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Abstract: This paper presents a novel technique of image Enhancement which can be 
widely used in medical and biological imaging to improve the image quality. 
The principle objective of enhancement is to process an image so that the 
result is more suitable than the original image for a specific application. Image 
enhancement enhances weak edges or weak features in an image while 
keeping strong edges or features. All existing methods of image enhancement 
decompose images in a separable fashion, and thus cannot use the geometric 
information in the transform domain to distinguish weak edges from noises. 
Therefore, they either amplify noises or introduce visible artifacts, when they 
are applied to noisy images. The NonSubsampled Contourlet transform built 
upon NonSubsampled pyramids and NonSubsampled directional filter banks 
can provide a shift invariant directional multi resolution image representation. 
The geometric information is gathered pixel by pixel from the NonSubsampled 
Contourlet Transform coefficients. The proposed method achieved better 
enhancement results than the wavelet based methods of enhancement. 
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1. INTRODUCTION 

The aim of image enhancement is to improve the interpretability or perception of 
information in images for human viewers, or to provide 'better' input for other 
automated image processing techniques. It enhances weak edges or weak features in 
an image while keeping strong edges or features. Traditional image enhancement 
methods such as unsharp masking, split an image into different frequency subbands 
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and amplify the high pass subbands. Although the wavelet transform has been 
proven to be powerful in many signal and image processing applications such as 
compression, noise removal, image edge enhancement, and feature extraction; 
wavelets are not optima! in capturing the two-dimensional singularities found in 
images. Several transforms have been proposed for image signals that have 
incorporated directionality and multiresolution and hence, could more efficiently 
capture edges in natural images [1]. Recently Do and Vetterli proposed an efficient 
directional multiresolution image representation called the Contourlet transform [2]. 
The Contourlet transform employs Laplacian pyramids to achieve multiresolution 
decomposition and directional filter banks to achieve directional de-composition. 
Due to downsampling and upsampling, the Contourlet transform is shift-variant. 
However, Shift sensitivity is an undesirable property because it implies that the 
transform coefficients fail to distinguish between input signal shifts [3]. Shift-
invariance is desirable in image analysis applications such as edge detection, contour 
characterization, and image enhancement. 

In this paper, the Nonsubsampled Contourlet transform (NSCT) is presented, 
which is a shift-invariant version of the Contourlet transform. The NSCT is built 
upon iterated nonsubsampled filter banks to obtain a shift-invariant directional 
multiresolution image representation. Based on the NSCT, a new method for image 
enhancement is introduced. 

2. CONSTRUCTION 

2.1 NonSubsampled Contourlet Transform 

The NSCT is a fully shift-invariant, multi-scale, and multidirectional expansion 
that has a fast implementation. Figure 1 (a) displays the overview of the proposed 
NSCT. The structure consists in a bank of filters that splits the 2-D frequency plane 
in the subbands illustrated in Figure 1(b). Our proposed transform can thus be 
divided into two shift-invariant parts which are as follow; 

1. A nonsubsampled pyramid structure that ensures the multi-scale property and 
2. A nonsubsampled DFB structure that gives directionality. 

The contourlet transform employs Laplacian pyramids for multiscale 
decomposition, and directional filter banks (DFB) for directional decomposition. To 
achieve the shift-invariance, the nonsubsampled contourlet transform is built upon 
nonsubsampled pyramids and nonsubsampled DFB [4]. 
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Figure !. The NonSubsanipled Contourlet Transform, (a) NonSubsampled filter bank 
structure that implements the NSCT. (b) The idealized frequency partitioning obtained with 

the proposed structure 
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Figure 2. The proposed NonSubsampled pyramid is a 2-D multi-resolution expansion similar 
to the l-D NonSubsampled wavelet transform. 

2.2 NonSubsampled Pyramids 

The multiscale property of the NSCT is obtained from a shift invariant filtering 
structure that achieves a subband decomposition similar to that of the Laplacian 
pyramid. This is achieved by using two-channel nonsubsampled 2-D filter banks 
[4],The nonsubsampled pyramid is completely different from the counterpart of the 
contourlet transform, the Laplacian pyramid. The building block of the 
nonsubsampled pyramid is a two-channel nonsubsampled filter bank as shown in 
Figure 2(a). A nonsubsampled filter bank has no downsampling or upsampling, and 
hence it is shift-invariant. The perfect reconstruction condition is obtained provided 
the filters satisfy the Bezout identity: 



394 

/:/„(2)G,,(z) + //,(z)G,(z) = 

IIP 2006 

(1) 

This condition is much easier to satisfy than the perfect reconstruction condition 
for critically sampled filter banks, and thus allows better filters to be designed [5], 
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Figure 3. Ideal frequency response of the building block of (a) NonSubsampled Pyramid; (b) 
NonSubsampled DFB 

The ideal frequency response of the building block of the nonsubsampled 
pyramid is given in Figure 3(a). To achieve the multiscale decomposition, we 
construct nonsubsampled pyramids by iterated nonsubsampled filter banks. For the 
next level, we upsample all filters by 2 in both dimensions. Therefore, they also 
satisfy the perfect reconstruction condition. Note that filtering with the upsampled 
filter H(ZM) has the same complexity as filtering with H(z) using the 'a trous' 
algorithm. The cascading of the analysis part is shown in Figure 4. These filters 
achieve multiresolution analysis as shown in Figure 5(a). 

2.3 NonSubsampled Directional Filter Banks 

The nonsubsampled DFB is a shift-invariant version of the critically sampled 
DFB in the contourlet transform. The building block of a nonsubsampled DFB is 
also a two-channel nonsubsampled filter bank. However, the ideal frequency 
response for a nonsubsampled DFB is different, as shown in Figure 3(b). The 
NSDFB is constructed by eliminating the downsamplers and upsamplers in the DFB. 
This is done by switching off the downsamplers/upsamplers in each two-channel 
filter bank in the DFB tree structure and upsampling the filters accordingly. 

To obtain finer directional decomposition, we iterate nonsubsampled DFB's. For 
the next level, we upsample all filters by a quincunx matrix given by 

Q = 
1 1 

1 - 1 
(2) 
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The frequency responses of two upsampled filters are given in Figure 6 and the 
cascading of the analysis part is shown in Figure 7. Then we obtain a four-direction 
frequency division as shown in Figure 5(b). The higher level decompositions follow 
the similar strategy, although they are more complex. 
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Figure 4. Iteration of two-channel nonsubsampled filter banks in the analysis part of a 
nonsubsampled pyramid. For upsampled filters, only effective pass bands within dotted boxes 

are shown. 
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Figure 5. Frequency divisions of: (a) A NonSubsampled pyramid given in Figure 4. (b) A 
NonSubsampled DFB given in Figure.7 
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Figure 6. Upsampling filters by a Quincunx matrix Q 
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Figure 7. The analysis part of an iterated nonsubsampled directional filter bank. 

2.4 NonSubsampled Contourlet Transform 

The nonsubsampled contourlet transform combines nonsubsampled pyramids 
and nonsubsampled DFB's as shown in Figure 8. Nonsubsampled pyramids provide 
multiscale decomposition and nonsubsampled DFB's provide directional 
decomposition. This scheme can be iterated repeatedly on the low pass subband 
outputs of nonsubsampled pyramids. First, a nonsubsampled pyramid split the input 
into a low pass subband and a high pass subband. Then a nonsubsampled DFB 
decomposes the high pass subband into several directional subbands. The scheme is 
iterated repeatedly on the low pass subband [5]. 

Figure 8. The NonSubsampled Contourlet Transform: (a) Block diagram, (b) Resulting 
frequency division, where the number of directions is increased with frequency, 

In constructing the nonsubsampled contourlet transform, care must be taken 
when applying the directional filters to the coarser scales of the pyramid. Due to the 
tree-structure nature of the NSDFB, the directional response at the lower and upper 
frequencies suffers from aliasing which can be a problem in the upper stages of the 
pyramid. Its remedy is to judiciously upsample the NSDFB filters [4]. 
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3. IMAGE ENHANCEMENT ALGORITHM 

The nonsubsampled contourlet transform provides not only multlresolution 
analysis, but also geometric and directional representation. Since weak edges are 
geometric structures, while noises are not, we can use this geometric representation 
to distinguish them. The NSCT is shift-invariant such that each pixel of the 
transform subbands corresponds to that of the original image in the same location. 
Therefore, we gather the geometric information pixel by pixel from the NSCT 
coefficients. It has been observed that there are three classes of pixels: strong edges, 
weak edges, and noises. First, the strong edges correspond to those pixels with big-
value coefficients in all subbands. Second, the weak edges correspond to those 
pixels with big-value coefficients in some directional subbands but small-value 
coefficients in other directional subbands within the same scale. Finally, the noises 
correspond to those pixels with small-value coefficients in all subbands. Based on 
this observation, pixels can be classified into three categories by analyzing the 
distribution of their coefficients in different subbands. One simple way is to 
compute the mean (denoted by mean) and the maximum (denoted by max) 
magnitude of the coefficients for each pixel, and then classify it by 

StrongEdge if mean >ca 

WeakEdge if mean< ccr,max >ccr (3) 

Noise if mean < ca, max < ca 

where c is a parameter ranging from 1 to 5, and is the noise standard deviation 
of the subbands at a specific level. We first estimate the noise variance of the input 
image with the robust median operator and then compute the noise variance of each 
subband. The goal of image enhancement is to amplify weak edges and to suppress 
noises. To this end, we modify the NSCT coefficients according to the category of 
each pixel by a nonlinear mapping function. 

y{x)-

^ StrongEdgePixels 

max((^)^l)x, WeakEdgePixels (4) 
' ' NoisePixek 

0 

where the input x is the original coefficient, and 0 < p < lis the amplifying ratio. 
This function keeps the coefficients of strong edges, amplifies the coefficients of 
weak edges, and zeros the coefficients of noises. We summarize our enhancement 
method using the NSCT in the following algorithm: 
I. Compute the NSCT of the input image for N levels. 
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For each level DFB, 
a) Estimate the noise variance. 
b) Compute the threshold and the amplifying ratio. 
c) At each pixel, compute the mean and the maximum magnitude of all 

directional subbands at this level, and classify it by (3) into strong edges, 
weak edges, or noises. 

d) For each directional subband, use the nonlinear mapping function given in 
(4) to modify the NSCT coefficients according to the classification. 

Reconstruct the enhanced image from the modified NSCT coefficients. 
Calculate the Detail and Background Variance. 

EXPERIMENTAL RESULTS 

*^ 

Figure 9. (a) Original Zoneplate image, (b) Enhanced by the NonSubsampled Contourlet 
Transform 
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Figure 10. (a) Original Lena image, (b) Enhanced by the NonSubsampled Contourlet 
Transform. 
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Figure 11. (a) Original Lena image, (b) Enhanced by the NonSubsampled Contourlet 
Transform 
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Figure 12. (a) Original Peppers image, (b) Enhanced by the NonSubsampled Contourlet 
Transform. 

Table I. Detail and Background Variance of different Images 
Image 

Zone plate 

Lena 

Barbara 

Peppers 

Origi 

Detail 
Variance (DV) 

8186.665 

692.266 

805.487 

1142.621 

nal Image 
Background 

Variance (BV) 

114.383 

25.150 

55.447 

32.987 

Reconstructed linage 

Detail Variance 
(DV) 

69244.110 

1061.337 

4379.570 

2842.605 

Background 
Variance (BV) 

816.018 

38,227 

113.118 

78.889 

To evaluate the enhancement performance objectively, the detailed variance 
(DV) and background variance (BV) is calculated. The DV and BV values represent 
the variance of foreground and background pixels, respectively. Detail and 
background variance is calculated around every pixel by taking the variance of 
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image intensities and classifying tlie pixel into foreground or background based on a 
threshold. The average of variance of foreground pixels gives Detail Variance (DV) 
and the average of variance of background pixels gives Background Variance (BV). 
A good enhancement method should increase the DV of the original image but not 
the BV. It has been observed that proposed algorithm offers better results in 
enhancing the weak edges in the textures. 

5. CONCLUSION 

The proposed nonsubsampled Contourlet transform is constructed by iterated 
nonsubsampled filter banks. This transform provides shift-invariant directional 
multiresolution image representation. This new algorithm for image enhancement 
using the nonsubsampled Contourlet transform will show that better enhancement 
results can be obtained than the previous enhancement techniques. 
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