3)
Proposed: Ngerver (Sheader + @)- (4)

In the above formula, a represents the size of an action message, and n denotes
the number of users in the same site. Sheader and Siey, mean the sizes of a
message header and a decryption key to prevent lookahead cheat, respectively.

The total size of messages a user must receive to know other users’ respective
actions in each model is:

Client-Server: Speader + 10, (5)
NEO: (TL— 1){Sheader+a+ I-(’ﬂ— 1)/81 +Skey}a (6)
Proposed: Nmajority (Sheader + na) + (Nserver - Nmajority)(Sheader + Shash)y

(7

where Spash represents the size of a hashed value computed from an update
message. In both P2P Models, we assume that each user sends an action message
at the same rate as action messages are processed. For example, if Tiimesiot
equals 100 milliseconds in the proposed model, each user transmits an action
message every 100 milliseconds. We also suppose that the size of an update
message equals ‘the number of users in the same site’ times ‘the size of an
action message.” Under the substitution?®

Sheader = 66, Shash = 16, Skey =8, Nserver = 5, n =30, (8)

and a = 10 (this is enough for telling a user’s move in most cases), the values
of (5) — (7) are 366, 2552, and 1262, respectively. Under the condition (8), the
proposed model achieves less communication load on users than NEO Protocol
if @ < 31. This is because of the advantage that a user can receive the result of
multiple users’ actions at the same time.

If a user has a service function of a site where n users are staying, he must
bear additional load as follows:

Send: n(Sheader + 1na) (if he sends the content of an update message),
9)

71{Sheader + Shash) (if he sends the hash of an update message),
(10)
Receive: n{Sheader + a)- (11)

Moreover, the user and the Administration Server must exchange state data
when a user logs in, logs out, and switches sites. However, this is not such a
big problem since users who can not afford to manage a site do not have to do
that.

2 Sheader = 20 (TCP Header) + 20 (IP Header) + 26 (Ethernet Header) = 66.

A Distributed Architecture for MMO Services with P2P Support 155

5.2 Action Delay

Average action delays in respective models can be approximated as follows:

Client-Server: 2l.,, (12)
NEO: 20y + (Tarrival/2), (13)
Proposed: 2lsy + lss + (Teimestot/2), (14)

where lcy, luu, lsu, and I denote one-way transfer latencies between a central
server and a user, between two users, between a Site Server and a user, and
between two Site Servers, respectively. Tarrival 18 what is called arrival delay in
[6], which is similar to Tyimesiot- Tarrival ad Tiimeslot €an be reduced close to zero
at the expense of communication load. The proposed model requires one more
hop than NEO Protocol, but actually the difference is small since the latencies
have the following relation if users with high-speed data links are selected as
Site Servers:

law > lsu > s (15)

This is because not only users’ geographical locations but also the performance
of lines for connecting to the Internet has a big impact upon transfer latencies.

5.3 Robustness against Network Congestion

To investigate robustness against network congestion, we calculate the prob-
ability that a user fails to have his action processed under the condition that a
link between two machines becomes temporarily unavailable with the probabil-
ity p. The probability of the failure in each model is:

Client-Server: p, (16)
n—1 1
Neo: Y (") ra-mrn ()
k=[n/2]
Nserver N
Proposed: Z S‘Z"er) - ph(1 = p)Neerver =k, (18)
k=Nmajority
where |
n n!
(k) T K-k (19)

In Client-Server Model an action message from a user is not processed if he can
not transmit it to the central server, while in P2P Model an action message is
successfully processed in most cases unless half of the destination nodes fail to
receive it.

156 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi
60

P 900 F—
g 50 > — 00 PEeT 4 sealil
= T . 2 700
o %0 2 : 2 600 R i
58 . 2 e
€230 . = 500 R =
2 o ° 400
E "0 g Fao [A —
E -]
"5 3 | = 200
= 10 ry
= 100

0 : 0

300 400
Number of Users

200 300 200

Number of Total Users

100 500

Fig. 2. (a) [left] Number of users on the most popular map. (b) [right] Number of
messages sent to the most popular chat channel in an hour (averaged at intervals of
20 users).

5.4 Scalability

In this subsection, we consider what happens when the number of users
increases.

Fig. 2(a) shows the relation between the number of total users and the
number of users on the most popular map (what we call site in this paper).
The sample data was collected on August 13, 2004 from a real MMO game
service, which is provided in a Client-Server Model. In the game world there
are 53 maps, which seem to be ample for 400 users. The number of users in a
site seems to have a saturation point.

Fig. 2(b) illustrates the relation between the number of users and the num-
ber of messages sent to the most popular chat channel in an hour. We collected
the sample data from the real MMO game service in January through May of
2004. A chat channel means a room where users can talk with one another. We
can regard it as a site. In the service, users are able to create new chat channels
whenever necessary. The maximum number of messages to one chat channel is
almost independent of the number of users when lots of users are playing the
game.

It is inferred from these data that the number of users on the most popular
site is almost stable against the increase of total users when there are a lot of
users. This is because gathering of too many users in one site makes the users
uncomfortable in most cases. In conclusion, too much load is hardly ever put
on Site Servers, provided that there are sufficient sites in the application (or
users can make new sites freely). Putting a limit on the number of users in one
site may be a good idea, because users in a too crowded site can not normally
use the service anyway (e.g. slow drawing on users’ screen).

The communication load on the Administration Server in the proposed P2P
Model varies directly with the number of total users. However, the server can
provide the service for much more users than Client-Server Model, because the

600

A Distributed Architecture for MMO Services with P2P Support 157

Number of Site Servers per Site
f 3 5 7 9 B 13 15 17 19

1 L i L ' t A s L L

001 &\ ——3 Cheaters ™

NN

0.0001 - — -5 Cheaters |
1E-06 AN —— 10 Cheaters |
1E-08 Y = - - -20 Cheaters | |
1E-10 x -

{E-12

1E~14 =
1E-16
1E-18
1E-20
1E-22
1E-24

Probability

Fig. 3. Probability that colluding cheaters can affect the service.

amount of data sent or received is dramatically decreased by transferring the
service function of a site to users’ machines. It will also be possible to do away
with the Administration Server and make the model completely scalable by the
use of other technologies such as distributed storage system.

5.5 Robustness against Cheating

In the proposed P2P Model, multiple cheaters must collude to succeed in
cheating (when Ngerver > 1). We let C;(N,c) represent the probability that
there is at least one site where more than half of the Site Servers are controlled
by malicious users when there are ¢ sites, ¢ colluding cheaters, and N users in
total. Then the probability can be calculated by using the following recurrence
equation:

et (1) (s 1)
majority — k : Ns ver — k
Ci(N, C) =1- Z Ne e '{1 —Ci—l(N_Nserverac_k)}
k=0 (
Nserver)
(20)

Fig. 3 illustrates how the probabilities Cas50 (5000, 3), Ca250(5000, 5}, Ca50(5000, 10),
and C230(5000, 20) change with Nserver. The probability that colluding cheaters
can affect the service decreases exponentially with the number of Site Servers
managing one site.

6 Conclusion

In this paper, we have proposed an architecture for distributing server’s
loads by delegating part of the server’s function to users’ machines.

158 Keiichi Endo, Minoru Kawahara, and Yutaka Takahashi

ot

1

The proposed architecture has the following characteristics compared with
her studies.

. We applied the method to the MMO service that the majority of multiple
machines which manage the same data is accepted. It prevents data from
being falsified or lost. Moreover, the service has robustness against network
congestion.

. The users whose machines manage a site are selected from those who are
not on the site by an Administration Server. It reduces the benefit of cheat
and makes conspiracy difficult.

. The processing order of action messages is determined using the median
of the arrival time at each Site Server. It leads to the tolerance for the
alteration of time stamps on messages.

. Not all of the users’ machines manage sites. Therefore, if we properly deter-
mine the rule of transferring the service function of a site, users with narrow
bandwidths, with low-performance machines, or behind firewalls (or NAT
routers) can use the service.

As future work, we plan to consider the robustness against cheating in

greater detail. We also have a plan to make a practical experiment using a
real MMO game service.

References

10.

. C. Diot and L. Gautier, A Distributed Architecture for Multiplayer Interactive
Applications on the Internet, IEEE Network 13(4), 6-15 (1999).

N. E. Baughman and B. N. Levine, Cheat-Proof Playout for Centralized and
Distributed Online Games, Proceedings of Infocom 2001 (2001).

E. Cronin, B. Filstrup, and S. Jamin, Cheat-Proofing Dead Reckoned Multiplayer
Games, Proceedings of ADCOG 2003 (2003).

. E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin, An Efficient Synchronization
Mechanism for Mirrored Game Architectures, Multimedia Tools and Applications
23(1), 7-30 (2004).

J. Brun, F. Safaei, and P. Boustead, Tailoring Local Lag for Improved Playability
in Wide Distributed Network Games, Proceedings of NSIM 2004 (2004).

C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, Low Latency and Cheat-Proof
Event Ordering for Peer-to-Peer Games, Proceedings of NOSSDAV 2004 (2004).

A. R. Bharambe, S. Rao, and S. Seshan, Mercury: A Scalable Publish-Subscribe
System for Internet Games, Proceedings of NetGames 2002 (2002).

B. Knutsson, H. Lu, W. Xu, and B. Hopkins, Peer-to-Peer Support for Massively
Multiplayer Games, Proceedings of Infocom 2004 (2004).

T. Iimura, H. Hazeyama, and Y. Kadobayashi, Zoned Federation of Game Servers:
a Peer-to-Peer Approach to Scalable Multi-Player Online Games, Proceedings of
NetGames 2004 (2004).

D. L. Mills, Network Time Protocol (Version 3) Specification, Implementation
and Analysis, RFC 1305 (1992).

