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Abstract. Numerous research projects are done in academia as well as in 
industry aimed to support the design process based on UML and Model Driven 
Architecture with new methods and tools that would help to verify both static 
and dynamic aspects of UML model, to generate the code from it etc. Much 
attention is paid to the verification of system's behavior by model checking. In a 
research project done in the Institute of Computer Science, Warsaw University of 
Technology, an own model checking environment COSMA is used for these 
purposes. The approach is based on Concurrent State Machines (CSM), a 
finite state model well-suited to the representation of systems of concurrent, 
communicating components. In the paper, the representation of UML state 
diagrams in terms of CSM is explained and illustrated with an example. 

1 Introduction 

The progress in the area of new ideas and standards related to Unified Modeling 
Language (UML, e.g. [1], [2]) is accompanied with an extensive research aimed to 
support the designer with methods and tools for the verification of static as well as 
dynamic aspects of a designed system, for generation of code inmiediately from the 
UML specification etc. Among other topics, much attention is paid to the behavioral 
verification of UML models using model checking techniques. 

The general idea of model checking ([3], [4]) is to construct a finite-state formal 
structure S, representing the behavior of a system to be verified (e.g. a Labeled 
Transition System, a reachability graph etc.). Then, the property we want to verify 
(TT, say) has to be formally specified: e.g. as a formula of some temporal logic, or a 
Biichi automaton [4]. Then, we have to check if S \= TT, that is, if TT holds for S. The 
evaluation of 5 |= TT involves the exhaustive inspection of S. 

Notice that as S is finite, the evaluation of any (properly specified) property is 
decidable and can be algorithmized, at least if we postpone problems related to the size of 
S and to the complexity of algorithm. This way, the system designer can be equipped with 
a set of ready-to-use algorithms and techniques for the analysis of system's properties. 
Moreover, if the checked property does not hold, he/she can obtain a counterexample, 
i.e. the path of events leading to the just-identified failure. This provides the feedback 
information enabling the designer to identify and correct the component which is 
responsible for a negative outcome of the checking. Unfortunately, finite state methods 
suffer also some drawbacks. Their very nature prohibits the use of infinite buffers, 
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dynamic creation/destruction of processes makes a problem, etc., and the main challenge 
the model checking is confronted with is the exponential explosion of the model. 

Practical implementation of the above general idea of model checking involves 
multiple decisions. Usually, systems consist of multiple components which share the 
common resources and communicate among themselves. How their behavior is to be 
specified and how these individual behaviors are to be composed into one, finite state 
behavioral model S ? How this model has to be stored, remembering that its size may 
be of order of 10^° — 10^° states or even more? What should be a form of specification 
of properties? How to perform effectively an exhaustive inspection of such an large 
model 5? All these questions can be solved in many ways, so that there is a range of 
different software tools (or model checkers) designed for these purposes. Among the 
most frequently referenced ones are SPIN [5], SMV [6], FormalCheck [7] and - for 
checking systems with real-time constraints - Uppaal [8] and Kronos [9]. A few dozen 
of other tools of this type have been implemented for academic and research purposes. 

In the context of the verification of UML models' the primary form of behavioral 
specification of objects are - quite naturally - UML state, collaboration and sequence 
diagrams, supported by practically all CASE tools. Since the first attempt by LiUus and 
Palter (vUML tool, [11]), a most typical approach is the conversion of UML state 
diagrams (serialized into XMI format) into the input language of some renowned 
model checker (usually SPIN's Promela language). Later on, the verification itself is 
entrusted to the model checker. A good example can be project Hugo [14] [12] [13], 
where UML diagrams are converted into inputs of two separate model checkers (SPIN 
and Uppaal, the latter one for the verifiation of timed models) and - aditionally - to the 
third module which has to generate the Java code. 

In contrast to this, in the research project COSMA (Institute of Computer Science, 
WUT, [15]) an original model checking software environment is used, implemented 
within the project. The conceptual framework of COSMA are Concurrent State Machines 
(CSM, [16]). CSM support the communication among system components as well 
as two aspects of concurrency: possible simultaneous occurrence of coimnunication 
events (formally - symbols instantaneously broadcasted to all system components) 
and simultaneous execution of actions of components . No special mechanism for 
interleaving actions or sequencing the input is assumed. However, single symbols, 
communication delays, nondeterministic loss of symbols, (finite) buffers as well as 
specific sender - receiver pairs (instead of broadcast-mode communication) can be also 
modeled, but as a deliberate decision rather than as an implicit general assumption. 

Below, in Section 3 we introduce the idea of a system of CSM and the way the 
behavior of individual machines is composed into one graph of all-system behavior. To 
support reader's intuition, the presentation of the CSM model is preceeded by a known 
example of ATM-Bank system (Section 2). Subsection 3.3 will be devoted to the process 
of verification, specifically - to the technique of stepwise model reduction [17] which at 
least helps to overcome the exponential explosion of the model. In Section 4 the main 
problems with the conversion of UML state diagrams into CSM are summarized. 

' see e.g. [10] for concise identification of problems and the basic literature. 
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2 The ATM-Bank example 

As an illustration, let us consider a system (frequently used also elsewhere in the 
literature), consisting of single automatic teller machine (ATM) and a bank computer. 
Simple UML state diagrams of system components are shown in Fig. 1 and 2. The 
ATM provides the interface to the User (not shown). ATM communicates to the User 
by displaying the following texts: 

InsertCard, EnterPIN, Enter Amount, TakeCard, TakeMoney, Cardlnvalid 

while the User is expected to respond appropriately with events like Card (inserting the 
card into ATM slot), PIN (entering PIN), Amount (entering the amount), CardRemoved 
(removing the card) or - finally - Money (signifying that the User gets the money from 
the machine). 

CardRemoved 

entry/ 
disp('lnsertCard') 

Money' 

TakeMoney 

entry/ 
disp(TakeMoney') 

CardRemoved 

WaitPIN 

entry/ 
dlspfEnterPIN') 

PIN/^VerlfyPIN 

> 
Verification 

^ 
PINVerilied 

' 
ReturningCard 

entry/ 
disp(TakGCard') 

Counting Money 

entry/ 
^ dispt'EnterAmount' 

Fig, 1. State machine diagram for ATM 
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Just for an illustration, assume that we want to model-check the following properties: 

- TTi: It is always so that whenever card is inserted then eventually that card is 
removed before the cai'd can be inserted anew, 

- 7T2: It is always so that whenever card is inserted then eventually money is paid. 

We expect, of course, that for the correct system the first requirement should be 
evaluated to True, while the latter one should be False. 

3 Concurrent State Machines (CSM) 

3.1 Definition of CSM 

Let AP stand for an universal set of atomic propositions. From these atomic propositions, 
constants 0,1, operators ! ,+ ,* (Boolean negation, sum, product, respectively), and 
parentheses, we build Boolean formulas, obeying the well-known, conventional syntax 
and semantics. Let BJ^ be an universal set of all Boolean formulas. The alphabet of 
formula/ (denoted a{f)) is the set of atomic propositions referred to in it^. Notice that 
a ( l ) = a(0) = 0, as actually neither 0 nor 1 refer to any atomic proposition. 

Formally, a Concurrent State Machine m is a tuple 

m=< N, edges,form, out, TIQ > 

where: 

- N - finite set of nodes (states of behavior), no € iV is the initial node, 
- edges C N X N- set of directed arcs, 
- form : edges -+ BT - labeling function, attributing Boolean formulas to edges, 
- out : N —> 2^'' - output function, attributing to each node a set of atomic 

propositions p G AP that are True for this node, 

It is convenient to think of CSM models as of labeled graphs (Fig. 3). Rounded 
boxes represent states, initial state is highlighted with a thicker borderline. In upper part 
of the box the state name is identified (e.g. Idle, CardOK, Verifying, 
InvCard) and below a set of propositions that are True for this state is enumerated 
(so-called output set of a given state). Directed edges of the CSM graph define the 
next-state relation. Edges are labeled with Boolean formulas rather than with individual 
symbols from some input alphabet. We require that a machine has to be complete, i.e. 
for any state, the Bolean sum of formulas at outgoing edges equals 1. 

In the context of behavior modeling we usually understand the atomic propositions 
as the coimnunication symbols (signals, messages etc.) produced by the machine in 
a given state as its output and received (or "watched for") as its input. Machine's 
output alphabet (denoted Out{m)) is the union of output sets of states. For instance, for 
machine from Fig. 3, the output alphabet is: 

Out{BankMain) — {PINVerif,verCompl,doVerif,Abort} (1) 

^ We require the formulas/ G BT be 'minimar, in a sense that their alphabets are minimal. 
So, for instance, 1 is used instead of (a-\-\a), a instead of {a*b + a*\b) etc. 
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Fig. 3. Example Concurrent State Machine (BankMain) 

In the CSM framework it is assumed that the truth value of all propositions from 
the output alphabet of the machine are fully determined by the output function of 
the (present) state. In other words, we assume that as long as the machine is in state 
n e N, all propositions p e out[n) axe. True while all the other ones from machine's 
output alphabet (i.e. q G Out{m) — out{n)) are False. This can be represented by the 
state output formula (denoted ^{n)) which is True for state n. For instance, for state 
InvCard (Fig. 3) - the state output formula is: 

(p{InvCard) =\PINVerif * verCompMdoVerif * Abort (2) 

as out{InvCard) = {Abort, verCompl}, etc. We say that in state InvCard the machine 
'produces' two output symbols: Abort and verCompl, in Verifying - one symbol 
(doVerif), while in Idle no output symbol is produced. 

Similarly, the input alphabet of machine m (denoted Inp[ni)) is the union of alphabets 
of all edge formulas. Any proposition/? e Inp{m), when True, signifies that the symbolp 
(signal, message,...) is present in machine's input. For instance, for machine from Fig. 3: 

lnp{BankMain) = {VerifyPIN, PINVdone, CVdone, cardValid, PINCorrect} (3) 

Notice that it is not required that input and output alphabets have to be disjoint. 
The next-state semantics of machine's behavior is as follows. At any instant of time 

the machine is in exactly one of its states; initially - in the initial state. In any (present) 
state n, machine produces its output symbols (making some atomic propositions True 
and the other ones False) and simultaneously evaluates the formulas on the edges 
outgoing from n. If a formula is True, then its edge is enabled^. If only one edge is 
enabled (deterministic case) - it becomes active. If more than one edge is enabled 
then one of them is selected as active. The choice is nondeterministic and fair^. If the 

Due to completeness, there is always at least one enabled edge. 
Of course, the next-state semantics refers to a single execution of the machine. However, in 
the context of model checking, all the edges that are enabled in a given state point out to 
reachable states. Thus, the reachability graph of the machine (as well as of the whole system, 
se below) contains all the edges which are labeled with non-zero formulas. 



266 Jerzy Miescicki 

selected active edge («, n') points out to a state n' ^ n (different than the present one) 
then the machine executes the transition to n'. Transition is instantaneous (zero time). 
Otherwise, i.e. if n' = n - machine remains in n. Notice that formula 1 is always True, 
so the edges (n, n') (where n' ^ n) labeled with it represent spontaneous ti-ansitions, 
executable regardless of machine's input. Similarly, formula 0 would mean that the 
edge is never enabled: such an edge can be simply removed from the graph. 

3.2 System of CSM and its product 

Now, consider a finite (nonempty) set M of Concurrent State Machines. For any two 
machines m,, mj € M, if Out{mi) C\ Inp{mj) ^ 0 then there is a conununication from 
m,- to Mj (nii and mj are 'communication partners'). If Inp{mi) D Inp{mj) ^ 0 then the 
two machines share the same input. A set M of CSM is a system of CSM, iff either 
I M 1= 1 (one-component system) or any m ^M has at least one communication 
partner or shares the input with at least one other machine. 

The overall output alphabet of system M (denoted OUT{M)) is the union of output 
alphabets of all m e M. Similarly, the input alphabet of M (INP{M)) is the union of 
input alphabets of all meM. The set difference E{M) = INP(M) - OUT{M) is the 
set of atomic propositions which are inputs of machines m £ M but are not produced 
inside the system. We assume that these symbols p e E{M) come from an unknown 
environment of system M and at any instant of time they can be either True or False^. 

The global behavior of a system of CSM is represented by system's reachability 
graph RG. The algorithm of obtaining RG has been developed and implemented as one 
of modules of COSMA environment [16]. Its idea is as follows. The state of the system is 
a vector of states of system components. Algorithm starts from system initial state which 
is the vector of initial states of components. In a given system state, system produces 
the set union of outputs of components. As the system output alphabet OUT{M) is 
known, for any system state n the state output formula if{n) is determined, analogously 
as in Eq. 2. From state n, a set of states is hypothetically immediately reachable. The 
hypothetical edge that would lead from h to some n' should be labeled with the Boolean 
product of ip{n) and the product of appropriate edge formulas of individual system 
components. If this product equals 0, then the state (although it was hypothetically 
reachable) proves not to be actually reachable and is not included into the emerging 
graph. Otherwise, the state is included and the edge with an appropriate labeling 
formula is created .̂ The process continues until no new reachable states emerge. 

The resulting graph is again a single CSM called a product of machines. The product 
is commutative and associative, which supports the compositionality of the model. 

The overall organization of the example system from Section 2 is shown in Fig. 
4. It consits of two subsystems (ATM and Bank), where ATM is a single CSM 
(Fig. 5) and Bank itself is composed from three components: Bank-Main (Fig. 3) 

^ Notice that by the above definition the alphabet of propositions coming from the environment 
and produced inside M are disjoint. 

* It should be emphasized that the propositions p e OUT{M) are eliminated from these 
formulas. Indeed, for any system state n the truth value of all output propositions is known so 
that we can substitute 0 for propositions that are False in this particular state and 1 otherwise. 
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and two orthogonal machines, one for the verification of the card, the other for the 
verification of PIN (Fig. 6). Directed arrows in the block diagram from Fig. 4 indicate 
the cominunication between machines: for instance, VerifyPIN is the output symbol 
from ATM and input proposition for BankMain, etc. These communication relationships 
can be easily specified in terms of intersections of input/output alphabets. 

Additionally, we prepare the CSM model of expected behavior of the User (not 
shown for the sake of the economy of space). It has 10 states and 16 edges and 
generally is analogous to the ATM (Fig. 5) to/from which it communicates. The CSM 
product of the whole system is a new machine: 

System = User ® ATM ® BankMain ® VerC ® VerPIN (4) 

It has as few as 28 (reachable) states (out o f l 0 x 9 x 4 x 4 x 4 = 5760 elements 
of Cartesian product of sets of components' states) and 46 labeled edges. 
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Fig. 6. CSM models of Ver-C (left) and Ver-PIN (right) 

3.3 Multi-phase computation of CSM product 

Notice that due to the associativity of CSM product, we can obtain the System in 
several steps instead of the one ('flat') operation, as in Eq. 4. For instance, we can 
compute System as a sequence of partial products: 

System = User ® (ATM ig) {BankMain ® VerC ig) VerPIN)),or 

Bank = BankMain ® VerC ® VerPIN 

ATMandBank = ATM ® Bank 

System = User ® ATMandBank 

(5) 

(6) 

(7) 

(8) 

However, if we know what properties are to be verified, we can significantly reduce 
the partial products before they are used in the next step of product computation. In 
our example we want to verify the properties 7ri,7r2, specified at the end of Section 
2. They refer only to propositions Card, CardRemoved and Money (in the interface 
between User and ATM). 

Now, suppose that we have just computed the partial product Bank (as in Eq. 6. 
Actually, it has 15 states and 32 edges. However, from the viewpoint of the next step 
(Eq. 7) the only relevant states are the ones which either produce or receive symbols 
to/from ATM, i.e. Verify, PINVerified, Abort (easily identifiable in the block diagram 
from Fig. 4). Remaining (irrelevant) states and edges can be merged in order to obtain 
compressed, much smaller version of the partial product. The algorithm for partial 
product compression (given a set of relevant symbols) has been implemented as a part 
of COSMA environment. The result of its application to Bank (or NewBank) is shown 
in Fig. v. Notice that NewBank has only 4 states and 7 edges (compared with 15/32 
of the 'original' Bank). 

The same procedure can be continued with successive subproducts. We substitute 
NewBank instead of Bank in Eq. 7, compute ATMandBank, compress again the resulting 
product into NewATMandBank (leaving as relevant symbols only these from ATM-User 

' The algorithm attributes new, technical identifiers to merged states 
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interface). Finally, we compute and compress (NewSystem = User ® NewATMandBank). 
This time, compression involves hiding all propositions except Card, CardRemoved and 
Money, (necessary and sufficient) for the evaluation of TTI and 7r2. The result, shown in 
Fig. 8, is so elementary that one can analyze it just by naked eye. Indeed, the graph 
shows that NewSysteml \= TTI (it is true that whenever Card is inserted then eventually 
CardRemoved) while NewSysteml ^ 7T2 (it is not true that whenever Card is inserted 
then eventually Money is paid). 

Fig. 7. NewBank or compressed product ^{BankMain., VerC, VerPIN} 

Fig. 8. NewSystem or compressed product for the evaluation of TTI and TTZ 

It should be mentioned that in the case of larger (also: uncompressed) graphs 
the verified properties are expressed as formulas in QsCTL (a version of CTL) and 
evaluated using one of modules of COSMA environment ([18]), with possible edition 
of counterexamples etc. 

4 Conversion of UML state diagrams into CSM 

The example discussed above shows that the CSM model and COSMA tool is a 
noteworthy conceptual framework for behavioral verification of systems. Multi-phase 
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product computation and compression of partial products seem to be an important 
advantage, as a powerful technique that can overcome (or relax, at least) the exponential 
model explosion and provide readable evaluation results. However, if such COSMA-style 
model checking has to support MDA approach - we should have algorithms and tools 
for converting UML state diagrams into Concurent State Machines. The software 
module for converting UML state diagrams (from their XMI specification) into CSM is 
now under implementation within the COSMA project. Below, we briefly comment on 
main problems encountered during the implementation. Unfortunately, the results of 
algorithmic conversion are hardly readable in practice, so that the CSM models of 
ATM and Bank discused in preceding sections have been prepared manually, just to 
provide illustrative examples highlighting the nature of CSM model. 

First of all, CSM are best tailored to modeling of control-dominated systems. 
Simple types of data (not only boolean, but also short integers, like counters etc.) are 
acceptable, but may significantly increase the size of product. Also, infinite buffers are 
excluded and finite ones have to be modeled as separate machines, which may lead to 
a substantial complication of the model. Dynamic object creation/destruction also 
contradicts the finite-state nature of the CSM model. On the other hand, the same 
limitation face practically all finite state methods and model checkers. Moreover, it 
should be mentioned that the COSMA environment supports also Extended CSM 
(ECSM, [19]), which allow for the definition of all types of variables and attributing 
the pieces of C/C++ code to states and transitions of CSM. Of course, systems of 
ECSM are no longer model-checkable: they can be either simulated or excuted, but we 
can verify their control- and communication flow 'skeletons' before the code is added. 

Conversion of "flat" UML diagrams, like the ATM from Fig. 1, is rather a simple 
task (compare Fig. 5). However, in CSM the outputs are attributed to states (like in 
Moore automata) rather than to transitions (like in Mealy automata and state diagrams), 
therefore in order to produce Verify message to Bank the additional CSM state is 
introduced {VerReq). The "self-loops" at CSM states (making the conditions of staying 
in states explicit) are merely a technical trick. 

Composite states (like the AND-state Verifying in Fig. 2) cause more problems. 
First, not only the diagram itself (here: BankMain), but also each of nested subdiagrams 
(Ver-C and Ver-PIN) must be separate CSM. If so, Ver-C and Ver-PIN have to remain 
in some CSM state even though a higher-level diagram (BankMain) had just returned to 
Idle. Generally, if the composite state can be entered through H or H* pseudostates, 
then upon exit from this (UML) state all the nested machines have to remain "frozen" 
in their present (CSM) states. If for the subdiagram the default initial state is specified -
then the same trigger which pulls off the higher-level diagram from (UML) composite 
state forces all the nested sub-machines to get back to their initial (CSM) states. 
This calls for additional (appropriately labeled) edges in CSMs, from each state back 
to the initial one. Moreover, in order to keep the sub-machines frozen while the 
higher-level machine is not in "their" composite state, to each composite state a default 
technical output symbol is attributed (not provided by the designer at UML level) 
which multiplies (in a sense of Boolean product) all the formulas at the transitions 
in its sub-machines. This way these transitions are temporarily disabled. It is the 
above conventions why algorithmically generated CSM models are hardly readable. 
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Fortunately, the mentioned technical symbols can be easily hidden during compression 
and do not influence the readability of final evaluation results. 

Among other problems is the conversion of other pseudostates, like Fork - Join 
bars as well as junction and branch pseudostates. They involve a specific exchange of 
synchronization symbols among sub-machines, but still can be rather naturally modeled 
in terms of CSM (see Fig. 3 and 6). Notice that for a subsystem of CSM, aimed to 
represent a nested composite state we can compute a local CSM product, as we did e.g. 
for Bank (Eq. 6). This operation "flattens" the behavioral specification and helps to 
understand the details of cooperation among machines. 

The most challenging problem for the COSMA project is now the introduction of 
real-time constraints to CSM. In this paper we have used just a basic version of the 
CSM model, where the the only representation of the flow of time are states, in which 
a machine can nondeterministically remain for an unspecified but finite time (e.g. 
CountingMoney in Fig. 5 or VerifyingCard, VerifyingPIN in Fig. 6). The research on the 
theory and implementation of Timed CSM is in progress. 
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