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This work discusses important aspects in the computational representation of 
models, focusing on the treatment of the heterogeneity and the integration of 
models. The relevance of this topic lies in the necessity of achieving an efficient 
workflow when handling heterogeneous information structures and of giving 
proper answer to the involvement of new types of models driven by the 
increasing demand for enhanced information handling capabilities in the 
planning and the control of production systems. 

1. INTRODUCTION 

This work presents some points to consider when planning and designing 
computational support systems that make intensive use of models, taking into 
account the heterogeneity and integration models. In the case of this text, these 
issues are discussed in the context of the so called Discrete Event Dynamic Systems 
(DEDS), from which perspective important results for production systems have been 
obtained. DEDS are systems whose dynamics presents discrete states and the 
transitions between the states are associated to the occun'ence of discrete events 
(Cassandras, 1993). In the case of production system, the coordination of operations 
and the resource utilization patterns can be approached from the perspective of 
DEDS. 

Models are an important means to approach systems, providing an effective way 
to deal with their complexity. They are abstract descriptions of systems, that 
consider only the relevant aspects (for a certain purpose), ignoring those that are 
irrelevant. 

Models are inherently specific in the sense that their structure and content 
strongly depend on the aspects that are considered, the mathematical tools used to 
deal with them and the purposes of their utilization. This specificity is a major factor 
in the heterogeneity, that is, existence of a wide variety of models, expressed in 
terms of different modeling formalisms. In the case of DEDS, this heterogeneity is 
remarkable, with some examples presented in Table 1. 
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Table 1 - Brief descriptions of some DEDS types of models 
Petri Nets 
(Murata, 1989) 

Stochastic Petri Nets 
(MoUoy, 1980) 

Markov Chains 
(Kulkarni, 1995) 

Queueing Networks 
(Bolch, 1998) 

Mark Flow Graph 
(Hasegawa, 1988) 

Modeling of causal relationships between different 
state variables, providing information on qualitative 
features. 
Extension of Petri Nets with stochastic timings 
associated to state transitions, to approach perfoiTnance 
features of systems. 
Description of state transitions and the timings 
associated to them, for the study of state probabilities. 

Analysis of congestion phenomena as entities seeks for 
service when accessing a network of limited resources. 

Extension of Petri Nets considering discrete production 
system control elements. 

The idea behind computationally supporting model heterogeneity is to take 
advantage of the best that each type of model ca provide and, thus, enhance the 
planning and the operation of production systems. It is also important to remember 
that the diversity of modeling techniques is continuously growing. Therefore, it is 
important to develop an adequate computational framework that does not amplify 
the complexity inherent to the model heterogeneity, providing a favorable cost-
benefit ratio. 

Besides the existence of heterogeneous models, there is the issue of integration 
of models, that is based on the consideration of the relationships between different 
models. A well-known example is the case of the isomorphism between a Stochastic 
Petri net and a Markov chain (Molloy, 1980): if both models refers to a same system 
dynamics, it is very likely that the former constitutes a much more concise 
description, while, from the latter, that can be computationally obtained from the 
former, one can calculate quantitative information on the system dynamics. So, 
another aspect to consider is the adequate treatment of the relationships between 
models, in order to maximize the advantages that those relationships can provide. 

The focus of this work is on the issue of the computational representation of the 
information conveyed by the models and how it can put into effect the benefits of an 
adequate treatment of heterogeneity and integration. So, at first, a structured 
discussion about the characteristics a modeling language should have to deal with 
model heterogeneity is carried out; for that propose, set-based diagrams are 
presented as a means to visualize relevant aspects in modeling and analysis and the 
relationships between them. In the second part, the representation of semantic 
information associated to models is presented as a means of dealing with the 
integration of models, showing that, if adequately elaborated, it can provide a 
unified view of different models referring to a same system dynamics, where the 
diverse relationships between models are shown without ambiguity, redundancy and 
concealment of relevant information. Besides analytical models, these ideas can be 
extended to other information structures, such as those containing sensorial data, so 
that it can be treated together with other models within a computational framework. 
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2. HETEROGENEITY AND WORKFLOW EFFICIENCY 

This section introduces an abstract model of modeling and analysis tools to serve as 
an instrument to achieve a structured discussion about the characteristics of 
computational representations of models and of their handling. It uses basic 
elements of Set Theory and provides a useful way to visualize important 
relationships, being general enough to approach a wide range of configurations of 
computational modeling and analysis frameworks or schemes. 

So, consider that all computational modeling and analysis related activities take 
place within Modeling and Analysis Environments (MAEs), whose constitution is 
described in detail in the next subsection. Also, models are computationally handled 
in the form of numerical-symbolic constructs. Ultimately, the role of a MAE is to 
process numerical-symbolic constructs and generate numerical-symbolic constructs. 
The numerical-symbolic constructs are given the generic denomination of structures 
in the text. In particular, the structures containing all the information provided by a 
model are called representations. 

2.1 Mathematical description of MAEs and mapping models into them 

Mathematically, a MAE can be described by a triple {LC,LB,CA), whose elements, 
explained in the following paragraphs, can be represented by diagrams, like those 
present in Figure 1. 

(a) Model cuniposlioii language (b) Mode] building language 

(c) Another model building language 

^ = Petri Nets 

(c) Model transcription ,. -T inn \ 
^ 2 ~ '•ijA P^il 

(d) Analysis procedure 

(f) Coordinati^m of target sets 

Figure 1. Diagrams involving target sets 
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Lc=(Tc,Ec) is a model composition language that provides the descriptive 
elements that comprise model representations, where Tc is the set of terms from 
which structures are made and Ec is the set of all valid structures (according to a 
certain criterion) — Figure 1 (a) shows examples of Tc and Ec, the latter being a set 
of model representations expressed, in this example, by forms whose fields are 
correctly filled with the elements from the former. 

LB=(PB,EB) is a model building language, such that PB is the set of operations 
on Tc (in Lc) provided by this language and Eg is the set of all structures that can be 
built using operations in PB and terms in Tc — Figure 1(b) shows examples of PB, 
EB and the application of some operations in PB in the construction of filled and 
semi-filled forms that belong to EB; in Figure 1(c), another example shows a 
building language that provides operations to construct fragments of forms 
(operations p and q) and an operation r to compose complete forms from fragments. 

CA = {CA.I, •••, CA,n}is a set representing the analytical capacity of the MAE, 
where CA.J is a triple {PA.J ,IA,J ,OA,J) , where PA.J is a procedure implementing an 
analysis, IA.J and OA.J are, respectively, the sets from which inputs are taken and to 
which the results from the procedure belong — Figure 1(d) schematically illustrates 
CA.J-

In this text, mentions to modeling language usually refer to the pair (LC,LB). 
Along with mathematical models of MAEs, types of models are introduced by 

means of a transcription function x^,- fict) —> Ec, where fD stands for a model type 
(like Petri Nets or Markov Chains), fia, for the set of all models of type (t> and Ec for 
the set of all valid models in Lc. E ,̂ is the image of Xc , i.e. the set of all 
representations of models of type cD in the language Lc. 

Some of the sets just introduced are called target sets and they are specially 
interesting for the purposes of this work, for representing four essential dimensions 
in the relationships between MAEs and types of models: 

• Ec is the target set of the composition language, representing the model 
expressivity of the MAE; 

• EB is the target set of the model building language, representing the model 
building features of the MAE; 

• IA.J is the target set of procedure PA.J, referring to the analyzability of 
structures as provided by the implementation of analysis methods; 

• EtD is the target set of the transcription of models of type <i>, that is, 
indicating how models of this type are represented within a MAE. 

An effective MAE must have its target sets duely coordinated, so that, from the 
point of view of the representations of the models of a type (t to be considered, they 
can be expressed, built and analysed. The configuration illustrated in Figure 1(f) 
meets these conditions: Etu c in Ec means that the MAE can effectively express such 
models of type fJ); Ei[, cz EB, that it can build representations of these models; Ed, c 
IA, they can computationally processed by the analysis implemented by the MAE. 

An interesting feature that can be observed in certain model building languages 
(LB) is that, if appropriate operations are provided in PB, the construction of model 
representations can be performed with the use of several operations. In this case, 
besides the aimed model representation, the process generates intermediary 
structures, as illustrated in Figures 1(b) and 1(c). The availability of such structures 
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grants flexibility to the model building process, since more building paths can be 
followed and diverse structure reuse pattern can be employed. 

When dealing with heterogeneous models, Figure 2 shows two ways of handling 
them. In Figure 2(a), each type of model is handled by a specific MAE, as indicated 
by the target sets. In Figure 2(b), the configuration that is the object of interest of 
this work is shown, where all types of models are represented using a 
comprehensive modeling language. A modeling language is said to be 
comprehensive if it can express and build models of multiple types (it is interesting 
to notice that Figure 2(b) also includes the results of the procedures). The problem 
with the specific MAEs configuration is that, in the general case, implementation 
and learning costs with respect to model composition and building languages can be 
significant and the transition from working with a specific MAE to another can be 
cumbersome. The configuration described in the next paragraph can minimize these 
problems. 

H, (type cj\,) Hi (lypc*,) Hj, (lypc <ti,J 

Figure 2. Configurations for dealing with heterogeneous models: (a) specific MAEs 
and (b) comprehensive MAE. 

Thus, going further, a modeling language is ideally comprehensive and uniform 
if, with the same set of elements and composition rules, is capable of building 
representations of models of an indefinite number of types. This is particularly 
important when a new type of model is to be considered: a uniform MAE (Figure 
3(a)) incorporates new model types without changes; a nonuniform MAE (Figure 
3(b)) probably will need extensions in the expressive part, which will likely induce a 
need for extensions in the building language as well. 

ntraiskfct ^ 

O 

& c*r)iIo 
I AE, , 

A E B 

[AFTER) 

Figure 3. Comprehensive MAEs: (a) uniform and (b) nonuniform. 
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Then, at this point, it is possible to enumerate important features that an 
extensible MAE for heterogeneous models should present: coordination between the 
elements of MAE and the transcriptions of different types, comprehensive and 
uniform model composition language, flexible model building language and 
analytical extensibility (to incorporate new analysis procedures). Also, there are 
issues like representation ambiguity and redundancy, that are treated in (Arata and 
Miyagi, 2003). 

3. INTEGRATION OF MODELS AND THEIR SEMANTICS 

Comprehensive and uniform modeling languages are important to avoid the 
amplification, by the computational modeling and analysis frameworks, of the 
complexity due to model heterogeneity. However, even languages presenting such 
features cannot prevent the inherent formal heterogeneity of models. This 
heterogeneity means that, if no support is available, dealing with heterogeneous 
models means having to deal with information organized in different structures, 
what can lead to many very different procedures to access and manipulate the 
contents of each of them. 

In the direction of such support, it is interesting to consider the fact that the 
integration of models (specially those of different types) is based on the semantic 
bindings between them (Arata and Miyagi, 2005). In this context, semantics refers to 
the meaning, that is, to what is being represented by the models; therefore, the 
semantics of models corresponds to what is observed in the system and in the 
dynamics being treated. Indeed, the simple fact that different models refer to one 
same dynamics suggests the existence of such connections. 

A notorious case of model integration involves the isomorphism between 
Generalized Stochastic Petri Nets (GSPNs) and Continuous-time Markov Chains 
(CTMCs) (Marsan, 1984): if a GSPN is isomorphic to a certain CTMC, there is an 
one-to-one mapping/between GSPN markings and CTMC states so that transitions 
from markings M to M' mean that there are transitions from CTMC states S=f(M) 
and S'=f(M'). In formal terms, GSPN marking is a concept strange to CTMCs in the 
same way a CTMC state is with respect to GSPNs; so, the nature of this binding is 
essentially semantic, that is, the only fact that links related GSPN markings and 
CTMC states is that they refer to the same entities, i.e., the same dynamic states. 

Based on the fact that semantic bindings are a major component behind model 
integration, it is natural to expect that a proper representation of the semantic 
information associated to the integrating models plays a role in the development of a 
description that reflects and makes explicit the integration of models. In the next 
section, this representation is elaborated in the form of a set of predicates and it is 
shown that, while formal comprehensiveness and uniformity of modeling languages 
provides an effective coexistence of heterogeneous models, a coordinated 
representation of semantic information provides a straightforward way to present the 
relationships between different models, overcoming a barrier due to heterogeneity. 

A major issue in building such descriptions is dealing with semantic conflicts. In 
particular, two kinds of name conflicts can make the descriptions ineffective: 
synonyms and homonyms. 
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In the case of synonyms (multiple names, one entity), the description may not 
completely reflect the integration, since certain relationships can be interpreted as 
involving different entities, while, instead, they involve one same entity (for 
example, if an entity A is denoted by both X and Y, the expressions "X is being 
processed" and "Y is being inspected" give no clue about the fact that both 
situations refers to entity A; allowing synonyms requires additional elements to 
handle their occurrences, increasing the complexity of the descriptions). 

If homonyms (one name, muhiple entities) are allowed, semantically ambiguous 
or senseless statements can be made (if X refers to a machine and also to a part, an 
order to "mill X" can lead to undesired situations). 

The consideration of semantic bindings is an important element in the 
representation of integration of models. Although not explicitly mentioned, this is 
also the mechanism used by the hierarchical model composition in the SHARPE 
system (Trivedi, 2002), where results of model analysis are employed as elements of 
other models, and in the Mobius framework (Sanders et al., 2003), where 
formalisms are described in terms of the components provided by the framework. 

4. APPLICATION OF THE CONCEPTS 

In this section, the concepts thus far develop are illustrated by means of the example 
of the analysis of GSPNs via isomorphism with CTMCs (Marsan, 1984), similar to 
the case described in the previous section. Briefly describing, in this analysis, a 
GSPN model is used to enumerate the relevant conditions to the dynamics being 
modeled, how these conditions enable state transitions and what conditions these 
transitions maintain, activate or deactivate; it also specifies the duration of the 
activation of the conditions. Then, a timed reachability graph is built, describing 
what conditions are active in each reachable state, indicating the elements associate 
to each state transition. From this graph, a CTMC model is generated and, then, its 
steady-state probability distribution is calculated (providing the steady-state 
probability of each reachable state). 

A comprehensive and unifonn modeling language is presented in (Arata and 
Miyagi, 2003). The language provides three kinds of constructs that are used to 
construct all the data types that can be expressed by the language: atoms, 
homogeneous sets (whose elements are all of the same type) and tuples (ordered 
aggregates of objects), where the latter two can be nested one inside another 
indefinitely. In Figure 4, using these constructs, metamodels for GSPN, timed 
reachability graphs, CTMC and steady-state probability distributions are defined. 
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P is atomit;; 'IT is atomic; IT is alontic; 

MarklngType is setof (place is P, 
tokens is Integer); 

MarkedGSPN'I'ype is ( 
Places is sctofP, 
TiTned'i'ransilions is sctoflT, 
TniediateTransitions is setofTT, 
TTT is sctot" (arc is (piacc is P. 

transition is T), 
weight is Integer), 

iri' is sctotYarc is (place is P, 
transition is T), 

weight is Integer), 
OTT is setotYarc is (transitioji is T, 

place is P), 
weight is Integer), 

OIT is sctof(arc is (transition is T, 
place is P), 

weight is Integer), 
Marking is MarkingTypc 

); 

TiniedReachabilityGraphTypc is 
setof (origin is MarkingType, 

end is MarkingType, 
tiincUTranstion is TV, 
irncdialcTranstitions is 

setof (order is Integer, 
transition is IT) 

(b) 

^ is atomic; 
CTMCTypc is 

(states is setof S, 
transitions is 
setof (origin is S, end is S, rate is Real) 

); (c) 

SteadyStateDistribution is 
setof (state is S, probability is Real); 

(ii) 

Figure 4. Metamodels describing representations of models 

Examining the first line of the metamodel in Figure 4(a), three atomic types 
(referring to atomic objects or atoms) are defined: P, TT and IT; the idea is that 
other data types are built using atoms of these three type. The type MarkingType is 
defined to be a set (using the keyword setof) of elements, whose type follows the 
keyword setof: in this case, the elements are tuples (that are specified by a list of 
type specification enclosed by parentheses); these tuples are of a data type with two 
elements: the first one, that can be referred by the name place, is of type P, and the 
second one, that can be referred by the name tokens, is of type Integer (a number, 
that the language treats as a special kind of atom). The same can be analogously said 
about the other metamodels. So, this is a modeling language that can express a wide 
variety of types of models (comprehensiveness), using the same simple elements and 
constructs (uniformity). 

In Figure 5, instances of these types of models implementing such analysis are 
shown. Figure 6 presents a set of predicates, similar to those in the Prolog language 
(Deransart, 1996), that is a representation of the semantic information associated to 
the models in Figure 5. The "rate" predicates specify the rate of completion of an 
activity, described by a timed transition in the GSPN. The "in" predicates state that a 
certain dynamic state belongs to the state space of the system (denoted by the term 
"StateSpace"), what can be observed from both GSPN and CTMC. The "af 
predicates indicates that a certain activity occur in a certain state, what can be 
concluded from the places of the GSPN and the marking in the timed reachability 
graph. The "prob" predicates indicates the probability of occurrence of a certain 
state, obtained from the steady-state probability distribution of the CTMC. 
Consistency in this representation is achieved by using the same terms for states and 
the same expressions for activities in the different predicates obtained from different 
models 
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^l ^ (1,0,0,1,0,0,1) 

(0,1,0,1,0,0,1) - C -

• (0,1,1,1,0,0,0) - 3 - - - -

Timed Reachability Graph 

^^ sratc2 ' ^ " 

Kral-e3 "^^ " 

srarc4 •<:— - _ 

-—-Q 
0.20 1 

0.15 f 1 " 

--0 
arrivaUs igua 1 (inspect! oil)) 

signal(inspeciion) 

wait(p,proccss(M,p)) 

GeneraJized Stochastic 
Petri Net 

and inspection) 

$\iiiu_l=0.15SparL/inin 

^^free(lVl) 
$\inLi_l = 0.2$ part/niin 

Cotitinuous-tinie Markov Chain 

7t( Sj) = 0.944 

Jt(s2)= 0.031 

JC( S3) = 0.024 

7t( Sj) = 0.001 

Steady-state 
probability distribution process(M,p) end(process(M,pJ) 

Figure 5. Models involved in the analysis of GSPN via isomoiphism 

i"atc(proccss(M,p),.2). 
ratc(process(M,p) and nspecting,. 15). 
rate(aiTival(signal(inspcction)),.005). 

in(statel ,StateSpacc). 
in(state2,StatcSpacc). 
in(.statc3,StateSpace). 
in(state4,StatcSpacc). 

at(proccss(M,p),statel). 
at(process(M,p) and inspccting,statc2). 
at(proccss(M,p) and inspecting,statc3). 
at(proccss(M,p),stated). 

prob(statcl,0.944). 
prob(statc2,0.031). 
prob(state3,0.024), 
prob(statc4,0.()01). 

Figure 6. Representation of semantic information via predicates. 

The use of predicates in the representation of semantic information shows that 
information carried from different models can be put in one same description, in a 
way that the heterogeneity of models is no longer an obstacle to visualize the 
relationships between the entities that participate in the system dynamics, as long as 
consistency in the representation is observed. 

5. CONCLUSIONS 

This work presents some guidelines to be observed in the design of 
computational systems dealing with heterogeneous models. Adequate treatment of 
heterogeneous models is relevant as it enables an efficient usage of computational 
and human resources by providing an infrastructure for a smoother workflow when 
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dealing with model heterogeneity. It also covers the case where new models need to 
be considered (for instance, because new features are to be included in a system); 
thus, supporting heterogeneity increases the likelyhood of a computational tool to 
evolve following a smooth path. Diagrams involving target sets have shown to be a 
useful means to visualize features such as comprehensiveness and uniformity. Also 
it has been shown that an adequate representation of semantic information 
associated to model integration leverages the contribution that multiple models 
working together can give, providing more resources to query and manipulate those 
information. 
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