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Abstract Opponent-Model search is a game-tree search method that explicitly uses knowl
edge of the opponent. There is some risk involved in using Opponent-Model 
search. Both the prediction of the opponent's moves and the estimation of the 
profitability of future positions should be of good quality and as such they should 
obey certain conditions. To investigate the role of prediction and estimation in 
actual computer game-playing, experiments with Opponent-Model search were 
performed in the game of Bao. After fi ve evaluation functions had been gener
ated using machine-learning techniques, a series of tournaments between these 
evaluation functions was executed. They showed that Opponent-Model search 
can be applied successfully, provided that the conditions are met. 
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1. Introduction 
This contribution investigates under what conditions the usual form of Oppon

ent-Model search (OM search) can be made successful. To understand the mat
ter we provide a condensed introduction to OM search in Section 2. In Section 
3 we give a brief overview of the family of mancala games to which Bao be
longs and we describe the Bao rules. In Section 4 we explain how we obtained 
five evaluation functions for Bao. Section 5 gives the toumament setup and 
in Section 6 we present and discuss the results. The contribution ends with 
conclusions in Section 7. 1.2. 

2. Opponent-Model Search 
OM search (Carmel and Markovitch, 1993; lida, Uiterwijk, and Van den 

Herik, 1993; Carmel and Markovitch, 1998; Donkers, Uiterwijk, and Van den 
Herik, 2003) is a game-tree search algorithm that uses a player's hypothesized 
model of the opponent in order to exploit weak points in the opponent's search 
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strategy. The original formulation ofthe OM-search algorithm is based on three 
strong assumptions conceming the opponent and the player: 

(1) the opponent (called MIN) uses minimax (or an equivalent algo
rithm) with an evaluation function (Vop). a search depth and a 
move ordering that are known to the first player (called MAX); 

(2) MAX uses an evaluation function (Va) that is better than MIN's 
evaluation function; 

(3) MAX searches at least as deep as MIN. 

This OM search procedure prescribes that MAX maximizes at max nodes, 
and selects at min nodes the moves that MAX believes MIN would select. Below 
we provide a short technical description of OM search, its notation, the relations 
between the nodes in the search tree, and some hints for an efficient implemen
tation. For an extensive description of OM search we refer to Donkers et al. 
(2003). 

OM search can be described by the following equations, in which Va ( ·), Vop ( ·) 
are the evaluation functions, and va ( ·), Vop ( ·) are the node values. Subscript 'O' 
is used for MAX values, subscript 'op' is used for MIN values. 

max nodes, 

min nodes, 

leafnodes. 

max nodes, 

min nodes, 

leafnodes. 

(1) 

(2) 

If P is a min node at a depth larger than the search-tree depth of the opponent, 
then va(P) = minj va(Pj). 

2.1 Implementation 

For a search tree with branching factor w and even fixed depth d, OM search 
needs exactly n = wd/2 evaluations of Va ( ·) to determine the root value, since 
the search strategy is as follows: in each max node all w children are investigated 
and in each min node, only one child is investigated (see Donkers, Uiterwijk, 
and Van den Herik, 2001). Because the OM-search value is defined as the 
maximum over ali these n values of va ( ·), none of these values can be missed. 
This means that the efficiency of OM search depends on how efficient the values 
for Vop(·) can be obtained. 

A straightforward and efficient way to implement OM search is by applying 
a-/3 probing: ata min node it starts performing a-/3 search with the opponent's 
evaluation function (the probe), and thereafter it performs OM search with the 
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move that a-(3 search has returned; at a max node, it maximizes over ali child 
nodes. The probes can be efficiently implemented by using an enhanced form of 
a-(3 search. Because for every min node, a separate probe is performed, many 
nodes are visited during multiple probes. (For example, every min node Pj on 
the principal variation of a node P will be probed at least twice.) Therefore, 
the use of transposition tables leads to a major reduction of the search tree. 

The a-(3 probes ata min node P and at each grandchild (min nodes Pjk) are 
not independent since the a-(3 value of P, Vap(P), is necessarily equal to or 
larger than ali a-(3 values of Pjk. This means that Vap(P) can be used to reduce 
the window of the probes at the grandchild nodes by setting the (3 parameter of 
the probe at Pjk to V0p(P) + 1. 

OM search assumes that MAX speculates on ali min nodes about the move 
that MIN is going to choose. In deeper parts of the search tree, the prediction of 
MIN's move is based on shallower a-(3 probes than higher in the tree. It could 
therefore be justified to speculate only in the upper portion of the search tree. 

2.2 Risk in Opponent-Model Search 

Although using knowledge ofthe opponent during search seems obvious and 
OM search looks like a reasonable approach, there are three different types of 
risk involved. If these risks are not taken seriously, OM search is bound to fail. 

First, OM search does not take into account any uncertainty about the oppo
nent: the reasoning by the algorithm assumes perfect know ledge in the above 
sense. Since perfect knowledge of the opponent is hardly available in reality, 
this is a strong assumption. When the knowledge of the opponent is not per
fect, the algorithm can still be used, but this will cause a certain am o unt of risk, 
depending on the quality of the knowledge. This first kind of risk has been 
described extensively in lida, Handa, and Uiterwijk (1995). (In Donkers et al. 
(2001) an extension of OM search is described that does include uncertainty: 
Probabilistic Opponent-Model search.) 

In Donkers et al. (2003), a second kind of risk in using OM search is in
vestigated. It appears that even when MAX has perfect knowledge of MIN's 
evaluation function, using OM search may be unwise: when MAX makes a 
large overestimation of the profitability of a certain position while MIN is judg
ing it correctly, then MAX is possibly attracted to that position. A condition 
that should prevent this from happening is called admissibility of the pair of 
evaluation functions: MAX should not overestimate a position that MIN not also 
overestimates. 

A third kind of risk in using OM search (introduced in this contribution) 
is as follows. Perfect knowledge of the opponent's evaluation function is not 
equal to a perfect prediction of the opponent's moves. This is caused by the 
difference (normally one ply) in search depth between a player's prediction of 



312 H.H.L.M. Donkers, H.J. van den Herik, J. W.H.M. Uiterwijk 

the opponent's move and the actual search that the opponent uses at the next 
move. 

For OM search tobe successful, the effects of these risks should be alleviated. 
In a series of experiments on the game ofBao, we investigate what the influence 
is of a good prediction of the opponent's moves and what the influence is of a 
better estimation of the own profitability of positions. Moreover, we study the 
effect of risk management. We assume perfect knowledge of the opponent's 
evaluation function but admissibility is not guaranteed. 

3. The Mancala Game Bao 

In large parts of the world, board games of the mancala group are being played 
in completely different versions (cf. Murray, 1952; Russ, 2000). Whatever the 
case, most mancala games share the following fi ve properties: 

(1) the board has of a number of holes, usually ordered in rows; 
(2) the game is played with indistinguishable counters (also called 

pebbles, seeds, shells); 
(3) players own a fixed set of holes on the board; 
(4) a move consists of taking counters from one hole and putting 

them one-by-one in subsequent holes (sowing), possibly followed 
by some form of capture; 

(5) the goal is to capture the most counters (for Bao it is to immobilize 
the opponent). 

Mancala games differ in the number of players ( 1, 2 or more), the size 
and form of the board, the starting configuration of the counters, the rules for 
sowing and capturing, and in the way the game ends. The games of the mancala 
group are known by many names (for instance Wari, Awele, Bao, Dakon, and 
Pallankuli). For an overview of different versions and the rules of many mancala 
games, we refer to Russ (2000). 

Among the mancala games, (Zanzibar) Bao is regarded as the most complex 
one (De Voogt, 1995). This is mainly due to the amount of rules and to the 
complexity of the rules. Bao is played in Tanzania and on Zanzibar in an 
organized way. There exist Bao clubs that own the expensive boards and that 
organize official tournaments. 

The exact rules of the game are given in, for example, De Voogt (1995). 
Below, we summarize the properties that discriminate the game from the more 
widely known games Kalah and Awari. 

Bao is played on a board with 4 rows of 8 holes by two players, called South 
and North, see Figure 1. Two square holes are called houses and play a special 
part in the game. There are 64 stones involved. At the start of the game each 
player has 10 stones on the board and 22 stones in store. Sowing only takes 
place on the own two rows of holes. The direction of sowing is not fixed. At 
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Figure 1. Opening position ofBao. 

the start of a move, a player can select a direction for the sowing ( clockwise or 
anti-clockwise). During sowing or ata capture, the direction can turnat some 
point. This is dictated by deterministic rules. 

If a capture is possible then it is obliged in Bao. This means that a position 
is either a capture position or a non-capture position. Captured counters do 
not leave the board but re-enter the game. Counters are captured from the 
opponent's front row. These counters are immediately sown in the own front 
row. This implies that the game does not converge like Kalah and Awari. 

Moves are composite. If at the end of a sowing, capture is possible, the 
captured counters are sowed immediately at the own side of the board. This 
second sowing can again lead to a new capture foliowed by a new sowing. If 
a capture is not possible, and the hole reached was non-empty, ali counters are 
taken out of that hole and sowing continues. This procedure goes on until an 
empty hole is reached, which ends the move. 

Moves can be endless because in a non-capture move, sowing can go on 
forever. The existence of endless moves can be proven theoreticaliy (Donkers, 
Uiterwijk, and De Voogt, 2002). In real games, moves that take more than an 
hour of sowing also occasionaliy occur, but players usualiy make smali mistakes 
during sowing or simply quit the game. So, real endless moves never lead to 
endless sowing. 

Bao games consist of two stages: in the first stage, stones are entered one by 
one on the board at the start of every move. In the first stage, a game ends if the 
player to move has no counters left in the front row. As soon as ali stones are 
entered, the second stage begins and a new set of rules applies. In the second 
stage, a game ends if the player has no more than one counter in any hole of 
both rows. A draw is not defined in Bao. Note that the goal of Bao is not to 
capture the most stones, but to immobilize the opponent. 
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In Donkers and Uiterwijk (2002), an analysis of the game properties ofBao is 
provided. The state-space complexity ofBao is approximated tobe 1.0 x 1025 , 

which is much higher than those of Awari (2.8 x 1011 ) and Kalah (1.3 x 1013 ). 

The shortest game possible takes 5 ply, but most games take between 50 and 60 
ply because they end (soon) after the start of the second stage. The maximum 
number of moves possible at any position is 32, but the average number of 
possible moves varies between 3 and 5, depending on the stage of the game. 
Forced moves occur quite often. The average game length (d) and branching 
factor ( w) are normally used to estimate the size of a game tree that has to be 
traversed during search ( wd ). For Bao the estimate is roughly 1034 . This number 
together with the game-tree complexity (1025 ) places Bao in the overview of 
game complexities above checkers and in the neighbourhood of Qubic (Van den 
Herik, Uiterwijk, and Van Rijswijck, 2002). 

4. Generating Evaluation Functions for Bao 
In order to conduct the OM -search experiments, we created 5 different evalu

ation functions. We describe them below. (For operational reasons (see Section 
5) we would like to have them ordered in increasing quality with respect to the 
strength of the resulting players.) 

The first two evaluation functions were created by hand. The first one, called 
MATERIAL, simply takes the difference in the number of stones on both sides 
of the board as the evaluation score. The second hand-made evaluation func
tion is called DEFAULT. This function incorporates some rudimental strategic 
knowledge of Bao. For instance, it is good to have more stones in your back row 
since this increases the mobility in the second stage of the game. The function 
awards 3 points to stones in the front row, 5 points to stones in the back row, 
and 5 additional points to opponent stones that can be captured. If the own 
house is stiU active, 200 extra points are given. The total score of the position 
is the score for MAX minus the score for MIN. There is a small asymmetry in 
this function: if MAX can capture MIN's house 100 points are rewarded, but if 
MIN can capture MAX's house, only 50 points are subtracted. This asymmetry 
is intended to produce a more offensive playing style. 

The third evaluation function was created by using a genetic algorithm (Hol
laud, 1975). The evaluation function was represented by an integer-valued 
chromosome of 27 genes: one gene for the material balance, one gene per hole 
for the material in the own back and front row, one gene per hole in the front 
row for capturing, one gene for an active house, and another gene for capturing 
the opponent's house. The total score of a position was the score for the player 
minus the score for the opponent. The fitness of a chromosome was measured 
by the number of games out of 100 that it won against a fixed opponent. In 
these matches, both players used a-(3 search with search depth 6. The genetic-
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algorithm parameters were as follows: the population size was 100, only the 10 
fittest chromosomes produced offspring (using a single-point crossover), the 
mutation rate is 5 per cent for large changes in a gene (i.e., generate a new 
random number for the gene) and 20 per cent for minor changes (i.e., altering 
the value of a gene slightly). The genetic algorithm was continued until no 
improvement occurs anymore. We conducted three runs: in the first run, the 
opponent was DEFAULT. In the second and third run, the opponent was the 
winner of the previous run. The name of the resulting evaluation function is 
GA3. 

Thereafter we used another machine-learning technique to create the fourth 
evaluation function, namely TD-Leaf learning (Baxter, Trigdell, and Weaver, 
1998). This is a temporal-difference method that is specialized for learning 
evaluation functions in games. The evaluation function trained was a linear 
real-valued function with the same parameters as the genes in the chromosomes 
above, except that there were separate parameters for the two sides of the board. 
Batch leaming is applied with 25 games per batch. The reinforcement signal 
used to update the parameters was the number of games in the batch that the 
player wins against a fixed opponent, in this case GA3. The search depth used 
in the games was 10. The A-factor and the annealing factor both were set to 
0.99. This produced our fourth evaluation function, called TDL2B. 

The last evaluation function was also produced by TD-Leaflearning, but this 
time we used a normalized Gaussian network (NGN) as evaluation function, 
similar to way in which Yoshioka, Ishii, and Ito (1999) trained an evaluation 
function for the Othello game. The NGN had 54 nuclei in a 54-dimensional 
space. Every dimension correlated with a parameter in the previous evaluation 
function. The reinforcement signal was the number of games out of 25 won 
against a fixed opponent, being TDL2B. The search depth used in the games 
was 6, because the computation ofthe output for an NGN is relatively slow. No 
batch learning was applied here. The A-factor was set to 0.8 and the annealing 
factor was set to 0.993. This evaluation function is called N GND6. 

5. Experimental Set-up 

We conducted seven different toumaments between five players that each 
used one of the fi ve evaluation functions. We denote the players by the name 
of their evaluation function. Ali toumaments followed a double round-robin 
system: every player was matched against every other player, one time playing 
South and one time playing North. Bach match between two players consisted 
of 100 games; hence each toumament counted 2000 games. In the tables below 
the results are reported in a special way (see the caption of Table 1). One reason 
is that we can easy read off from the table any improvement by an evaluation 
function. The games began at the start positions given in the Appendix and 
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were played to the end. To prevent problems with infinite moves, any move 
that involves the sowing of more than 100 stones was considered infinite and 
illegal. A position at which a player could only perform one of these long moves 
was a loss for that player. 

In the first two toumaments, both players used a-(3 search. In the other five 
tournaments, South used OM search with perfect knowledge of the opponent's 
evaluation function. North always used a-(3 search with search depth 6. The 
search depth of South differed per tournament. No time restrictions were given. 
We used an implementation of OM search with a-(3 probes and allowed only 
one ply of speculation. Since in Bao draws are not possible, and since we aimed 
to compare the performance of the different search algorithms used by South, 
the score of a match was just the number of games out of 100 that was won by 
South. 

At every position at which South was to move, we also detected the move(s) 
that a-(3 search would select for South. In this way we were able to count the 
number of times that OM search differed from a-(3. 

In the implementation of the a-(3 probes for OM search we took care of the 
fact that (some of) the evaluation functions are asymmetric. The asymmetry 
implies that evaluating a position when South is MAX, is not the same as eval
uating the same position when North is MAX and taking the negative of the 
value. Furthermore, we dealt with multiple equipotent moves for MIN: if MIN 

has multiple equal choices, MAX will select the move with the lowest value for 
va. 

The exact set-up of each of the seven toumaments will be explained along 
with the results in the next section. 

6. Results and Discussion 

First tournament: a-(3 plain - Table 1 gives the outcome of the first tour
nament. Both South and North used a-(3 search with search depth 6. The 
table clearly shows that the evaluation functions differ in quality and that every 
following evaluation function is operationally better than any of the previous 
ones. (Since the size of each match is 100, the 95% confidence intervals are 
approximately plus/minus 10 per match and plus/minus 20 for the total scores.) 

Second tournament: a-(3 extended - The second tournament was a checking 
toumament. South was allowed to search two extra plies (8 instead of 6). The 
results are presented in Table 2. The table shows that all players profited from 
the increased search depth. Only the match of DEFAULT against G A3 was less 
fortunate for DEFAULT. This illustrates the poor quality of this evaluator. 

Third tournament: OM plain- In the third toumament, South used OM search 
with one ply of speculation and with search depth 6. The results in Table 3 
show that three players, MATERIAL, GA3, and TDL2B, profited from using 
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OM search, but that the two other players, DEFAULT and N GND6, did not profit 
and played worse than in the first tournarnent. 

Fourth tournament: OM extended - South was using OM search with one ply 
of speculation as in the third tournament, but in this tournament it was aliowed 
to search two ply deeper. The a-{3 probes were still restricted to depth 6. This 
means that South had better knowledge over the game than North, a situation 
that is comparable to the second tournament. Table 4 shows that South was not 
able to profit fuliy from the extra search depth. Although ali players performed 
better than in the third tournament where they were given a depth of 6 ply, only 
MATERIAL played better than in the second tournarnent. This indicates that 
searching deeper for yourself in OM search is not sufficient for success. 

Fifth tournament: OM with peifect opponent prediction- The fifth tournament 
gave South a different advantage: it was aliowed to extend the a-{3 probes to 
depth 7. The search depth (for the own evaluation) was 6. In this way, South not 
only had perfect knowledge of the opponent's evaluation function, but South 
could also predict almost perfectly what North would be doing in the next move. 
The search depth of the a-{3 probes (which was 6, because the probes started 
at depth 1) was namely exactly the same as the search depth of North. In the 
case of equal evaluated moves, South selected the move with the lowest own 
evaluation. This was not necessarily the move that North would play. Table 5 
gives the results ofthis tournarnent. Ali players, except DEFAULT profited from 
this advantage, and played better than in tournament 1, albeit less good than in 
the second tournament in which they just searched deeper. The advantage also 
gave less good results than the advantage in tournament 4, except for player 
NGND6. From these results we can infer that knowing exactly the moves of 
the opponent does not help if the own judgement is too weak. 

Sixth tournament: OM peifect - The sixth tournarnent combined the advan
tages of the fourth and fifth tournarnent for South. The search depth for the own 

S \N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 55 35 19 18 127 

DEFAULT 48 54 30 28 160 

GA3 55 61 36 30 182 

ToL2B 69 65 57 39 230 

NGND6 79 73 75 60 287 

Table 1. Results of the first tournament between 5 eva1uation functions for Bao. Each cell 
shows the number of games won (out of 100) by South (the row) against North (the column). 
The column on the right shows the number of games won (out of 400) by each evaluation function 
when playing South. 
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S \N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 57 62 40 32 191 

DEFAULT 71 52 49 34 206 

GA3 80 75 62 49 266 

TDL2B 86 76 69 57 288 

NGND6 88 76 80 70 314 

Table 2. Results of the second tournament between 5 evaluation functions for Bao. Both sides 
use a-(3, but South searches 2 ply deeper (8) than North (6). 

S \N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 57 50 30 24 161 

DEFAULT 46 46 26 25 143 

GA3 59 57 40 35 191 

TDL2B 78 64 60 46 248 

NGND6 71 58 66 61 256 

Table 3. Results of the third tournament between 5 evaluation functions for Bao. South uses 
OM search with perfect knowledge of the opponent's evaluation function. The search depth is 6 
for both sides. 

S \ N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 60 64 49 39 212 

DEFAULT 63 47 44 41 195 

GA3 70 66 57 40 233 

TDL2B 80 69 70 56 275 

NGND6 84 68 71 59 282 

Table 4. Results of the fourth tournament between 5 evaluation functions for Bao. South uses 
OM search with perfect knowledge of the opponent's evaluation function. The search depth is 8 
for South, with a-(3-probes to depth 6, and the search depth is 6 for North. 

evaluation was 8 for South and the a-/3 probes for the opponent extended to 
depth 7. The results in Table 6 show that the power of South was significantly 
increased. All players performed better than in tournament 1, and all players, 
except G A3 also played better than in tournament 2. The results of G A3 were 
only slightly less than in tournament 2. 

Seventh tournament: OM with strict risk management- In the seventh and last 
tournament, South applied OM search with strict risk management. South only 
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S \ N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 59 57 31 27 174 

DEFAULT 50 48 32 23 153 

GA3 53 64 36 30 183 

TDL2B 69 73 66 40 248 

NGND6 77 82 77 63 299 

Table 5. Results of the fifth tournament between 5 evaluation functions for Bao. South uses 
OM search with perfect knowledge of the opponent's evaluation function. The search depth is 6 
for both sides, but South uses a-{3 probes to depth 7. 

S \N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 76 69 54 58 257 

DEFAULT 59 66 48 46 219 

GA3 75 77 56 55 263 

TDL2B 79 88 83 57 307 

NGND6 80 88 85 68 321 

Table 6. Results of the sixth tournament between 5 evaluation functions for Bao. South uses 
OM search with perfect knowledge of the opponent's evaluation function. The search depth is 8 
for South, with a-{3 probes to depth 7, and the search depth is 6 for North. 

S \N MATERIAL DEFAULT GA3 TDL2B NGND6 Score 

MATERIAL 66 49 32 33 180 
DEFAULT 49 45 37 31 162 

GA3 63 62 35 33 193 
TDL2B 72 66 64 46 248 
NGND6 75 71 76 69 291 

Table 7. Results of the seventh tournament between 5 evaluation functions for Bao. South 
uses OM search with perfect knowledge of the opponent's evaluation function and strict risk 
management. The search depth is 6 for both sides. 

deviated from the strategy that a-(3 search imposed if the move that OM search 
advised had the same Minimax value. The search depth was equal to the third 
toumament. Since it occurred relatively often in Bao that multiple moves at 
the same position had the same Minimax value, South did have some room to 
speculate. The results in Table 7 show that this approach was successful too. 
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Tournament MATERIAL DEFAULT GA3 TDL2B NGND6 

1: a-,8 P1ain 127 160 182 230 287 

2: a-,8 Extended 191 206 266 288 314 

3: OMplain 161 143 191 248 256 

4: OM extended 212 195 233 275 282 

5: OM perf. opp. 174 153 183 248 299 

6: OM perfect 257 219 263 307 321 

7: OMno risk 180 162 193 248 291 

Table 8. Overview of the seven Bao tournaments. 

All players performed better than in the first tournament and also better ( or 
equally poor in case of TDL2B) than in the third tournament. 

A summary - Table 8 summarizes the results of the seven tournaments. Each 
cell contains the final score of a tournament ( 400 games ), playing South. On all 
rows the scores are increasing from left to right ( except for the first two columns). 
This means that the order of quality for the evaluation functions indeed is as 
follows: (MATERIAL, DEFAULT) < GA3 < TDL2B < NGND5. The ordering 
of MATERIAL and DEFAULT is unclear, but both evaluation functions are poor. 
The table shows that if only the search depth is increased ( 4: OM extended) or 
only the prediction ofthe opponent is improved (5: OM perf. opp.), the results 
are not as good as just using a-(3 with two additional ply of search. When both 
methods were combined, (6: OM perfect), the results were better. Furthermore, 
the table shows that using OM search with strict risk management (7: OM no 
risk) led to better results than using plain OM search and plain a-/3. 
Deviations- The last overview, in Table 9, provides insight into the number of 
times that OM search deviated from the a-(3-search strategy. The table shows 
that searching more deeply for the own evaluation had a larger effect than 
searching more deeply for the prediction of the opponent. The table also shows 
that the number of deviations was larger in tournament 4 than in tournament 6. 
Since the results of tournament 4 were less good than the results of tournament 
6, it seems that an incorrect prediction of the opponent leads to extra deviations 
that did not contribute to a positive outcome. 

7. Conclusion 

The experiments described in this paper are a follow-up to earlier experiments 
with OM search in other game domains. In Donkers et al. (2003) we described 
experiments in Lines of Action and in the chess endgame KQKR. The experi
ments in Lines of Action showed that OM search with evaluation functions of 
poor quality led to bad results. The experiments in the chess endgame KQKR 
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Tournament MATERIAL DEFAULT GA3 TDL2B NGND6 

3: OMplain 3.27±2.1 3.36±1.8 2.38±1.8 2.47±1.7 2.21±1.6 

4: OM extended 4.85±2.5 5.43±2.3 4.90±2.4 4.46±2.3 4.55±2.3 

5: OM perf. opp. 3.30±1.9 3.12±1.8 2.52±1.6 2.43±1.6 2.26±1.6 

6: OM perfect 4.35±2.1 5.14±2.5 4.47±2.2 3.93±1.9 3.98±1.9 

7: OM no risk 1.83± 1.5 0.82±1.0 0.29±0.5 0.73±0.9 0.50±0.7 

Table 9. Overview of the average number of moves per game in which the move that OM search 
selected differed from the move that a-(3 search (with search depth 6) suggested. The standard 
deviation ranges between 0.5 and 2.5. The average number of moves per game for South is 19.8 
over ali games in the tournaments. 

showed that OM search with a perfect evaluation function (i.e., an endgame 
database) for MAX can be useful, but the results are not conclusive. 

The Bao experiments in this contribution were designed to identify those 
factors that influence the success or failure of OM search. Although the exper
iments were not encyclopedic and therefore did not produce firm qualifications 
of these factors, many effects are statistically significant. In all, the Bao exper
iments provide a good insight into the working of OM search. For instance, 
it appears that a combination of adequate opponent prediction and extended 
search depth is needed for good results. Of these two factors, the extended 
search depth seems to be more important than the good prediction. Moreover, 
the quality of the evaluation functions appears to be important for the effect of 
OM search. For plain OM search the results were not good for most of the play
ers because the evaluation functions do not obey the admissibility requirement. 

A generalisation of the results to other games leads to the statement that the 
search method can only be applied successfully when additional resources ( e.g., 
search time) are available. The additional search time (in comparison with the 
opponent) must either be spent for the prediction of the opponent's move, or for 
the risk management. If these additional resources are not available, OM search 
cannot with certainty be applied successfully. 

In order to measure the effects of opponent prediction and extended search 
more precisely, the sample size should be increased and more game details 
should be analysed, such as the number of times that the predicted move differs 
from the move played by the opponent. Furthermore, a deeper study of the 
properties of the trained evaluation functions and the matches between players 
themselves might provide more background information. A final suggestion 
for future research is to investigate the possibilities for risk management more 
deeply since this seems a promising approach. 
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Appendix 

The following table gives the 100 start positions used in the Bao experiments. 
The positions are generated by playing 10 random legal moves for every player 
from the official Bao opening position. Each row gives the contents ofthe holes 
of one position. The numbering of the holes is according to De Voogt (1995). 
The last two columns indicate whether South and North have an active house. 
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Rowb Row a RowA RowB House 
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 s N 
1 1 o o 1 1 1 1 o o o o 1 2 10 o o 3 9 1 2 4 o o o o o o o o 1 1 F F 
1 1 1 1 1 1 l 1 1 3 7 o 4 o 6 2 o 1 o l o 5 o o o o o o o o 1 l F F 
3 2 1 o o o o o o 1 1 11 l o 1 o o 2 2 o o 2 4 o l 1 l 1 1 1 2 l F T 
o o o o o o o o 1 5 6 o 1 3 o l o o 1 7 1 1 5 o 1 1 1 1 1 1 o 2 F F 
1 l o o o 1 l 1 o o o 1 1 o o o 1 o o 3 15 1 1 5 1 1 o o o 1 2 2 T F 
1 o 3 3 1 o 4 1 6 o 1 1 10 5 o l o o o o 1 o o o o o o o o 1 l o F F 
o 1 1 o 2 l 3 3 o 3 6 6 o o o 1 1 1 o 1 o 4 3 o 1 o o o o o 1 1 F F 
2 2 o 1 1 o 1 1 o 1 o 1 1 1 1 o 1 o o 8 12 1 o o 2 1 1 1 o o o o T F 
1 1 1 1 1 1 1 3 3 1 1 1 o 4 3 1 o 4 1 2 o 6 2 1 o o o o o o o o F F 
2 1 o o o 1 2 o o o 1 3 4 1 o 4 1 1 5 o 2 5 o o 1 o o o o 1 2 3 F F 
3 o 1 1 o o o o o 2 o 9 o o 3 1 1 o 2 o 8 o o o 1 1 1 1 o 2 o 3 T T 
1 1 o o o o 1 1 o 1 1 1 6 1 3 2 1 1 5 3 1 2 o 1 2 2 1 o o o 1 1 F F 
2 1 1 1 1 1 1 1 1 1 o 1 2 o 5 1 2 1 1 o o 4 o 3 o 2 o 2 o 2 2 1 F F 
2 2 1 o o o o o o 3 2 11 1 o 1 o o o o 1 13 o o o o o o o o 1 2 o T T 
o o o 1 1 1 1 1 o o 7 o 1 1 1 o 2 6 o o 1 o 6 o o 2 o 2 o 2 1 3 F F 
1 1 o o o o o o 1 2 4 14 4 4 1 1 o o o o 1 o 1 o o 2 1 o o o 1 1 F T 
o 2 2 o 1 1 o o 1 4 2 11 o o o o o o o o 9 1 1 o o o o o 1 1 1 2 T T 
o o o o o o 1 l 2 2 1 1 2 2 1 1 1 7 o o 13 o o 1 1 1 1 o o o o 1 T F 
1 1 o 1 1 1 1 1 1 4 1 1 1 5 1 o o o o o 13 o 5 o o o o o o o o 1 T F 
3 1 1 1 o o 1 1 o 1 o 11 o o o o o o o o 10 1 1 o 2 o 1 1 1 1 o 2 T T 
1 1 o o 1 1 1 1 2 4 1 6 o 4 3 3 1 3 6 1 o o o o o o o o o o o o F F 
1 o 2 1 o 2 o 2 o 4 o o 7 5 o 1 o o 6 2 o 1 1 1 o o o o 1 1 o 2 F F 
2 2 1 1 1 1 1 1 1 2 2 o 1 2 o 2 o o o o 12 1 o 1 1 1 o o o 1 1 2 T F 
o 1 3 o 1 4 4 o 1 5 1 4 2 4 5 o o o o o o 5 o o o o o o o o o o F F 
1 1 o o o 1 1 2 o 3 o 9 o o 2 1 1 o o o Il O o o o o 1 1 o 2 o 3 T T 
o 2 2 1 3 o 1 1 6 1 o 2 1 o 1 2 2 1 6 o 1 o 3 3 o o o o o o o 1 F F 
o o o o o o o o 1 o 3 10 o 5 o 1 1 1 o o 15 o 2 1 o o o o o o o o T T 
1 1 o 2 o 2 2 2 o 1 4 5 7 4 o 1 o o o o o 1 1 3 o o o o o 1 2 o F F 
2 2 2 1 1 1 1 1 2 3 1 3 6 2 1 o o o o o o 1 3 o 1 1 1 1 1 o 1 1 F F 
o o o o o o o 1 1 o 8 o o o 3 o o 8 o 4 4 o 2 2 1 1 1 1 o 2 1 o F F 
2 1 2 2 1 1 1 1 o 1 4 o 1 o 6 1 1 o o o 2 9 o o o o o o 1 1 o 2 F F 
o o o 1 1 1 1 1 o o o 6 o 1 1 o o 9 1 o 2 1 5 o 2 2 o 2 o 2 1 o F F 
o o o o o o o o 1 2 1 3 1 3 1 1 1 2 o o 6 1 o 2 2 o 2 2 2 1 4 2 F F 
1 1 o 1 1 1 1 1 o 5 4 o 5 1 7 o o 1 o 1 o 6 o o o o o o o 1 2 o F F 
o 1 1 o 1 1 1 1 3 1 o o o o o o o 4 3 4 5 5 3 2 1 o o o o 1 1 1 F F 
o 2 1 2 o 2 o 2 o 5 1 1 5 o 6 o o o o 3 o 1 1 3 o 2 1 o o o 1 1 F F 
o o o o o o o o 1 3 1 3 1 1 1 1 2 1 4 o 1 3 2 5 2 1 2 o 4 o 1 o F F 
1 1 1 1 1 o 1 1 o 1 4 o o 5 o 1 4 2 o 3 1 1 o 6 2 1 o o o o 1 1 F F 
3 o 2 o 2 o 2 2 1 3 1 o o o o 2 1 o o O Il 2 o o o o o 1 1 2 o 4 T F 
1 1 2 o 4 2 4 o o 6 o 1 9 4 1 o o o 3 o o o o o o o o o o o 1 1 F F 
o o o o o o o o 4 1 1 3 4 o o 5 1 2 o o o 3 3 3 1 1 1 1 1 2 2 1 F F 
1 1 1 o o o o o 1 o o 14 o o 1 o 1 6 o o o 1 3 o 2 2 2 2 o 1 1 o F T 
1 1 1 o o o o 1 o o o 1 1 3 o 5 2 1 2 3 2 o o o o 2 1 3 1 3 3 3 F F 
1 1 o o o o o o 1 o 2 12 5 4 o 1 o o o o o o 3 1 o 1 2 o 2 o 2 2 F T 
o 1 2 o 1 1 o 1 o 1 2 Il O 4 2 o o 1 1 2 o o 1 o 2 o 2 o 2 o 1 2 F T 
2 2 2 2 1 o o o o 2 1 3 1 1 3 1 o 1 3 o 10 o o 1 1 1 o o o o 1 1 T F 
1 1 o o o o o o o o o o 2 6 1 1 1 6 9 4 2 o 1 o 1 1 1 1 1 o o o F F 
o o o o o o o 1 o o 6 1 2 2 1 1 4 1 3 4 o o o 4 3 1 o 1 3 o 1 1 F F 
o o o o o o o o o 6 1 1 o 4 3 1 1 o 1 3 15 o 1 o o o o o o 1 1 1 T F 
1 o o o 1 l 1 1 o 4 2 2 2 o l 1 o o o 3 3 o 8 o o 2 o 2 o 4 o 1 F F 
l 1 o o o o 1 1 2 1 o l 2 5 2 o 2 3 3 6 2 o 1 o 1 1 o o 1 1 o 2 F F 
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Rowb Rowa RowA RowB House 
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 s N 
o o o o o o o o o o 1 1 1 3 o 1 1 5 1 9 4 2 o o 3 1 2 o 2 2 o 1 F F 
o o o o o o o o 5 o 3 5 4 o o 1 o o o o o 9 3 o 1 3 1 o 1 3 1 o F F 
1 o 2 o 2 o 2 o o 3 1 1 5 o 1 1 o o 3 1 2 1 12 o o o o o o 1 1 o F F 
2 1 1 2 2 o 2 o o 3 1 1 o 7 o o o o o o 15 o 1 o o o o o o o 1 1 T F 
2 1 1 1 o o o o o 5 o 13 o o o 1 o 1 4 o o 2 2 o 1 1 1 1 1 o 1 1 F T 
2 o 1 1 o o o o o 4 1 8 o 5 1 o o o o o 9 o o o o o 1 1 1 3 o 2 T T 
2 1 2 1 o 1 3 o o 6 1 5 5 1 3 1 o o o o o o o 3 o o 1 1 o 2 1 o F F 
o 1 2 o 1 1 o o o 3 1 131 o 1 o o o 1 o 9 o o o o o o o 1 1 1 3 T T 
2 o 1 o 2 o 2 2 o 3 5 1 3 2 1 1 o 3 o o o o 5 1 o o o 1 1 1 1 2 F F 
1 o 3 2 1 o o o o 1 1 10 o o o o o o o o 12 1 2 1 o o o o o 1 2 2 T T 
o 2 1 o o o o o o 1 1 1 1 3 4 o o 5 8 2 4 o o o 1 o o o 1 1 2 2 F F 
1 1 1 3 1 o 3 3 1 4 2 o o 4 o o o o o 1 Il O o o 1 1 o o o o 1 1 T F 
1 o o o o 1 1 1 2 o 3 1 1 6 1 1 1 o 1 3 1 1 2 2 o 1 1 o 2 o 3 3 F F 
2 2 3 1 3 1 2 o 1 2 1 o 4 o 1 5 3 1 o o o o o o o o 1 1 1 1 2 2 F F 
2 2 o 2 1 o o o o o 3 1 o 1 3 1 5 o 2 4 1 o o 1 1 1 1 o 2 o 3 3 F F 
o 2 o 1 1 o o o 3 1 1 o o o o o o 6 3 5 o 4 8 2 1 1 o o o o o 1 F F 
1 o o o o o 1 1 1 2 3 3 3 o 2 o o 7 1 o o 1 5 o 1 o 3 1 2 o 2 o F F 
1 1 1 o 2 1 3 3 o 2 o o o 1 4 1 2 1 1 2 1 1 o o 1 1 1 1 1 2 2 3 F F 
o 3 o 3 l o l 3 l 3 1 3 1 9 3 1 o 4 o o 1 o o o o o o o o o 1 l F F 
o 2 3 l o 1 3 1 1 1 o 4 6 1 3 o o 5 o 2 2 1 o o o o o o o o 1 2 F F 
2 1 1 l o o o o o o o 8 1 1 o o o 2 1 o 10 1 6 o 1 1 1 o o o l 1 T T 
o o 1 1 1 1 1 1 o 100 1 1 3 1 1 1 4 3 4 3 o 1 1 o o o o o o o o F F 
1 o 4 1 2 1 o 2 o o o 6 1 l o o 1 1 o o 10 2 o o 1 1 o 1 1 2 o 1 T T 
1 o 1 3 2 o 2 1 1 2 3 1 2 4 1 o o 1 o o 2 o 5 o 1 1 1 1 1 1 1 1 F F 
o l 2 o 2 o 2 o o 5 7 3 1 2 o 1 o o o o o o 4 1 2 2 1 1 1 1 l O F F 
1 1 2 o 2 o 2 o 3 2 1 o o 4 o 1 o 4 o 4 5 1 o 2 o o o o o 1 2 2 F F 
o o o o o o o o o o o 13 2 1 1 1 1 3 o 1 o 4 4 1 2 o 2 o 2 o 1 1 F T 
1 o o o o o 1 1 1 2 3 1 6 o 1 1 o 4 1 3 o 4 o 1 1 1 1 o 1 1 2 2 F F 
2 2 1 o o o o o o 1 7 13 o o o 1 o 5 1 o o 4 1 o o o o o o o 1 1 F T 
1 1 o o o o o o 1 2 1 3 1 2 1 o 1 8 2 o li o o o o o o 1 1 2 o 1 T F 
2 1 o o o o o o 2 1 2 7 1 o o o o 1 8 o 5 2 3 2 o o o o o 1 2 o F F 
o 2 o 2 1 o o o 2 o o 11 o 2 1 1 o o o 1 12 o 1 1 o o o o o 1 1 1 T T 
2 o 1 1 o o o o 1 o o 10 3 o o 1 1 3 4 1 o o 3 1 1 1 2 o 1 o 2 1 F T 
1 1 o o o o o 1 7 1 8 o 3 5 3 o o o o o 2 o 5 o o o o o o o 1 2 F F 
o 2 1 1 o o o o 1 o o 9 o 2 o o o 4 1 o 11 o 2 1 o o 1 1 o 2 1 o T T 
1 o o o o o o o 2 4 1 o 1 1 2 1 1 o 1 3 13 1 1 1 1 1 1 1 1 o o 1 T F 
o o o o o o o o 1 1 4 o o 5 o 1 1 1 o 4 13 o 3 o 1 1 o o 1 1 o 2 T F 
o 2 1 o o o 1 1 o o 3 12 4 1 1 o 2 3 o 1 o 2 4 o o o o o o 1 1 o F T 
1 1 o o o o o 1 o 6 1 1 1 1 2 o 1 o 2 3 o 5 6 o 1 1 1 1 o 1 1 2 F F 
2 2 1 1 1 1 o o o 7 1 1 o o o o o o 1 o 11 2 1 1 1 1 1 1 o 1 2 o T F 
1 1 o o o o o o o 1 1 14 o o o o o 8 1 o 8 1 o 2 1 o o o o o o 1 T T 
2 o 1 1 o o o o o o o o 1 1 3 o 1 4 o o 12 3 1 o 1 2 o 3 1 2 1 o T F 
o o o o o 1 1 1 o 4 4 10 1 7 3 1 1 1 1 o 2 o o o o o o o o o 1 1 F T 
2 1 2 1 1 o o 1 o 3 4 1 7 1 o o o 1 1 1 1 2 o 3 2 1 1 o o 1 2 o F F 
1 1 o o o o 1 1 1 5 3 1 2 o 1 o o o o o 2 2 7 1 2 o 2 o 2 1 4 o F F 
o o o o 1 1 1 1 o o o 1 2 1 5 o o 106 2 1 o o o 1 1 1 1 1 1 1 1 F F 
4 3 1 1 1 o 1 1 2 o o 2 5 5 o o o o o o o o o 1 o 1 1 o 2 2 3 4 F F 
o o o o 1 1 1 1 2 3 1 1 3 4 2 1 1 1 4 3 o 1 1 1 1 o o o 1 2 3 o F F 
1 3 2 2 1 1 1 1 2 3 1 o 1 4 1 2 o 2 4 o o o o 1 o o o 1 1 o 2 3 F F 


