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Abstract Optimization techniques are essential ingredients of reliability-oriented 
optimal designs of technical facilities . Although many technical aspects 
are not yet solved and the available spectrum of models and methods 
in structural reliability is still limited many practical problems can be 
solved. A Special one-level optimization is proposed for general cost­
benefit analysis and some technical aspects are discussed. However, 
focus is on some more critical issues, for example, "what is a reason­
able replacement strategy for structural facilities?", "how safe is safe 
enough?" and "how to discount Iosses of material, opportunity and hu­
man Jives?". An attempt has been made to give at least partial answers. 
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1. Introduction 

The theory of structural reliability has been developed to fair rnatu­
rity within the last 30 years . The inverse problern, i.e. how to deterrnine 
certain pararneters in the function describing the boundary between safe 
and failure states for given reliability, has been addressed only recently. 
It is a typical optirnization problern. Designing, erecting and rnaintaining 
structural facilities rnay be viewed as a decision problern where rnaxi­
rnurn benefit and least cost are sought and the reliability requirernents 
are fulfilled sirnultaneously. In what follows the basic forrnulations of the 
various aspects of the decision problern are outlined rnaking use of sorne 
rnore recent results in the engineering literature. The structure of a suit­
able objective function is first discussed. A renewal rnodel proposed as 
early as 1971 by Rosenblueth/Mendoza [42], further developed in [17], 
[40] and extended in [36], [18] is presented in sorne detail. Theory and 
rnethods of structural reliability are reviewed next where it is pointed 
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out that the calculation of suitable reliability measures is essentially an 
optimization problem. Focus is on the concepts of modern first- and 
second reliability methods [20]. The problem of the value of human life 
is then discussed in the context of modern health-related economic theo­
ries. Some remarks are made about appropriate discount rates. Finally, 
details of a special version of modern reliability-oriented optimization 
techniques based on work in [26] are outlined followed by an illustrative 
example. 

2. Optimal Structures 

A structure is optimal if the following objective is maximized: 

Z(p) = B(p)- C(p)- D(p) (1) 

Without loss of generality it is assumed that all quantities in eq. (1) 
can be measured in monetary units. B(p) is the benefit derived from the 
existence of the structure, C (p) is the cost of design and construction 
and D(p) is the cost in case of failure. p is the vector of all safety 
relevant parameters. Statistical decision theory dictates that expected 
values are to be taken. In the following it is assumed that B(p), C(p) 
and D (p) are differentiable in each component of p. The cost may differ 
for the different parties involved, e.g. the owner, the builder, the user 
and society. A structural facility makes sense only if Z(p) is positive for 
all parties involved within certain parameter ranges. The intersection of 
these ranges defines reasonable structures. 

The structure which eventually will fail after a long time will have to 
be optimized at the decision point, i.e. at time t = 0. Therefore, all cost 
need to be discounted. We assume a continuous discounting function 
o(t) = exp [-!'t] which is accurate enough for all practical purposes and 
where I' is the interest rate. 

It is useful to distinguish between two replacement strategies, one 
where the facility is given up after failure and one where the facil­
ity is systematically replaced after failure. Further we distinguish 
between structures which fail upon completion or never and struc­
tures which fail at a random point in time much later due to service 
loads, extreme external disturbances or deterioration. The first option 
implies that loads on the structure are time invariant. Reconstruction 
times are assumed to be negligibly short. At first sight there is no 
particular preference for either of the replacement strategies. For infras­
tructure facilities the second strategy is a natural strategy. Structures 
only used once, e.g. special auxiliary construction structures or boosters 
for space transport vehicles fall into the first category. 
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3. The Renewal Model 

3.1 Failure upon completion due to 
time-invariant loads 
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The objective function for a structure given up after failure at 
completion due to time-invariant loads (essentially dead weight) is 

Z(p) = B* Rt(P)- C(p)- HPt(P) = B*- C(p)- (B* + H)Pt(P) (2) 

Rt(P) is the reliability and Pt(P) = 1- Rt(P) the failure probability, 
respectively. H is the direct cost of failure including demolition and 
debris removal cost. For failure at completion and systematic re­
construction we have 

00 

Z(p) = B*- C(p)- (C(p) +H) L iPt(P)iR,(p) 
i=l 

= B*- C(p)- (C(p) +H) Pt(P) 
1- Pt(P)) 

(3) 

After failure one, of course, investigates its causes and redesigns the 
structure. However, we will assume that the first design was already 
optimal so that there is no reason to change the design rules leading to 
the same Pt(p). If each structural realization is independent of each 
other formula (3) holds. 

A certain ambiguity exists when assessing the benefit B* taken here 
and in the following as independent of p. If the intended time of use of 
the facility is t8 it is simply 

rt· 
B* = B{t8 ) = Jo b(t)<S(t)dt 

For constant benefit per time unit b(t) =bone determines 

B* = B(ts) = [1- exp [-'Yts]] = 
'Y t8 -+co 'Y 

3.2 Random Failure in Time 

(4) 

(5) 

Assume now random failure events in time. The time to the first event 
has distribution function F1 (t, p) with probability density JI(t, p). If the 
structure is given up after failure it is obviously 

rts 
B(ts) = Jo b(t)<S(t)RI(t,p)dt (6) 
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rt· 
D(ts) = lo fi(t, p)o(t)Hdt (7) 

and therefore 

rt· rt· 
Z(p) = lo b(t)o(t)R1(t,p)dt- C(p)- lo o(t)fi(t,p)Hdt (8) 

For t8 -+ oo and fib,p) = J000 e-'Ytfi(t,p)dt the Laplace transform of 
JI(t,p) it is instead 

Z(p) = !!_ [1- J;b,p)]- C(p)- Hfi(-y,p) 
'Y 

(9) 

For the more important case of systematic reconstruction we gen­
eralize our model slightly. Assume that the time to first failure has 
density JI(t) while all other times between failure are independent of 
each other and have density f(t), i.e. failures and subsequent renewals 
follow a modified renewal process [11]. This makes sense because extreme 
loading events usually are not controllable, i.e. the time origin lies some­
where between the zeroth and first event. The independence assumption 
is more critical. It implies that the structures are realized with indepen­
dent resistances at each renewal according to the same design rules and 
the loads on the structures are independent, at least asymptotically. For 
constant benefit per time unit b(t) = b we now derive by making use of 
the convolution theorem for Laplace transforms 

Z(p) = roo be--ytdt- C(p)- (C(p) +H) f roo e--yt fn(t, p)dt 
lo n=l lo 

= !!_- C(p)- (C(p) +H) fib, p) 
'Y 1- f*b, p) 

= !!_- C(p)- (C(p) + H)hib, p) (10) 
'Y 

where hi ( 'Y, p) is the Laplace transform of the renewal intensity h1 ( t, p). 
For regular renewal processes one replaces fib, p) by f*b, p). For the 
renewal intensity and its Laplace transform there is an important asymp­
totic result [11]: 

lim h(t, p) = lim -yh*b, p) = -(1 ) t-+oo -y-+0 m p (11) 

where m(p) is the mean of the renewal times. 
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If, in particular, the events follow a stationary Poisson process with 
intensity .A we have 

and 

1oo .A 
fi('y) = f*('y) = exp [-T't] .Aexp [-.At] dt = --, 

0 

h*('y) = 
T' 

(12) 

(13) 

This result is of great importance because structural failures should, in 
fact, be rare, independent events. Then, the Poisson intensity A can be 
replaced by the so-called outcrossing rate v+ to be described below -
even in the locally non-stationary case. Finally, if at an extreme load­
ing event (e.g. flood, wind storm, earthquake, explosion) failure occurs 
with probability PJ(P) and fi(t) and f(t), respectively, denote the den­
sities of the times between the loading events one obtains by similar 
considerations 

*( ) J*( )f* ( )P ( )R ( ))n-1 PJ(P)fi(T') 
91 f',P = 1 T' n-1 T' f P f P = 1- RJ(P)J*('y) (14) 

For the case treated in eq. (13) we have for stationary Poissonian load 
occurrences: 

h* ( ) _ gi ('y, p) _ Pf (p) .A ,, p - -
1 - g* ('y' p) T' 

(15) 

Unfortunately, Laplace transforms are rarely analytic. Taking Laplace 
transforms numerically requires some effort but taking the inverse Laplace 
transform must simply be considered as an numerically ill-posed prob­
lem. Then, however, one always can resort to the asymptotic result 
which can be shown to be accurate enough for all practical purposes. 

The foregoing results can be generalized to cover multiple mode fail­
ure, loss of serviceability, obsolescence of the facility and inspection and 
maintenance. Also, the case of non-constant benefit, a case of obsoles­
cence, or non-constant damage has been addressed. Further develop­
ments are under way. 

4. Computation of Failure Probabilities and 
Failure Rates 

4.1 Time-invariant Reliabilities 
The simplest problem of computing failure probabilities is given as a 

volume integral 

PJ(P) = P(F) = { dFx(x, p) = { fx(x, p)dx (16) 
jF(p) j F(p) 
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where the failure event is F(p) = {h(x, p) ::::; 0} and the random vec­
tor X = (X1, X2, ... , Xn)T has joint distribution function Fx(x). Since 
n usually is large and Pf (p) is small serious numerical difficulties oc­
cur if standard methods of numerical integration are applied. However, 
if it is assumed that the density fx (x, p) of Fx (x) exists everywhere 
and h( x, p) is twice differentiable, then, the problem of computing fail­
ure probabilities can be converted into a problem of optimization and 
some simple algebra. For convenience, a probability preserving dis­
tribution transformation U = r-1(X) is first applied [19]. Making 
use of Laplace integration methods [4] one can then show that with 
h(x, p) = h(T(u),p) = g(u, p) [5], [20] 

PJ(P) = { fx(x, p)dx = { rpu(u, p)du 
Jh(x,p)<O }g(u,p)<O 

n-1 

""<P( -{3) II (1 - {3Ki)-1/2 <P( -{3) (17) 
i=l 

for 1 < f3 oo with 

f3 = llu*ll = min{u} for {u: g(u,p)::::; 0}, (18) 

rpu(u) the multinormal density, <P(.) the one-dimensional normal in­
tegral, g(O,p) > 0 and Ki the main curvatures of the failure surface 
8F = {g(u,p) =0}. Of course, it is assumed that a unique "critical" 
point u* exists but methods have been devised to also locate and con­
sider appropriately multiple critical points. In line two the asymptotic 
result is given denoted by second order since the Hessian of g(u, p) = 0 
is involved. The last result represents a first-order result correspond­
ing to a linearization of g(u, p) in u* already pointed out by [16]. Very 
frequently this is sufficiently accurate in practical applications. 

4.2 Time-variant Reliabilities 
Much more difficult is the computation of time-variant reliabilities. 

Here, the question is not that the system is in an adverse state at some 
arbitrary point in time but that it enters it for the first time given that 
it was initially at time t = 0 in a safe state. The problem is denoted by 
first passage problem in the engineering literature. But exact results for 
distributions of first passage times are almost inexistent. However, good 
approximations can be obtained by the so-called outcrossing approach 
[13]. The outcrossing rate is defined by 

v+(T) = lim ! P(N(T, T +b.)= 1) (19) 
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or for the original vector process 

v+(T) = lim ! P1({X(T) E F} n {X(T + E F}) (20) 

One easily sees that the definition of the outcrossing rate coincides for­
mally with the definition of the renewal intensity. The counting process 
N(.) of outcrossings must be a regular process [12) so that the mean 
value of outcrossings in [0, t] is given by 

(21) 

One can derive an important upper bound. Failure occurs either if 
X(O) E V or N(t) > 0. Therefore [28) 

Pj(t) = 1- P(X(T) E F) for all T E [0, t] 
= P( {X(O) E F} U {N(t) > 0}) 
= P(X(O) E F)+ P(N(t) > 0)- P( {X(O) E F} n {N(t) > 0}) 
:S P(X(O) E F) + P(N(t) > 0) 
:S P(X(O) E V) + E[N(t)] (22) 

If the original process is sufficiently mixing one can derive the asymptotic 
result [13): 

P1(t)"' 1- exp [-E[N(t)]] (23) 

justifying the remarks below eq. (13). A lower bound can also be given. 
It is less useful. 

Consider a stationary vectorial rectangular wave renewal process each 
component having renewal rate Ai and amplitude distribution function 
Fi(x). The amplitudes Xi are independent. Regularity assures that only 
one component has a renewal in a small time interval with probability 
Ai Then [9) 

n 

= P(U{renewal in n {Xi E F} n {X{ E F}) 
i=l 

n 

>.iP({Xi E F} n {X{ E F}) 
i=l 

n 

= L >.i[P(X{ E F) - P( {Xi E F)} n {X{ E F} )] (24) 
i=l 

Xi denotes the process X before and X{the process after a jump 
of the i-th component. If the components are standard normally dis­
tributed and the failure domain is a half-space F = {aT u + f3 ::; 0} one 
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x-1 

g(x)>O 

Figure 1. Outcrossings of a vectorial rectangular wave renewal process 

determines 
n 

i=l 
n n 

(25) 
i=l i=l 

where Pi = 1- at is the correlation coefficient of the process before and 
after a jump and <1> 2 (., .; .) the bivariate normal integral. For general 
non-linear failure surfaces one can show that asymptotically [8] 

n n-1 

v+(F)=L Ai<I>(-t3)IJ(l-t3""i)-l/2;1<f3--+oo (26) 
i=l i=l 

with t3 = ffu*fl = min{ffuff} for g(u) :S 0 and ""i the main curvatures 
in the solution point u*. This corresponds to the result in eq. (17). 
The same optimization problem as in the time-invariant case has to be 
solved. Rectangular wave renewal processes are used to model life loads, 
sea states, traffic loads, etc .. 

For stationary vector processes with differentiable sample paths it is 
useful to standardize the original process X(t) and its derivative (in 
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mean square) process X(t) = ftX(t) such that E [U(t)] = E [u(t) J = 
O,R(O) =I where R(r) = E [u(O)U(r)TJ is the matrix of correlation 

functions and T = Iii - t2l· A matrix of cross correlation functions be­

tween U(t) and U(t), R(r) = E [u(O)U(rf] , as well as of the deriva-

tive process R(r) = E [u(O)U(rf] also exists. The general outcrossing 

rate is defined by [38], [3] 

v+(t) = 

. P( {U(t)E a(8F(t))} n { UN(t) > 8F(t)} in [r:::; t:::; T + 
hm 

AT-+0 
(27) 

where UN(t) = nT(u,t)U(t) the projection of U(t) on the normal 
n(u,t) = -o:(u,t) of 8F(t) in (u,t). a(8F(t)) is a thin layer around 
8F(t) with thickness (uN(t)- Hence, it is: 

P( {U(t) E a(8F(t))} n { UN(t) > 8F(t)} in [r:::; t:::; T + 

= { { l.pn+I(u,uN,t)duduN 
j JuN(t)>8F(t) 

= { ( . (uN- oF(t))c.pn+I(u,uN, t)ds(u)duN (28) 
laF(t) luN(t)>8F(t) 

In the stationary case one finds with oF=: g(u) = 0 

v+(oF) = { (XJ UNI.pn+I(u,uN)duNds(u) 
laFlo 

= { {oo uNt.pi(uNIV = u)c.pn(u)duNds(u) 
laFlo 

= laF E(f [ UNIU = u] c.pn(u)ds(u) 

= { E(f [uNIU = u] t.pn-I(ii,p(ii))T(ii)dii (29) 
}Rn-1 

where Un = p(ii) = g-1(ui,u2,···,un-d a parameterization of the sur­
face and T(ii) the corresponding transformation determinant. 

Explicit results are available only for special forms of the failure sur­
face. For example, if it is a hyperplane 
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x-1 

g(x)>O 

-x-2 

Figure 2. Outcrossing of a vectorial differentiable process 

av = {t a.iui + f3 = o} (30) 

the outcrossing rate of a stationary standardized Gaussian process is 
[51): 

[ . ] y;,N v+(aF) = E UN f(8F) = y"iicp((3) (31) 

with r;,'jy = a.TR(r)a. .. An asymptotic result for general non-linear sur­
faces has been derived in [7): 

with 
w5 = n(u*f [ii(O) + R(OfG(u*)R(O) J n(u*) 

provided that g(O) > 0 and with R(O) = E [u(O)U(O)TJ and 

G( *) {'r'7 ( *)-1 82g(u*) . . 1 } 
u = v g u 8ui8Uj ; z, J = ' ... 'n 

(32) 
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Here again we have f3 = llu*ll = min{llull} for g(u) and l'i.i are 
the main curvatures of 8F in the solution point u*. Differentiable pro­
cesses are used to model the turbulent natural wind, wind waves and 
earthquake excitations but also the output of dynamical systems. 

Exact or approximate results have also been obtained for non-gaussian 
rectangular wave processes with or without correlated components (34], 
certain non-gaussian differentiable processes [14] and a variety of non­
stationarities of the processes or the failure surfaces [35]. If one is not 
satisfied with the (asymptotic) approximations one can apply impor­
tance sampling methods in order to arrive at an arbitrarily exact result. 
Due to regularity of the crossings one can combine rectangular wave 
and differentiable processes. The processes can be intermittent [46], (22]. 
This allows the modelling of disturbances of short to very short duration 
(earthquakes, explosions). Such models have also been extended to deal 
with occurrence clustering [55], [45]. 

It is remarkable that the "critical" point u*, i.e. the magnitude of (3, 
plays an important role in all cases as in the time-invariant case. It must 
be found by a suitable algorithm. Sequential quadratic programming 
algorithms tuned to the special problem of interest turned out to solve 
the optimization problem reliably and efficiently in practical applications 
[1 ]. 

However, it must be mentioned that in time-variant reliability more 
general models, e.g. renewal models with non-rectangular wave shapes, 
filtered Poisson process models, etc. can be easily formulated but hardly 
made practical from a computational point of view. 

5. The Value of Human Life and Limb in the 
Public Interest 

Two questions remain: a. Is it admissible to optimize benefits and 
cost if human lives are endangered and b. can we discount the "cost 
of human lives"? First of all, modern approaches to these questions do 
not speak of a monetary value of the human life but rather speak of the 
cost to save lives.. Secondly, any further argumentation must be within 
the framework of our moral and ethical principles as laid down in our 
constitutions and elsewhere. We quote as an example a few articles from 
the BASIC LAW of the Federal Republic of Germany: 

• Article 2: {1) Everyone has the right to the free development of his 
personality ... {2) Everyone has the right to life and to inviolability 
of his person 
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• Article 3: (1) All persons are equal before the law. (2) Men and 
women have equal rights. (3) No one may be prejudiced or favored 
because of his sex, his parentage, his race, his language, his home­
land and origin, his faith or his religious or political opinions. 

Similar principles are found in all modern, democratic constitutions. 
But H. D. Thoreau (1817-1862 p.Chr.) realistically says about the value 
of human life: " The cost of a thing is the amount of what I will call life 
which is required to be exchanged for it, immediately or in the long run . 
... [29]. 

Can these value fixings be transferred to engineering acceptability cri­
teria? This is possible when starting from certain social indicators such 
as life expectancy, gross national product (GNP), state of health care, 
etc .. Life expectancy e is the area under the survivor curve S(a) as a 
function of age a, i.e. e = J0

00 S(a)da. A suitable measure for the qual­
ity of life is the GNP per capita, despite of some moral indignation at 
first sight. The GNP is created by labor and capital (stored labor). It 
provides the infrastructure of a country, its social structure, its cultural 
and educational offers, its ecological conditions among others but also 
the means for the individual enjoyment of life by consumption. Most im­
portantly in our context, it creates the possibilities to "buy" additional 
life years through better medical care, improved safety in road traffic, 
more safety in or around building facilities or from hazardous technical 
activities, etc.. Safety of buildings via building codes is an investment 
into saving lives. The investments into structural safety must be effi­
cient, however. Otherwise investments into other life saving activities 
are preferable. In all further considerations only about 60% of the GNP, 
i.e. g ::::::; 0.6 GNP which is the part available for private use, are taken 
into account. 

Denote by c(T) > 0 the consumption rate at age T and by u(c(T)) 
the utility derived from consumption. Individuals tend to undervalue 
a prospect of future consumption as compared to that of present con­
sumption. This is taken into account by some discounting. The life time 
utility for a person at age a until she/he attains age t > a then is 

U(a,t) = lt u[c(T)]exp [-17 
p(O)de] dT 

= lt u [c(T)] exp [-p(T- a)] dT (33) 

for p( 0) = p. It is assumed that consumption is not delayed, i.e. incomes 
are not transformed into bequests. p should be conceptually distin­
guished from a financial interest rate and is referred to as rate of time 
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preference of consumption. A rate p > 0 has been interpreted as the 
effect of human impatience, myopia, egoism, lack of telescopic faculty, 
etc.. Exponential population growth with rate n can be considered by 
replacing p by p - n taking into account that families are by a factor 
exp[nt]larger at a later timet> 0. The correction p > n appears always 
necessary, simply because future generations are expected to be larger 
and wealthier. p is reported to be between 1 and 3% for health related 
investments, with tendency to lower values [53]. Empirical estimates 
reflecting pure consumption behavior vary considerably but are in part 
significantly larger [25]. 

The expected remaining present value life time utility at age a {con­
ditional on having survived until a) then is (see [2] [43] [39] [15]) 

1au j(t) 
L(a) = E [U(a)] = a f(a) U(a, t)dt 

1au j(t) 1t 
= a f(a) a u [c{r)] exp [-(p- n)(r- a)] drdt 

1 1au = f(a) a u [c(t)] exp [-(p- n)(t- a)] f(t)dt 

=u[c]ed(a,p,n) {34) 

where j(t)dt = (J.L{r)exp [- J.L(r)dr]) dt is the probability of dying 

between age t and t + dt computed from life tables. The expression 
in the third line is obtained upon integration by parts. Also, a con­
stant consumption rate c independent oft has been introduced which 
can be shown to be optimal under perfect market conditions [43]. The 
"discounted" life expectancy ed{ a, p, n) at age a can be computed from 

exp((p n)a) 1au [ rt ] 
ed(a,p,n)= f(a) a exp- Jo (J.L(r)+(p-n))dr dt {35) 

"Discounting" affects ed(a, p, n) primarily when J.L( r) is small (i.e. at 
young age) while it has little effect for larger J.L{r) at higher ages. It is 
important to recognize that "discounting" by p is initially with respect 
to u [c{r)] but is formally included in the life expectancy term. 

For u [c] we select a power function 

cq - 1 
u[c] = -­

q 
{36) 

with 0 :::; q :::; 1, implying constant relative risk aversion according to 
Arrow-Pratt. The form of eq. {36) reflects the reasonable assumption 
that marginal utility = cq-l decays with consumption c. u [c] is 
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a concave function since > 0 for q 0 and < 0 for q < 1. 
The numerical value has been chosen to be about 0.2 (see [43] [15] and 
elsewhere as well as table 2 below). It may also be derived from from the 
work-leisure optimization principle as outlined in [29] where q = 
and w the average fraction of e devoted to (paid) work (see [37] for 
estimates derived from this principle). This magnitude has also been 
verified empirically (see, for example, [25]). For simplicity, we also take 

Shepard/Zeckhauser [43] now define the "value of a statistical life" at 
age a by converting eq. (34) into monetary units in dividing it by the 
marginal utility = u' [c(t)]: 

ru u [c(t)] f(t) 
VSL(a) = la u' [c{t)] exp [-(p- n)(t- a)t] £(a) dt 

u[c] 1 ru 
= u' [c] £(a) la exp [-(p- n)(t- a)] f(t)dt 

g 1 ru 
= q £(a) la exp [-(p- n)(t- a)] f(t)dt 

= !J..ed(a, p, n) 
q 

(37) 

because = The "willingness-to-pay" has been defined as 

WTP(a) = VSL(a) dm (38) 

In analogy to Pandey/Nathwani [31], and here we differ from the related 
economics literature, these quantities are averaged over the age distribu­
tion h(a, n) in a stable population in order to take proper account of the 
composition of the population exposed to hazards in and from technical 
objects. One obtains the "societal value of a statistical life" 

with 

SVSL= !J..p; 
q 

E = foau ed(a,p,n)h(a,n)da 

and the "societal willingness-to-pay" as: 

SWTP = SVSL dm 

{39) 

{40) 

{41) 

For p = 0 the averaged "discounted" life expectancy E is a quantity 
which is about 60% of e and considerably less than that for larger p. In 
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this purely economic consideration it appears appropriate to define also 
the undiscounted average lost earnings in case of death, i.e. the so-called 
"human capital": 

{au 
HC = lo g(e- a)h(a, n)da (42) 

Table 1 shows the SV S L for some selected countries as a function of p 
indicating the importance of a realistic assessment of p. 

I France I Germany I Japan I Russia I USA 
e 78 78 80 66 77 
n 0.37% 0.27% 0.17% -0.35 0.90% 
g 14660 14460 15960 5440 22030 
q 0.174 0.167 0.208 0.188 0.222 

0% 4.05 3.96 3.46 0.93 5.83 
1% 3.05 3.00 2.62 0.74 4.28 

p 2% 2.38 2.36 2.06 0.61 3.27 
3% 1.92 1.92 1.67 0.51 2.59 
4% 1.59 1.59 1.39 0.54 2.11 

Table 1: SV SL 106 in PPP US$ for some countries for various p (from 
recent complete life tables provided by national statistical offices) 

It can reasonably be assumed that the life risk in and from technical 
facilities is uniformly distributed over the age and sex of those affected. 
Also, it is assumed that everybody uses such facilities and, therefore, is 
exposed to possible fatal accidents. The total cost of a safety related 
regulation per member of the group and year is SWTP = -dCy(p) = 
-1 dCY,i(P) where r is the total number of objects under discus­
sion, each with incremental cost dCY,i and N is the group size. For 
simplicity, the design parameter is temporarily assumed to be a scalar. 
This gives: 

-dCy(p) + SVSL dm = 0 (43) 

Let dm be proportional to the mean failure rate dh(p), i.e. it is assumed 
that the process of failures and renewals is already in a stationary state 
that is for t --+ oo. Rearrangement yields 

where 

dCy(p) = -kSVSL 
dh(p) 

dm = kdh(p),O < k::::; 1 

(44) 

(45) 
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the proportionality constant k relating the changes in mortality to changes 
in the failure rate. Note that for any reasonable risk reducing interven­
tion there is necessarily dh(p) < 0. 

The criterion eq. ( 44) is derived for safety-related regulations for a 
larger group in a society or the entire society. Can it also be applied 
to individual technical projects? SV SL as well as HC were related to 
one anonymous person. For a specific project it makes sense to apply 
criterion (44) to the whole group exposed. Therefore, the "life saving 
cost" of a technical project with N F potential fatalities is: 

(46) 

The monetary losses in case offailure are decomposed into H = H M+ H F 
in formulations of the type eq. (10) with HM the losses not related to 
human life and limb. 

Criterion ( 44) changes accordingly into: 

dCy(p) = -SVSLkN 
dh(p) F 

(47) 

All quantities in eq. (47) are related to one year. For a particular 
technical project all design and construction cost, denoted by dC(p), 
must be raised at the decision point t = 0. The yearly cost must be 
replaced by the erection cost dC (p) at t = 0 on the left hand side of 
eq. ( 4 7) and discounting is necessary. The method of discounting is 
the same as for discharging an annuity. If the public is involved dCy (p) 
may be interpreted as cost of societal financing of dC (p). The interest 
rate to be used must then be a societal interest rate to be discussed 
below. Otherwise the interest rate is the market rate. gin SVSL also 
grows approximately exponentially with rate (, the rate of economic 
growth in a country. It can be taken into account by discounting. The 
acceptability criterion for individual technical projects then is (discount 
factor for discounted erection cost moved to the right hand side): 

dC(p) = _ exp [lt]-1 SVSLkNF (exp [(t] 
dh(p) 1exp[1t] exp[(t]-1 

--+ -SVSLkNF£_ (48) 
t--H:X) I 

It must be mentioned that a similar very convincing consideration about 
the necessary effort to reduce the risk for human life from technical 
objects has been given by Nathwani et al. [29] and in [31] producing 
estimates for the equivalent of the constant SV SL very close to those 
given in table 1. The estimates for SVSL are in good agreement with 



Risk Control and Optimization for Structural Facilities 159 

several other estimates in the literature (see, for example, [49), [43); [52); 
[24) and many others) which are between 1000000 and 10000000 PPP 
US$ with a clustering around 5000000 PPP US$. 

6. Remarks about Interest Rates 
A cost-benefit optimization must use interest rates. Considering the 

time horizon of some 20 to more than 100 years for most structural 
facilities but also for many risky industrial installations it is clear that 
average interest rates net of in/ deflation must be chosen. If the option 
with systematic reconstruction is chosen one immediately sees from eq. 
(14) that the interest rate must be non-zero. For the same equation we 
see that there is a maximum interest rate 'Ymax for which Z(p) becomes 
negative for any p 

m(p)b- (C(p) +H) 
'Ymax = m(p)C(p) (49) 

and, therefore, 0 < 'Y ::; 'Ymax· Also m(p)b > C(p) + H must be valid 
for any reasonable project which further implies that bh > 1. Very 
small interest rates, on the other hand, cause benefit and damage cost 
to dominate over the erection cost. Then, in the limit 

Z(p) = b- (C(p) +H) 
m(p) 

(50) 

where the interest rate vanishes. Erection cost are normally weakly 
increasing in the components of p but m(p) grows significantly with p. 
Consequently, the optimum is reached for m(p) -t oo, that is for perfect 
safety which is not attainable in practice. In other words the interest rate 
must be distinctly different from zero. Otherwise, the different parties 
involved in the project may use interest rates taken from the financial 
market at the decision point t = 0. 

The cost for saving life years also enters into the objective function 
and with it the question of discounting those cost also arises. At first 
sight this is not in agreement with our moral value system. However, 
a number of studies summarized in [32) and [23) express a rather clear 
opinion based on ethical and economical arguments. The cost for saving 
life years must be discounted at the same rate as other investments, 
especially in view of the fact that our present value system should be 
maintained also for future generations. Otherwise serious inconsistencies 
cannot be avoided. 

What should then the discount rate for public investments into life 
saving projects be? A first estimate could be based on the long term 
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growth rate of the GNP. In most developed, industrial countries this 
was a little more than 2% over the last 50 years. The United Nations 
Human Development Report 2000 gives values between 1.2 and 1.9 % 
for industrialized countries during 1975-1998. If one extends the consid­
eration to the last 120 years one finds an average growth rate ( of about 
1.8% (see table 1). Using data in [47], [27] and the UN Human Devel­
opment Report 2000 [50] the following table has been compiled from a 
more detailed table. 

II 185o II 1998 I I 
I Ctry. II GNP II GNP I g I e I n% I q I p% I (% I 1% I SV SL 

UK 3109 23500 15140 77 0.23 0.19 0.5 1.3 1.3 3.1-10° 
us 1886 34260 22030 78 0.90 0.22 1.3 1.8 2.3 3.9·106 

F 1840 24470 14660 78 0.37 0.17 0.7 1.9 1.9 3.3·106 

s 1394 23770 12620 79 0.02 0.18 0.3 1.9 1.6 2.7·106 

D 1400 25010 14460 77 0.27 0.17 0.6 1.9 1.9 3.3·106 

AUS 4027 25370 15750 80 0.99 0.21 0.7 1.2 1.9 3.3·106 

J 969 26460 15960 80 0.17 0.20 1.2 2.7 2.3 2.8·106 

Table 1: Social indices for some developed industrial countries (all 
monetary values are in US$, 1998) 

It is noted that economic growth the first half of the last century was 
substantially below average while the second half was well above average. 
The above considerations can at least define the range of interest rates 
to be used in long term public investments into life saving operations. 
For the discount rates to be used in long term public investments the 
growth theory established by Solow [48] is applied, i.e. 

n + ((1- E) < p < "( 'Ymax < n + E( (51) 

where E = 1-q the so-called elasticity of marginal consumption (income). 
There is much debate about interest rates for long term public invest­
ments, especially if sustainability aspects are concerned. But there is an 
important mathematical result which may guide our choice. Weitzman 
[54] and others showed that the far-distant future should be discounted 
at the lowest possible rate > 0 if there are different possible scenarios 
each with a given probability of being true. 

7. A One-Level Optimization for Structural 
Components 

Let us now turn to the technical aspects of optimization. Cost-benefit 
optimization according to eq. (3) or (10) in principle requires two levels 
of optimization, one to minimize cost and the other to solve the reliability 
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of optimization, one to minimize cost and the other to solve the reliability 
problem. However, it is possible to reduce it to one level by adding the 
Kuhn-Tucker condition of the reliability problem to the cost optimization 
task provided that the reliability task is formulated in the transformed 
standard space. For the task in eq. (3) we have 

Maximize: Z(p) = B*- C(p)- (C(p) + HM + HF) · 
Subject to: 

g(u,p) = 0 
uiiiVug(u,p)ll + Vug(u,p)illull = 0; i = 1, ... ,n -1 
hk(P) ::;O,k=1, ... ,q 
\?pC(p) 

(52) 
where the first and second condition represent the Kuhn-Tucker condi­
tion for a valid "critical" point, the third condition some restrictions on 
the parameter vector p and the forth condition the human life crite-

rion in eq. (48). Frequently, the term in the objective can be 

replaced by P1 (p). The failure probability is 

PJ(P) <P( -,B(p))CsoRM (53) 

and we have to require that llull # 0 and IIVug(u,p)ll # 0. It is assumed 
that the second-order correction CsoRM is nearly independent of p. In 
fact, at the expense of some more numerical effort, one can use any 
update of the first-order result <P(-,B(p)), for example an update by 
importance sampling provided that the result of importance sampling 
is formulated as a correction factor to the first-order result. \7 pC (p) 
usually must be determined numerically. 

For time-variant problems as in eq. (10) one finds the outcrossing rate 
for a combination of rectangular wave and differentiable processes as: 

(54) 

The optimization task is 
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Minimize: Z(p) = C(p)- (C(p) + HM + Hp) · 

Subject to: 
g(u,p) = 0 

uill\7ug(u,p)ll + \7ug(u,p)illull = 0; i = 1, ... ,n -1 

hk(P) O,k = 1, ... ,q 

\7pC(p);::: 
(55a) 

For the case in eq. ( 15) one replaces v+ by >.P (p) and \7 Pv+ (p) by 

\7 pAPJ(p). 
The optimization tasks in eq. (52) or in (55a) are conveniently per­

formed by suitable SQP-algorithms (for example, [44], [33]). For both 
formulations eq. (52) and (55a), respectively, gradient-based optimiz­
ers require the gradients of the objective as well as the gradients of all 
constraints. This means that second derivatives are required in order to 
calculate the gradient of second condition as well as of the human value 
criterion, in particular, the entries into the Hessian of g(u,p). This 
is also the most serious objection against this form of a one level ap­
proach. One can, however, proceed iteratively for well-behaved failure 
surfaces. Initially, one assumes a linear or linearized failure surface and 

sets = 1. Then, all entries are zero. After a first solution 

of problem (52) or (55a) one determines the Hessian once in the solution 

point (u*(l)' p(l)) and with it also calculates Problems (52) or 
(55a) are then solved a second time with fixed Hessian G(u*<1l, p<1l) and 
so forth. This schemes is repeated until convergence is reached which 
usually is after a few steps. From a practical point of view it is fre­
quently sufficient to use first-order reliability results and no iteration is 
necessary. 

In closing this section it is important to note that the optimization 
tasks as formulated in eq. (52) and (55a) are among the easiest one 
can think of. In practice safety related design decisions additionally 
include changes in the lay-out, in the structural system or in the main­
tenance strategy. Optimization is over discrete sets of design alterna­
tives. Clearly, this is more difficult and very little is known how to do it 
formally except in a heuristic, empirical manner in small dimensions. 

8. Example 

As an example we take a rather simple case of a system where failure 
is defined if the random resistance or capacity is exceeded by the random 
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demand, i.e. the failure event is defined as F = {R- S(t) 0}. The 
demand is modelled as a one-dimensional, stationary marked Poissonian 
renewal process of disturbances (earthquakes, wind storms, explosions, 
etc.) with stationary renewal rate A and random, independent sizes 
of the disturbances Si, i = 1, 2, ..... Random resistance is log-normally 
distributed with mean p and a coefficient of variation VR. The distur­
bances are also independently log-normally distributed with mean equal 
to unity and coefficient of variation Vs. A disturbance causes failure with 
probability: 

(56) 

Thus, the failure rate is APJ (p) and the Laplace transform of the renewal 
density is: 

h*(r,p) = APJ(P) 
'Y 

(57) 

An appropriate objective function given systematic reconstruction then 
is 

Z(p) = _b _ _ ( 1 + C1pa) _ ( 1 + C1pa + HM + Hp) APJ(P) (5S) 
Co "(Co Co Co Co Co 'Y 

which is to be maximized. The criterion (62) has the form: 

d ( cl a) ( d - 1 + -p -kSVSLNp-- (APJ(P)) 
dp Co 'Y dp 

(59) 

Some more or less realistic, typical parameter assumptions are: Co = 
106 , C1 = 104 , a= 1.25, HM = 3 ·Co, VR = 0.2, Vs = 0.3, and A= 1 
[1/year]. The socio-economic demographic data are e = 77, GDP = 
25000, g = 15000, w = 0.15,Np = lOO,k = 0.1 so that Hp = HC 
kNp = 5.8 · 106 and SVSLkNp = 3.3 · 107 . The value of Np is chosen 
relatively large for demonstration purposes. Monetary values are in US$. 
Optimization is performed for the public and for the owner separately. 

For the public bs = 0.02Co and 'YS = 0.0185 are chosen. Also, we 
take _i_ = 1 for simplicity. In particular, benefit and discount rate are IS 
chosen such that the public does not make direct profit from an economic 
activity of its members. Optimization including the cost Hp gives Ps = 
4.35, the corresponding failure rate is 1.2 ·10-5 . Criterion ( 48) is already 
fulfilled for pz = 3.48 corresponding to a yearly failure rate of 1.6 · w-4 

but Z s (pz) /Co being already negative. It is interesting to see that in this 
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case the public can do better in adopting the optimal solution rather 
than just realizing the facility at its acceptability limit as pointed out 
already earlier. 

The owner uses some typical values of bo = 0.07Co and 'YO= 0.05 and 
does or does not include life saving cost. If he includes life saving cost the 
objective function is shifted to the right (dashed line). The calculations 
yield Po = 3. 76 and Po = 4.03, respectively, and the corresponding 
failure rates are 7.1 · w-5 and 3.2 · w-5• The acceptability criterion 
limits the owner's region for reasonable designs. Inclusion of life saving 
cost has relatively little influence on the position of the optimum. 
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Figure 3. Objective function of owner and society 

It is noted that the stochastic model and the variability of capacity 
and demand also play an important role for the magnitude and location 
of the optimum as well as the acceptability limit. The specific marginal 
cost (rate of change) of a safety measure and its effect on a reduction of 
the failure rate are equally important. 

9. Conclusions 
Optimization techniques are essential ingredients of reliability-oriented 

optimal designs of technical facilities. Although many technical aspects 
are not yet solved and the available spectrum of models and methods 
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in structural reliability is still limited many practical problems can be 
solved. A special one-level optimization is proposed for general cost­
benefit analysis. In this paper, however, focus is on some more critical 
issues, for example, "what is a reasonable replacement strategy for struc­
tural facilities?", "how safe is safe enough?" and "how to discount losses 
of material, opportunity and human lives?''. An attempt has been made 
to give at least partial answers. Only if those issues have an answer 
overall optimization of technical facilities with respect to cost makes 
sense. 
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