
AN EVALUATION FUNCTION FOR LINES
OFACTION

M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk
Institute for Knowledge and Agent Technology, Department of Computer Science,
Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands

{m.winands,herik,uiterwijk}@cs.unimaas.nl, http://www.cs.unimaas.ni/m.winands/

Abstract Lines of Action (LOA) is a two-person zero-sum chess-like connection game.
Building an evaluation function for LOA is a difficult task because not much
knowledge about the game is available. In this paper the evaluation function
of the tournament program MIA is explained. This evaluator consists of the
following nine features: concentration, centralisation, centre-of-mass position,
quads, mobility, walls, connectedness, uniformity, and player to move. These
features have resulted in the evaluator MIA IV. The evaluator is tested in a tour­
nament against other LOA evaluators, which have performed well at the previous
Computer Olympiads. Experiments show that MIA IV defeats them with large
margins. It turns out that the evaluator even performs better at deeper searches.

Keywords: Lines of Action, evaluation function, MIA

1. Introduction
LOA is a two-person zero-sum game with perfect information; it is a chess­

like game with a connection-based goal, played on an 8 x 8 board. LOA was
invented by Claude Soucie around 1960. Sid Sackson (1969) described it in his
first edition of A Gamut of Games. After this publication, LOA received some
attention of AI researchers. For instance, the first LOA program was written at
the Stanford AI laboratory around 1975 by an unknown author. In the 1980s and
1990s "hobby" programmers wrote several LOA programs. However, ali were
beatable by humans (Dyer, 2000). At the end of the nineties LOA again became
a target of AI researchers. Some of them used LOA only as. a test domain for
their algorithms, others tried to build strong LOA programs by using new ideas.
The programs YL, MONA and MIA (Maastricht In Action) belong to the latter
category. MIA finished third, second and again second at the fifth, sixth and
seventh Computer Olympiad, respectively (Bjornsson, 2000; Bjornsson and
Winands, 2001; Bjornsson and Winands, 2002). The program can be played
online at the website: http://www.cs.unimaas.nl/m.winands/loa/.

H. J. Van Den Herik et al. (eds.), Advances in Computer Games
© IFIP International Federation for Information Processing 2004

250 M.H.M. Winands, H.J. van den Herik, J. W.H.M. Uiterwijk

The standard framework of the a(3 search with its enhancements offers a
good start for building a strong game-playing program. The real challenge in
LOA is building a decent evaluation function, which incorporates the strategic
intricacies of the game. The difficulty lies in the fact that knowledge about LOA
evaluation functions is not well developed, although some material on this topic
has been published (Winands et al., 2001). In this paper we discuss the latest
evaluation function used in the program MIA.

The remainder of this paper is organised as follows. Section 2 explains
the game of Lines of Action and describes the search engine. In Section 3
the evaluation function is explained. This evaluation function is tested against
other evaluators in Section 4. Finally, in Section 5 we present our conclusions
and topics for future research.

2. Test Environment

In this section we explain first the game ofLines of Action. Next, the search
engine of MIA is described briefly.

2.1 Lines of Action

LOA is played onan 8 x 8 board by two sides, Black and White. Bach side has
twelve pieces at its disposal. The players alternately move a piece, starting with
Black. A move takes place in a straight line, exactly as many squares as there
are pieces of either colour anywhere along the line of movement. A player may
jump over its own pieces. A player may not jump over the opponent's pieces,
but can capture them by landing on them. The goal of a player is to be the first
to create a configuration on the board in which ali own pieces are connected in
one unit. The connections within the unit may be either orthogonal or diagonal.
In the case of simultaneous connection, the game is drawn. If a player cannot
move, this player has to pass. If a position with the same player to move occurs
for the third time, the game is drawn. ·

Analysis of 2585 self-play matches showed an average branching factor
of 29 and an average game length of 44 ply. The game-tree complexity and
state-space complexity are estimated tobe 0(1023) (Winands et al., 2001) and
0(1 064), respectively. A characteristic property of LOA is that it is a converging
game (Allis, 1994), sin ce the initial position consists of 24 pieces, and during the
game the number of pieces (usually) decreases. However, since most terminal
positions have still more than 1 O pieces remaining on the board (Winands,
2000), endgame databases are (probably) not effectively applicable in LOA. As
a case in point, we remark that an endgame database of ten pieces would require
approximately 10 terabytes. Finally, in LOA the standard chess notation for
moves is used.

An Evaluation Functionfor Lines of Action 251

2.2 MIA's Search Engine
MIA performs an af3 depth-first iterative-deepening search. Several tech­

niques are implemented to make the search efficient. The program uses PVS
(Principal Variation Search) to narrow the af3 window as much as possible
(Marsland and Campbell, 1982). A two-deep transposition table (Breuker et al.,
1996) is applied to prune a subtree or to narrow the af3 window. At ali interior
nodes which are more than 2 ply away from the leaves, the program generates
ali the moves to perform the Enhanced Transposition Cutoffs (ETC) scheme
(Schaeffer and Plaat, 1996). Next, a null move (Donninger, 1993) is performed
before any other move and it is searched to a lower depth (reduced by R) than
other moves. In the search tree we distinguish three types of nodes, namely PV
nodes, CUT nodes, and ALL nodes (Knuth and Moore, 1975; Marsland and
Campbell, 1982). The null move is done at CUT nodes and at ALL nodes. Ata
CUT node a variable scheme, called adaptive null move (Heinz, 1999), is used
to set R. If the remaining depth is more than 6, R is set to 3. When the number
of pieces of the side to move is lower than 5 the remaining depth has to be more
than 8 for setting R to 3. In ali other cases R is set to 2. For ALL nodes R =
3 is used. If the null-move does not cause a (3-cut, multi-cut (Bjomsson and
Marsland, 1999) is performed. Experiments showed that usipg multi-cut is not
only beneficia} at CUT nodes but also at ALL nodes (Winands et al., 2003).
For move ordering, the move stored in the transposition table, if applicable, is
always tried first. Next, two killer moves (Akl and Newbom, 1977) are tried.
These are the last two moves, which were best or at least caused a cut-off at the
given depth. Thereafter follow: (1) capture moves going to the inner area (the
central4 x 4 board) and (2) capture moves going to the middle area (the 6 x 6
rim). Ali the other moves are ordered decreasingly according to their scores in
the history table (Schaeffer, 1983). In the leaf nodes of the tree a quiescence
search is performed. This quiescence search looks at capture moves, which
form or destroy connections (Winands et al., 2001) and at captjlfe moves going
to the central 4 x 4 board.

3. Evaluation Function
In this section the evaluation function of MIA is explained. This evaluator

consists of the following nine features: concentration, centralisation, centre­
of-mass position, quads, mobility, walls, connectedness, uniformity, and player
to move. These features are described below in detail (Subsection 3.1 to 3.9),
followed by some information about the use of caching (Subsection 3.10).

252 M.H.M. Winands, H.J. van den Herik, J. WH.M. Uiterwijk

® ~ ®
® ~ ®

~
~ @)

' ®
® (@) (@) 0 ® ~ ~ ~
~ ~ 0 ~ G> G> ~

® 0 0

<t> 0 ® <t> @) (t)

Figure 1. (a) Scattered Pieces (b) Position with two black Q4's.

3.1 Concentration
The concentration ofthe pieces is calculated by a centre-of-mass approach. In

MIA this is done in four steps. First, the centre of mass of the pieces on the board
is computed for each side. Second, we compute for each piece its distance to the
centre of mass. The distance is measured as the minimal number of squares from
the piece to the centre of mass. These distances are summed together, called the
sum-of-distances. Third, the sum-of-minimal-distances is looked up in a table.
It is defined as the sum of the minimal distances of the pieces from the centre
of mass. This number is necessary since otherwise boards with a few pieces
would be preferred. For instance, if we have ten pieces, there will be always
eight pieces at a distance of at least 1 from the centre of mass, and one piece at a
distance of at least 2. In this case the sum-of-minimal-distances is 1 O. Thus, the
sum-of-minimal-distances is subtracted from the sum-of-distances, the result
being called the surplus-of-distances. Fourth, we calculate the 'concentration,
defined as the inverse of the average surplus-of-distances. Since by doing so
we reward positions with pieces in the neighbourhood of each other, eventually
they will be connected in solid formations or they will create threats to win.

3.2 Centralisation

Bach piece gets a value dependent on its board square according to this
feature. Pieces at squares closer to the centre are given higher values than the
ones farther away. Pieces at the edge are given a negative value. This is done
because such pieces are easy to block by a wall (see Subsection 3.6). Pieces
at the corner are punished even more severely. To prevent the program from
over-aggressively capturing pieces, the average is computed instead of the sum
of piece values.

An Evaluation Functionfor Lines of Action 253

3.3 Centre-of-mass Position
In earlier versions of MIA positions with a somewhat more centralised centre­

of-mass were slightly preferred. The idea was to prevent formations from being
built on the edges, where they are more easily destroyed or blocked. Interest­
ingly, after applying Temporal-Difference (TD) learning the weight for the
centralised centre-of-mass feature is changing its sign (Winands et al., 2002),
which means that opposite to expectations it is good to have the centre-of-mass
closer to the edge instead of in the centre. If the centre-of-mass is in the centre,
it is possible that pieces are scattered over the board (e.g., the white pieces in
Figure la). If the centre of mass is at the edge, pieces have tobe in the neigh­
bourhood of each other, otherwise they would Iie outside the board. Another
plausible explanation of why it is worse to have the main ~iece formation in
the centre is that it can be more easily attacked there, whereas groups residing
closer to the edge can only be attacked from one side.

3.4 Quads
The use of quads for a LOA evaluation function was first proposed and

implemented by Dave Dyer in 1996 in his program LoAJAVA and empirically
evaluated by Winands et al. (2001). This feature counts certain quads types.
A quad is defined as a 2x2 array of squares (Gray, 1971). In this feature we
only consider quads of three (Q3) or four pieces (Q4) of the same colour, since
it is impossible to destroy these formations by a single capture. However, the
danger exists that many of those quads are created outside the neighbourhood
of the centre of mass. So, in MIA we have rewarded only Q3 's and Q4 's, which
are at a distance of at most two of the centre of mass. For instance, Black has
two Q4's in Figure lb.

3.5 Mobility

In the mobility feature the number of moves for each side are computed.
This feature was first implemented in MoNA and YL. In previous evaluation
functions of MIA ali moves were weighted equally. However, experiments have
shown that certain move types are better than others (see also Hashimoto et al.,
2003). Therefore, in MIA the following bonus/malus system is applied: the
value of a capture move is doubled, the value of a move going to an edge or
a move along an edge is halved. If a move belongs to multiple categories, the
bonus/malus system is used multiple times. For example, let us assume that a
regular move gets value 1, then a capture move gets value 2, a capture move
going to an edge gets value 1, a cap ture move in an edge line going to a comer
gets value 0.5. The computational requirements of this component are not high.
For each line configuration of pieces (represented as a bit vector) the mobility

254 M.H.M. Winands, H.J. van den Herik, J. W.H.M. Uiterwijk

can be precomputed and stored in a table. During the search, the index scheme
can be updated incrementally and in the evaluation function only a few table
lookups have to be done.

3.6 Walls
Because a piece is not allowed to jump over the opponent's pieces, it can

happen that the piece is blocked, i.e., cannot move. Blocking a piece far away
from the other pieces is an effective way of preventing the opponent to win.
Even partial blocking, called a wall (Handscomb, 2000), can be quite effective,
since it forces a player to tind a way around the wall. Detecting whether a piece
is (partially) blocked can be expensive as we have to know what the moves of
the piece are and what its goal is. In MIA we look only at walls that prevent
the opponent's edge pieces from moving toward the centre. '.These walls are
quite common and effective. The patterns can be precomputed and therefore
are easy to detect. For example, in Figure 2a the piece on a4 is blocked in
three ways going to the centre, whereas the piece on h4 is only blocked in two
centre directions. In the evaluator, we distinguish between walls which block
two or three centre directions. We also remark that we take special care of
walls which block corner pieces. For example, the piece on h~ is blocked only
in two directions, but we evaluate this position as if it was blocked in 3 centre
directions. The totally isolated piece on aS is evaluated as if there were two
walls which both block the piece in three directions. We only look at certain
blocking patterns for edge pieces. For example, the pieces on bl and el are
completely blocked, but we take only the two 3-centre directions blocks into
account. It is a subject of future research to incorporate more of these kind of
patterns.

3. 7 Connectedness

Although the concentration component and quad component favour solid
formations in the centre, there is still room for a component which determines
the connectedness of a side. In MIA we compute the average number of connec­
tions of a piece. In some evaluation functions the total number of connections is
taken into account (e.g., YL), but this could implicitly bea material advantage.
Any kind of material component in LOA evaluation functions is always tricky
because the program might wildly capture pieces. This feature does not take
into account whether a connection is important or not. To distinguish this, a
globallook at the board would be needed, which is time consuming. The num­
ber of connections for each side in each line configuration can be precomputed
as is done with the mobility component.

An Evaluation Functionfor Lines of Action 255

~ 0 ~ ® @) ~
0 ® 2 ® ~ <1 ~ 0 .,

'
"

<1 0 fi
""} @) . @)

® ~ ~- ~ 0 ® <1> 0 0

~ <t> 0 0

® 0 ® 1\...0 ~ v-0 ~ (lh
; ~ ~ @)

V 1> ~ " "
Figure 2. (a) Position with walls (b) Position with an outlier on b8.

3.8 Uniformity

The disadvantage of the centre-of-mass approach is that it aims to connect as
many pieces as possible in a local group, hardly worrying about some remote
pieces (orphans). It is sometimes hard to connect these orphans. For instance,
in Figure 2b the black pieces are grouped around e2, but the, black piece on b8
is rather far away from this group. To prevent that one or more pieces become
too remote from the main group, a feature is used which aims at a uniform
distribution (Chaunier and Handscomb, 2001) to counterbalance the negative
effects of the centre-of-mass approach. In our program this is done in a way
which is primitive but effective. The area of the distributed pieces is computed,
assuming it is a rectangle. The smaller the area is, the higher the reward is. An
analogous implementation was first done in the program YL, but details are not
known.

3.9 Player to Move
In the search tree not every leaf node has the same player to move. A small

bonus is given to the moving side, since having the initiative is mostly an
advantage in LOA (Winands, 2000) like in many other games (Uiterwijk and
van den Herik, 2000).

3.10 Caching

It is possible in our evaluation function to cache computations of certain fea­
tures, which can be used in other positions. Let us assume that we investigate
the move b8-c8 in Figure 2b and evaluate the resulting position. If we next
investigate b8-b7 we notice that certain properties of White's position remain
the same (e.g., the number of pieces, centre-of-mass, the number of connec­
tions), whereas others can change (e.g., moves, blockades). It easy to see that

256 M.H.M. Winands, H.J. van den Herik, J. W.H.M. Uiterwijk

we do not have to compute the concentration, centralisation, position of the
centre-of-mass, quads, connection, and uniformity for White again. Evaluation
of components, which are not dependent of the position of the other side, are
stored in the evaluation cache table. In the current evaluation function this gives
a speed-up of at least 60 percent in the number of nodes investigated per second.

4. Experiments
In order to quantify the improvements of the evaluation function, we played

a round-robin tournament in which evaluators from earlier tournament versions
of the program participated. Ali evaluators used the current search engine,
described in Subsection 2.2. The evaluators are explained in Subsection 4.1.
The results are described in Subsection 4.2.

4.1 Benchmark Evaluators
The benchmark evaluation functions are described below.
Evaluator: MIA 1 The core of this evaluation function is the centre-of-mass

approach. The quad feature is also implemented. Pieces at the edge are given a
negative bonus. Contrary to MIA IV a bonus is given for a centralised centre­
of-mass (Winands et al., 2001). The weights of the features were carefully
hand-tuned. In retrospect this evaluator was primitive, although it won a game
against both MoNA and YL at the fifth Computer Olympiad (Bjornsson, 2000).

Evaluator: MIA II The major change of this evaluation function compared
to the previous one is the introduction of the mobility component. There is no
discrimination in rewarding different move types. In this evaluator pieces ata
corner edge are punished more severely. Using this evaluator the tournament
program shared the first place with YL in the regular tournament at the sixth
Computer Olympiad. The play-off match was won by YL (Bjornsson and
Winands, 2001).

Evaluator: MIA III This evaluation function is enhanced with the wall
feature. The centralisation feature is improved by rewarding pieces in the centre.
A bonus is given for the player to move. The major improvement was retuning
ali the weights by using TD-learning (Winands et al., 2002). There were three
major changes in the weights. First, the initial weight of the dominating centre­
of-mass was decreased to one tenth of its original value, indicating that we
had overestimated the importance of this feature. Second, the weight for the
centralised centre-of-mass feature changed its sign, which means that opposite
to expectations it is good to have the centre-of-mass closer to the edge instead
of in the centre. Third, the weight of the centralisation component increased
the most, indicating that we had overestimated the importance of this feature.
V sing this evaluator the tournament program finished second at the seventh
Computer Olympiad (scoring 1.5 points out of 4 against the much improved

An Evaluation Functionfor Lines of Action 257

winner YL) (Bjornsson and Winands, 2002). An exhibition match was played
against MONA during the Third International Conference on Computers and
Games 2002 (CG'02), which ended in a 2-2 tie (Billings and Bjornsson, 2002).

Evaluator: MIA IV This evaluation function incorporates ali features as
described in Section 3. The centralisation, wali, and player-to-move features
used the same weights as the o nes in MIA III. Ali the weights of the other features
were basicaliy found by using TD-learning. Some of them were adjusted by
hand afterwards.

An overview of the separate features as used in the four evaluators is given
in Table 1. Note that the weights and details of the features may differ between
different evaluators.

MIAI MIA II MIA III MIA IV
Concentration X X X X
Centralisation X X X X
C.o.m. position X X X X
Quads X X X X
Mobility X X X
Walls X X
Connectedness X
Uniformity X
Player to move X X

Table 1. Overview of the features.

4.2 Results
The evaluators, previously described, played 1000 matches against each other

in a round-robin tournament. They started always from the same 10 positions
given in the Appendix, playing with both colours. To prevent that programs
played the games over and over again, a sufficiently large random factor was
included in each evaluation function.

Fixed-depth searches were used as time control instead of time. At first sight
it may look as if we are favouring the more advanced evaluators (i.e., they are
time intensive because of the extra knowledge). This is nota problem for two
reasons. First, the difference in speed is quite moderate. The program runs only
15 per cent slower with the MIA IV evaluator than with the MIA 1 evaluator.
Ali the evaluators have to compute the average distance to the centre-of-mass
and the quads, which is time consuming. Most other additions are relatively
cheap. Second, when an evaluator is a good predictor of the situation, a best
move found ata shaliow search is more likely to stay good and therefore causing
cut-offs at deeper searches. For example, when the MIA 1 evaluator is used in
the current search engine it searches 75 per cent more nodes compared to the

258 M.H.M. Winands, H.J. van den Herik, J. W.H.M. Uiterwijk

MIA N evaluator. The advantage of fixing the depth is that we can measure
the inftuence of increasing the depth.

Evaluator MIAI MIA II MIAID MIA IV
MIAI o 259 199 71.5
MIA II 741 o 373 163.5
MIAID 801 627 o 248.5
MIA IV 928.5 836.5 751.5 o

Table 2. Tournament results at depth 4.

Evaluator MIAI MIA II MIAID MIA IV
MIAI o 188 168.5 51
MIA II 812 o 356 174
MIAID 831.5 644 o 223.5
MIA IV 949 826 776.5 o

Table 3. Tournament results at depth 6.

Evaluator MIAI MIA II MIAID MIA IV
MIAI o 137 159.5 41.5
MIA II 863 o 360 129
MIAID 840.5 640 o 205
MIA IV 958.5 871 795.0 o

Table4. Tournament results at depth 8.

Evaluator MIAI MIA II MIAID MIA IV
MIAI o 97.5 137.5 44.5
MIA II 902.5 o 359.5 121.5
MIAID 862.5 640.5 o 234.5
MIA IV 955.5 878.5 765.5 o

Table5. Tournament results at depth 10.

In Tables 2-5 the results of the tournaments are given for searches to depth 4,
6, 8, and 10, respectively. MIA N defeats the previous evaluators of MIA with
ease. Even the strong MIA III is not able to score more than 20 to 25 percent
of the points against MIA N. Although MIA II's only majorimprovement is
a primitive mobility component, it did not only outperform MIA I, but it also
played much better against MIA III and N than MIA I did. Interestingly, the
weak MIA I performs worse at deep searches, whereas the opposite holds for
the strong MIA N evaluator. A reason rnight be that at the one hand a deep
search is not able to compensate the lack of knowledge of MIA I, while at the
other hand a deep search exploits more of the potential of MIA N.

An Evaluation Functionfor Lines of Action 259

5. Conclusions and Future Research
In this paper we have seen that MIA IV defeats the older evaluators by large

margins. Most additions of MIA IV in knowledge are quite simple to evaluate
and lead to big rewards in playing strength. It turns out that MIA IV even
performs better at deeper searches.

More patterns of blocked pieces, better distinction of move types in the mo­
bility component, and additional knowledge whether a connection is important
are some of the issues which could improve the evaluator. There is stiH room
to fine tune certain weights and parameters in the evaluation function. Until
now the authors of the strong programs YL and MoNA have not published
the details oftheir programs' evaluators. lftheir knowledge becomes available,
combining their ideas with MIA IV would probably further increase the playing
strength significantly.

Acknowledgements
The authors would like to thank Yngvi Bjornsson and Darse Billings for

sharing their thoughts about LOA in general, and LOA evaluation functions in
particular. We also thank the anonymous referees for their valuable comments.

References
Akl, S. G. and Newborn, M. M. (1977). The principal continuation and the killer heuristic. In

1977 ACM Annual Conference Proceedings, pages 466-473. ACM, Seattle.
Allis, L. V. (1994). Searching for Solutions in Games and Arti.ficial1ntelligence. Ph.D. Thesis,

University of Limburg, Maastricht, The Netherlands.
Billings, D. and Bjornsson, Y. (2002). Mona and YL's Lines of Action Page.

http://www.cs.ualberta.caf,...,darse/LOA.

Bjornsson, Y. (2000). Yl wins Lines of Action tournament. ICGA Journal, 23(3):179-180.
Bjornsson, Y. and Marsland, T. A. (1999). Multi-cut alpha-beta pruning. In Van den Herik, H. J.

and lida, H., editors, Computers and Games, Lecture Notes in Computing Science 1558, pages
15-24. Springer Verlag, Heidelberg, Gennany.

Bjornsson, Y. and Winands, M. (2001). Yl wins Lines of Action tournament. ICGA Journal,
24(3):180-181.

Bjornsson, Y. and Winands, M. (2002). Yl wins Lines of Action tournament. ICGA Journal,
25(3):185-186.

Breuker, D. M., Uiterwijk, J. W. H. M., and van den ţlerik, H. J. (1996). Replacement schemes
and two-level tab1es. ICCA Journal, 19(3):175-180.

Chaunier, C. and Handscomb, K. (200 1). Lines of action strategic ideas - part 4. Abstract Games,
2(1):12-14.

Donninger, C. (1993). Null move and deep search: Selective-search heuristics for obtuse chess
programs. ICCA Journal, 16(3):137-143.

Dyer, D. (2000). Lines of Action Homepage.
http://www.andromeda.com/people/ddyer/loa/loa.htrnl.

260 M.H.M. Winands, H.J. van den Herik, J. W.H.M. Uiterwijk

Gray, S. B. (1971). Local properties of binary images in two dimensions. IEEE Transactions on
Computers, 20(5):551-561.

Handscomb, K. (2000). Lines of action strategic ideas - part 1. Abstract Games, 1(1):9-11.
Hashimoto, T., Nagashima, J., Sakuta, M., Uiterwijk, J. W. H. M., and lida, H. (2003). Auto­

matic realization-probability search. Internat report, Dept. of Computer Science, University
of Shizuoka, Hamamatsu, Japan.

Heinz, E. A. (1999). Adaptive null-move pruning. ICCA Journal, 22(3): 123-132.
Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta pruning. Arti.ficiallntelligence,

6(4):293-326.
Marsland, T. A. and Campbell, M. (1982). Parallel search on strongly ordered game trees. Com-

puting Surveys, 14(4):533-551.
Sackson, S. (1969). A Gamut ofGames. Random House, New York, NY, USA.
Schaeffer, J. (1983). The history heuristic./CCA Journal, 6(3):16-19.
Schaeffer, J. and Plaat, A. (1996). New advances in alpha-beta searching. In Proceedings ofthe

1996 ACM 24th annual conference on Computer science, pages 124-130. ACM Press, New
York, NY, USA.

Uiterwijk, J. W. H. M. and van den Herik, H. J. (2000). The advantage ofthe initiative.lnformation
Sciences, 122(1):43-58.

Winands, M. H. M. (2000). Analysis and linplementation of Lines of Action. M.Sc. Thesis,
Universiteit Maastricht, Maastricht, The Netherlands.

Winands, M. H. M., Kocsis, L., Uiterwijk, J. W. H. M., and van den Herik, H. J. (2002). Temporal
difference learning and the Neural MoveMap heuristic in the game oţ Lines of Action. In
Mehdi, Q., Gough, N., and Cavazza, M., editors, GAME-ON 2002 3rd International Confer­
ence on lntelligent Games and Simulation, pages 99-103. SCS Europe Bvba.

Winands, M. H. M., Uiterwijk, J. W. H. M., and van den Herik, H. J. (2001). The quad heuristic
in Lines of Action. ICGA Journal, 24(1):3-15.

Winands, M. H. M., van den Herik, H. J., Uiterwijk, J. W. H. M., and van der Werf, E. C. D.
(2003). Enhanced forward pruning. Accepted for publicati ou.

Appendix: Start Positions
Below the positions are given, which are used in the experiments of Section 4.

•• •• t•• 0 0

0 0

•• •• •• 0 0

0 0

! !e •• •il l~ , . •• ~~ •• • • •• -0 ·' 0 0 0 0 0 0

0 0 0 0 0 0
0 0 ' ' 0 0 0 0 0 0
0 l:'
0 . It' 0
0 0 0

' 0 0

0 . 0

0 0

0 k" 0 0 0 0 ' 0

0 . 0 0 . jjj; 0 0 -~--~
0 .".f-~ 0 LL 0, 0 0 •• :••• •• ••• •• 11•1• •• ··~· • -· • •• 1: BTM 2: BTM ' 3: B'IM 5: BTM

•• •• ••• 1·' ,
0 @ • • •• •• 0 0
0 0 0 . 0
0 0 0 0
0 0 0

0 . 0 0 . 0
0 0 0 •• •••• 0 1' " 0

•• ~·!!1!
6: BTM 8: BTM

