
Who should take care of the
personalization?

Jarogniew Rykowski
The Poznan University of Economics, Department of Information

Technology
Mansfelda 4,60-854 Poznan, Poland

rykowski@kti.ae.poznan.pl

Abstract. In this paper, a new approach is proposed for the personalization of
the access to different information sources (servers, Web pages, services, etc.)
distributed across the Internet. In contrast to the traditional approaches, with
personalization software owned and controlled by the owner of the
information source, we propose to use the s o h a r e that is prepared and
controlled directly by the end-users. Our approach is based on software agent
technology and imperative programming of agent code. The main goal of
using personalization agents is twofold. First, such agents act as information
brokers, adjusting both contents and format of the information to individual
user requirements, restrictions imposed by the end-user hardware and
communication means, current situation, etc. Second, the agents are used as
autonomous monitors, individually informing agent owners about "important"
(from the particular owner point of view) information changes. The fact of
using source-independent personalization agents makes it possible to
personalize access to such traditionally closed and fixed (i.e,, unmanageable
from the end-user point of view) information sources and systems, as e-banks,
public Web portals and information servers, etc. Due to the fact the agents are
prepared by (or at least for) particular users, the expenses related with the
development of the agent code are in the major part incurred by these users.

1 Introduction

Rapid development of new information and communication technologies (KT)
introduced a new market of information services. Such a service is usually realized
in a client-sewer mode, with information hosted at a certain location, and remotely
operated clients. Recently, particular stress is put on mobile clients, i.e., clients with
radio-connected devices of different type, purpose, and possibilities.

Mass introduction of new ICT services emphasized certain problems, mainly
related with the well-known conflict between mass usage of these services, and

Please 7rse the follm! ~ n g format 11 hen citing th~s chapter

Rykowski, J., 2006, in IFIP International Federation for Information Processing, Volume 226, Project E-Society:
Buildmg Bricks, eds R Suomi, Cabral, R , Hampe, J. Felix, Heiklula, A., Jirveliiinen, J., Kosluvaara, E., (Boston:
Springer), pp 176-188.

Who should take care of the personalization? 177

individual requirements and expectations of different service users. On one hand, a
service is optimized from the point of view of the service owner, with a clear
business goal - reducing service costs with keeping maximum efficiency,
throughput, etc. On the other hand, each service client is different and obviously
prefers hisiher own, individual access mode to the information, taking into account
not only human-related interests and habits, but also such user-independent factors,
as communication costs, technical restrictions of end-user devices, current situation,
geographical position, etc. So far, it looks like these are the service owners who are
winning in the above-presented conflict, imposing several access conditions on the
service clients. As a consequence, service personalization is usually quite restricted,
as this is not a primary business goal for the service owner.

A question arises - what should be undertaken by a typical client in order to
achieve a reasonable level of personalization? The response is twofold. Obviously,
the client needs an efficient access to the information; however, these are the service
owners who control such access, and such control cannot be passed by. On the other
hand, certain information processing is needed, according to individual user
requirements. This implies some user-related software, to be executed over service-
related data. Here, the second question arises: where to execute such personalization
software and who is in charge to start such execution? There are three basic
possibilities. First, server-side execution - theoretically it looks like the optimum
choice, however, service owners are not usually interested in providing such
functionality. Second, client-side processing -the main restriction lies in the fact that
end-user devices, especially mobile devices such as phones and palmtops, are not
powerful enough to deal with complex data processing. Moreover, client-side
processing requires certain communication bandwidth, usually costly and resource-
consuming (note at least battery consumption, as well as a need for continuous on-
line network access). And finally, the personalization software may be executed
somewhere in the network, at a selected host. However, in this case we deal with the
problem of a generic, distributed software environment for user-defined programs, to
not say about certain security risks and the loss of privacy.

To solve the above problems, in this paper we propose a new strategy of user-
defined personalization, both theoretical model, and the practical implementation.
The strategy is based on imperatively programmed software agents, and a specialized
application of the Agent Computing Environment (ACE) framework. Within this
framework, the users are able to execute their own agents, choosing not only their
own algorithm of the information processing, but also the execution place and time.
Our approach makes it possible to personalize access to information sources of
different type, purpose, characterized by different access methods and interfaces.

The remaining of the paper is organized as follows. First, in Section 2, we
discuss main limitations of the current approaches to server-side and client-side
personalization, especially those related with the software agent technology. In
Section 3, a generic architecture of our agent-based personalization framework is
described. In Section 4, we discuss some implementation issues, mainly security and
privacy aspects, and basic methods for defining and executing user-owned

178 Jarogniew Rykowski

personalization software. Finally, in Section 5 we provide some final conclusions,
and we point out some directions for the future work.

2 Current approaches to mass personalization

So far, software agents have not been widely used for mass personalization of the
access to distributed information sources. Due to this fact, we are able to provide
here only a limited state-of-the-art description related with sub-functionality of some
agent-based and traditional distributed systems, the following features included: (1)
personalization of distributed systems and information servers, (2) different
strategies for monitoring and alerting, (3) human-to-agent communication methods,
and (4) different programming methods for user-defined agents.

Usually, personalization in distributed systems, servers, and services is based on
user-related data only - mainly client-side cookies and server-side user profiles. User
profiles are either statically declared by the user (e.g., Yahoo and similar systems), or
determined dynamically, taking into account current user activities (e.g., Click-
stream Analysis, Web Usage Mining Systems, Collaborative Filtering). Some
profiles may be fixed by analyzing individual usage of cookies [3]. There are three
main disadvantages of such profile-based personalization: (1) personalization
algorithm is fixed by the server owner, and thus it cannot be adapted to the
specificity of the end-users, (2) profiles operate with limited number of parameters,
usually quite restricted in type and scope, and (3) number of profiles is usually
limited, to simplify profile management. However, higher is the level of profile
generalization, lower is the satisfaction level of the end-users [7].

Recently, some attempts were proposed to provide user-defined personalization
algorithms. For example, designers of the Web Services Experience Language
WSXL introduced user description of service interfaces. Another proposal, XUL, a
part of the Mozilla project [5] , makes it possible to mix XML, CSS, RDF, and
JavaScript technologies to personalize contents and formatting of Web pages.
However, the above-mentioned personalization frameworks are still at the scientific-
prototype stage, and their functionality is usually restricted to providing personalized
Web pages being entry points to real Web pages and servers. What we propose is to
use active, autonomous software agents rather than passive Web pages, to enable
unrestricted personalization of any information source.

Monitoring and alerting (e.g., sending a message once something happens) by
the use of software agents has been implemented in many systems, such as
BargainFinder, Newspage, and PumaTech's Mind-It [14]. Basic functionality of
such systems is to facilitate e-shopping and searching for news (sport, stocks,
weather forecast, etc.). There are two basic approaches to implement a monitoring
system: client-side software, installed by the end-users and periodically polling
specific Web servers and/or pages, and server-side agents, being internal parts of
specialized information servers. In both cases, as the agents are prepared by software
companies rather than the end-users, it is not possible to re-program detailed agent
behavior, change parameter list (including the number and types of monitoring data
sources), update execution schedule, etc. In the case of software-side monitoring
agents, service owners are not interested in individualization of agent behavior, due

Who should take care of the personalization? 179

to pure economical reasons. Moreover, as one cannot foresee all the possible
expectations of all the possible users, it is not feasible to provide generic monitoring
software. As a consequence, types and locations of the monitored information
sources are usually fixed, e.g., a sport-news agent informs users about sporting
events; however, it is not possible to use this agent to distribute political news, even
if the monitoring and alerting algorithms are quite similar in both cases.

In the case of client-side agents, periodical polling for information changes
requires certain network bandwidth that maybe costly or even impossible to achieve
in some cases (e.g., mobile phones). Note also, that even if the monitoring software
is installed at the client-side, the end-users have limited possibilities to individualize
the behavior of this software. Moreover, the monitoring process may be easily
reversed, to monitor user and/or user software activities (e.g., spyware, however,
some more useful functions as well, such as automatic updates). Software agent
technology, being the core of our approach, is much better suitable for both server-
and client-side monitoring, mainly due to the fact that these are the users who are
responsible for preparation, and further management and execution of their agents.

Recently, some systems have been proposed using agents as brokers to Web
Services, e.g., SEMOA [I31 platform, and our Virtual Web Services [15]. Note,
however, that Web Services are usually equipped with a stable, well defined
interface and service ontology, while the case of a distributed system with
heterogonous, dynamically evolving information sources is much more general.
Thus, the personalization agents must be more flexible and user-oriented, forcing
agent code and execution placehime to be defined directly by the end-users.

So far, standard WWW interface was preferred as a basic method of human-to-
machine communication. We think that more stress should be put to natural-language
interfaces via telecommunication means, such as SMSIMMS, e-mail, voice
gateways, and Push-To-Talk PTT messaging, traditionally related with mobile
phones and human-to-human communication [6]. Taking into account
hardwareisoftware limitations of the mobile phones, we think that the chatterbot
conversation [lo] looks like a good candidate for a primary agent interface [IS]. So
far, chatterbot interfaces were not widely used, especially in the context of the
software agent technology. Such prototype systems as AMASE [2] and Microsoft
Agent applications use only standard, pre-programmed communication chatterbots,
with fixed set of keywords and possible actions, making the personalization
practically impossible. What we propose is to extend the chatterbot interface by the
possibility of applying user-defined agents with individual conversation algorithms,
keywords, given information sources, etc.

As for the latter above-mentioned feature - programming method for remotely
executed software agents, we may choose between a skeleton-based approach,
declarative approach, and imperative programming. Skeleton-based approach is
based on some predefined pieces of code being "patterns" for automatic creation of
the agents to be executed in the name of the agent owners [I]. This approach maybe
used in the case the overall system security is much more important than user
privacy and code individualization. Usually, the agent "owner" is in the power to
choose the place and time of execution of the software only, while the software

180 Jarogniew Rykowski

functionality is determined in advance by system designers. Even if this approach is
widely used for such closed and fixed application areas as internet shops and
marketplaces (e.g., Concordia agents), we think that it cannot be applied for user-
defined personalization activities and ad-hoc cooperation.

The second above-mentioned programming technique - declarative programming
- is usually based on a specialized programming language 181, originated fiom
logical programming (Shoham's Agent0 programming language), artificial
intelligence, goal-oriented programming (e.g., database programming languages) [4],
etc. Even if declarative programming is much more flexible than using program
skeletons, we think that it still cannot be applied for unrestricted user-defined
personalization activities. First, similar to the skeleton-based technique, all the
possible declarations (and thus total system functionality) must be known in
advance. Each user has a choice of using or not certain declarations, however, helshe
is not able to Mly program details of the agent behavior [17]. Second, providing run-
time "compilation" of a declaratively-programmed agent limits overall efficiency,
both from the system (less throughput, more resources consumed - memory, CPU,
etc.) and the agent owner (slow execution time) points of view.

Another approach to define software agents consists in the use of a classical,
imperative programming language, such as Java. AMASE [2] is an agent-based
system with java agents working in different mobile environments. Voyager is
another example of usage of Java-based agents, with many successful e-commerce
and e-business applications. Recently introduced Cougaar system uses agents
composed by users with agent parts chosen from a set of well-defined, stable plugins
encoded by system designers.

The most important problem of the Java-based agents is to achieve reasonable
level of global system safety. Executing external Java code means, from a local
system point of view, executing alien code, unknown and potentially dangerous.
Even if the level of security provided by Java is considered as to be high, and several
additional mechanisms are used - ciphering, digital signatures, anti-virus checkers -
one cannot be sure the just executed code behaves well. Maybe in several cases this
is more psychological than real menace; however, Java-based agents usually used in
closed, mutually trusted environments. Moreover, in most of the cases, the users are
not directly allowed to prepare the Java code. Instead, system-defined code is used as
a set of "black boxes" (e.g., Voyager applications and Cougaar plugins).

3 Architecture of the APE personalization framework

To solve all the problems mentioned in Section 2, we propose to use one single
technology - software agents. In our approach, called Agent-Based Personalization
Environment (APE) we define software agents in the classical way, as presented in
[9, 201. A software agent is a program, executed at a given place, characterized by:
(1) autonomy - agents process their work independently without the need for human
management, (2) communication - agents are able to communicate with one another,
as well as with humans, and (3) learning - agents are able to learn as they react with
their environment and other agents or humans. As follows from the above definition,
an agent may be programmed by its owner, thus allowing unrestricted

Who should take care of the personalization? 181

personalization of behavior of this agent [19]. Agents may be executed in different
places [l l] , according to owners' needs and possibilities of the end-user hardware
[12]. In particular, agents may continuously monitor given information sources and
inform about detected information changes [16].

APE agents are individually programmed by (or at least for) selected users.
Agent functionality, i.e., personalization scope, is under exclusive control of the
agent owner. This is up to the user to decide about amount of work (and costs) for
agent preparation, distribution, and execution. The user is able to determine the
personalization algorithm (i.e., the agent code), distribution and execution strategy
(time, place, and conditions for running the agents), and finally - human-to-agent
communication interface. As the agents are prepared individually for given users,
there is no need for global agent management, a global schema, a uniform
communication protocol, user groups, profiles, etc. Instead, users are free to define
the most adequate (for them) agent behavior and variables.

APE agents may be distributed across the network. In particular, agents may be
executed in user private environment (home PC, a notebook, a portable, or even a
mobile phone), at server-side near the information sources, and at a selected host (so
called network-side). Agent distribution may relieve the system of huge data transfer,
traditionally related with client-server operating mode, by shifting the agents close to
the information sources. Moreover, agent mobility makes it possible to take profits
of the personalization in the case the user is not equipped with a powerful end-user
device, e.g., in a mobile environment.

In contrast to traditional approach of accessing information sources, APE agents
are able to access the source in two modes: synchronously and asynchronously. In
the synchronous mode (being a counterpart of a classical access), this is the agent
owner who sends a request to the information source/service, using hislher agents as
brokers. The agent is responsible for contacting the information source(s) and
collecting the response. The just-collected information is prepared (contents) and
formatted (both a form and a layout) according to user needs, hardwarelsoftware
environment, and communication means (a bandwidth, costs, speed, etc.). Thus, APE
agents act as information brokers, hiding some details related with access methods to
the information sources, and personalizing the information obtained. In the
asynchronous mode, APE agents act as autonomous monitors, operating in a selected
network host, and informing their owners about "interesting" information changes.
What is "interesting" is programmed by the user in the code of hislher agent(s). The
main advantage of the asynchronous mode is the fact that the agent owner is bother
by really important alerts, however, important only for himlher. As long as there is
nothing "interesting" related with the information observed, there is no need for
additional polling, verification, etc. Note that the alerts may be sent to non-advances
devices, such as mobile phones (SMSMMS messaging), or even to a traditional
phone via a voice gateway (speech synthesis).

Beside the monitoring and formatting functionality, APE agents may be used for
bonding originally independent information sources and services into one single,
consistent (%om the agent owner point of view, however) conglomerate. Such
operation, so called "orchestration" of serversiservices, needs no permission of the

182 Jarogniew Rykowski

informationlservice owner. As the orchestration is performed for a single user, user
privacy is preserved. However, if needed, the above process may be related with a
group of users and common agents, including ad-hoc, informal cooperation (e.g.,
tourist groups, people at certain geographical locations, etc.).

APE agents, to some extent, are able to provide a personification of the
information sourceslserversldevices they are related with. The agent owner,
accessing hisiher agents via a standard communication channel (e.g., a voice
gateway, SMS/MMS messaging, e-mail) in a semi-natural language (cf. Section 2.4)
has an impression of interacting with another human [18]. For example, we may
consider an agent for an intelligent building. Agent owner, stuck in a traffic jam, may
call the agent and ask to record a TV show. The agent searches for the show details
in the Internet schedule, and starts recording with the VCWDVD device. Note the
agent owner contacts the system exactly in the same way as the family members,
with all the technical details completely hidden. Note also, that the recording device
does not have to be "intelligent", unless the agent is equipped with such
"intelligence" to startlstop the device. However, such agent "intelligence" is quite
simple (chatterbot conversation, a connection with an Internet search engine, a
remote-control hardware link to the device, e.g., IrDA-operated), and may be
realized with limited efforts.

Once developed and registered by an agent owner, the APE agents may be
located and further executed at a selected place of the APE network of hosts. We
assume that there are three basic classes of the hosts an APE agent may be sent to
and executed: private hosts, generic network hosts, and server-side hosts. According
to these host classes, we distinguish three basic agent pools: client-side pool,
composed of the hosts controlled by the agent owners (i.e., ordinary end-users),
middle-side pool, composed by some general-usage hosts, and source-side pool,
composed by the hosts controlled by the service owners (i.e., the users offering some
services and access to the information). The pools are characterized by different
methods for migrating, storing, searching for, and executing the agents. Below, a
general characteristic is given of each pool, together with a description of purpose
and fimctionality of sample agents belonging to these pools.

A functionality of a host from the source-side pool is optimized towards reliable
and efficient access to selected data sources, from the point of view of the
information owner. Agents operating in source-side hosts are usually owned by the
information owner. For security reasons, storing and executing "alien" agents
belonging to the end-users is substantially limited. A typical source-side host is
reduced to a set of gateways, able to standardize an access to the data source(s)
connected, with limited support for public telecommunication facilities (WWW
access, SMSIMMSle-mail asynchronous messaging, etc.). The gateways are
equipped with several mechanisms supporting efficient, parallel, multi-user access to
the data sources, for example cache memories, proxies, synchronizers, locks, query
optimizers and serializers, etc.

Accessing agents from source-side hosts is similar to accessing public Web
servers and services. The difference is the agents provide some additional
communication, wrapping and brokering functionality, requested by the users, as
well as some uniformity of the external access to several information sources.
However, nevertheless the end-users have limited control over source-side agents -

Who should take care of the personalization? 183

usually such agents are used as "black boxes", with limited possibilities of
individualization of their behavior as well as the mode of operation.

Hosts from the middle-side pool are located in arbitrary chosen parts of the
global network. In contrast to the source-side pool, middle-side hosts store and
execute agents belonging to different users. A typical task list for the user agents
covers: brokering among source-side and private agents, wrapping and formatting
messages exchanged by the population of agents, providing access via different
telecommunication means and protocols, etc. A stress is put on efficient access to the
agents by the humans, using popular telecommunication channels and standards
(WWWIWAP, SMSIMMS, e-mail, etc.). Agents from the middle-side pool are
usually devoted to the tasks related with network-side monitoring - detecting
information changes that are "interesting" for the agent owners, As already stated,
what is "interesting" is programmed by the agent owner in the agent code.

Architecture and usage of a host from the client-side pool strongly depends on
technical and communicational possibilities of an end-user hardwarelsoftware the
agent owner posses at the moment. Private agents may be executed for example in
the scope of a stationary PC, mobile equipment (a PDA, a notebook, or even an
intelligent mobile phone). It is up to the agent owner to locate hidher agents either in
a host from the middle-side pool, or in the private (i.e., client-side) host. In the first
case, the network traffic may be substantially reduced, however, remotely executed
user agents are less secured (from the user point of view) and less efficient (mainly
because of additional security checks, cf. Section 4). In the second case, all the user
agents are executed in a trusted (still, only from the agent owner point of view)
environment, however, a lot of data must be transferred among distributed hosts.

For the agents executed at a portablelmobile device, a stress is put on fast and
user-friendly human-to-agent communication. The technical capabilities of the
device strongly limit the possibilities of executing the agents (small memory, limited
battery time, difficult management, etc.). Thus, usually only a few private agents are
located in a mobile host capable of performing some simple tasks, e.g., formatting of
an alert message, filtering incoming messages, generating sound alerts, etc.

APE framework provides a possibility of defining and using several specialized
agents called inputloutput gateways, able to communicate with the external world
(including both software and humans) via communication channels of different type
and purpose. Number and types of the gateways used (including some specific
parameters, as a phone number for an SMS center, an address for a SMTPlPOP3
server, etc.) is local-administrator dependent. Note that the gateways are
implemented as agents, thus one may easily extend the framework by some specific
communication channels, for example a dedicated application for contacting and
programming agents, file system/NFS gateway able to exchange information via
common files, etc.

In general, two basic types of communication channels are available: textual and
Web-based. A textual channel is able to exchange flat (unformatted) text messages,
usually among humans and agents. Physically, textual channels may use such media
as an e-mail SMPTlPOP3 connection, SMS (Short Message System)/MMS
connection with a telecommunication network, a voice gateway, etc. Once sent by a

184 Jarogniew Rykowski

textual message, an agent acts as a chatterbot, analyzing the message via keyword
extraction and analysis. The semi-natural access to an agent in a chatterbot manner is
especially useful for non-advanced users, as well as for users temporary handicapped
due to limited hardware possibilities and communication costs. For example, an SMS
message may be used to check the most important information during a journey,
once a stationary PC is further used to get the complex information while the user is
back home. Web-based channels are used to access an agent via a WWWIWAP
page, and from specialized applications. These channels use personal, semi-
automatic formatting of both contexts and presentation of the data to be sent. To this
goal, XSL-T technology was adapted with XSL transformations defined in a
personal manner and stored in private agent variables. In a case of a conversation
with a human, automatic detection of end-user device may be used, thus restricting
the communication. For example, a small textual message is sent to a mobile phone
using WAP connection, similar message with the same contents however some
additional formatting is sent to a PDA device, and full text&graphic message is sent
to a stationary PC.

4 Implementation issues

The APE idea was implemented using the Agent Computing Environment ACE, the
framework originally developed by us for supporting owners of mobile phones in
accessing the Internet servers [16]. The framework is based on a set of distributed
Agent Servers [17], each of them capable of storing and executing software agents.
The agents are imperatively programmed by the use of certain programming
languages, both standard and dedicated only for ACE framework. The agents may be
moved among Agent Servers. Agent Servers may be located in both stationary and
mobile devices. In case of stationary equipment, multi-user, multi-agent, mass-usage
Agent Servers may be used. In case of mobile devices, characterized by limited
hardware and software possibilities and high communication costs, personal, single-
agent, light-weight Agent Servers may be used. Depending on hardware and
communication restrictions, and current situation, a user has a choice in determining
a place of execution of agents.

Due to the restrictions of the skeleton-based and declarative programming
techniques (cf. Section 2.3), we propose to use imperative programming for setting
up agent behavior, directly by the agent owners. In order to provide reasonable level
of portability (migration) of the agent, and reasonable level of overall system
security, we propose to apply two primary programming techniques: interpretation
connected with run-time code inspection for "untrusted" agents, and compilation for
the "trusted" ones.

The main problem related with unrestricted usage of imperative code concerns
limited system security. Remotely executed, imperatively programmed agents are
treated as the "alien" code, potentially dangerous for the local environment. Such
anxiety may be justified by insufficient level of code verification, or simply by pure
psychological reaction of local system administrators. Even if from the "technical"
point of view several security mechanisms are applied for the external code
verification (i.e., code encryption and signing by digital certificates, built-in security

Who should take care of the personalization? 185

verification for the compilers and kernels of the operating systems, etc.), the
psychological fear maybe a serious obstacle for wide acceptance of user-defined,
not-known in advance agents. However, similar problem has been already
successfully resolved in the domain of the operating systems, by introducing two
basic programming techniques: a shell language, used for example for preparing
batch programs and desktop icons, and different programming languages, used for
design of the application programs, further compiled to "executables". Shell scripts
are usually simple programs, in contrast to application programs - usually quite
complicated and compiled (installed) prior to the execution. Compiled "executables"
are used by the ordinary users as "black boxes", with limited parameterization and
no possibility of re-programming internal functionality. Most operating-system users
are entitled only to manipulate shell scripts, and only some (usually system
administrators) are able to install and control executables.

Applying this approach to the APE agents, we propose two basic techniques of
setting up safe and secured activity behavior: the dedicated shell language, and full
compilation. The shell language is used for programming mobile, remotely executed,
user-defined activities. The language is based on the XML standard, and its syntax
computational power is similar to the widely known shell programming languages.
Note that we were not able to adapt any existing XML query language, as well as
any generic XML transformation language, as these languages are specialized for
node processing, generating a set of XML nodes as a result of processing of
queriedother nodes. Instead, we adopted typical shell syntax, adjusting it to the
framework of the XML documents. In the proposed agent-shell programming
language, the following shell-language statements may be used: variable statement
(variable definition), procedure definition (similar to procedure/method definition in
most of the imperative programming languages), if-then-else choice and while loops
with conditional statements, and procedure call with return statement.

Due to the fact that the XML-programmed agents are treated as an "alien" code
(from the point of view of the owner/administration of the agent execution
environment), we introduce additional run-time checking: verification of the
maximum agent execution time, and maximum space (quota) for temporal variables.
Such checking is performed prior to the execution of each program line (XML node),
by a comparison of granted and consumed amount of resources (mainly total CPU
time and memory load). Badly-behaving agents are detected and their execution is
stopped. As a result, it is not possible for an agent to loop (intentionally or not)
forever and to consume too much memory/disk space, slowing down or even
blocking other agents. To our best knowledge, there is no similar run-time
verification for any shell-like programming language.

On the contrary, agents prepared by "trusted" (still, from the local environment
point of view) users are written in Java, being an efficient and portable programming
language. There is no additional run-time checking for such agents, except for
standard security procedures built-in into the local Java Virtual Machine (memory
consumption and quota, verification of the access rights, especially those related with
accessing external software, digital signing and verification of the program code,
etc.). Note that, even if the Java-based agents cannot be developed by ordinary users,

186 Jarogniew Rykowski

such agents may be used as "black boxes", similar to the applications of a typical
operating system. Note also that the Java-based agents may be used as brokers to
external resources and software, including non-standard communication means
(public SMSIMMSle-mail channels, WWW-based access via individualized pages,
etc.) [16].

Typically, we assume that most of the complex tasks are realized as Java-based
agents, with the code prepared by system designers. The shell-based agents are used
for the personalization purposes: linking, formatting, and presenting information
obtained from different places and in different form, monitoring and alerting,
adjusting the results to the individual requirements of the agent owner, as well as to
hardware/software/communication limitations, etc. This is in turn similar to a typical
operating system, with shell scripts and desktop icons personalizing the usage of the
system-controlled applications. The local environment (and other agents) is secured
enough, and, as the majority of the complex and resource-consuming tasks is
realized by Java-based agents, the whole system is fast, both from the agent owner
(small response time), and from the system point of view (large throughput).

5 Conclusions

In contrast to current solutions, the proposed personalization strategy is characterized
by several advantages. First, the costs related with the preparation and the execution
of the personalization software are incurred by the end-users. Each user is able to
define hislher individual personalization scope and possible expenses. Second, it is
possible to personalize access to traditionally closed and fixed (from the user point of
view) information sources, such as e-banks and public Web portals. Third, it is up to
the user to choose the information source@), data processing algorithm, information
scope, date and time of software execution, etc. Fourth, personalized access may be
enriched by individual monitoring of "important" information changes and
asynchronous alerting if "something interesting" happens with the monitored
information. What is "interesting" for a particular user is defined by himlher in
hidher personalization software. And fifth, it is possible to utilize several
communication channels of different type, purpose, bandwidth, costs, etc., even
those not necessary related with the information source, such as SMS/MMS/e-mail
messaging for Web servers.

The system is flexible and open for new services, communication standards,
users, etc. Due to the brokerage of public agents, the new services and protocols may
be added in an invisible (for an ordinary user) way. Existing applications and
distributed systems may profit from using software agents as monitors and
personalizers [IS]. Mobile agents and APEIACE applications, apart from
personalization of an access to distributed resources, are able to take some benefits
of modern communication channels, such as WAP/WML, SMSIMMS, and PTT
(Push-To-Talk)/voice access. To our best knowledge, there is not a single proposal
up to now to use imperative, mobile, user-defined software agents for personalization
of a distributed environment that is directly comparable with our approach.

Potential application areas of the APEIACE framework are the following:
advanced and individual controlling of database access, personal monitoring,

Who should take care of the personalization? 187

asynchronous notification for changes, personalization of closed systems, mobile
access to databases, enabling access for non-advanced and handicapped users,
mobile applications, etc.

The APEIACE framework was implemented and tested as two industrial
applications: a universal information system for users o f mobile phones, and as
personal monitoring software for an internet bank. Due to the lack of space, we are
not able to provide here detailed results of the measurement of the system efficiency.
We mention only that we measured average system response time and agent
execution time for a population o f up to 100000 of agents, created artificially as
multiply clones of agents developed and used by a hundred o f real human users. The
obtained results - system response time counted in parts of a second for SMS, e-mail
and WWW-based gateways, average agent execution time up to 80 ms, and system
throughput up to 30 agent executions per second under maximum load for 1000
hours (more than a month) o f continuous test - proved the whole system is fast and
efficient, especially for "handicapped" owners of mobile phones during an access to
distributed Internet information sources.

References

1. AgentLand, homepage, http://www.agentland.com/, (AgentLand, Cybion, Paris, France,
2006).

2. R. Pascotto, AMASE: Agent-based Mobile Access to Information Services, ACTS project
homepage, in CORDIS, ACTS - Advanced Communication Technologies and Services
(European Commission, Dir INFSO, ACTS Central Office, Brussels, 2002),
http://cordis.europa.eu/infowin/acts/analysyslproducts/thematic/agents/ch3/amasehtm.

3. M. Bonett, M., Personalization of Web Services: Opportunities and Challenges, Ariadne
Issue 28 (June 2001), http://www.ariadne.ac.uk/issue28/personalization/intro.html.

4. DMAL, DARPA Agent Markup Language Homepage (DARPA, Arlington, V A , 2006),
http://www.daml.org/,

5. N. Deakin, XUL Tutorial (XUL Planet, Sympatico, CA, last updated 19 February 2006),
http:l/www.xulplanet.comitutorials/xultu/.

6. eMobile, SMS Sofware Solutions (eMobile, Singapore, 2005),
http://www.emobile.com.sg.

7. P. Farjani, C. Gorg and F. Bell, A Mobile Agent-Based Approach for the UMTSNHE
Concept, ACTS project homepage, in CORDIS, ACTS - Advanced Communication
Technologies and Services (European Commission, Dir INFSO, ACTS Central Office,
Brussels, 2004),
http:l/cordis.europa.eu/infowinlactslanalysys/products/thematic/agents/ch3/cameleon.htm.

8. The Foundation for Intelligent Physical Agents, Welcome to FIPA (IEEE Foundation for
Intelligent Physical Agents, Piscataway, NJ, 2006), http://www.fipa,org/.

188 Jarogniew Rykowski

9. S. Franklin and A. Graesser, Is it an Agent, or just a Program? A Taxonomy for
Autonomous Agents, in: Lecture Notes in Artificial Intelligene, Volume 1193:
Proceedings of the 3rd International Workshop on Agent Theories, Architectures, and
Languages (Springer-Verlag, Berlin, Heidelberg,l996), pp. 21-35.

10. D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition
(Prentice-Hall, Upper Saddle River, NJ, 2000).

11. D. Kotz and R.S. Gray, Mobile agents and the future of the Internet, ACM Operating
Systems Review 33(3), 7-13 (1999).

12. D. Milojicic, Trend Wars -mobile agent applications, IEEE Concurrency 7(3), 80-90
(July-September 1999).

13. U. Pinsdorf, J.Peters, M.Hoffmann and P. Gu ta, Context-Aware Services based on
I! Secure Mobile Agents, in: Proceedings of 10 International Conference on Software,

Telecommunications and Computer Networks, SoftCOM 2002 (IEEE Communications
Society, University of Split, Croatia, 2002), pp. 366-370,
http:N~~ww.semoa.org/docs/papers/pinsdorf2002c.pdf.

14. Intellisync, Pumatech announces Mind-it software version 5.2 (Intellisync Corporation,
San Jose, CA, 27 November 2001), http://w.intellisync.com/.

15. J. Rykowski and W. Cellary, Virtual Web Services - Application of Software Agents to
Personalization of Web Services, in: 61h Internafional Conference on Electronic
Commerce ICEC 2004, Delft (The Netherlands) (ACM Publishers, New York, 2004), pp.
409-418.

16. J. Rykowski and A. Juszkiewicz, Personalization of Information Delivery by the Use of
Agents, in: Proceedings o f the IADIS International Conference WWW/Internet
2003, ICWI 2003, Algarve, Portugal, November 5-8, 2003. (IADIS, Algarve,
Portugal, 2003), pp. 1056-1059

17. J. Rykowski, Management of information changes by the use of s o h a r e agents,
Cybernetics and Systems 37(213), 229-260 (March-May 2006)

18. J. Rykowski, Using software agents to personalize natural-language access to Internet
services in a chatterbot manner, in: znd ~nternational. Conference Language And
Technology L&T105 (Adam Mickiewicz University Press, Poznan, Poland, 2005), pp.
269-273.

19. B. Schiemann, E. Kovacs and K.Rohrle, "Adaptive Mobile Access to Context-Aware
Services", Proc. of the 31d International Workshop on Mobile Agents, Palm Springs, USA,
MA'99 (IEEE, Piscataway, NJ, 1999), pp. 190-203.

20. M. Wooldridge and N. R. Jennings, Intelligent agents: theory and practice, Knowledge
Engineering Review 10(2), 11 5-152 (1995).

