
A C++ Workbench with Accurate Non-Blocking Garbage 
Collector for Server Side Internet Applications 

Piotr Kolaczkowski and Ilona Bluemke 
{P.Kolaczkowski, LBluemke}@ii.pw.edu.pl 

Institute of Computer Science, Warsaw University of Technology, 
Nowowiejska 15/19, 00-665 Warsaw, Poland 

Abstract. At the Institute of Computer Science Wai'saw University of Technology 
a workbench for building server-side, dependable, Internet applications was 
designed and implemented. This workbench is a collection of C+-t- classes. The 
design and implementation of these classes are briefly described. The most 
important part of the workbench is the web server, implemented as a C-n- class 
that can be used in a standalone application. To implement the web server a 
precise, concurrent garbage collector was designed. Our garbage collector is 
based on the concurrent mark-and-sweep algorithm and smart pointer pattern. It 
makes the risk of memory access faults or memory leaks much lower than in 
standard C/C+-f applications. The advantages of our workbench are shown in 
some experiments. We have measured the overhead of our garbage collector and 
the performance of the workbench. A comparison with other systems is also given. 

1 Introduction 

Automatic memory management techniques have been successfully employed for years. 
Existence of a garbage collector increases the dependability of applications and makes 
programming easier. A garbage collector is a core component of many programming 
enviroimaents e.g. for languages like Java or C#. On the contrary, originally designed 
without automatic memory management, uncooperative environments are still used. The 
C+-I- language belongs to such environments. Although conservative garbage collection 
techniques are quite popular [1], the design of an accurate, non-blocking garbage 
collectors is a very complex task and those collectors are rather uncommon. In the paper 
we show, how the accurate, non-blocking garbage collector designed and implemented at 
the Institute of Computer Science Warsaw University of Technology [2,3] was employed 
in a C++ workbench for dependable server side Internet apphcations. A very important 
issue is to provide the high quality and the dependability of such applications. Although 
there are many techniques for building an Internet application [4], it is not easy to 
develop it in widely used C++ programming language. A C++ programmer can use 
only few techniques: CGI [5], FastCGI [6] or .NET environment. One of the problems 
that has to be solved by the programmer in C++ programs is the memory management. 
Errors in the memory management are often the source of defects and security.holes. 

The paper is organized as follows. In the next section some general memory 
management approaches in C++ applications are briefly described and their usabihty for 
building Internet applications is discussed. In Section 3 the implemented workbench is 

Please use the foUowing format when citing this chapter: 

Koiaczkowski, P., Bluemke, I., 2006, in IFIP International Federation for Infomiation Processing, Volrnne 227, Software 
Engineering Techniques; Design for Quality, ed K. Sacha, (Boston; Springer), pp. 15-24. 



16 Piotr Kolaczkowski, Ilona Bluemke 

presented. The following aspects of the web server are mentioned: memory management, 
application interface, concurrency support, session handling. In Section 4 some 
experiments are described. The throughput and the response time of sample C++ 
applications, prepared with the workbench, were measured. The overheads of the 
garbage collector are examined. The final section contains conclusions. 

2 Related work 

Boehm and Weiser have developed a good and widely used conservative garbage 
collector for C and C++ languages [1,7]. This garbage collector can work in one of the 
two modes: blocking or incremental. The blocking mode uses the mark-and-sweep 
algorithm. The incremental mode uses the train algorithm [8], which is much slower, 
but reduces the execution delays. In both modes the collector does not guarantee that 
all dead (inaccessible) data are removed, so some small memory leaks are possible. The 
probability of such leaks is higher for applications with larger heaps e.g. extensively 
caching webservers. Memory leaks can be disastrous in long-running applications. 

Barlett proposed a generational, mostly-copying, conservative garbage collector for 
C++ [9], which according to the benchmarks presented in [10] performs better than the 
Boehm-Weiser's collector. It is also more accurate, because the programmer provides 
special procedures enabling the garbage collector to find pointers in objects. On the 
other hand, some parts of memory are still treated conservatively, so the problem of 
possible memory leaks remains. Additionally, the programmer can give erroneous 
relative pointer locations and mislead the garbage collector. This can be a cause of 
severe memory management failures. 

Detlefs studied the possibility of using the C++ template metaprogramming 
techniques to achieve the garbage collector's accuracy [11]. Smart pointers can be used 
to track references between objects. This allows for the accurate garbage collection 
without the need to manually specify the relative pointer locations. Detlefs used this 
technique in a reference counting collector. His measurements show that reference 
counting can impose a time overhead of over 50% which is probably too high for being 
successfully used in a high performance web application. 

In spite of some small programming inconveniences introduced by smart pointers 
(their usage differs a little from the C++ built-in pointers) [12], we proposed how to 
use them with a concurrent mark-and-sweep algorithm to get an accurate, non-blocking 
garbage collector [3]. Our research did not show how the garbage collector performs 
in a real-world application. Only benchmarks for single memory operations were 
done. Some interesting recent benchmai-ks can be found in [13], but these don't cover 
real-world server side applications, too. 

Henderson designed a different technique for building an accurate garbage collector 
based on the code preprocessing approach [14]. The preprocessor inserts additional 
instructions into the original C code. These instructions enable the garbage collector to 
find exact pointer locations. Although Henderson didn't implement a multithreaded 
garbage collector, he proposed how to do it using his approach. He also performed 
some simple benchmarks and obtained promising results. 



A C+ + Workbench with Accurate Non-BIockmg Garbage Collector for Server Side Internet Applications 17 

While garbage collection techniques were being improved, engineers and researchers 
were independently creating new ways of building internet server side applications. The 
latters can be divided into two main categories: scripts and applications servers. Scripts 
may be used for small applications. Severs are dedicated for more complex ones, even 
distributed. An overview of techniques for Internet applications can be found in [4]. 

The script is a file containing some instructions. By processing these instructions a 
WWW server is able to generate the Internet page. There are many kinds of scripts e.g.: 
CGI [5,6], PHP [15], Cold Fusion [16], iHTML [17], ASP [18]. The script is invoked 
for each request by the WWW server. The script technique is simple but it can be used 
to build applications like portals or Internet shops. Some script languages e.g. PHP 
contain special constructs useful in such applications like: data exchange, access to data 
bases, interfaces based on MVC (Model View Controller) patterns. Due to the short time 
of hving of the script process, scripts don't take much advantage of garbage collectors. 

Application servers can be used for building complex, multilayered, distributed 
apphcations. Such apphcations may communicate with users by Internet browsers. The 
application is active all the time and receives HTTP requests from the browser, Java 
servlets and JSP [19,20] operate this way. In application servers some optimization 
techniques can be included e.g. caching data or keeping a pool of open database 
connections. Servers often provide advanced services e.g. load balancing, distributed 
transactions, message queuing. Components for MVC model are also available. 
Application servers usually run on virtual machines. These environments need a lot of 
memory but the execution of the application is more efficient than in script interpreters. 
Due to longer run times, this approach usually requires employing a good garbage 
collector. Virtual machines like JVM or CLR often contain more than one built-in 
garbage collector implementation. 

3 The C++ workbench 

The C++ workbench designed and implemented at the Institute of Computer Science is 
dedicated to small and medium size Internet applications. A very important issue is 
to provide the dependability and the high quality of applications prepared with this 
workbench. Efficiency and good memory management had also high priorities in the 
design process. 

Main functions required were sending/receiving text and binary data to/from Internet 
browsers, sending and receiving HTTP cookies, session handling. A set of C++ classes 
was implemented. These classes constitute two components: the WWW server and the 
garbage collector. The garbage collector enables the programmer to create software of 
higher quality than using standard, manual memory management schemes. Automatic 
memory manager would never deallocate the same memory region twice or deallocate 
memory being used, causing a memory access error or a potential leak. Although it is 
possible to avoid these errors without a garbage collector, using it can significantly reduce 
the total software production time. The garbage collector finds inaccessible objects by 
analysing references among objects. This collector is accurate and is able to find all 
inaccessible objects. Objects created with the functions provided by our collector are 
destroyed automatically. Our collector does not influence any code that manages memory 



18 Piotr Kotaczkowski, Ilona Bhtemke 

THttpSesslanBroker 
tpasses requests to 

1 

THttpServar 
4-passes requests to 

THttpResponse 

SL i 
+reglsters in 

+fills In 

JHttpServ/et 

^ 
'+stores 

+reads 

THttpCookle 

0.,n 4reg(sters in 

IHttpSESslonServlet 

+ereates 

Fig. 1. Class diagram of the WWW server 

manually. Objects created by built-in new operator should be destroyed manually. 
Automatic garbage collection introduces some overhead compared to manual memory 
management. Our garbage collector works concurrently with the application. Execution 
of application's threads is interrupted for a predictable, limited amount of time. This 
time does not depend on the number of objects and is so short, that will not be noticed 
by a user waiting for an Internet page. The implementation details of this garbage 
collector are given in [2]. Automatic memory management by this collector was used in 
other components of the C++ workbench i.e. the WWW server. The WWW server is a 
very important part of the C++ workbench. It is implemented by the class THttpServer 
presented in Fig. 1. This class interacts with the browser by the HTTP protocol. A 
progranmner has to create an object of this class, set some attributes and call the Run 
method. As the server is one class only, several servers listening on different ports can be 
created. In Fig. 1 some other classes are also shown. These classes are used to improve 
functionality of the embedded WWW server and are described in sections 3.1-3.4. 

3.1 Servlets 

Servlets are objects registered in the server handling HTTP requests. Servlets are created 
by the programmer. Each servlet implements the IHttpServlet interface. The appUcation 
programming interface of the workbench never uses raw C++ pointers to pass data to or 
from the class methods, instead it uses smart pointers provided by the garbage collector 
component. Hence, to register the servlet, a smart pointer to it must be passed to the 
server. The server with registered servlets, handles a request in the following manner: 

1. The WWW server receives a request and checks its correctness. If it is incorrect, 
an appropriate error message is returned to the browser. 

2. During the registration process the servlet receives an identifier. Basing on the ,URI 
identifier included in the request, the server identifies the servlet responsible for 
handling it. If the servlet can not be found, an error message with a HTTP 404 
code is sent to the browser. 



A C+ + Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications \ 9 

3. The server creates an object of the THttpRequest class and fills it with the data 
send by the browser. The object contains identifier of a resource requested by the 
client, HTTP headers and a pointer to the opened input stream. 

4. The server creates an object of THttpResponse class. 
5. The objects created in steps 3. and 4. are given to the servlet. The server waits for 

the next request. 
6. The servlet reads data from the THttpRequest object and generates a response by 

writing appropriate data into the THttpResponse object. 
7. The server closes the connection. 

3.2 Receiving and sending data 

When a HTTP request comes, the data sent by the Internet browser are written into the 
THttpRequest object, which is then passed to the servlet. This object has methods 
returning e.g.: the requested HTTP method (GET, POST or others), the identifier of the 
requested resource (URI), the HTTP cookies, the text and binary data sent in the 'body' 
of the request. The servlet receives also a THttpResponse object. This object is used to 
send a response to the web browser The following methods in this object are available: 

- setting a status code of the HTTP message, 
- setting a header, 
- setting, modifying or deleting HTTP cookies, 
- setting content-type MIME of the sent document, 
- opening a buffered output stream and sending the body of the response. 

All arguments are passed either by value, by reference or by smart pointer The raw C++ 
pointers are not used. This allowed to achieve an easy programming interface. Objects 
allocated on the heap inside the methods of the THttpRequest and THttpResponse 
classes are always created by the garbage collector. 

3.3 Threads 

At its start the server initialises a pool of threads. These threads are waiting on a 
semaphore for HTTP requests. The main thread listens on a local port (initially 80) 
and passes requests to one of the waiting threads. If the pool of waiting threads is 
empty, the main thread stops receiving new requests. The user can set the total number 
of threads in the pool. Handling concurrent request may cause some problems with 
common data accessed or modified by several threads at once. To alleviate this problem 
some simple mutex based synchronization is provided by the servlet container There is 
no distributed transaction monitor. 

3.4 Session 

The class THttpSessionBroker is a session manager It is responsible for recognizing 
clients, assigning session identifiers and directing requests to an appropriate session 
servlet. The session servlet is an object implementing the IHttpSessionServlet interface. 



20 Piotr Kolaczkowski, Ilona Bluemke 

This interface provides methods for passing information to the session manager about 
opening or closing a session. There is a separate session servlet created for each 
session. The manager opens a session for each new cHent. The session can also be 
opened explicitly by calling an appropriate method from the manager. The session 
manager also closes inactive sessions. The session identifier is 128 bits long and is 
randomly generated. The association between the session identifier and the servlet is 
made in an associative table. The session identifier is stored implicitly in a HTTP 
cookie. The session manager is able to find the session identifier as an argument of the 
GET request or inside the WWW page. 

4 Experiments 

Below some experiments with the C++ workbench are presented. The goal of these 
experiments was to measure how the garbage collector influences the performance and 
response times of the system. 

4.1 Performance experiments 

In the experiments described below a gratis program httpjoad [21] prepared in ACME 
was used. ACME produced also a very powerful Internet server thttpd [22]. In our 
experiments two simple applications were used: 

application A Displays a page containing simple text of parameterized length. 
application B At the start allocates some permanently reachable objects and produces 

a constant memory leak per each request. 

All the tests were run on a Celeron 2.4 GHz / 256 MB RAM computer. Results of 
throughput measurements are shown in Fig. 2. 

Each server running application A was sequentially sent 10000 requests by the test 
client residing on the same machine. The length of the response was set to 10 bytes, so 
that the time of transmitting the data was negligible. The experiment was conducted 10 
times. The mean values were calculated and are presented in Fig. 2. Our workbench 
performed not worse than well known enterprise-level webservers. Response times were 
also typical (Fig. 3). Under heavy load (Fig. 4), when more users tiied to access the 
servlet at the same time, the performance dropped shghtly after exceeding 25 concurrent 
requests, but was still better than that of Tomcat, running on a JIT enabled Java Virtual 
Machine 1.4.2. The experiment described above shows, that the implemented garbage 
collector can be effectively used in Internet interactive applications. 

4.2 Overhead of the garbage collector 

The overhead was measured using the GPROF profiler from the GCC 3.3,4 package and 
is presented in Fig. 6. The application B was queried 100,000 times at an average, rate 
of 400 requests/second. It allocated 6 MB at the start and produced 2,5 kB memory 
leak per request. The measurements show, that it spent most of the time serving 
requests or waiting for them to come. The total garbage collector overhead was less 



A C++ Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications 21 

thttpd 2.23b, static file 

THttpServer, C++ servlet E 

Apache 1.3, static fiie C 

Tomcat 4.0, Java servlet C 

Apaclie 1.3, PHP script C 

I ' ' ' I ' ' ' I ' ' ' I ' I ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' '("' '"' f i - r r y , • • • , • • • • p - , , •) 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 

throughput [requests / s) 

Fig. 2. Comparison of performance of various WWW servers serving application A 

thttpd 2.23b, static file 

THttpServer, C++ servlet r ^ ' 

Apache 1.3, static tile t,, 

Tomcat 4.0, Java servlet C 

Apache 1,3, PHP script C 

0 40 60 80 

maximum response time [ms) 

100 1 2 0 

Fig. 3. Comparison of maximum response times of various WWW servers 

100 125 

concurrent requests 

_ j — 

150 

— I 
200 

Fig. 4. Performance of the server under heavy load 



22 Piotr Kolaczkowski, I/ona Bliiemke 

1500 

1400 

1300 

1200 

1100 

1000 

900 

S 800 

1 700 

600 

500 

400 

300 

200 

100 , 

0 

servlet response time 

collection time 

; r""'" 
. - ¥ . • • . ^ _ _ u . — — — 

H 

1 1 1 1 
1 2 3 4 

• • 

i> _... ' • 

. .•• '¥ 

^ 
1 1 

• : 

\ 1 1 
5 6 7 8 9 10 

heap size [MB] 

Fig. 5. The total servlet response times and garbage collection times. 

than 5%. The part of the collector that is responsible for creating and destroying smart 
pointers and registering new objects takes much more time than the mark-and-sweep 
process, so this part should be optimized in the near future. The result of measurements 
of the garbage collection time (given in Fig. 5.) proves that the garbage collector works 
concurrently. The requests were handled successfully while the garbage collector was 
running. The requests were sent at a rate of 100 per second to the Application B. 
Maximum times from 1500 requests are shown. 

Pointer creation and tracking (1.6%) 
Object creation (1.7%) 
Dead memory search and memory reclamation (0.8%) 
Waiting (18.2%) 
Requests processing (77.8%) 

Fig. 6. CPU overhead in the garbage collector 

5 Conclusions and future work 

In the paper we presented how a non-blocking accurate garbage collector was used as a 
component in a real-world application - the workbench for C++ server side Internet 
appUcations. The workbench is simple, but provides enough functionality to build small 
and middle size Internet applications. The performance of our www server, as shown 
in section 4.1 is also pretty good. 



A C++ Workbench with Accurate Non-Blocking Garbage Collector for Server Side Internet Applications 23 

The smart pointer pattern used in the garbage collector resulted in simplicity of the 
interface. The lack of manual memory management routines in the servlet container 
and user's servlets enables to achieve high dependability of applications. As was 
experimentally proved these features neither severely diminish the system performance, 
nor make response times too long to annoy the user. There was also no significant 
difference in the performance of the presented system and systems not using the garbage 
collector at all, or systems running on virtual machines with advanced, generational, 
copying garbage collectors. This shows that usage of a non-conservative, non-blocking 
garbage collector in an uncooperative environment like C++ is reasonable and practical. 

The garbage collector used in our workbench can be further refined. The object 
architecture of it makes such modifications easy. So far our workbench was used in 
rather simple applications. A generational version of the garbage collector is possible 
and can be a subject of the future research. There is evidence that generational garbage 
collectors perform better than the non-generational ones [13]. 

References 

1. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment. Softw. Pract. 
Exper. 18(9) (1988) 807-820 

2. Kolaczkowski, P., Bluemke, I.: A soft real time precise tracing garbage collector for C++. 
Pro Dialog (20) (2005) 1-11 

3. Kotaczkowski, P., Bluemke, I.: A soft-real time precise garbage collector for multimedia 
applications. In: V International Conference Multimedia in Business and Education, 
Multimedia w Biznesie i Edukacji. Volume 2., Cz^stochowa, Poland, Fundacja Wspolczesne 
Zarztidzanie Bialystok (2005) 172-178 

4. Kolaczkowski, P.: Techniques for building server side internet applications. Pro Dialog (18) 
(2005) 31-59 

5. Colbum, R.: Teach Yourself CGI Programming in a Week. Sams Publishing, Indianapolis, 
Indiana, USA (1998) 

6. Open Market, Inc.: FastCGI homepage (2006) http://www.fastcgi,com/. 
7. Boehm, H.I.: Space efficient conservative garbage collection. In: PLDI '93: Proceedings of 

the ACM SIGPLAN 1993 conference on Programming language design and implementation. 
New York, NY, USA, ACM Press (1993) 197-206 

8. Seligmann, J., Grarup, S.: Incremental mature garbage collection using the train algorithm. In: 
ECOOP '95: Proceedings of the 9th European Conference on Object-Oriented Programming, 
London, UK, Springer-Verlag (1995) 235-252 

9. Barflett, J.F.: Mostly copying garbage coUection picks up generations and C++. Technical 
Report TN-12, Digital Equipment Corporation Western Research Laboratory (1989) 

10. Smith, P., Morrisett, G.: Comparing mostly-copying and mark-sweep conservative collection. 
In: ISMM '98: Proceedings of the 1st international symposium on Memory management. 
New York, NY, USA, ACM Press (1998) 68-78 

11. Detlefs, D.; Garbage collection and run-time typing as a C++ library. In: C++ Conference. 
(1992) 37-56 

12. Edelson, D.R.: Smart pointers: They're smart, but they're not pointers. Technical report. 
University of California at Santa Cruz, Santa Cruz, CA, USA (1992) 

13. Blackburn, S.M., Cheng, P., McKinley, K.S.: Myths and realities: the performance impact of 
garbage collection. SIGMETRICS Perform. Eval. Rev. 32(1) (2004) 25-36 



24 Piotr Kolaczkowski, Ilona Bhtemke 

14. Henderson, E: Accurate garbage collection in an uncooperative environment. In: ISMM '02: 
Proceedings of the 3rd international symposium on Memory management. New York, NY, 
USA, ACM Press (2002) 150-156 

15. Tlie PHP Group: PHP documentation (2006) http://www.php.net/docs.php. 
16. Adobe Systems, Inc.: ColdFusion documentation (2006) http://www.macromedia.com/ 

support/documentation/en/coldfusion/. 
17. Inline Internet Systems, Inc.: User's guide to iHTML extensions version 2.20 (2001) 
18. Mitchell, S.: Teach Yourself Active Server Pages 3.0 in 21 Days. Helion, Gliwice, Poland 

(2003) 
19. Goodwill, J.: Pure JSP: Java Server Pages. Helion, Warszawa, Poland (2001) 
20. Damon Houghland, A.T.: Essential JSP for Web Professionals. RM, Warszawa, Poland (2002) 
21. ACME Labs: Multiprocessing HTTP test cUent (2005) http://www.acme.com/software/http' 

load/. 
22. ACME Labs: Tiny/turbo/throttling HTTP server (2005) http://www.acme.com/software/ 

thttpd/. 




