
Verification of UML State Diagrams Using Concurrent
State Machines

Jerzy Miescicki

Institute of Computer Science, Warsaw University of Technology
00 665 Warszawa, ul. Nowowiejska 15/19

email: J.Miescicki@ii.pw.edu.pl

Abstract. Numerous research projects are done in academia as well as in
industry aimed to support the design process based on UML and Model Driven
Architecture with new methods and tools that would help to verify both static
and dynamic aspects of UML model, to generate the code from it etc. Much
attention is paid to the verification of system's behavior by model checking. In a
research project done in the Institute of Computer Science, Warsaw University of
Technology, an own model checking environment COSMA is used for these
purposes. The approach is based on Concurrent State Machines (CSM), a
finite state model well-suited to the representation of systems of concurrent,
communicating components. In the paper, the representation of UML state
diagrams in terms of CSM is explained and illustrated with an example.

1 Introduction

The progress in the area of new ideas and standards related to Unified Modeling
Language (UML, e.g. [1], [2]) is accompanied with an extensive research aimed to
support the designer with methods and tools for the verification of static as well as
dynamic aspects of a designed system, for generation of code inmiediately from the
UML specification etc. Among other topics, much attention is paid to the behavioral
verification of UML models using model checking techniques.

The general idea of model checking ([3], [4]) is to construct a finite-state formal
structure S, representing the behavior of a system to be verified (e.g. a Labeled
Transition System, a reachability graph etc.). Then, the property we want to verify
(TT, say) has to be formally specified: e.g. as a formula of some temporal logic, or a
Biichi automaton [4]. Then, we have to check if S \= TT, that is, if TT holds for S. The
evaluation of 5 |= TT involves the exhaustive inspection of S.

Notice that as S is finite, the evaluation of any (properly specified) property is
decidable and can be algorithmized, at least if we postpone problems related to the size of
S and to the complexity of algorithm. This way, the system designer can be equipped with
a set of ready-to-use algorithms and techniques for the analysis of system's properties.
Moreover, if the checked property does not hold, he/she can obtain a counterexample,
i.e. the path of events leading to the just-identified failure. This provides the feedback
information enabling the designer to identify and correct the component which is
responsible for a negative outcome of the checking. Unfortunately, finite state methods
suffer also some drawbacks. Their very nature prohibits the use of infinite buffers,

Please use the followingformatwhen citing this chapter:

Miescicki, J., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineering Tech­
niques: Design for Quality, ed K. Sacha, (Boston; Springer), pp. 261-271.

262 Jerzy Miescicki

dynamic creation/destruction of processes makes a problem, etc., and the main challenge
the model checking is confronted with is the exponential explosion of the model.

Practical implementation of the above general idea of model checking involves
multiple decisions. Usually, systems consist of multiple components which share the
common resources and communicate among themselves. How their behavior is to be
specified and how these individual behaviors are to be composed into one, finite state
behavioral model S ? How this model has to be stored, remembering that its size may
be of order of 10^° — 10^° states or even more? What should be a form of specification
of properties? How to perform effectively an exhaustive inspection of such an large
model 5? All these questions can be solved in many ways, so that there is a range of
different software tools (or model checkers) designed for these purposes. Among the
most frequently referenced ones are SPIN [5], SMV [6], FormalCheck [7] and - for
checking systems with real-time constraints - Uppaal [8] and Kronos [9]. A few dozen
of other tools of this type have been implemented for academic and research purposes.

In the context of the verification of UML models' the primary form of behavioral
specification of objects are - quite naturally - UML state, collaboration and sequence
diagrams, supported by practically all CASE tools. Since the first attempt by LiUus and
Palter (vUML tool, [11]), a most typical approach is the conversion of UML state
diagrams (serialized into XMI format) into the input language of some renowned
model checker (usually SPIN's Promela language). Later on, the verification itself is
entrusted to the model checker. A good example can be project Hugo [14] [12] [13],
where UML diagrams are converted into inputs of two separate model checkers (SPIN
and Uppaal, the latter one for the verifiation of timed models) and - aditionally - to the
third module which has to generate the Java code.

In contrast to this, in the research project COSMA (Institute of Computer Science,
WUT, [15]) an original model checking software environment is used, implemented
within the project. The conceptual framework of COSMA are Concurrent State Machines
(CSM, [16]). CSM support the communication among system components as well
as two aspects of concurrency: possible simultaneous occurrence of coimnunication
events (formally - symbols instantaneously broadcasted to all system components)
and simultaneous execution of actions of components . No special mechanism for
interleaving actions or sequencing the input is assumed. However, single symbols,
communication delays, nondeterministic loss of symbols, (finite) buffers as well as
specific sender - receiver pairs (instead of broadcast-mode communication) can be also
modeled, but as a deliberate decision rather than as an implicit general assumption.

Below, in Section 3 we introduce the idea of a system of CSM and the way the
behavior of individual machines is composed into one graph of all-system behavior. To
support reader's intuition, the presentation of the CSM model is preceeded by a known
example of ATM-Bank system (Section 2). Subsection 3.3 will be devoted to the process
of verification, specifically - to the technique of stepwise model reduction [17] which at
least helps to overcome the exponential explosion of the model. In Section 4 the main
problems with the conversion of UML state diagrams into CSM are summarized.

' see e.g. [10] for concise identification of problems and the basic literature.

Verification of UML State Diagrams Using Concurrent State Machines 263

2 The ATM-Bank example

As an illustration, let us consider a system (frequently used also elsewhere in the
literature), consisting of single automatic teller machine (ATM) and a bank computer.
Simple UML state diagrams of system components are shown in Fig. 1 and 2. The
ATM provides the interface to the User (not shown). ATM communicates to the User
by displaying the following texts:

InsertCard, EnterPIN, Enter Amount, TakeCard, TakeMoney, Cardlnvalid

while the User is expected to respond appropriately with events like Card (inserting the
card into ATM slot), PIN (entering PIN), Amount (entering the amount), CardRemoved
(removing the card) or - finally - Money (signifying that the User gets the money from
the machine).

CardRemoved

entry/
disp('lnsertCard')

Money'

TakeMoney

entry/
disp(TakeMoney')

CardRemoved

WaitPIN

entry/
dlspfEnterPIN')

PIN/^VerlfyPIN

>
Verification

^
PINVerilied

'
ReturningCard

entry/
disp(TakGCard')

Counting Money

entry/
^ dispt'EnterAmount'

Fig, 1. State machine diagram for ATM

VerifyPlN

V
^1 l\

f

A
VerifyingCarc

\ VerifyingPJN

Idle

Verifying

1 . ^
- ^ ^

- . ^
- ^ ^

/'VVbort

Z /^INVerlfied

>i

Cardlnvalid

CardValid

PINCorrect

Pi N Incorrect

\ H-
J—

. >.

H

Fig. 2. State machine diagram for Bank

264 Jerzy Miescicki

Just for an illustration, assume that we want to model-check the following properties:

- TTi: It is always so that whenever card is inserted then eventually that card is
removed before the cai'd can be inserted anew,

- 7T2: It is always so that whenever card is inserted then eventually money is paid.

We expect, of course, that for the correct system the first requirement should be
evaluated to True, while the latter one should be False.

3 Concurrent State Machines (CSM)

3.1 Definition of CSM

Let AP stand for an universal set of atomic propositions. From these atomic propositions,
constants 0,1, operators ! ,+ ,* (Boolean negation, sum, product, respectively), and
parentheses, we build Boolean formulas, obeying the well-known, conventional syntax
and semantics. Let BJ^ be an universal set of all Boolean formulas. The alphabet of
formula/ (denoted a{f)) is the set of atomic propositions referred to in it^. Notice that
a (l) = a(0) = 0, as actually neither 0 nor 1 refer to any atomic proposition.

Formally, a Concurrent State Machine m is a tuple

m=< N, edges,form, out, TIQ >

where:

- N - finite set of nodes (states of behavior), no € iV is the initial node,
- edges C N X N- set of directed arcs,
- form : edges -+ BT - labeling function, attributing Boolean formulas to edges,
- out : N —> 2^'' - output function, attributing to each node a set of atomic

propositions p G AP that are True for this node,

It is convenient to think of CSM models as of labeled graphs (Fig. 3). Rounded
boxes represent states, initial state is highlighted with a thicker borderline. In upper part
of the box the state name is identified (e.g. Idle, CardOK, Verifying,
InvCard) and below a set of propositions that are True for this state is enumerated
(so-called output set of a given state). Directed edges of the CSM graph define the
next-state relation. Edges are labeled with Boolean formulas rather than with individual
symbols from some input alphabet. We require that a machine has to be complete, i.e.
for any state, the Bolean sum of formulas at outgoing edges equals 1.

In the context of behavior modeling we usually understand the atomic propositions
as the coimnunication symbols (signals, messages etc.) produced by the machine in
a given state as its output and received (or "watched for") as its input. Machine's
output alphabet (denoted Out{m)) is the union of output sets of states. For instance, for
machine from Fig. 3, the output alphabet is:

Out{BankMain) — {PINVerif,verCompl,doVerif,Abort} (1)

^ We require the formulas/ G BT be 'minimar, in a sense that their alphabets are minimal.
So, for instance, 1 is used instead of (a-\-\a), a instead of {a*b + a*\b) etc.

Verification of UML State Diagrams Using Concurrent State Machines 265

f
Ms

1 1

u
1
InvCard

Abort
\«Compl

V

y

)

1 i VerifiPiN j

\ ni

^̂ \. jVerilvPlN|

CardOK '̂

PiNVeriiied
wrCompl

J

'^(PiNVdme'CVdone)'

^ i PINVcfone* CVdone) * (! GardVa!id +! PINCorrect) \^

.

cardValid'PINCorrect)!

j PINVdOTia
^'—T

Vefifyng

ctaVeri*

. -

•iCVdone+IPlNVdanfli
1

J
y

Fig. 3. Example Concurrent State Machine (BankMain)

In the CSM framework it is assumed that the truth value of all propositions from
the output alphabet of the machine are fully determined by the output function of
the (present) state. In other words, we assume that as long as the machine is in state
n e N, all propositions p e out[n) axe. True while all the other ones from machine's
output alphabet (i.e. q G Out{m) — out{n)) are False. This can be represented by the
state output formula (denoted ^{n)) which is True for state n. For instance, for state
InvCard (Fig. 3) - the state output formula is:

(p{InvCard) =\PINVerif * verCompMdoVerif * Abort (2)

as out{InvCard) = {Abort, verCompl}, etc. We say that in state InvCard the machine
'produces' two output symbols: Abort and verCompl, in Verifying - one symbol
(doVerif), while in Idle no output symbol is produced.

Similarly, the input alphabet of machine m (denoted Inp[ni)) is the union of alphabets
of all edge formulas. Any proposition/? e Inp{m), when True, signifies that the symbolp
(signal, message,...) is present in machine's input. For instance, for machine from Fig. 3:

lnp{BankMain) = {VerifyPIN, PINVdone, CVdone, cardValid, PINCorrect} (3)

Notice that it is not required that input and output alphabets have to be disjoint.
The next-state semantics of machine's behavior is as follows. At any instant of time

the machine is in exactly one of its states; initially - in the initial state. In any (present)
state n, machine produces its output symbols (making some atomic propositions True
and the other ones False) and simultaneously evaluates the formulas on the edges
outgoing from n. If a formula is True, then its edge is enabled^. If only one edge is
enabled (deterministic case) - it becomes active. If more than one edge is enabled
then one of them is selected as active. The choice is nondeterministic and fair^. If the

Due to completeness, there is always at least one enabled edge.
Of course, the next-state semantics refers to a single execution of the machine. However, in
the context of model checking, all the edges that are enabled in a given state point out to
reachable states. Thus, the reachability graph of the machine (as well as of the whole system,
se below) contains all the edges which are labeled with non-zero formulas.

266 Jerzy Miescicki

selected active edge («, n') points out to a state n' ^ n (different than the present one)
then the machine executes the transition to n'. Transition is instantaneous (zero time).
Otherwise, i.e. if n' = n - machine remains in n. Notice that formula 1 is always True,
so the edges (n, n') (where n' ^ n) labeled with it represent spontaneous ti-ansitions,
executable regardless of machine's input. Similarly, formula 0 would mean that the
edge is never enabled: such an edge can be simply removed from the graph.

3.2 System of CSM and its product

Now, consider a finite (nonempty) set M of Concurrent State Machines. For any two
machines m,, mj € M, if Out{mi) C\ Inp{mj) ^ 0 then there is a conununication from
m,- to Mj (nii and mj are 'communication partners'). If Inp{mi) D Inp{mj) ^ 0 then the
two machines share the same input. A set M of CSM is a system of CSM, iff either
I M 1= 1 (one-component system) or any m ^M has at least one communication
partner or shares the input with at least one other machine.

The overall output alphabet of system M (denoted OUT{M)) is the union of output
alphabets of all m e M. Similarly, the input alphabet of M (INP{M)) is the union of
input alphabets of all meM. The set difference E{M) = INP(M) - OUT{M) is the
set of atomic propositions which are inputs of machines m £ M but are not produced
inside the system. We assume that these symbols p e E{M) come from an unknown
environment of system M and at any instant of time they can be either True or False^.

The global behavior of a system of CSM is represented by system's reachability
graph RG. The algorithm of obtaining RG has been developed and implemented as one
of modules of COSMA environment [16]. Its idea is as follows. The state of the system is
a vector of states of system components. Algorithm starts from system initial state which
is the vector of initial states of components. In a given system state, system produces
the set union of outputs of components. As the system output alphabet OUT{M) is
known, for any system state n the state output formula if{n) is determined, analogously
as in Eq. 2. From state n, a set of states is hypothetically immediately reachable. The
hypothetical edge that would lead from h to some n' should be labeled with the Boolean
product of ip{n) and the product of appropriate edge formulas of individual system
components. If this product equals 0, then the state (although it was hypothetically
reachable) proves not to be actually reachable and is not included into the emerging
graph. Otherwise, the state is included and the edge with an appropriate labeling
formula is created .̂ The process continues until no new reachable states emerge.

The resulting graph is again a single CSM called a product of machines. The product
is commutative and associative, which supports the compositionality of the model.

The overall organization of the example system from Section 2 is shown in Fig.
4. It consits of two subsystems (ATM and Bank), where ATM is a single CSM
(Fig. 5) and Bank itself is composed from three components: Bank-Main (Fig. 3)

^ Notice that by the above definition the alphabet of propositions coming from the environment
and produced inside M are disjoint.

* It should be emphasized that the propositions p e OUT{M) are eliminated from these
formulas. Indeed, for any system state n the truth value of all output propositions is known so
that we can substitute 0 for propositions that are False in this particular state and 1 otherwise.

Verification of UML State Diagrams Using Concurrent State Machines 267

InsertCard <
Card —>

EnterPIN •«

EnterAmount -«
Amount —>

TakeCard •*
CardRemoved —>
TakeMoney •*

Money —>
Cardlnvaiid <

ATM

VerifyPIN

PIN Verified

Abort

Bank

Main

doVerif

CVdone

cardValid

PINCorrect

Ver-G

Ver-
PIN

«-'

Fig. 4. Structural block diagram of the example system

f
Imam

Cafdmelid

'1
^

.

CartlRemfflsd j

y

®- VerlfiflN

TateMons/

TateMorwy

4 1 CardRemi»Ml | 1̂

RetirningCard

„ 0-

Fig.5. CSM model of ATM

and two orthogonal machines, one for the verification of the card, the other for the
verification of PIN (Fig. 6). Directed arrows in the block diagram from Fig. 4 indicate
the cominunication between machines: for instance, VerifyPIN is the output symbol
from ATM and input proposition for BankMain, etc. These communication relationships
can be easily specified in terms of intersections of input/output alphabets.

Additionally, we prepare the CSM model of expected behavior of the User (not
shown for the sake of the economy of space). It has 10 states and 16 edges and
generally is analogous to the ATM (Fig. 5) to/from which it communicates. The CSM
product of the whole system is a new machine:

System = User ® ATM ® BankMain ® VerC ® VerPIN (4)

It has as few as 28 (reachable) states (out o f l 0 x 9 x 4 x 4 x 4 = 5760 elements
of Cartesian product of sets of components' states) and 46 labeled edges.

268 Jerzy Miescicki

Fig. 6. CSM models of Ver-C (left) and Ver-PIN (right)

3.3 Multi-phase computation of CSM product

Notice that due to the associativity of CSM product, we can obtain the System in
several steps instead of the one ('flat') operation, as in Eq. 4. For instance, we can
compute System as a sequence of partial products:

System = User ® (ATM ig) {BankMain ® VerC ig) VerPIN)),or

Bank = BankMain ® VerC ® VerPIN

ATMandBank = ATM ® Bank

System = User ® ATMandBank

(5)

(6)

(7)

(8)

However, if we know what properties are to be verified, we can significantly reduce
the partial products before they are used in the next step of product computation. In
our example we want to verify the properties 7ri,7r2, specified at the end of Section
2. They refer only to propositions Card, CardRemoved and Money (in the interface
between User and ATM).

Now, suppose that we have just computed the partial product Bank (as in Eq. 6.
Actually, it has 15 states and 32 edges. However, from the viewpoint of the next step
(Eq. 7) the only relevant states are the ones which either produce or receive symbols
to/from ATM, i.e. Verify, PINVerified, Abort (easily identifiable in the block diagram
from Fig. 4). Remaining (irrelevant) states and edges can be merged in order to obtain
compressed, much smaller version of the partial product. The algorithm for partial
product compression (given a set of relevant symbols) has been implemented as a part
of COSMA environment. The result of its application to Bank (or NewBank) is shown
in Fig. v. Notice that NewBank has only 4 states and 7 edges (compared with 15/32
of the 'original' Bank).

The same procedure can be continued with successive subproducts. We substitute
NewBank instead of Bank in Eq. 7, compute ATMandBank, compress again the resulting
product into NewATMandBank (leaving as relevant symbols only these from ATM-User

' The algorithm attributes new, technical identifiers to merged states

Verification of UML State Diagrams Using Concurrent State Machines 269

interface). Finally, we compute and compress (NewSystem = User ® NewATMandBank).
This time, compression involves hiding all propositions except Card, CardRemoved and
Money, (necessary and sufficient) for the evaluation of TTI and 7r2. The result, shown in
Fig. 8, is so elementary that one can analyze it just by naked eye. Indeed, the graph
shows that NewSysteml \= TTI (it is true that whenever Card is inserted then eventually
CardRemoved) while NewSysteml ^ 7T2 (it is not true that whenever Card is inserted
then eventually Money is paid).

Fig. 7. NewBank or compressed product ^{BankMain., VerC, VerPIN}

Fig. 8. NewSystem or compressed product for the evaluation of TTI and TTZ

It should be mentioned that in the case of larger (also: uncompressed) graphs
the verified properties are expressed as formulas in QsCTL (a version of CTL) and
evaluated using one of modules of COSMA environment ([18]), with possible edition
of counterexamples etc.

4 Conversion of UML state diagrams into CSM

The example discussed above shows that the CSM model and COSMA tool is a
noteworthy conceptual framework for behavioral verification of systems. Multi-phase

270 Jerzy Miescicki

product computation and compression of partial products seem to be an important
advantage, as a powerful technique that can overcome (or relax, at least) the exponential
model explosion and provide readable evaluation results. However, if such COSMA-style
model checking has to support MDA approach - we should have algorithms and tools
for converting UML state diagrams into Concurent State Machines. The software
module for converting UML state diagrams (from their XMI specification) into CSM is
now under implementation within the COSMA project. Below, we briefly comment on
main problems encountered during the implementation. Unfortunately, the results of
algorithmic conversion are hardly readable in practice, so that the CSM models of
ATM and Bank discused in preceding sections have been prepared manually, just to
provide illustrative examples highlighting the nature of CSM model.

First of all, CSM are best tailored to modeling of control-dominated systems.
Simple types of data (not only boolean, but also short integers, like counters etc.) are
acceptable, but may significantly increase the size of product. Also, infinite buffers are
excluded and finite ones have to be modeled as separate machines, which may lead to
a substantial complication of the model. Dynamic object creation/destruction also
contradicts the finite-state nature of the CSM model. On the other hand, the same
limitation face practically all finite state methods and model checkers. Moreover, it
should be mentioned that the COSMA environment supports also Extended CSM
(ECSM, [19]), which allow for the definition of all types of variables and attributing
the pieces of C/C++ code to states and transitions of CSM. Of course, systems of
ECSM are no longer model-checkable: they can be either simulated or excuted, but we
can verify their control- and communication flow 'skeletons' before the code is added.

Conversion of "flat" UML diagrams, like the ATM from Fig. 1, is rather a simple
task (compare Fig. 5). However, in CSM the outputs are attributed to states (like in
Moore automata) rather than to transitions (like in Mealy automata and state diagrams),
therefore in order to produce Verify message to Bank the additional CSM state is
introduced {VerReq). The "self-loops" at CSM states (making the conditions of staying
in states explicit) are merely a technical trick.

Composite states (like the AND-state Verifying in Fig. 2) cause more problems.
First, not only the diagram itself (here: BankMain), but also each of nested subdiagrams
(Ver-C and Ver-PIN) must be separate CSM. If so, Ver-C and Ver-PIN have to remain
in some CSM state even though a higher-level diagram (BankMain) had just returned to
Idle. Generally, if the composite state can be entered through H or H* pseudostates,
then upon exit from this (UML) state all the nested machines have to remain "frozen"
in their present (CSM) states. If for the subdiagram the default initial state is specified -
then the same trigger which pulls off the higher-level diagram from (UML) composite
state forces all the nested sub-machines to get back to their initial (CSM) states.
This calls for additional (appropriately labeled) edges in CSMs, from each state back
to the initial one. Moreover, in order to keep the sub-machines frozen while the
higher-level machine is not in "their" composite state, to each composite state a default
technical output symbol is attributed (not provided by the designer at UML level)
which multiplies (in a sense of Boolean product) all the formulas at the transitions
in its sub-machines. This way these transitions are temporarily disabled. It is the
above conventions why algorithmically generated CSM models are hardly readable.

Verification of UML State Diagrams Using Concurrent State Machines 271

Fortunately, the mentioned technical symbols can be easily hidden during compression
and do not influence the readability of final evaluation results.

Among other problems is the conversion of other pseudostates, like Fork - Join
bars as well as junction and branch pseudostates. They involve a specific exchange of
synchronization symbols among sub-machines, but still can be rather naturally modeled
in terms of CSM (see Fig. 3 and 6). Notice that for a subsystem of CSM, aimed to
represent a nested composite state we can compute a local CSM product, as we did e.g.
for Bank (Eq. 6). This operation "flattens" the behavioral specification and helps to
understand the details of cooperation among machines.

The most challenging problem for the COSMA project is now the introduction of
real-time constraints to CSM. In this paper we have used just a basic version of the
CSM model, where the the only representation of the flow of time are states, in which
a machine can nondeterministically remain for an unspecified but finite time (e.g.
CountingMoney in Fig. 5 or VerifyingCard, VerifyingPIN in Fig. 6). The research on the
theory and implementation of Timed CSM is in progress.

References

1. Unified Modeling Language: www.omg.org/technology/documents/formal/uml.htm,
2. B. P. Douglass: Advances in the UML for Real-Time Systems, The Addison-Wesley object

technology series, 2004.
3. B. Berard (ed.) et al.: Systems and Software Verification: Model-Checking Techniques and

Tools, Springer Verlag, 2001,
4. E. M. Clarke, O. Grumberg, D. A. Peled: Model Checking, MIT Press, 2000.
5. SPIN: http://spinroot.com/spin/
6. SMV: http://www-2.cs.cmu.edu/ modelcheck/smv.html
7. FormalCheck: www.cadence.com/datasheets/formalcheck.htmI
8. Uppaal: http://www.uppaal.com/
9. Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/

10. M. Gallardo, P. Merino, E. Pimentelis: Debugging UML Designs with Model Checking,
Journal of Object Technology, vol. 1, no. 2, July-August 2002, pp. 101-117.

11. J. LiUus and I. Paltor. vUML: A tool for verifying UML models. In Proceedings of 14th
IEEE International Conference on Automated Software Engineering, IEEE Press, 1999.

12. T. Schafer, A. Knapp, S. Merz. Model checking UML state machines and collaborations.
Electronic Notes in Theoretical Computer Science, 55(3), 2001.

13. A. Knapp, S. Merz, Ch. Rauh, Model Checking Timed UML State Machines and
Collaborations, W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp.
395-414, Springer-Veriag, 2002.

14. Project Hugo: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
15. COSMA: www.ii.pw.edu.pl/cosma/
16. J. Miescicki: Concurrent State Machines, the formal framework for model-checkable systems,

ICS Research Report, 5/2003,
17. J. Miescicki, B. Czejdo, W. B. Daszczuk: Multi-phase model checking in the COSMA

environment as a support for the design of pipelined processing. Proc. European Congress on
Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, Jyvaskyla,
Finland, 24-28 July 2004.

18. W. B. Daszczuk: Temporal model checking in the COSMA environment (the operation of
TempoRG program). ICS Research Report, 7/2003, Warszawa, 2003.

19. A. Krystosik: ECSM - Extended Concurrent State Machines. ICS Research Report 2/2003,

