
COMPUTATIONAL REPRESENTATION,
HETEROGENEITY AND INTEGRATION

OF PRODUCTION SYSTEM MODELS

Wilson M. Arata and Paulo E. Miyagi
Escola Politecnica da Universidade de Sao Paulo

wimarata@i4sp. br, pemiyagi@usp. br

This work discusses important aspects in the computational representation of
models, focusing on the treatment of the heterogeneity and the integration of
models. The relevance of this topic lies in the necessity of achieving an efficient
workflow when handling heterogeneous information structures and of giving
proper answer to the involvement of new types of models driven by the
increasing demand for enhanced information handling capabilities in the
planning and the control of production systems.

1. INTRODUCTION

This work presents some points to consider when planning and designing
computational support systems that make intensive use of models, taking into
account the heterogeneity and integration models. In the case of this text, these
issues are discussed in the context of the so called Discrete Event Dynamic Systems
(DEDS), from which perspective important results for production systems have been
obtained. DEDS are systems whose dynamics presents discrete states and the
transitions between the states are associated to the occun'ence of discrete events
(Cassandras, 1993). In the case of production system, the coordination of operations
and the resource utilization patterns can be approached from the perspective of
DEDS.

Models are an important means to approach systems, providing an effective way
to deal with their complexity. They are abstract descriptions of systems, that
consider only the relevant aspects (for a certain purpose), ignoring those that are
irrelevant.

Models are inherently specific in the sense that their structure and content
strongly depend on the aspects that are considered, the mathematical tools used to
deal with them and the purposes of their utilization. This specificity is a major factor
in the heterogeneity, that is, existence of a wide variety of models, expressed in
terms of different modeling formalisms. In the case of DEDS, this heterogeneity is
remarkable, with some examples presented in Table 1.

Please use the following formatwhen citing this chapter:

Arata, W. M., Miyagi, P. E., 2006, in IFIP International Federation for Information Processing, Volume 220, Information
Technology for Balanced Manufacturing Systems, ed. Shen, W., (Boston; Springer), pp. 405-414.

406 Information Technology for Balanced Manufacturing Systems

Table 1 - Brief descriptions of some DEDS types of models
Petri Nets
(Murata, 1989)

Stochastic Petri Nets
(MoUoy, 1980)

Markov Chains
(Kulkarni, 1995)

Queueing Networks
(Bolch, 1998)

Mark Flow Graph
(Hasegawa, 1988)

Modeling of causal relationships between different
state variables, providing information on qualitative
features.
Extension of Petri Nets with stochastic timings
associated to state transitions, to approach perfoiTnance
features of systems.
Description of state transitions and the timings
associated to them, for the study of state probabilities.

Analysis of congestion phenomena as entities seeks for
service when accessing a network of limited resources.

Extension of Petri Nets considering discrete production
system control elements.

The idea behind computationally supporting model heterogeneity is to take
advantage of the best that each type of model ca provide and, thus, enhance the
planning and the operation of production systems. It is also important to remember
that the diversity of modeling techniques is continuously growing. Therefore, it is
important to develop an adequate computational framework that does not amplify
the complexity inherent to the model heterogeneity, providing a favorable cost-
benefit ratio.

Besides the existence of heterogeneous models, there is the issue of integration
of models, that is based on the consideration of the relationships between different
models. A well-known example is the case of the isomorphism between a Stochastic
Petri net and a Markov chain (Molloy, 1980): if both models refers to a same system
dynamics, it is very likely that the former constitutes a much more concise
description, while, from the latter, that can be computationally obtained from the
former, one can calculate quantitative information on the system dynamics. So,
another aspect to consider is the adequate treatment of the relationships between
models, in order to maximize the advantages that those relationships can provide.

The focus of this work is on the issue of the computational representation of the
information conveyed by the models and how it can put into effect the benefits of an
adequate treatment of heterogeneity and integration. So, at first, a structured
discussion about the characteristics a modeling language should have to deal with
model heterogeneity is carried out; for that propose, set-based diagrams are
presented as a means to visualize relevant aspects in modeling and analysis and the
relationships between them. In the second part, the representation of semantic
information associated to models is presented as a means of dealing with the
integration of models, showing that, if adequately elaborated, it can provide a
unified view of different models referring to a same system dynamics, where the
diverse relationships between models are shown without ambiguity, redundancy and
concealment of relevant information. Besides analytical models, these ideas can be
extended to other information structures, such as those containing sensorial data, so
that it can be treated together with other models within a computational framework.

Computational representation of production system models 407

2. HETEROGENEITY AND WORKFLOW EFFICIENCY

This section introduces an abstract model of modeling and analysis tools to serve as
an instrument to achieve a structured discussion about the characteristics of
computational representations of models and of their handling. It uses basic
elements of Set Theory and provides a useful way to visualize important
relationships, being general enough to approach a wide range of configurations of
computational modeling and analysis frameworks or schemes.

So, consider that all computational modeling and analysis related activities take
place within Modeling and Analysis Environments (MAEs), whose constitution is
described in detail in the next subsection. Also, models are computationally handled
in the form of numerical-symbolic constructs. Ultimately, the role of a MAE is to
process numerical-symbolic constructs and generate numerical-symbolic constructs.
The numerical-symbolic constructs are given the generic denomination of structures
in the text. In particular, the structures containing all the information provided by a
model are called representations.

2.1 Mathematical description of MAEs and mapping models into them

Mathematically, a MAE can be described by a triple {LC,LB,CA), whose elements,
explained in the following paragraphs, can be represented by diagrams, like those
present in Figure 1.

(a) Model cuniposlioii language (b) Mode] building language

(c) Another model building language

^ = Petri Nets

(c) Model transcription ,. -T inn \
^ 2 ~ '•ijA P^il

(d) Analysis procedure

(f) Coordinati^m of target sets

Figure 1. Diagrams involving target sets

408 Information Technology for Balanced Manufacturing Systems

Lc=(Tc,Ec) is a model composition language that provides the descriptive
elements that comprise model representations, where Tc is the set of terms from
which structures are made and Ec is the set of all valid structures (according to a
certain criterion) — Figure 1 (a) shows examples of Tc and Ec, the latter being a set
of model representations expressed, in this example, by forms whose fields are
correctly filled with the elements from the former.

LB=(PB,EB) is a model building language, such that PB is the set of operations
on Tc (in Lc) provided by this language and Eg is the set of all structures that can be
built using operations in PB and terms in Tc — Figure 1(b) shows examples of PB,
EB and the application of some operations in PB in the construction of filled and
semi-filled forms that belong to EB; in Figure 1(c), another example shows a
building language that provides operations to construct fragments of forms
(operations p and q) and an operation r to compose complete forms from fragments.

CA = {CA.I, •••, CA,n}is a set representing the analytical capacity of the MAE,
where CA.J is a triple {PA.J ,IA,J ,OA,J) , where PA.J is a procedure implementing an
analysis, IA.J and OA.J are, respectively, the sets from which inputs are taken and to
which the results from the procedure belong — Figure 1(d) schematically illustrates
CA.J-

In this text, mentions to modeling language usually refer to the pair (LC,LB).
Along with mathematical models of MAEs, types of models are introduced by

means of a transcription function x^,- fict) —> Ec, where fD stands for a model type
(like Petri Nets or Markov Chains), fia, for the set of all models of type (t> and Ec for
the set of all valid models in Lc. E ,̂ is the image of Xc , i.e. the set of all
representations of models of type cD in the language Lc.

Some of the sets just introduced are called target sets and they are specially
interesting for the purposes of this work, for representing four essential dimensions
in the relationships between MAEs and types of models:

• Ec is the target set of the composition language, representing the model
expressivity of the MAE;

• EB is the target set of the model building language, representing the model
building features of the MAE;

• IA.J is the target set of procedure PA.J, referring to the analyzability of
structures as provided by the implementation of analysis methods;

• EtD is the target set of the transcription of models of type <i>, that is,
indicating how models of this type are represented within a MAE.

An effective MAE must have its target sets duely coordinated, so that, from the
point of view of the representations of the models of a type (t to be considered, they
can be expressed, built and analysed. The configuration illustrated in Figure 1(f)
meets these conditions: Etu c in Ec means that the MAE can effectively express such
models of type fJ); Ei[, cz EB, that it can build representations of these models; Ed, c
IA, they can computationally processed by the analysis implemented by the MAE.

An interesting feature that can be observed in certain model building languages
(LB) is that, if appropriate operations are provided in PB, the construction of model
representations can be performed with the use of several operations. In this case,
besides the aimed model representation, the process generates intermediary
structures, as illustrated in Figures 1(b) and 1(c). The availability of such structures

Computational representation of production system models 409

grants flexibility to the model building process, since more building paths can be
followed and diverse structure reuse pattern can be employed.

When dealing with heterogeneous models, Figure 2 shows two ways of handling
them. In Figure 2(a), each type of model is handled by a specific MAE, as indicated
by the target sets. In Figure 2(b), the configuration that is the object of interest of
this work is shown, where all types of models are represented using a
comprehensive modeling language. A modeling language is said to be
comprehensive if it can express and build models of multiple types (it is interesting
to notice that Figure 2(b) also includes the results of the procedures). The problem
with the specific MAEs configuration is that, in the general case, implementation
and learning costs with respect to model composition and building languages can be
significant and the transition from working with a specific MAE to another can be
cumbersome. The configuration described in the next paragraph can minimize these
problems.

H, (type cj\,) Hi (lypc*,) Hj, (lypc <ti,J

Figure 2. Configurations for dealing with heterogeneous models: (a) specific MAEs
and (b) comprehensive MAE.

Thus, going further, a modeling language is ideally comprehensive and uniform
if, with the same set of elements and composition rules, is capable of building
representations of models of an indefinite number of types. This is particularly
important when a new type of model is to be considered: a uniform MAE (Figure
3(a)) incorporates new model types without changes; a nonuniform MAE (Figure
3(b)) probably will need extensions in the expressive part, which will likely induce a
need for extensions in the building language as well.

ntraiskfct ^

O

& c*r)iIo
I AE, ,

A E B

[AFTER)

Figure 3. Comprehensive MAEs: (a) uniform and (b) nonuniform.

410 Information Technology for Balanced Manufacturing Systems

Then, at this point, it is possible to enumerate important features that an
extensible MAE for heterogeneous models should present: coordination between the
elements of MAE and the transcriptions of different types, comprehensive and
uniform model composition language, flexible model building language and
analytical extensibility (to incorporate new analysis procedures). Also, there are
issues like representation ambiguity and redundancy, that are treated in (Arata and
Miyagi, 2003).

3. INTEGRATION OF MODELS AND THEIR SEMANTICS

Comprehensive and uniform modeling languages are important to avoid the
amplification, by the computational modeling and analysis frameworks, of the
complexity due to model heterogeneity. However, even languages presenting such
features cannot prevent the inherent formal heterogeneity of models. This
heterogeneity means that, if no support is available, dealing with heterogeneous
models means having to deal with information organized in different structures,
what can lead to many very different procedures to access and manipulate the
contents of each of them.

In the direction of such support, it is interesting to consider the fact that the
integration of models (specially those of different types) is based on the semantic
bindings between them (Arata and Miyagi, 2005). In this context, semantics refers to
the meaning, that is, to what is being represented by the models; therefore, the
semantics of models corresponds to what is observed in the system and in the
dynamics being treated. Indeed, the simple fact that different models refer to one
same dynamics suggests the existence of such connections.

A notorious case of model integration involves the isomorphism between
Generalized Stochastic Petri Nets (GSPNs) and Continuous-time Markov Chains
(CTMCs) (Marsan, 1984): if a GSPN is isomorphic to a certain CTMC, there is an
one-to-one mapping/between GSPN markings and CTMC states so that transitions
from markings M to M' mean that there are transitions from CTMC states S=f(M)
and S'=f(M'). In formal terms, GSPN marking is a concept strange to CTMCs in the
same way a CTMC state is with respect to GSPNs; so, the nature of this binding is
essentially semantic, that is, the only fact that links related GSPN markings and
CTMC states is that they refer to the same entities, i.e., the same dynamic states.

Based on the fact that semantic bindings are a major component behind model
integration, it is natural to expect that a proper representation of the semantic
information associated to the integrating models plays a role in the development of a
description that reflects and makes explicit the integration of models. In the next
section, this representation is elaborated in the form of a set of predicates and it is
shown that, while formal comprehensiveness and uniformity of modeling languages
provides an effective coexistence of heterogeneous models, a coordinated
representation of semantic information provides a straightforward way to present the
relationships between different models, overcoming a barrier due to heterogeneity.

A major issue in building such descriptions is dealing with semantic conflicts. In
particular, two kinds of name conflicts can make the descriptions ineffective:
synonyms and homonyms.

Computational representation of production system models 411

In the case of synonyms (multiple names, one entity), the description may not
completely reflect the integration, since certain relationships can be interpreted as
involving different entities, while, instead, they involve one same entity (for
example, if an entity A is denoted by both X and Y, the expressions "X is being
processed" and "Y is being inspected" give no clue about the fact that both
situations refers to entity A; allowing synonyms requires additional elements to
handle their occurrences, increasing the complexity of the descriptions).

If homonyms (one name, muhiple entities) are allowed, semantically ambiguous
or senseless statements can be made (if X refers to a machine and also to a part, an
order to "mill X" can lead to undesired situations).

The consideration of semantic bindings is an important element in the
representation of integration of models. Although not explicitly mentioned, this is
also the mechanism used by the hierarchical model composition in the SHARPE
system (Trivedi, 2002), where results of model analysis are employed as elements of
other models, and in the Mobius framework (Sanders et al., 2003), where
formalisms are described in terms of the components provided by the framework.

4. APPLICATION OF THE CONCEPTS

In this section, the concepts thus far develop are illustrated by means of the example
of the analysis of GSPNs via isomorphism with CTMCs (Marsan, 1984), similar to
the case described in the previous section. Briefly describing, in this analysis, a
GSPN model is used to enumerate the relevant conditions to the dynamics being
modeled, how these conditions enable state transitions and what conditions these
transitions maintain, activate or deactivate; it also specifies the duration of the
activation of the conditions. Then, a timed reachability graph is built, describing
what conditions are active in each reachable state, indicating the elements associate
to each state transition. From this graph, a CTMC model is generated and, then, its
steady-state probability distribution is calculated (providing the steady-state
probability of each reachable state).

A comprehensive and unifonn modeling language is presented in (Arata and
Miyagi, 2003). The language provides three kinds of constructs that are used to
construct all the data types that can be expressed by the language: atoms,
homogeneous sets (whose elements are all of the same type) and tuples (ordered
aggregates of objects), where the latter two can be nested one inside another
indefinitely. In Figure 4, using these constructs, metamodels for GSPN, timed
reachability graphs, CTMC and steady-state probability distributions are defined.

412 Information Technology for Balanced Mamtfacturing Systems

P is atomit;; 'IT is atomic; IT is alontic;

MarklngType is setof (place is P,
tokens is Integer);

MarkedGSPN'I'ype is (
Places is sctofP,
TiTned'i'ransilions is sctoflT,
TniediateTransitions is setofTT,
TTT is sctot" (arc is (piacc is P.

transition is T),
weight is Integer),

iri' is sctotYarc is (place is P,
transition is T),

weight is Integer),
OTT is setotYarc is (transitioji is T,

place is P),
weight is Integer),

OIT is sctof(arc is (transition is T,
place is P),

weight is Integer),
Marking is MarkingTypc

);

TiniedReachabilityGraphTypc is
setof (origin is MarkingType,

end is MarkingType,
tiincUTranstion is TV,
irncdialcTranstitions is

setof (order is Integer,
transition is IT)

(b)

^ is atomic;
CTMCTypc is

(states is setof S,
transitions is
setof (origin is S, end is S, rate is Real)

); (c)

SteadyStateDistribution is
setof (state is S, probability is Real);

(ii)

Figure 4. Metamodels describing representations of models

Examining the first line of the metamodel in Figure 4(a), three atomic types
(referring to atomic objects or atoms) are defined: P, TT and IT; the idea is that
other data types are built using atoms of these three type. The type MarkingType is
defined to be a set (using the keyword setof) of elements, whose type follows the
keyword setof: in this case, the elements are tuples (that are specified by a list of
type specification enclosed by parentheses); these tuples are of a data type with two
elements: the first one, that can be referred by the name place, is of type P, and the
second one, that can be referred by the name tokens, is of type Integer (a number,
that the language treats as a special kind of atom). The same can be analogously said
about the other metamodels. So, this is a modeling language that can express a wide
variety of types of models (comprehensiveness), using the same simple elements and
constructs (uniformity).

In Figure 5, instances of these types of models implementing such analysis are
shown. Figure 6 presents a set of predicates, similar to those in the Prolog language
(Deransart, 1996), that is a representation of the semantic information associated to
the models in Figure 5. The "rate" predicates specify the rate of completion of an
activity, described by a timed transition in the GSPN. The "in" predicates state that a
certain dynamic state belongs to the state space of the system (denoted by the term
"StateSpace"), what can be observed from both GSPN and CTMC. The "af
predicates indicates that a certain activity occur in a certain state, what can be
concluded from the places of the GSPN and the marking in the timed reachability
graph. The "prob" predicates indicates the probability of occurrence of a certain
state, obtained from the steady-state probability distribution of the CTMC.
Consistency in this representation is achieved by using the same terms for states and
the same expressions for activities in the different predicates obtained from different
models

Computational representation of production system models 413

^l ^ (1,0,0,1,0,0,1)

(0,1,0,1,0,0,1) - C -

• (0,1,1,1,0,0,0) - 3 - - - -

Timed Reachability Graph

^^ sratc2 ' ^ "

Kral-e3 "^^ "

srarc4 •<:— - _

-—-Q
0.20 1

0.15 f 1 "

--0
arrivaUs igua 1 (inspect! oil))

signal(inspeciion)

wait(p,proccss(M,p))

GeneraJized Stochastic
Petri Net

and inspection)

$\iiiu_l=0.15SparL/inin

^^free(lVl)
$\inLi_l = 0.2$ part/niin

Cotitinuous-tinie Markov Chain

7t(Sj) = 0.944

Jt(s2)= 0.031

JC(S3) = 0.024

7t(Sj) = 0.001

Steady-state
probability distribution process(M,p) end(process(M,pJ)

Figure 5. Models involved in the analysis of GSPN via isomoiphism

i"atc(proccss(M,p),.2).
ratc(process(M,p) and nspecting,. 15).
rate(aiTival(signal(inspcction)),.005).

in(statel ,StateSpacc).
in(state2,StatcSpacc).
in(.statc3,StateSpace).
in(state4,StatcSpacc).

at(proccss(M,p),statel).
at(process(M,p) and inspccting,statc2).
at(proccss(M,p) and inspecting,statc3).
at(proccss(M,p),stated).

prob(statcl,0.944).
prob(statc2,0.031).
prob(state3,0.024),
prob(statc4,0.()01).

Figure 6. Representation of semantic information via predicates.

The use of predicates in the representation of semantic information shows that
information carried from different models can be put in one same description, in a
way that the heterogeneity of models is no longer an obstacle to visualize the
relationships between the entities that participate in the system dynamics, as long as
consistency in the representation is observed.

5. CONCLUSIONS

This work presents some guidelines to be observed in the design of
computational systems dealing with heterogeneous models. Adequate treatment of
heterogeneous models is relevant as it enables an efficient usage of computational
and human resources by providing an infrastructure for a smoother workflow when

414 Information Technology for Balanced Manufacturing Systems

dealing with model heterogeneity. It also covers the case where new models need to
be considered (for instance, because new features are to be included in a system);
thus, supporting heterogeneity increases the likelyhood of a computational tool to
evolve following a smooth path. Diagrams involving target sets have shown to be a
useful means to visualize features such as comprehensiveness and uniformity. Also
it has been shown that an adequate representation of semantic information
associated to model integration leverages the contribution that multiple models
working together can give, providing more resources to query and manipulate those
information.

6. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support to the present project
provided by the Brazilian Governmental Agencies CNPq, CAPES and FAPESP.
Particularly, the authors would like to thank TIDIA/KyaTera program under which
this work is developed.

7. REFERENCES

1. Arata WM, Miyagi PE. Uniform computational treatment of heterogeneous discrete-event dynamic
system models. Proceedings of 9th IEEE International Conference on Emerging Technologies and
Factory Automation, Lisbon, Portugal, 2003; p.47-53.

2. Arata W1V1, Miyagi PE. Formal comprehensiveness and uniformity and semantic intra and intermodel
consistency in the representation of Discrete Event Dynamic System models. Proceedings of the 18"'
International Congress of Mechanical Engineering, COBEM 2005, Ouro Preto, Brazil, 2005.

3. Bolch G, Greiner S, Meer H, Trivedi K.S. Queuing Networks and Markov Chains: modeling and
performance evaluation with computer science applications. New York: Wiley-Interscience, 1998.

4. Cassandras CG. Discrete Event Systems: Modeling and Performance Analysis. Burr Ridge: Richard D.
Irwin Inc,l993

5. Deransart P, Cervoni L, Ed-Dbali A. Prolog: the standard: reference manual. London: Springer-Verlag,
1996.

6. Flasegawa K, Takahashi K, Miyagi PE. Application of the Mark Flow Graph to represent discrete event
production systems and system control. Transactions of the Society of Instrument and Control
Engineers 1988: 1,69-75.

7. Kulkarni VG. Modeling and Analysis of Stochastic Systems. London: Chapman & Hall, 1995.
8. Marsan MA, Conte G, Balbo G. A class of generalized Stochastic Petri Nets for the performance

evaluation of multiprocessor systems. ACM Transactions on Computer Systems 1984: 2, 93-122.
9. Molloy MK. Performance analysis using Stochastic Petri Nets. IEEE Transactions on Coinputers 1980:

9, 913-917.
10. Murata T. Petri Nets: Properties, Analysis and Applications. Proceedings of IEEE 1989: 4, 541-580.
11. Sanders WH, Courtney T, Deavours D, Daly D, Derisavi S, Lam. Multi-formalism and Multi-

solution-method Modeling Frameworks: The Mobius Approach. Proceedings of the Symposium on
Performance Evaluation - Stories and Perspectives, Vienna, Austria, 2003: 241-256.

12. Trivedi KS. SHARPE 2002: Symbolic Hierarchical Automated Reliability and Performance
Evaluator, Proceedings of 2002 International Conference on Dependable Systems and Networks
(DSN 2002), http://csdl.computer.org/comp/proceedings/ dsn/2002/1597/00/15970544.pdf

