
Minimizing Test Execution Time During Test Generation

Tilo Mticke and Michaela Huhn

Technical University of Braunschweig, 38106 Braunschweig, Germany
{tmuccke.huhn) @ips.cs.tu-bs.de,

WWW home page: http;//www.cs.ta-bs.de/ips

Abstract. In the area of model based testing, major improvements have been
made in the generation of conformance tests using a model checker. Unfortunately,
the execution of the generated test suites tend to be rather time-consuming. In [1]
we presented a method to generate the test suites with the shortest execution time
providing the required coverage, but this method can only be applied to small
models due to memory-consumption. Here we show how to generate test suites
for a number of different test quality criteria like coverage criteria, UIOs, mutant
testing. Moreover, we present heuristics to significantly reduce test execution time
that are as efficient as a naive testsuite generation. Our optimization combines
min-set-cover-algorithms and search strategies, which we use to enlengthen
generated test cases by promising additional coverages. We compare several
heuristics and present a case study where we could achieve a reduction of the
test execution time to less than 10%.

1 Introduction

In the last decade, models have been discovered as an invaluable source for deriving
test cases. Many authors proposed model checking [2-4] or other search strategies
[5] to automatically generate test sequences from behavioral (semi-)formal models.
The success of model based testing has its reasons in the wide acceptance of model
based development in practice, in particular in the embedded domain where substantial
verification and testing of systems is obligatory.

We present an approach to model based test generation that uniformly handles
a number of well-established test quality criteria like test purposes [5], coverage
criteria [4], and mutation testing [6] and applies them on behavioural models. Our key
technology for test case generation is model checking on state based systems. In a
preparatory step, test quality criteria are split into subgoals that can be achieved by a
test case and the models are instrumented by adding auxiUary variables and test drivers
to direct the search for test cases to the subgoals. Using this procedure systematically,
large testsuites for involved test quality criteria can be generated automatically.

However, many generated testsuites expose long test execution times which is a
Umiting factor in several real-time domains: For instance, in railway interlockings, traffic
or process control systems some actions need relevant time for execution. We address
this problem by combining heuristic search algorithms with min-set-cover algorithms
for minimizing the test execution time of the testsuites but preserving the test quality.

A second problem of automated test generation is the fault recognition rate. As
recently observed by Heimdahl [7], structural test quality criteria tend to produce

Please use the following format when citing this chapter:

Miicke, T., Huhn, M., 2006, in IFIP International Federation for Information Processing, Volume 227, Software Engineer­
ing Techniques: Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 223-235.

224 Tilo Miicke, Michaela Huhn

testsuites that just satisfy the criteria instead of verifying the correct behavior. We cope
with this weakness by using strong quality criteria [8], by enlengthening the test cases
with UIOs (see section 2.6), and by extending test cases gathering additional coverage
(see section 3). Consequently, our approach has the potential to generate test cases with
a higher fault recognition rate.

system
model
(UML

statecharts)

test quality
criterion

c
o

a
F
H
ta
c
o
o
fc

f ^

c
.2
«

J

/

formal
system
model

(UPPAALtlmetl
automata)

\ temporal
logic formula

^
^ c
1
a)
.c
o
o
^ o
E

E
E •*-•
• | ra
a
.c

a ffl
a
u

trace

test case/
testsuite

(UML
sequence
diagram)

Fig. 1. Automated model based test case generation

Figure 1 summarizes the procedure for test case generation. Initially, the instrumen­
tation of the model has to be adapted according to the selected test quality criterion.
The different instrumentations are described in Section 2. The details on the translation
from UML statecharts [9] to the input language of the UPPAAL model checker [10]
and back can be found in [1]. Section 3 is concerned with the combination of search
heuristics for test case generation and min-set-cover algorithms to optimize testsuites
with respect to test execution time. The results of a case study are reported in Section
4 and we conclude in Section 5.

2 Test Case Generation

In this section we describe the instrumentation of models for test case generation via
model checking for three different test quality criteria:
1. A test purpose is given by a test expert. It consists of a desired property or a critical

operation sequence. Test cases checking the property or executing the sequence are
generated.

2. Coverage criteria are definitions of model element type dependent, structural
properties which have to take place during test case execution. E.g. state coverage
demands each state to be visited at least once.

3. Mutant testing demands that every mutated model has to be uncovered as erroneous
by the testsuite, unless it behaves equivalent to the original model. The mutants are
generated automatically by so called mutation operators. E.g. arithmetic operator
replacement (AOR) replaces each occurrence of an arithmetic operator by any other
arithmetic operator.

We decompose each test quality criterion into subgoals which are to be achieved and
call them partial coverages. Partial coverages are encoded as predicates that shall be
satisfied on some execution like "state s has to be reached". For our purposes, the
system model consists of a family of UML statecharts [9] modeling the behavior of the
system components. UML statecharts extend final state machines by the concepts of

Minimizing Test Execution Time During Test Generation 225

hierarchy, concurrency and communication via events. Transitions can be labeled with
events, guards and actions. Additionally, we use a time event after(t) with the obvious
meaning. There exist a number of formal semantics for statechart dialects and we will
use the approach from [11,12] to transform statecharts into the input language of the
UPPAAL model checker [10] and translate the output traces of the model checker back
into sequence diagrams. UPPAAL supports the verication of real-time constraints, a
feature we use for the generation of time annotated test cases. The real-time annotations
within the models result from measuring and approximating the execution times of
actions from previous versions of the components. Test purposes are given in terms of
predicates or UML sequence diagrams for scenarios. To illustrate test case generation for
the quality criteria, we use a simple running example: The control of a dimmer switch.

2.1 Example: Dimmer Switch

- off[b==0] — —

after(ATlME)[b==0]

^on/b:=oonf ^ i ^

off[b>0]/b:=b-1, conf:=b>0?b:1

Adjustable I on[b<BMAX]/b;=b+1, conf:=b

$ / Off

y «^- _y

after{ATiME)[b>0]

on[b<BMAX]/b:=b<BMAX?b+1 ;BMAX, conf:=b

off/b:=0 (Inadjustable j

Fig. 2. Statechart of the dimmer switch

The dimmer switch is controlled by two buttons (events): on and off. The brightness
b of the connected lamp is the only observable output of the system and can be adjusted
within the values 0 (light off) and BMAX. When the on button is pushed, the lamp
lights with the brightness b that is memorized (conf) from the previous use. After
turning the dimmer on, the brightness can be modified smoothly by pressing the buttons
on and off. If for the time ATIME no button is pressed, the brightness will become
inadjustable. Pushing the off button turns the lamp off immediately. By pressing the on
button, the lamp returns into adjustable mode. The statechart model of the dimmer
switch is shown in Fig. 2.

2.2 Test Driver
For test case generation, a test driver has to be added which

feeds the system under test wi th all possible inputs. This test
driver has to be implemented non deterministically (see figure
3). Technically, the test driver is put in parallel to the statecharts
model ing the system which leads to a product construction at
the level of model checking. Fortunately, the test driver consists
of only one state.

/dimmer.on

J i
- ^ Ready

Wimmer.off

Fig. 3 : Test driver

226 Tilo Milcke, Michaela Huhn

2.3 Test Purpose: Property

First we consider properties that shall be checked by tests. An example property for
this model is:

1
temporal logic formula
E<>{b> 0)

meaning
The lamp can be turned on.

In case a property can be directly expressed as a path quantified state predicate the
model instrumentation can be omitted. The only thing to do is to add a query at the
level of the model checker, i.e., E <> p (on some trace p happens) in UPPAAL
syntax. For a property E <> pihe model checker returns a trace if it is satisflable.

2.4 Test Purpose: Interaction Sequence

Often a test purpose can be naturally described as a sequence of operations or
interactions. Thus, sequence diagrams are a widely used representation in testing which
we use as well. Figure 4 shows a sequence diagram where on is pressed, it is waited
ATIME and then off is pressed, demanding that the brightness is set to 0. Afterwards
conf is set to 2 and on is pressed, so that b will be 2.

To generate a test case including this sequence, the test driver is modified. It
consists now of it's nondeterministic part which is needed to reach a state where the
sequence can be executed and a simple representation of the activities in the sequence
diagram from the point of view of the test driver, see Figure 4 (right). To generate a
test case containing this sequence we ask the model checker for a path reaching the
partial coverage: E <> testdriver.Finished.

Possible actions of the test driver are (1) sending and (2) receiving events, (3)
changing and (4) monitoring global variables, and (5) evaluating time constraints. How
these actions are translated from sequence diagrams in test drivers is formally described
in [11]. Time constraints are realized during translation to UPPAAL timed automata.

To generate more than one trace per sequence diagram, one can vary the state
at which the execution of the sequence starts which will lead to additional partial
coverages representing different settings where the scenario is executed.

2.5 Coverage Criteria

A model checker can as well be used to generate test cases for coverage criteria. In [1]
it is shown, how models are instrumented and properties are generated to achieve
state coverage, transition coverage, modified condition/decision coverage, boundary
coverage and dataflow coverage. The instrumentation adds new coverage variables to
the system, which are set, whenever a partial coverage is achieved. E.g. to achieve
transition coverage each transition is once supplemented with a statement setting the
coverage variable to true. Thus with a query E <> [coverageVar] the appropriate
partial coverage can be achieved. Other coverage criteria require splitting of transitions
(modified condition/decision coverage) or adding auxiUary variables (dataflow coverage).
The new coverage criterion boundary coverage is now used as an example to show an
instrumented version of Fig. 2.

Minimizing Test Execution Time During Test Generation 221

{a.receive-b.reGeive^ATIME}

{b==0}

{oonf:=2)

(b==2)

y^
I

/dimmer.on Ready /dimmer.off

/dimmer.on

|aftef(ATIME)/dlnimer.off|

|[dimmer.b=-0)|

/ditiimer.cQnf;=2

L

/dimmer.on

[b=-=2]

Finished

Fig. 4. Statechart of a modified test driver for the sequence diagram

Boundary Coverage demands that for each guard containing a relational operator a test
case is generated for which the operands are as close as possible to the boundary. To
achieve this criterion, the structure of the statechart is changed by splitting transitions.
Each transition with a relational operator in its guard is split in two transitions, one of
which fires for the closest operands possible only and is insti-umented by a coverage
variable and another one which conserves the behavior by firing in all other possibilities.
Figure 5 shows, how the Dimmer Switch is instrumented to enable the model checker
to generate test cases using the testdriver from Fig. 3 and the queries:
E <> 5 1 - = true, E <> B2 = = true, and E <> B3 = = true.

2.6 Unique Input Output Sequences

Recent results by Heimdahl [7] indicate that a testsuite generated for structural coverage
criteria like state or transition coverage may be weak w.r.t. its fault detection ability.
But fault detection is the overall aim of testing.

228 Tilo Milcke, Michaela Huhn

offtb>0+1]/b:=b-1, conf:=b>0?b;1
I I

offlb==0+1]/b:=b-1, conf;=b>0?b:1, B1:=true

M " •
offlb==0]

f
after{ATIME)[b==0]-

tJL
% ^ Off

on/b;=conf-

Adjustable

onlb<BMAX-1]/b:=b+1, oonf:=b

K "
^-

-^K
on[b==BMAX-1]/b:=b+1, oonf:=b, B2:=true

off/b:=0-

1 V̂ f
after(ATIME)[b>0]

on[b==BMAX-1l/b~b<BMAX7b+1:BMAX, conf;=b, B3:=truB

y I on[b<BMAX-1]/b:=b<BMAX?b+1:BMAX, oont=fa

Inadjustable

Fig. 5. Statechart of the Dimmer Switch instnimented for boundary coverage

Let us consider a generation procedure for a testsuite satisfying transition coverage.
It will generate test cases in which the last step is the execution of the desired transition.
Thus, it is not tested if the correct target state of the transition is actually reached.
To overcome this kind of problems, we enlengthen the test cases by so called UIOs
(Unique Input Output sequence). These UIOs consist of a sequence which can only be
executed starting at the specific state. From all other states, provided they are not trace
equivalent, outputs of the system will differ from the outputs described in the UIO.

We generate UIOs using model checking in a variant of [13] by putting several
systems with partly modified initial states in parallel. The test driver is modified, so
that all systems are triggered with the same inputs. A comparator compares the outputs
of the systems. As soon as a system has produced different output compared to all
other systems, a UIO for the initial state of this system is found.

2.7 Mutant Testing

Mutant testing requires, that each mutation of the original model is either equivalent to
the original model or found as erroneous by the test suite. The mutants are generated
by mutation operators.

The classical mutation operators [6] can be applied to code only. Thus, in the case
of statecharts, they can be applied to guards and actions. Common mutation operators
are: (1) LCR, AOR, ROR which replace each occurrence of a logical, arithmetical, or
relational operator by any other operator of the same type, (2) UIO which negates,
increments and decrements each arithmetic expression, (3) AAR, ACR, ASR, ... replace
each occurrence of a variable, constant or array by each compatible variable, constant
or array, (4) CRP, DSA sUghtly change constant values, (5) SDL deletes each statement,
and many more.

On the model-layer, these mutation operators have to be supplemented by mutation
operators working with the structure of the automata [14]. Some of these operators are
already handled by mutating guards and actions. Examples for other operators are; (1)
state rnissing, (2) transition missing, (3) replace origin state of a transition, (4) replace

Minimizing Test Execution Time During Test Generation 229

target state of a transition, (5) replace triggering event, (6) replace triggered event, and
(7) replace event recipient.

To generate mutant killing test cases, the original model has to be executed versus a
mutated program. They both have to be triggered by tlie same inputs. A mutant is
found as erroneous, if the outputs differ. Thus, the same technique we used for UIO
generation is applied for generating mutant killing test cases.

Detecting unsatisfiable coverages is done by using the query A[]c == false for a
partial coverage c. If the subgoal cannot be achieved, it is is ehminated.

3 Strategies to Generate Time Optimized Testsuites

After instrumenting the model according to a test quality criterion, the statecharts
modeling the system ai-e transformed into a semantically equivalent family of timed
automata that serves as formal system model for UPPAAL. Details on the construction,
e.g. syntactic restrictions on die UML model elements, the translation of timing
constructs, the handhng of event queues and UML run-to-completion semantics, can be
found in [11].

In [1] we investigate a technique to generate the time optimal testsuite. We achieved
a significant reduction in test execution time, but the technique suffers from high
memory consumption, i.e. it is restricted to small models.

Alternatively, we consider heuristics to efficiently generate testsuites with optimized
but not necessarily minimal execution time. We generate an optimized testsuite in two
steps:
1. We generate a test case for each partial coverage we are interested in, thereby

following the work of Hong et.al. [4]. These test cases build a testsuite for a given
test quality criterion as each required partial coverage is achieved at least once.
Moreover, some partial coverages may be satisfied by more than one test case'. To
increase the basis for optimization we enlengthen the test cases by adding a path
starting from its final state and leading to a state where some additional coverage is
satisfied. We consider several search heuristics to generate a testsuite of promising
long test cases. The amount of redundancy with respect to the achieved coverages
is controlled by a parameter of the search.

2. We use min-set-cover-algorithms [15,16] to optimize test execution time of a
testsuite but retain the required partial coverages. Since the testsuite has been
enlarged, a min-set-cover-algorithm works on a broader basis from which it
eliminates test cases that are redundant w.r.t. the achieved coverages. Again we
consider different heuristics to improve test execution time.

3.1 Building a Redundant Testsuite

For a succinct description of the heuristic search we use pseudo code. The basic
function is called tcGenerate and generates a single test case as follows: The model is
instrumented and transformed to the model checker input language, then the model

A test case for the coverage ci may reach other coverages on the way.

230 Tilo MUcke, Michaela Huhn

checker is employed for searching a trace and finally the resulting trace is retranslated
into a sequence that can be executed on the system model. The concepts needed to
realize tcGenerate have been described in Section 2:

tcGenerate : Models x {Traces U {s}) x PC -^ Traces U {e}

tcGenerate takes a statechart model m G Models, an initial segment of a test case
t e Traces U {e}^ and a partial coverage pc from the set of interesting partial coverages
PC. It returns a test case tc that extends t, i.e. tc = t • w for some suffix u, and satisfies
the given partial pc, if possible. Otherwise, it returns e. With each generated test case
tc we store two attributes; texec{tc), the test case execution time, and suhPC{tc), the
subset of PC that is achieved when executing tc

Now we consider three search strategies that use tcGenerate to generate testsuites
for a given model and a set of partial coverages PC:

search : Model x p{PartGov) —> p{Traces)

The naive search strategy simply generates one test case for each required partial
coverage pc e PC by successively calling tcGenerate. Thus the size of the testsuite is
0{\PC\).

The depth 2 search aims to enlengthen a test case by a suffix that achieves an
additional partial coverage. The initial parts are generated by the naive search strategy
and then an extension for each partial coverage is searched:
function depth2Search(model, PC)

testsuite—naiveSearch(model, PC); extension=%;
foreach testcase e testsuite do

foreach pc € PC do
extendedTestcase—tcGenerate(model, testcase, pc);
if (extendedTestcase^e) then extension^extension U {extendedTestcasej;

od;
od;
return testsuite U extension;
The number of generated test cases is in 0{\PC\^).

Heuristic Search enlengthens only the best test cases for a partial coverage which has
been achieved rarely so far. Therefore we need two ranking functions. getBestTestcase^
returns the test case with the maximal value for \PC{tc)\/(tesoedtc) + t,reset) which has
not been enlengthened in all possible ways. The function getWorstPartialCoverage
gives us the partial coverage which has been achieved least often in the testsuite and in
particular not in the chosen test case. The parameter amount controls how many test
cases are generated. In our experiments we used 10 • \PC\ which seems to generate a
sufficiently large set for the subsequent reduction phase.

^ If t is given as sequence diagram the model is instrumented as described in Sec. 2.4.
^ A promising test case achieves many partial coverages in short execution time.

Minimizing Test Execution Time During Test Generation 231

function HeuristicSearch(model, PC)
testsuite=naiveSearch(model, PC);
for i=l to amount do

festcase=getBestTestcase(testsuite);
pc=getWorstPartialCoverage(testsuite);
extendedTestcase=tcGenerate(model, testcase, pc);
if (extendedTestcase^ e) then testsuite=testsuite U (extendedTestcasej;

od;
return testsuite;

3.2 Optimizing Testsuites by Min-Set-Cover-Algorithms

Originally, a min(imal)-set-cover algorithm constructs a small subset from a set of
sets, such that the union of sets in the small subset equals the union of the sets in
the original set. Since the minimal set cover problem is NP-complete [17], heuristic
algorithms are used. Here we want to adopt min-set-cover algorithms to eliminate test
cases, that are redundant w.r.t. the partial coverages they achieve, from the testsuite,
thereby reducing test execution time of the testsuite.

minsetcover : p(Traces) X M —> p(Traces)

minsetcover takes a testsuite and the reset time treset of the system that has to be
added after each test case to sum up the execution time of the testsuite.

A simple Greedy algorithm can be applied on a minimal set cover problem by
complementing the usual approach [15], i.e., we start with the full testsuite and try
to eliminate test cases but keep the same coverage. To select the next candidate for
elimination the function entry is used. In the simplest variant of a greedy algorithm
we set entry {testsuite,..., i , . . .) = testsuitei.

function greedyMinSetCover(testsuite, treset)
reducedTestsuite=testsuite;
for i=l to \testsuite\ do

testcase=entry(testsuite, reducedTestsuite, i, treset):'
if(\testsuite.subPC\==\(reducedTestsuite\{testcasej).subPC\)

then reducedTestsuite=reducedTestsuite\{testcase);
od;

The bidirectional Greedy Algorithm (see [15]) uses the same entry function but is
applied to the testsuite twice running from both directions through the testsuite.

A sorted Greedy algorithm improves testsuite optimization even further by using
a better entry function that sorts the test cases according to their quality, weakest
test case are returned first. For this purpose, the function getBestTestcase from the
heuristic search is recycled.

232 Tilo Mitcke, Michaela Huhn

A force directed algorithm is derived from force directed scheduling algorithms
[16]. In difference to the previous greedy algorithms, the order in which the test cases
are selected as candidates for elimination is not fixed a priori, but depends on the test
cases that are still in the testsuite. We introduce a new function

timesCovered : PC x Testsuites —+ N

to calculate how many test cases of a testsuite satisfy a partial coverage.
The entry function selects the test case with the lowest quality according to

qualityitc) =
E

pcePC

times Covered (pc, reduced Testsuite) — 1
0

pc e suhPC{tc)
else

t. ,{tc)

The meaning of the formula is as follows: The numerator contains a metric for
the assets achieved by the test case tc. The asset is the smaller the more frequent a
partial coverage is achieved by other test cases in the testsuite. If tc is the last test case
achieving a partial coverage, the asset is set to infinity, which maximizes its quality and
prevents tc from elimination. In the denominator we have the test execution time of tc
and the reset time. Thus faster test cases are favored.

Finally, we combine a search for test case generation and an optimization by a
min-set-cover algorithm: Min3etCover{search{model,PG),treset)-

4 Case Study: Robot Control

Tab. 1. Optimised testsuites generated for the robot control software by EGRET

component

number of configurations
nunaber of partial coverages
testcase reduction (greedy) [%]
testcase reduction (heuristic) [%]
time reduction (greedy) [%]
time reduction (lieuristic) [%]

1 1
S
o

1 27
1
0
0
0
0

1
o

1
1 10*

7

50

SO

50

50

1
>

1
a.

216
3

67
67
69
69

T3

1
1
a
o
U 10'
14
86
86
86
86

1
s
1
256

5
60
80
60
80

1
u

10'-"
38
81
97
81
92

3
i l
§
U

1
10''
12
S3
92
82
88

10**
7
86
86
83
83

.1
0
00 o

1
10^"
32
81
97
79
93

3 o
10"
16
88
88
76
76

CO
00

1
&
10'
19
53
93
54
92

The presented techniques have been implemented in our Extendable Generator for
Efficient Testsuites (EGRET). EGRET imports UML models with some syntactic
restrictions from Rhapsody for Java (from i-logix) in the XMI1.2 format. A model
diagram as well as a statechart for each class is required. AND-states, method-calls
which are not used for sending events, all other data types but bounded integers and
booleans, and events with parameters are forbidden. However, we are working on a
version supporting top-level concurrency, OR-states within the statecharts, the call of
non-recursive functions and events with parameters. The exported system definition is

Minimizing Test Execution Time During Test Generation 233

instrumented and translated to timed automata. Coverage criteria, search strategies and
min-cover-set-algorithms are plug-ins. Thus the tool can easily be extended. We are
using UPPAAL as a model checker for test case generation. Some search strategies
already use the possibiUty of a distributed execution of the model checker to lower test
generation time even more. The traces which are output of the model checker and
specify the test cases are translated into an XML-format which can be executed by a
testdriver via a middleware on the components under test.

In the Collaborative Research Centre 562 "Robotic Systems for Handling and
Assembly", a robot control software for parallel and hybrid kinematic machines has been
developed. All components of the system have been modelled during the development
process using sequence diagrams and later on statecharts [18]. The system consists of 16
components, with 27 up to ~ 2 * 10^° configurations each, resulting in a state space of
about 5 * 10^^ states. The test generator is capable of generating conformance testsuites
for all components and interoperability testsuites for pairs of communicating processes.

We applied EGRET to the statechart description of the robot control software, using
different optimisation techniques. Table 1 shows, how the testsuite size can be reduced
by a simple search combined with a bidirectional greedy algorithm and a heuristic
search combined with a force directed greedy algorithm. The second approach reduces
the test execution time up to 7% of the execution time of the unoptimised testsuite. The
best results have been achieved in optimising the testsuites of large components, like
the RoboProgClient, the RoboProgServer and the CycleThread. However, in case of
smaller components, the results for the heuristic search and the simple search both
combined with min-cover-set-algorithms are the same.

5 Conclusion

We presented an approach for automated model based testsuite generation. We considered
a catalogue of test quality criteria, namely the test of system properties or interaction
sequences, various coverage criteria, and mutant testing. We showed how to uniformly
instrument state based models by adding variables or specific test drivers such that a
model checker searching for a subgoal encoded as partial coverage will generate a
trace that can serve as a test case for that subgoal. Thus, not only formal test quality
criteria like coverages but also expert knowledge and existing tests in terms of sequence
diagrams are integrated in an automated, formally founded test case generation smoothly.

Next we compared several heuristics for optimizing the test execution time without
decreasing the test quality. We combined search algorithms, adding redundancy on the
required coverages to a testsuite, with different min-set-cover algorithms that preserve
the set of coverages but minimize the execution time.

Our experimental results on the case study are promising under three aspects:
First, the test execution time could be significantly reduced. Second, the heuristics for
optimization are efficient w.r.t. time and memory consumption such that our approach
is applicable on medium sized real world case studies at least which is an significant
improvement compared to other approaches. Third, our approach favors the generation
of long test cases on which several subgoals (partial coverages) are tested. Thus, we

234 Tilo Miicke, Michaela Huhn

avoid weaknesses w.r.t. the fault detection rate that were observed on other approaches
to automated testsuite generation.

In future, we will investigate the interdependence between different strategies for
automated model based testsuite generation and the ability to detect faults running the
testsuite. First insights have been given in [7,8], but a more systematic investigation can
lead to valuable hints for what kind of systems which strategy can be recommended.
Additionally, we plan to extend our work on mutant testing for state based models and
investigate alternative heuristic optimization algorithms for testsuite generation like e.g.
genetic algorithms.

References

1. Miicke, T., Huhn, M.: Generation of optimized testsuites for UML statecharts with time. In
Groz, R., Hierons, R.M., eds.: TestCom. Volume 2978 of LNCS., Springer (2004) 128-143

2. Engels, A., Feijs, L., Mauw, S.: Test generation for intelligent networks using model
checking. In Brinksma, E., ed.: Tools and Algorithms for the Construction and Analysis of
Systems. (1997)

3. Rayadurgan, S., Heimdahl, M.: Coverage based test-case generation using model checkers.
In: Intl. Conf. and Workshop on the Engineering of Computer Based Systems. (2001) 83-93

4. Hong, H., Lee, I., Sokolsky, O., Cha, S.: Automatic test generation from statecharts using
model checking. In Brinksma, E., Tretmans, J., eds.: Workshop on Formal Approaches to
Testing of Software (FATES). (2001) 15-30

5. Pretschner, A.: Classical search strategies for test case generation with constraint logic
programming. In Brinksma, E., Tretmans, J., eds.; Workshop on Formal Approaches to
Testing of Software (FATES). (2001) 47-60

5. King, K.N., Offutt, A.J.: A Fortran language system for mutation-based software testing.
Software-Practice & Experience 21(7) (1991) 685-718

7. Heimdahl, M.P., Devaraj, G., Weber, R.J.: Specification test coverage adequacy criteria =
specification test generation inadequacy criteria? In: Proceedings of the 8th IEEE International
Symposium on High Assurance Systems Engineering (HASE), Tampa, Florida (2004)

8. Heimdahl, M.P., Devaraj, G.: Test-suite reduction for model based tests: Effects on test
quality and implications for testing. In Wiels, V., Stirewalt, K., eds.: Proc. of the 19th IEEE
Intern. Conference on Automated Software Engineering (ASE), Linz, Austria (2004)

9. OMG: Unified modeling language specification (2003) Version 1.5.
10. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on

Software Tools for Technology Transfer 1(1-2) (1997) 134-152
11. Diethers, K., Goltz, U., Huhn, M.: Model checking UML statecharts with time. In Jez^quel,

J.M., HuBmann, H., Cook, S., eds.: UML 2002, Workshop on Critical Systems Development
with UML. (2002)

12. Diethers, K., Huhn, M.: Vooduu: Verification of object-oriented designs usmg uppaal.
In Jensen, K., Podelski, A., eds.; TACAS. Volume 2988 of Lecture Notes in Computer
Science., Springer (2004) 139-143

13. Robinson-Mallett, C, Liggesmeyer, P., Miicke, T, Goltz, U.: Generating optimal distinguishing
sequences with a model checker. In: A-MOST '05: Proceedings of the 1st International
Workshop on Advances in Model-based Testing, New York, NY, USA, ACM Press (2005) 1-7

14. Sugeta, T., Maldonado, J.C, Wong, W.E.: Mutation testing applied to validate SDL
specifications. In Groz, R., Hierons, R.M., eds.: TestCom. Volume 2978 of LNCS., Springer
(2004) 193-208

Minimizing Test Execution Time During Test Generation 235

15. Offutt, J., Pan, J., Voas, J.: Procedures for reducing the size of coverage-based test sets. In:
Proceedings of the Twelfth International Conference on Testing Computer Software. (1995)
111-123

16. Paulin, P., Knight, J.: Force-directed scheduling for the behavioural synthesis of asics. IEEE
Trans, on Computer-Aided Design 8(6) (1989) 661-679

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Company (1979)

18. Steiner, J., Diethers, K., Mticke, T., Goltz, U., Huhn, M.; Rigorous tool-supported software
development of a robot control system. In: Robot Systems for Handling and Assembly, 2nd
Colloquium of the Collaborative Research Center 562. (2005) 137-152

