
MOBILITY SUPPORT FRAMEWORK IN
ADAPTABLE SERVICE ARCHITECTURE

Mazen Malek Shiaa
Department ofTelematics, Norwegian University of Science and Technology
Trondheim - Norway
Mazen.Malek.Shiaa@item.ntnu.no

Abstract: Mobility is regarded as the most important feature needed to achieve
adaptability and flexibility in the execution of service components. As such,
service systems could be able to cope with the handling of dynarnic changes in
the availability of resources and position of users. On the other hand,
providing user-centric and personal-content driven wide range of services,
more commonly wireless ones, to end users regardless of their location and
used equipment, seem to be the most important objective of such a feature.
Mobility, in this context, is a feature facilitating the free and coordinated
movement of, for instance, users, software components, user terminals, etc.
One should always consider the vibrant configuration and settings of not only
end-users applications a:nd environment, but also the network resources,
components and services. The reason is due to the ever changing and
increasing demands and requirements in functionality, security, reliability and
QoS. Mobility support in self-managing, dynamically configurable network
architecture seems to be even more challenging, however recent development
and improvements in network infrastructure show a greater prospect for code­
on-demand and adaptive network management. TAPAS, and its mobility
handling architecture, presented in this paper, tend to give some answers and
take a step towards achieving such goals.

Key words: Mobility Management, Plug-and-Play, and Network Architecture

1. INTRODUCTION

There has always been an awareness of the necessity of providing
adaptable network Services capable of serving users, private as well as

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35703-4_21
D. Gaïti et al. (eds.), Network Control and Engineering for QoS, Security and Mobility II

IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35703-4_21

Mobility Support Framework in Adaptable Service Architecture 105

business customers, with state-of-the-art information when and where they
are needed with a high degree of flexibility, yet simply operated and
managed. These services, and the underlying platform or middleware they
rely on, have recently been the most important research topic in computer
networking. Nowadays, a new network paradigm seems to be a common
objective and goal to achieve of many research and development groupsDthe
self-operating, plug-and-play, dynamically configurable network
architecture. TAPAS (Telematics Architecture for Plug-and-Play Systems) is
a research project which aims at developing an architecture for network­
based service systems with A): flexibility and adaptability, B): robustness
and survivability, and C): QoS awareness and resource control. The goal is
to enhance the flexibility, efficiency and simplicity of system installation,
deployment, operation, management and maintenance by enabling dynamic
configuration of network components and network-based service
functionality. So far in this project, a wide range of topics have been dealt
with, and many objectives been achieved. Four main architectures have been
developedDthe basic architecture, mobility handling architecture, dynamic
configuration architecture, and the adaptive service configuration
architectureD for detailed information see [1,2,3,4,5,6] and the URL:
http://www .item.ntnu.no/ -plugandplay.

I ls deflned_by .Eiall I
I I I

I ia_deflned by cafbe'
SeDliceCgmgaoeol I
I I"

requires r- I I _ .. "t
I I ,,_ ... llzed_by

pro Fm posltlon_of

L;:,. •rl oH

I I
I llirlil<llll: manages

I l behave. laooo .. ,,. to

works acoordlng_ to l
"""' constitute I hasl I

I
.........

I •-•• I JJur I
L _j """"

I
I

I .tlllmain

I
l L...-.Jf hao

Figure 1. TAPAS basic Architecture (the Object Model)

TAPAS basic architecture, illustrated in Figure 1, is based on generic
Actors (software components) in the Nodes of the network that can
download Manuscripts defining Roles tobe played each represent different

I

106 Mazen Malek Shiaa

functionality. The model is founded on a theatre metaphor, where Actors
perform Roles according to predefined Manuscripts, and a Director (one in a
Domain) manages their performance. ServiceSystem consists of
ServiceComponents, which are units related to some well-defined
functionality defined by a Play. A RoteSession is a projection of the
behaviour of an actor with respect to one of its interacting Actors. Capability
is an inherent property of a node. The ability of Actors to play Roles depends
on the defined required Capability and the matehing offered Capability in a
Node where they intend to execute. ConfigurationManager is responsible for
obtaining a snapshot of all system resources, and taking decisions on where
and how Capabilities and Actors may be installed and executed.

Section 2, will provide an overview of related work, while Section 3
supplies an overall terminology framework needed to handle mobility.
Section 4 gives a view of service management and related considerations.
Section 5 demonstrates the necessity of personal mobility, while section 6
provides a closer look at the software components of the architecture, and
examines their mobility. Section 7 studies the concept of terminal mobility,
later, Section 8 gives a status of the implementation and some experiences
came up throughout the various phases of testing.

2. RELATED WORK

There is a wide range of research projects and working groups working
on Adaptable Network Architectures. TINA (Telecommunication
Information Networking Architecture) [7] is an effort to put together the best
of telecommunications and information technologies aiming at providing
solutions to the challenges of developing network information services.
Personal mobility support and other features are being developed and added
to the architecture gradually, e.g. [8]. Active Networks arealso approaching
the same target but from different perspective. Major research institutes have
dealt with this issue with mixed results; see [9,10,11] to check for
motivation, results and status in this field, or [12] for a more general and
broader survey. Some projects deal with more general issues of flexibility
and adaptability in service architecture solutions, e.g. [13], while others
focus on the plug-and-play feature applicability in network management
functions, e.g. [14]. Many of these solutions apply platforms of either
programmable network components, such as [10], while others use mobile
agents. A mobile agent is a program, script or package that physically travels
around a network, and performs operations on hosts that have agent
capabilities. There is a number of different mobile agent architectures, see
[15,16]. Although agent technologies have received a lot of attention in

Mobility Support Framework in Adaptable Service Architecture I 07

recent years, [17] argues that "mobile agency has failed to become a
sweeping force of change, and now faces competition in the form of message
passing and remote procedure call (RPC) technologies".

Mobile Telecommunication Systems derive and necessitate more
elaborated schemes for Personal Mobility. While different systems, such as
GSM [8] andin the near future UMTS, provide mobility for users and their
terminals in and through enterprise-based domains, service architectures and
application platform with high mobility support centered at the user and its
personal content still lack. The seamless and flexible integration of such
application platforms with existing mobile systems is yet a major challenge.
A possible solution is the applicability of the Mobile IP concept [19], which
is based on two agent processes to take over the routing, the home agent
(HA) and the foreign agent (FA). In our approach of Personal Mobility, the
same spirit is maintained, but approached from the service provision point of
view. User, its session, and subscribed services move along the user and
follow its access point, as long as it is possible and allowed in the visited
domain. In the future, and in cases of multiple enterprise domains, the
approach may be amended to work along the lines of how cellular phones
roam networks.

3. TERMINOLOGY FRAMEWORK FOR
MOBILITY

In this section the so-called Terminology Framework for Mobility will be
established comprising all the essential definitions needed in providing
mobility understanding. TAPAS, in this regard, embraces different mobility
features or categories: Personal (consists of User and User Session
mobility), Actor and Terminal mobility [3].

3.1 Terminology Framework - The Concept

Figure 2 presents a conceptual description of the various terms or entities
used to relate the different types of mobility. User (Person), according to
this concept is represented by its personal contents and can be related to a
Terminal (1) and be tracked and accessed via a representation of the user
(User Representation) within the architecture. This double interface
approach (User Intelface and Terminal Inteiface) provides a flexible
mechanism to represent users and terminals independently of each other. A
user may be represented by a name, while a terminal by a network address.
A user may interact with the system, or services, within a defined User

108 Mazen Malek Shiaa

Session. The movement of user sessions also involves the movement of
actors.

User

manage•

User
Interface

Terminal Archltecture

• I
Termi'nal
Interface

Figure 2. TAPAS Mobility Concept

offors Acl,g(
exacutes

Figure 3. The Object Model of the TAPAS Mobility Platform

3.2 Terminology Framework - The Definitions

Figure 3 shows an extension of the TAPAS basic architecture illustrated
in Figure 1, with emphasis on mobility. Below, the newly introduced objects,
and other terms specific to the TAPAS terminology will be defined.

Mobility Support Framework inAdaptable Service Architecture 109

• User is the end-user of services, who is also the service subscriber.
• Person is a user with some personal content.
• Personal content is the set of user-related data, information and

resources that rnight be used by the service architecture.
• Node is a physical network entity capable of running T AP AS-based

services, and uniquely specified by a location. Terminal is a type of node
that is associated with the end users as their means of accessing services.

• Location (Access point) is the physical address information. This can be
network address, geographicallocation, etc.

• User Session represents the information used by all actor instances
involved in the provision of a service for certain user, for certain
duration. All user interactions with the system are part of a specific
session, however a user may have several simultaneaus sessions.

• User Session Base is the informational or knowledge base responsible
for maintaining User Session information.

• Domain represents a population of actors and/or nodes managed by one
director. Domain concept in TAPAS is used to manage and adrninistrate
the federation of responsibility between different director objects.

• Actor is the generic object of TAPAS with a generic behavior.
• Actor Child Session represents a session initiated and maintained by an

actor, which results in instantiating new actors.
• User Profile includes the user information relevant to the provision of

services (such as user location, subscribed services, permissions,
constraints, etc.).

• User Profile Base is the informational or knowledge base responsible for
maintaining User Profile information.

• Actor Mobility stands for the,movement of instantiated functionality at a
node that is executed by an actor by updating the actor location-specific
information.

• Role-Session Mobility stands for the re-instantiation of role-sessions of
moved actors by re-creating them at the new location.

• Terminal Mobility is the movement of terminals and change of their
location while maintaining access to services and applications.

• Personal Mobility is the utilization of services personalized with end
user' s preferences and identities independently of location and specific
equipment.

• User Session Mobility is the re-instantiation or resumption of
Applications, Actors and Role sessions enabling a user to carry on with
suspended sessions.

• User Mobility is the seamless access of services at different access
points.

110 Mazen Malek Shiaa

• Login Agentsupports the entering of a user to the service(s) environment
under managed permissions, constraints and optional preferences.

• User Agent is responsible for managing user interactions with its home
domain. Horne domain is a domain where there exists a user profile for
the user.

• Visitor Agent is responsible for managing user interactions with its
visitor domain. Visitor domain is a domain where there is no user profile
for the user.

• Mobility Agent is responsible for managing terminal's location-related
information. It performs location updates when a terminal changes its
location.

• Mobility Manager is responsible for managing actors and terminals
mobility.

4. MOBILITY AND SERVICE MANAGEMENT

Any network architecture that provides services to end-users should
establish a clear view of how these services be subscribed to by users,
utilized by operators, and developed by service developers. The topic of
service management has been handled and experienced by various enterprise
business models. On the other hand, providing mobility support or mobility
feature to service architecture affects the way services may be managed or
maintained. Based on the main concept of TINA service architecture, the
service management of TAPAS is illustrated in Figure 4. Basically, the
picture is divided into six main parts or components: User entry, Domain
management, Service instantiation, Service instance, Service management,
and New service. The various phases shown as numbered arrows may be
summarized in the following: (1) User login or entry to the system is
accomplished by LoginAgent component, (2) Service requests by the user are
managed through its UserAgent or VisitorAgent, (3) Administration by the
user, e.g. changing settings and preferences, is achieved through UserAgent
or VisitorAgent, and saved in UserPro.file, (4) UserSession management is
controlled by UserAgent or VisitorAgent, (5) Service management by the
user may be managed through the service actors executing certain role­
figures, e.g. clients, (6) User interactions with the service instance are
performed through the service actors, (7) Administration by the service
provider results in changes in the user entry components, (8) Updating user
subscription information should take place in the UserPro.file, (9)
Interactions between user entry and service instance components, e.g. when
the user changes some settings and preferences, and at last (10) Providing
new service implies a change in both user entry, service management and

Mobility Support Framework in Adaptable Service Architecture 111

domain management components. These phases give a guideline to achieve a
mobility support inline with a general service management platform,
allowing for the integration with any enterprise model.

Domain Management

director Manager

Man&g91

Figure 4. Management Considerations of Service Provision

5. PERSONAL MOBILITY

NewService
(Piay/

Manuscripts)

Personal mobility as defined, earlier comprises two types of mobility:
User and User Session mobility. Mobility in this context is a support
provided to applications and services, so that it is possible to develop an end­
user oriented applications with both user and session mobility enhancements.
Generally speaking, personal mobility is based on the following
assumptions: 1) User is referred to by Name and User Profile, which is
active through a User Interface (at a Terminal through Terminal Interface),
2) User-to-terminal relation is defined at login phase, 3) Director maintains
User Profiles in UserProfileBase, which contains information on user
settings, preferences and personal data, 4) UserAgent or VisitorAgent
controls the user interactions with the system, and maintain User Session for
each login phase, and 5) Director and Configuration Manager decide how
and where different service components (application role-figures) be
instantiated depending on play/configuration requirements and terrninal/node
available capabilities. However, UserAgent should keep track of all actor
instances that belong to a User Session. Director maintains UserSession
related information in UserSessionBase. [4] dealt with this type of mobility

112 Mazen Malek Shiaa

in detail, however certain enhancements to the approach have emerged,
which with a general description are provided in the following subsections.

User session mobility is aimed at providing users with greater flexibility
in terms of suspending and resuming their execution of services. Figure 5
illustrates how user session is managed by UserAgent, and consequently
maintained by the director's UserSessionBase. This figure includes a login
phase (UserA at TerminalA) and a moving phase (from TerminalA to
TerminalA '). The figure shows an example of subscribed services: Service]
and Service2 defined by Playl and Play2. Relations between actors are
indicated by connectors, e.g. Server 1 and Clientl, while dotted connectors
between UserAgent and some actors indicate that they belong to one user
session, e.g. Server2 is not maintained by this session. An example is
provided for UserSession description. User session is updated regularly via
the update_session request, while suspended via suspend_session request.
UserAgent sends these requests to directorl containing information on every
instantiated actor data, e.g. user name, role-sessions, type of application and
information about actor child sessions. resume_session request is used to
resume the sessions. The type and configuration of applications, availability
of service definitions, and changed set of available capabilities will
determine the way and extent of resumed session, e.g. ActorA's session may
not fully recovered at the new terminal. Examples of XML serialization of
the User's session and profile are sketched later in Table 1 and 2.

Figure 5. UserSession Mobility in TAPAS

Mobility Support Framework in Adaptable Service Architecture 113

Table 1. General MXL serialization ofUserSessionBase

<USEILSESSION_BASE NAME="USBdomainl">
<DOMAIN>domainl</DOMAIN>
<USER_SESSION NAME="UserSession_Al">

<PROPERTY NAME="User">
<ID>UserA</ID>

<LOCATION > TerminaiA</LOCATION>
</PROPERTY>
<PROPERTY NAME="Piayl">

<TYPE>Chat</TYPE>
<VERSION>vl_l </VERSION>
<ACTOR_INSTANCE NAME="Serverl" >

<ROLE>Rolell </ROLE>
<ACTOR_INSTANCE>
<ACTOR_INSTANCE NAME="Ciientl">

<ROLE>Role12</ROLE>
<ROLE_SESSION>

<COOP>Serverl </COOP>
</ROLE_SESSION>

</ACTOR_INSTANCE>
<ACTOR_INSTANCE NAME="Ciient2">

<ROLE>Role22</ROLE>
<ROLE_SESSION>

<COOP>Server2</COOP>
</ROLE_SESSION>

</ACTOR_INSTANCE>
</PROPERTY>

<PROPERTY NAME="Piay2">
<TYPE>Debug</TYPE>

<VERSION>v1_2</VERSION>
<ACTOR_INSTANCE NAME="ActorA">

< ROLE>RoleAl </ROLE>
<CHILD_SESSION>

<ACTOR_INSTANCE NAME="Al">
<ROLE>RoleAll </ROLE>
<ROLE_SESSION>

<COOP>ActorA</COOP>
</ROLE_SESSION>

</ACTOR_INSTANCE>
<ACTOR_INSTANCE NAME="A2">

<ROLE>RoleA12</ROLE>
<ROLE_SESSION>

<COOP>ActorA</COOP>
</ROLE_SESSION>

</ACTOR_INSTANCE>
<ACTOR._INSTANCE NAME="A3">

<ROLE>RoleA13</ROLE>
<ROLE_SESSION>

<COOP>ActorA</COOP>
</ROLE_SESSION>

</ACTOR_INSTANCE>
</CHILD_SESSION>

</ACTOILINSTANCE>
</PROPERTY>

</USER_SESSION>
</USER_SESSION_BASE>

User Mobility is aimed at providing users with greater flexibility in terms
of roaming among different domains while maintaining seamless access to
their subscribed services. UserAgent or VisitorAgent is responsible for
obtaining and updating the user related information from the director, from
the UserProfileBase. Further organization and regulation of services, access
rights, permissions, allowed operations and activities may all be configured
as a domain-based relation and vary among different business models

Table 2. General XML serialization ofUserProfileBase

USER_PROFILE_BASE NAME="UPBdomainl">
< DOMAIN>domainl </DOMAIN>
<USER NAME="UserA">

<PROPERTY NAME="Password">
<VALUE>****</VALUE>
<VALID>010104</VALID>

</PROPERTY>
<PROPERTY NAME="Location">

<VALUE>Iocai</VALUE>
</PROPERTY>
<PROPERTY NAME="Settings">

<ATTRIBUTE NAME="BGColor">
<VALUE>White</VALUE>

</ATTRIBUTE>
<ATTRIBUTE NAME='WSize">

<VALUE>Large</VALUE>
</ATTRIBUTE>

</PROPERTY>
<PROPERTY NAME="Servicel">

< PERMISSIONS>
<VALUE>Owner</VALUE>

</PERMISSIONS>
<CONSTRAINTS>

<VALUE>LocaiAccess</VALUE>
</CONSTRAINTS>
<PREFERENCES>

<VALUE>Empcy</VALUE>
</ PREFERENCES >

</PROPERTY>
<PROPERTY NAME="Service2">

<PERMISSIONS>
<VALUE>Temp</VALUE>

</PERMISSIONS>
<CONSTRAINTS>

<VALUE>LocaiAccess</VALUE>
</CONSTRAINTS>
< PREFERENCES>

<VALUE>Empcy</VALUE>
</ PREFERENCES >

</PROPERTY>
</USER>
</ USER_PROFILE_BASE>

114 Mazen Malek Shiaa

6. ACTOR MOBILITY
Actor mobility stands for the movement of instantiated functionality at a

node along its properties, such as behavior, capabilities, role-sessions, etc.,
in a transparent manner for all other actors. Actors need to move due to
several reasons, e.g. changed capability requirements, deterioration in
resource availability, dynamic change in configuration, change in
functionality, or implications of terminal mobility. The actor object, as
described by TAPAS basic architecture is defined by its: interfaces or role­
sessions, behavior, capabilities, queue of incoming requests, and methods
accessible by other actors at specific interfaces. Actor Mobility is achieved
by re-instantiating actors with their parts. A move procedure is equivalent to
a sequence of ActorPlugln, CapabilityChange, Createlnteiface,
BehaviourChange, and ActorPlugOut procedures, which are part of the basic
architecture, and used to instantiate an actor, update its capabilities, set a
role-session with another actor, change the manuscript it executes, and
destroy it, respectively. ActorMove request supplies the new location where
the actor should be plugged in, while its interface, behavior, capability,
queue, and method definition should be preserved from its running instance.

Figure 6. Actor Mobility in TAPAS

To allow for different interpretations by run environments, programming
languages, and operating aspects, certain conditions must be specified that
will control this procedure. A basic set of conditions may be: A) Capability
and Interface parts are recovered through applying GapabilityChange and
Createlnteiface, B) Behavior part and state information aretransferred using

Mobility Support Framework in Adaptable Service Architecture 115

BehaviourChange, and C) queue and rnethod parts are disrnissed. Figure 6
presents a general scenario for actor rnobility that involves two different
dornains, based on conditions A, B and C. A general actor instance, with
possible child session consisting of several actor instances, is rnoved across
two dornains, domainl and domain2 . The actor has two role sessions,
RSJand RS2, with Server] and GenericRole (dornainl). By rnoving actors
certain parts rnay be irrecoverable, e.g. certain capabilities rnay not be
available at the new location, or specific role-sessions are no Ionger relevant,
e.g. RS2 at the new location has been recovered to point to another
GenericRole actor instance, the one available in domain2. Also, the rnoved
actor child session couldn't be fully recovered; certain actor instances have
been assigned different functionality and/or capabilities illustrated by
different colors. When an actor rnoves frorn one location to another
MobilitManager is responsible for rnanaging the accessibility to this actor.
The actor sends a LocationUpdate upon a rnove, while other nodes send an
ActorDiscovery to get its location. There is a set of requirernents in every
dornain. Upon rnoving to another dornain, an actor rnay be accessed through
a director-to-director authentication process, as it has been passed to the
responsibility of another MobilityManager.

Figure 7 illustrates a rnessage sequence of an actor changing its location
(frorn Ll to L2), preserving its capability, interface and behavior definitions.

ActorMove(L2)

l :
• " ' f---1

· ·/ t (cap)
' a.move

" 11!l IOcäuoh L2-! 1
1 1 ,, :· ,. 1 , •.•. 1 Crealelnlerlace(ASI ,AS2)

I ' I

I
I

t/ o;.,;r.' , • ·"!\ ': 1 BehavlourChange(AoleFigure,Siale)
c,.-.,. ! .,.',.. : , '

Other aclors l :_LocationUpdate(Aclor1L2,L2) : 111
... • ..! • 1 1 pertormAc.tor _ t .. --------.; I

1 ! Dlscoveoy prlo('
I ActorDiscovery(Aclor 1) send! '!!I
1 1 } .,_requesls • ;r .·

----7 · · ' · · · ..

Figure 7. Message sequence of a general actor move: "assume Actorl (Behavior,
cap,{RSl,RS2}) at L1 moves to L2"

7. TERMINAL MOBILITY

In TAPAS, terrninals realize the interface towards the end user, whilst
nodes are viewed fixed as seen frorn their location point of view, though

116 Mazen Malek Shiaa

they might be assigned dynamic network addresses. The mobility as a
feature is mainly provided for terminals, as end users want to access their
subscribed services while on the move. Terminals execute a MobilityAgent
responsible for tracking their location, and a manager is responsible for
updating the locations of all nodes that participate in any possible service.
This central and supervisory agent will be referred to as MobilityManager,
and runs at an address known to all other nodes, for instance its network
location may be part of a configuration file. MobilityAgent will issue
LocationUpdate procedure, upon changing location, and NodeDiscovery
procedures, once a communication is required with other terminals or nodes.
Figure 8 demonstrates a general case of terminal mobility, a terminal moves
from doaminl to domain2, while its MobilityAgent ensures that
MobilitManager is updated on this movement. However, when it reaches the
so-called out-of-coverage, it considered as inaccessible. Meanwhile, requests
from other nodes addressed to this terminal should be preceded by a
NodeDiscovery procedure, which is executed through the corresponding
MobilityManager in the domain. MobilityManagers operate according to a
set of domain specific set of requirements, which govern the privileges and
access rights specific user or terminal may have. Figure 9 illustrates a
message sequence of terminal mobility .

.
• pther Nodes •• ••
.......... '

c::::r···::.:."_,._,_.
director1 director2

Figure 8. Terminal Mobility in TAPAS

I I
1 Re tu rnResull(l2) 1

I
I

Figure 9. Message sequence of a general Terminal move

Mobility Support Framework in Adaptable Service Architecture 117

8. IMPLEMENTATION ISSUES AND
EXPERIENCES

The TAPAS architecture requires a support system for software
development, deployment, execution and management. Parts of this support
functionality have been implemented using JAVA RMI and Web
technologies as a means for service definition, update and discovery. Some
of the mobility features have been implemented, while others undergo
redefinition and partial implementation. Personal mobility has been
implemented and demonstrated in both fixed and wireless environments
[4,6]. To test the applicability of the mobility functionality support two
applications have been developed: Chat and File Transfer applications.
These applications comprise two plays each with a set of actor definitions
and graphical user interface. Several test cases have been constructed and
tested. Terminal mobility has been so far limited to the introduction of two
kinds of objects: MobilityManager and MobilityAgent, in order to track and
control terminals and their location change. The TAPAS platform support
has been extended to give support for limited capability, small user devices,
such as PDAs using J2ME. Dynamic connection of wireless terminals, along
side static Connections of nodes, is achieved using specific network routines,
for instance checking the status of a network socket or pinging a host.
Wireless terminals are characterized by their movement and varying quality
of connectivity. Therefore any loss of connection must be recovered, and
consequences must be taken into consideration, e.g. marking unconnected
actors and deleting their role-sessions. Also, for practical reasons, separate
configuration information on the operating wireless environment and user
behavior must be maintained to allow for efficient setting of such routines.
For instance, in a highly dynamic and wireless environment it is
advantageaus to check connection status more frequently than in more static
and less mobile conditions. There is already a solution for a domain of PDAs
with tiny downloadable applications operating by means of wireless LAN
connections. Basically the mobility schemes for Actor and Terminal, studied
in the previous sections, seem to be well fitted and properly integrated.
However, more vibrant situationsanddifferent environment settings need to
be tested for better exploitation of resources.

The present actor realization does only give a simplified Actor mobility,
which is a simplified pair of plug-out and plug-in procedures. Although this
seems to be adequate for wide range of services, new and more powerful
actor model is needed to experience the full power of Actor Mobility. A new
Actor model is being developed and formalized to cope with such need.
Additionally, there are certain issues need to be studied to improve the
overall Actor mobility. For example, the so-called Actor Proxy may be

118 Mazen Malek Shiaa

developed to simplify the actor discovery procedures, so that an actor sends
all requests to this proxy to try the last known addressed actors before
initiating that procedure upon failure of delivery. On the other hand, Actor
Replicas may be instantiated for certain type of actors, e.g. all actors running
on wireless terminals, to recover the behavior when loosing connections.

REFERENCES

1. Aagesen, F. A., Helvik, B.E., Wuvongse, V., Meling, H., Brrek, R. and Johansen, U.,
"Towards a Plug and Play Architecture for Telecommunications", Proc. 5'h IFIP Conf.
Intelligence in Networks (SmartNet'99), Bangkok, Thailand, .Kluwer Acadernic
Publisher, November 1999

2. Aagesen, F. A., Helvik, B. E., Anutariya, C., and Shiaa M. M., "On Adaptable
Networking" The 2003 International Conference on Information and Communication
Technologies (ICT 2003), April8-10, 2003

3. Shiaa M.M and Aagesen. F.A. "Mobility management in a Plug and Play Architecture",
Proc. IFIP 7'h Int'l Conf. Intelligence in Networks (SmartNet'2002), Saariselka, Finland,
April 2002 . .Kluwer Acadernic Publishers

4. Shiaa M.M and Aagesen. F.A. "Architectural Considerations for Personal Mobility in the
Wireless Internet", Proc. IFIP TC/6 Personal Wireless Communications (PWC'2002),
Singapore, October 2002 . .Kluwer Acadernic Publishers

5. Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E., "Support Specification
and Selection in TAPAS", Proc. IFIP WG6.7 Workshop on Adaptable Networks and
Teleservices, September 2002, Trondheim, Norway

6. Shiaa M.M. and Liljeback L.E., "User and Session Mobility in a Plug-and-Play Network
Architecture", Proc. IFIP WG6.7 Workshop onAdaptable Networks and Teleservices

7. Berndt H., Darmois E., Dupuy F., Inoue Y., Lapierre M., Minerva R., Minetti R.,
Mossotto C., Mulder H., Natarajan N., Sevcik M., and Yates M., "The TINA Book",
Prentice Hall Europe 1999.

8. Tzifa, Louta, Liossis, Kaltabani, ,Polydorou, Demestichas, and Anagnostou, "Open
Service Architecture with Personal Mobility Support and Accounting and Charging
Capabilities", European Multimedia, Embedded Systems and Electronic Commerce
Conference EMMSEC99, Stockholm, Sweden, 21-23 June 1999.

9. Massachusetts Institute ofTechnology, Active Networks,
http://www.sds.lcs.rnit.edu/activeware/ [Accessed May 2003]

10. Colombia University, Department of Computer Science, NetScript,
http://www.cs.columbia.edu/dcc/netscript/ [Accessed May 2003]

11. U.S. Department of Defence, Advanced Technology Office,
http://www .dama.rnil/ato/programs/activenetworks/actnet.htm [Accessed March 2003].

12. Tennenhouse D.L., Srnith J.M., Sincoskie D., Wetherall D.J and Minden G.J., "A Survey
of Active Network Research", IEEE Communications, Vol. 35, No 1, 1997.

13. The mM autonornic computing project
http://www.research.ibm.com/autonornic/ [Accessed May 2003]

14. Bieszczad A., Pagurek B. and White T., "Mobile Agents for Network Management",
IEEE Communications Surveys, Vol. 1, No. 1, 1998.

15. University of Maryland, Haitimore County, Lab for Advanced Information Technology,
KQML Web, http://www.cs.urnbc.edu/kgmll [Accessed May 2003]

16. Stanford University, Department of Computer Science, Knowledge Sharing Effort,
http://www-ksl.stanford.edu/knowledge-sharing/ [Accessed May 2003]

Mobility Support Framework in Adaptable Service Architecture 119

17. Reilly, David, "Mobile Agents- Process rnigration and its implications",
http://www.davidreilly.com/topics/software agents/mobile agents/ [Accessed May
2003]

18. Mouly M. and Pautet M., ''The GSM System for Mobile Communications", Mouly &
Pautet, 49, rue Louise Bruneau, F-91120 PALAISBAU- FRANCW, 1992.

19. G. Coulouris, J. Dollimore, T. Kindberg, "Distributed systems, concepts and design",
third edition, Addison-Wesley, 2001

	MOBILITY SUPPORT FRAMEWORK IN ADAPTABLE SERVICE ARCHITECTURE

	1. INTRODUCTION
	2. RELATED WORK
	3. TERMINOLOGY FRAMEWORK FOR MOBILITY

	3.1 Terminology Framework - The Concept
	3.2 Terminology Framework - The Definitions

	4. MOBILITY AND SERVICE MANAGEMENT
	5. PERSONAL MOBILITY
	6. ACTOR MOBILITY
	7. TERMINAL MOBILITY
	8. IMPLEMENTATION ISSUES AND EXPERIENCES

	REFERENCES

