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Abstract This paper is an extended abstract of a survey talk given at the IFIP 
TC7 Conference in Trier, July 2001. We consider linear and nonlinear 
semidefinite programming problems and concentrate on selected aspects 
that are relevant for understanding dual barrier methods. The paper is 
aimed at graduate students to highlight some issues regarding smooth­
ness, regularity, and computational complexity without going into de­
tails. 
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1. Introduction 

In this paper we consider nonlinear semidefinite programming prob­
lems (NLSDP's) and concentrate on some aspects relevant to a dual 
barrier method. Other approaches for solving NLSDP's are the program 
package LOQO of Vanderbei (1997) based on a primal-dual approach, 
or recent work of Vanderbei et.al. (2000). Also the work of Kocvara 
and Stingl (2001) solving large scale semidefinite programs based on a 
modified barrier approach seems very promising. The modified barrier 
approach does not require the barrier parameter to converge to zero and 
may thus overcome some of the problems related to ill-conditioning in 
traditional interior methods. Optimality conditions for NLSDP's are 
considered in Forsgren (2000); Shapiro and Scheinberg (2000). 

Some problems considered in this paper do not satisfy any constraint 
qualification. For such problems primal-dual methods do not appear to 
be suitable. Another question addressed in this paper is the question 
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of how to avoid "poor" local minimizers, a question that may be even 
more difficult to investigate for primal dual methods than it is for barrier 
methods. 

1.1 Notation 
The following notation has become standard in the literature on linear 

semidefinite programs. The space of symmetric n x n-matrices is denoted 
by sn. The inequality 

X tO, (X>- 0) 

is used to indicate that X is a symmetric positive semidefinite (positive 
definite) n x n-matrix. By 

( c, X) = c. X = trace( cT X) = L Ci,jXi,j 
i,j 

we denote the standard scalar product on the space of n x n-matrices 
inducing the Frobenius norm, 

X•X= IIXII}. 
For given symmetric matrices A(i) we define a linear map A from sn to 
JRm by 

( 
A(l) • X) 

A(X) = : . 
A(m) • X 

The adjoint operator A* satisfying 

(A*(y), X) = yT A(X) 

is given by 
m 

A*(y) = LYiA(i). 
i=l 

2. Linear semidefinite programs 
In this section we consider a pair of primal and dual {linear) semidef­

inite programs in standard form, 

(P) minimize C • X s.t. A(X) = b, X t 0 

and 

(D) maximize bT y s.t. A*(y) + S = C, S t 0. 
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When using the notion "semidefinite program" (SDP) we always refer 
to a linear semidefinite program; nonlinear SDP's will be denoted by 
NLSDP. The data for (P) and (D) are a linear map A, a vector bE JRm 
and a matrix C E sn. We use the convention that the infimum of (P) 
is +oo whenever (P) does not have any feasible solution X, and the 
supremum of (D) is -oo if the feasible set of (D) is empty. If there 
exists a matrix X >- 0 (not just X t 0) that is feasible for (P) then 
we call X "strictly" feasible for (P) and say that (P) satisfies Slaters 
condition. Likewise, if there exists a matrix S >- 0 that is feasible for 
(D) we call (D) strictly feasible. If Slaters condition is satisfied by (P) 
or by (D) then the optimal values of (P) and (D) coincide, and if both 
problems satisfy Slaters condition, then the optimal solutions xopt and 
yopt' sopt of both problems exist and satisfy the equation 

xopt sopt = 0. (1) 

Conversely, any pair X andy, S of feasible points for (P) and (D) satis­
fying (1) is optimal for both problems, see e.g. Shapiro and Scheinberg 
(2000). Condition (1) implies that there exists a unitary matrix U that 
simultaneously diagonalizes xopt and sopt. Moreover, the eigenvalues of 
xopt and sopt to the same eigenvector are complementary. 

The two main applications of semidefinite programs are relaxations for 
combinatorial optimization problems, see e.g. Alizadeh (1991); Helmberg 
et.al. (1996); Goemans and Williamson (1994), and semidefinite pro­
grams arising from Lyapunov functions or from the positive real lemma 
in control theory, see e.g. Boyd et.al. (1994); Leibfritz (2001); Scherer 
(1999). Next, we give two simple examples for such applications. 

2.1 A first simple example 
In our first example we consider the differential equation 

x(t) = Ax(t) 

for some vector function x : lR --+ JRn. By definition, this system is called 
stable if for all initial values x(o) = x(O) the solutions x(t) converge to 
zero when t --+ oo. It is well known, see e.g. Hirsch and Smale (1974), 
that this is the case if and only if the real part of all eigenvalues of A is 
negative, 

Re(>.i(A)) < 0 for 1 i n. 

By Lyapunov's theorem, this is the case if and only if 

:JP>-0: -ATP-PA>-0. 
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Let us now assume that the system matrix A is subject to uncertainties 
that can be "confined" to a polyhedron with m given vertices A (i), i.e. 

A= A(t) E conv{A(l), ... ,A(m)} 0. 

In this case the existence of a Lyapunov matrix P >- 0 with 

- (A ( i) f P - P A ( i) >- 0 for 1 ::; i ::; m 

implies that 
-A(tf P- PA(t) >- 0 for all t 0, 

and hence, 

(2) 

0 > x(tf ( A(t)TP + PA(t)) x(t) = (A(t)x(t)f Px(t)+x(tfP (A(t)x(t)) 

= ! ( x(t)T Px(t)) = ! llx(t) 

whenever x(t) f:. 0. This implies that ---+ 0, and hence the 
existence of a matrix P >- 0 satisfying (2) is a sufficient condition to 
prove stability of the uncertain system. (The above argument only shows 
that llx(t)IIP is monotonously decreasing. In order to show that llx(t)IIP 
converges to zero, one can find a strictly negative bound for 
using the largest real part of the eigenvalues of (A(i))T P + PA(i) .) 

There are straightforward ways to formulate the problem of finding 
a matrix P >- 0 satisfying (2) as a linear semidefinite program, see 
e.g. Boyd et.al. (1994). While this simple example results in a linear 
semidefinite program, other problems from controller design often result 
in bilinear semidefinite programs that are no longer convex, see e.g. 
Leibfritz (2001); Scherer (1999); Freund and Jarre (2000). 

2.2 A second simple example 
Binary quadratic programs (also known as max-cut-problems) have 

few applications in VLSI layout or in spin glass models from physics. 
Their most important property, however, appears to be the fact that 
these problems are N'P-complete (and hence, there is no known poly­
nomial time method for solving these problems). What makes these 
problems so appealing is that they appear to be quite easy. 

Let 

MC = conv ( { XXT I Xi E { ±1} for 1 ::; i ::; n}) c sn 
be the max cut polytope. Hence, MC is the convex hull of all rank-1 
matrices generated by ±1-vectors x. Any binary quadratic program or 
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any max-cut problem can be written in the following form: 

minimize C • X s.t. X E MC. (3) 

This is a standard linear program with the drawback that the feasible set 
MC is defined as convex hull of exponentially many points xxT, rather 
than being defined by (a polynomial number of) linear inequalities. 

Let e = (1, ... , 1)T be the vector of all ones. It is straightforward to 
see that MC can be written in the form 

MC = conv ({X t 0 I diag(X) = e, rank(X) = 1}). 

Due to the condition diag(X) = e the set MC lies in an affine subspace 
of sn of dimension n(n- 1)/2. MC has 2n-l vertices that are pairwise 
adjacent i.e. connected by an edge (a 1-dimensional extreme set of MC). 

Note that the constraints of this second definition of MC appear to 
be smooth constraints; a semidefiniteness constraint, a linear constraint, 
and a rank condition. These conditions, however, imply that there are 
only finitely many "discrete" elements of which the convex hull is taken. 
In some sense the constraints contain a hidden binary constraint allowing 
only certain matrices with entries ±1. When the rank constraint is 
omitted, we obtain the standard SDP relaxation of the max-cut problem, 

SDP ={X t 0 I diag(X) = e} 

satisfying MC c SVP. A relaxed version of (3) is thus given by 

minimize C • X s.t. X E SVP. (4) 

This problem is a linear SDP of the form (P) and can be solved ef­
ficiently using, for example, interior point methods, see e.g. Helmberg 
et.al. (1996). Goemans and Williamson (1994) have shown how to ob­
tain an excellent approximation of the max-cut problem (3) using the 
solution X of (4). 

A quite interesting inner approximation of MC leading to a nonlinear 
semidefinite program is described in Chapter 3.3. 

2.3 Smoothness of semidefiniteness constraint 
To understand the complexity of nonlinear semidefinite programs we 

briefly address the question of smoothness and regularity of the semidef­
inite cone. The set of positive semidefinite matrices can be characterized 
in several different forms, 

{X I X t 0} 
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{X I Amin(X) 2: 0} 
{X I Ai (X) 2: 0 for 1 i n} 

{xI uTXu;::: 0 for all u E mn (llull = 1)} 
{X I 2: 0 for all I: C {1, ... , n}} 

{X I 3Z E sn : X = Z2 } • 

The first characterization uses the smallest eigenvalue Amin(X) of X. 
This is a nonsmooth representation. When ordering the eigenvalues in 
a suitable way, the eigenvalues Ai(X) used in the second representa­
tion have directional derivatives, but are not totally differentiable. The 
third representation is based on a semi-infinite constraint. From this 
representation one can easily deduce, for example, that {X I X t 0} is 
convex. The fourth representation is based on a finite (but exponential) 
number of smooth constraints, requiring all principal subdeterminants 
to be nonnegative. This representation certainly justifies the claim that 
{X I X t 0} is bounded by smooth constraints. As shown in Pataki 
(2000), the tangent plane to {X I X t 0} at a point X is given as fol­
lows. Let 

X= UDUT 
with a diagonal matrix D and a unitary matrix U. If X is a boundary 
point of {X I X t 0} we may assume without loss of generality that the 
first k diagonal entries of D satisfy d1 = ... = dk = 0 and dk+I, ... , dn > 
0. Let !:!..X be given by 

!:!..X= U :) UT 

where the 0-block in the matrix on the right hand side is of size k x k, 
and the entries * are any entries of suitable dimension. All matrices !:!..X 
of the above form belong to the tangent space of {X I X t 0} at X. 

The fourth representation also leads to the convex barrier function 

= -logdet(X) 

for the positive semidefinite cone. For this barrier function it is sufficient 
to consider I: = {1, ... , n}, and to set = oo whenever X is not 
positive definite. 

The last representation is a projection of a quadratic equality con­
straint. 

Most, if not all, of the above representations have been used numeri­
cally to enforce semi definiteness of some unknown matrix X. 

The set {X I X t 0} certainly satisfies Slaters condition, or, in the 
context of nonconvex minimization, any point X E {X I X t 0} triv­
ially satisfies the constraint qualification by Robinson. However, the 
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fourth representation above does not satisfy LICQ. (LICQ is a common 
regularity condition requiring that the active constraints at any point are 
linearly independent, see e.g. Wright and Nocedal (1999).) In fact, (for 
n > 1) there does not exist any representation of the positive semidef­
inite cone by nonlinear inequalities that do satisfy LICQ. Nevertheless 
the positive semidefinite cone and its surface are numerically tractable, 
and may be considered as a regular set with smooth constraints. 

2.4 A dual barrier method 
We consider problem (D) and eliminate the slack variableS to obtain 

the problem 
maximize bT y s.t. C- A*(y) t 0. 

For y E JRm with C- A* (y) t 0 we then define a convex barrier function 
<I>, 

<i>(y) =-log (det(C- A*(y))). 

A plain dual barrier method can be stated as follows: 

Dual barrier method 
Start: Find y(o) with C - A* (y(o)) t 0. 
For k = 1, 2, 3, ... 

• Set f-tk = 10-k and find 

bTy A 

y(k) y(f-tk) = argmin -- + <I>(y) 
y /-Lk 

by Newton's method with line search starting at y(k-l). 

Of course, this conceptual method needs many refinements such as an 
appropriate choice of the starting point and a somewhat more sophisti­
cated update of /-Lk· With such minor modifications, however, the above 
algorithm solves the semidefinite programming problem in polynomial 
time. (The notion of polynomiality in the context of nonlinear pro­
gramming is to be taken with care; the solution of a linear semidefinite 
program can have an exponential "size" like an optimal value of 22n 

for a semidefinite program with encoding length O(n). Our reference 
to "polynomial time" is meant that the method reduces some primal 
dual gap function in polynomial time, see e.g. Nesterov and Nemirovski 
(1994).) 

The key elements in guaranteeing the theoretical efficiency of the bar­
rier method rest on two facts: 

• The duality gap (or some linear measure of closeness to optimality) 
is of order f-t, 
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• and the Hessian \72 <1> of the barrier function satisfies a local relative 
Lipschitz condition. 

Both facts were shown by Nesterov and Nemirovski (1994) and rest on 
two conditions introduced in Nesterov and Nemirovski (1994). The first 
fact is implied by a local Lipschitz condition of <i> with respect to the 
norm induced by \72<i>(y), and the second fact is called self-concordance, 
and implies that Newton's method converges globally at a fixed rate. 
More details can be found in Nesterov and Nemirovski (1994); Jarre 
(1996). 

The guaranteed convergence results in these references are much slow­
er than what is observed in implementations of related methods. In fact, 
these theoretical results are much too slow to be relevant for practical 
applications. However, these results guarantee a certain independence of 
the method from the data of the problem. Even with exact arithmetic, 
the performance of the steepest descent method for unconstrained mini­
mization, for example, depends on the condition number of the Hessian 
matrix at the optimal solution. Unlike the steepest descent method, the 
worst case bound for the barrier method only depends on the dimension 
n of the problem (D), but not on any condition numbers or any other 
parts of the data of the problem. In this respect, the theoretical analysis 
is relevant for practical applications. 

The above barrier method is not suitable for practical implementa­
tions. The following simple acceleration scheme is essential for obtaining 
a more practical algorithm: Observe that the points y(Jl.) that are ap­
proximated at each iteration of the barrier method satisfy 

b A -- + \7<I>(y(Jl.)) = 0. 
J1. 

Differentiating this equation with respect to J1. yields 

b 2A 
2 + \7 <I>(y(Jl.))'li(Jl.) = 0. 
J1. 

For given values of J1. and y(Jl.) this is a linear equation that can be 
solved for iJ(Jl.). {The matrix is the same as the one that is used in the 
Newton step for finding y(Jl.).) Given this observation we can state a 
more efficient predictor corrector method. 

Dual predictor corrector method 
Start: Find y(O) and Jl.o > 0 with y(O) y(Jl.o). 
Fork= 1, 2, 3, ... 

• Choose D..J.i.k E {0, J.i.k-1) such that y(k) = y(k-1) - l:l.J.i.kY(J.I.k-1) 
satisfies C- A*(Y(k)) t 0. 
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• Set f..Lk = f..Lk-1 - f:lt-tk and find y(k) y(pk) by Newton's method 
with line search starting at y(k). 

It turns out that iJ(t-tk-1) can be computed fairly accurately even 
if only an approximate point y(k-1) y(f..Lk-1) is known. For details 
see e.g. Jarre and Saunders {1993). This predictor corrector method is 
"reasonably efficient", but primal-dual approaches are more efficient in 
general. 

We will generalize this method to nonlinear semidefinite programs in 
the next section 

3. Nonlinear Semidefinite Programs 
In this section we consider nonlinear semidefinite programs of the form 

maximize bT y s.t. A(y) t: 0, fi(Y) ::; 0 for 1 ::; i::; m, {5) 

where A : mn --+ S 1 is a smooth map and fi : mn --+ IR are smooth func­
tions. Note a slight change of notation, in this chapter A is a nonlinear 
operator, A : IRn --+ S 1• 

We define a (possibly nonconvex) barrier function <I>, 

m 

<I>(y) = -logdet(A(y))- I)og(- fi(y)) 
i=1 

and local minimizers 

y(p) =local minimizer of - bT y + <I>(y). 
1-L 

{6) 

In slight abuse of notation we will denote any local minimizer by y(p); 
this definition therefore does not characterize y(p) uniquely. 

Replacing ci> with <I>, both, the barrier method and the predictor cor­
rector method of Chapter 2.4 can also be applied to solve problem {5). 

There are two questions regarding the efficiency of the predictor cor­
rector method for solving {5). {The barrier method is certainly unprac­
tical!) 

• Does y = limk-+oo y(k) exist, and if so, is y a "good" locally optimal 
solution of {5)? 

• How quickly can y(k) be computed? 

3.1 Issues of global convergence 
As to the first question, one can show (see e.g. Jarre {2001)) that 

any accumulation point y of the sequence y(k) satisfies the Fritz-John 
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condition, (for a definition see e.g. Borgwardt (2001)) 

m 

:Ju 0, u =J 0 : -uob + LUi \1 fi (y) + Um+l \1 det(A(Y)) = 0. 
i=l 

While this condition is reasonable in the absence of a constraint qual­
ification it is not suitable for semidefinite programs. Indeed, when­
ever A(y) has the eigenvalue zero of multiplicity more than one, then 
\1 det(A(y)) = 0, so that one can choose Um+l = 1 and Ui = 0 for all 
other i. 

A more appropriate convergence result therefore is 

!JI:iy : bT /:iy 0, 
\1 fi(Y)I:iy < 0 for ally with fi(y) = 0 
A(Y) + cDA(y)[!:iy] 0 for small c > 0. 

This result states that there does not exist any direction l:iy starting at 
y that is strictly linearized feasible and does not increase the objective 
function. 

Neither of the statements guarantees that y is a local minimizer. In­
deed there are simple degenerate examples for which y is the global max­
imizer of (5). As shown in Jongen and Ruiz Jhones (1999), for nonlinear 
programs satisfying an LICQ condition and not containing "degenerate" 
critical points, the limit point of y(k) is a local minimizer. For such prob­
lems one can still construct examples, such that y is a very "poor" local 
minimizer. Nevertheless we believe that in many cases y is a minimizer 
whose objective value is "close" to the global minimum of (5). This 
intuition is motivated by the work Nesterov (1997). Nesterov consid­
ered the problem of minimizing a quadratic function over the oo-norm 
unit cube. This problem may have very poor local minimizers (whose 
objective value is much closer to the global maximum value than it is 
to the global minimum). Nesterov shows that any local minimizer over 
a p-norm cube with a suitable value of p = O(logn) has much better 
global properties in the sense that it is at least as good as the result 
guaranteed by the semidefinite relaxation. Intuitively, this result is due 
to the fact that the p-norm cube "rounds" the vertices and edges of the 
oo-norm cube. By this rounding procedure, the poor local minimizers 
disappear. In two dimensions the level sets of the logarithmic barrier 
function are almost indistinguishable from suitably scaled p-norm cubes. 
This leads us to believe that at least for quadratic minimization prob­
lems over the oo-norm unit cube, a suitably implemented barrier method 
will also generate "good" local minimizers. 
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3.2 Efficiency of local minimization 
Note that by definition, y(J.Lk) is a local minimizer of (6), and hence, 

\72<l>(y(J.Lk)) t 0. In all of our test problems the iterates y(k) y(J.Lk) 
satisfied the stronger condition \72<l>(y(k)) >- 0. If this relation is satis­
fied the extrapolation step for computing y(k) in the predictor corrector 
method can be carried out in the same way as in the convex case. 

However, the iterates y(k,i) "on the way" from y(k) to y(k) often do not 
satisfy \72<l>(y(k,i)) >- 0. This implies that the concept of self-concordance 
that formed the basis of the dual barrier method and of the predictor 
corrector method for solving (D) is no longer applicable. While it is not 
yet possible to generalize the theory of self-concordance to nonconvex 
functions, it seems possible that the known Lipschitz continuity proper­
ties of \72 <1> carry over in some form to \72 <1>. The tool that was used for 
minimizing the barrier function involving <I> in Section 2.2 is Newton's 
method. When \72<l>(y(k,i)) 'f 0, Newton's method with line search for 
approximating y(J.Lk) is no longer applicable. 

We need to find a suitable generalization of Newton's method to the 
nonconvex case involving <l>. For this generalization we keep the fol­
lowing properties in mind: The barrier subproblems that need to be 
solved at each step of the barrier method (or of the predictor correc­
tor method) are systematically ill-conditioned. The condition number 
typically is 0(1/ J.L), and the constant in the order notation is typically 
large. In addition, the computation of the Hessian matrices often is very 
expensive. 

Possible minimization methods for approximating y(J.Lk) include trust 
region methods with quasi-Newton updates of an approximate Hessian, 
see e.g. Conn et.al. (2000), continuation methods, or expensive plane 
search strategies as proposed in Jarre (2001). 

In numerical examples it turned out that the minimization problems 
tend to be quite difficult and none of the minimization methods con­
verge quickly. In particular, the barrier subproblems appear to be sub­
stantially more difficult to solve than in the convex case. We therefore 
address the complexity of smooth nonconvex local minimization. The 
next section shows that local minimization is NP-hard in a certain sense. 

3.3 Returning to the max cut problem 
We return to the example in Chapter 2.2. As shown in Nesterov 

(1998) an inner approximation for the polyhedron MC is given by 



66 

Here, the square brackets sin are used to indicate that the sin 
function is applied componentwise to each of the matrix entries of 
The set N A is formed from SDP using the function c : [ -1, 1] -+ [ -1, 1] 
with c(t) =sin This function is a nonlinear "contraction" in the 
sense that lc(t)l jtj. 

It is somewhat surprising to find out that conv(NA) = MC, i.e. 

NA c conv(NA) = MC c SDP. 

see Nesterov (1998). 
A simple picture can explain the relationship of MC, STJP, and NA. 
The set MC is a polytope whose precise description is not known in 

spite of its simple structure. (More precisely, there does not exist any 
known polynomial time algorithm which, given a point X, either returns 
a certificate proving that X E MC or returns a separating hyperplane.) 

The set STJP is obtained by "inflating" the set MC while keeping all 
faces of dimension n - 2 fixed. Like a balloon we "pump up" the hull 
of MC while keeping certain low-dimensional boundary manifolds fixed. 
(Note that MC has dimension n(n-1)/2.) The set SDP is convex and is 
"efficiently representable", i.e. there exist efficient numerical algorithms 
for minimizing convex functions over STJP. 

The set NA is obtained by shrinking STJP in a certain nonlinear 
fashion. This shrinkage is done in a certain optimal way such that all 
boundary manifolds of dimensions 1 and 2 of MC are contained in NA. 
In particular, for n = 3 we have MC = NA, see Hirschfeld and Jarre 
(2001). 

The set NA is bounded by two smooth constraints, is star shaped, 
contains a ball of radius 1, and is contained in a ball ofradius n. By our 
previous considerations, 
any locally optimal vertex of 

minimize C • X s.t. X E NA {7) 

solves the max cut problem {3). 
Hence, in spite of the nice properties of NA, it must be very difficult 

to find a local optimal vertex of (7) or to check whether a given vertex 
is a local minimum. 

Note that (7) is a nonlinear semidefinite program. The difficulty of 
the local minimization of (7) is due to the fact that problem (7) suffers 
from a systematic violation of any constraint qualification. It contains 
many "peaks" similar to the one in 

{ x E JR2 I x 2:: 0, x2 xf} . 
In higher dimensions such peaks become untractable. 



Nonlinear Semidefinite Programming 67 

3.4 Finding an -KKT-point 
In a second example, see Hirschfeld and Jarre (2001), the so-called 

chained Rosenbrock function f : IRn -+ 1R 

n 

f(x) = (xl- 1)2 + 100 xT-1)2 
i=2 

(see also Taint (1978)) has been tested. This function has only one 
local minimizer which is also the global minimizer, x = (1, ... , l)T. 
Applying various trust region methods for minimizing f starting at 
x(0) = ( -1, 1, ... , 1)T results in running times that appear to be ex­
ponential inn. (These running times are purely experimental, and due 
to time limitations could only be tested for small values of n.) 

At first sight this result seems to contradict a statement by Vavasis. 
In the paper Vavasis (1993) the following result is shown. 

Consider the problem 

minimize f(x) s.t. - 1 :::;; Xi :::;; 1 for 1 :::;; i:::;; n. (8) 

Vavasis assumes that the gradient \1 f is Lipschitz continuous with Lip­
schitz constant M and considers the problem of finding an .s-KKT point 
for (8). He presents an algorithm that takes at most gradient 
evaluations to find an .s-KKT point. This bound is exponential with re­
spect to the number of digits of the required accuracy, i.e. with respect 
to "-log c", but linear with respect ton. 

He also presents a class of functions of two variables for which any 

algorithm has a worst case complexity of at least 0( j¥-) gradient eval­
uations to find an .s-KKT point. 

The conditions of Vavasis' paper apply to the Rosenbrock example as 
well. All points at which this function is evaluated by the trust region 
algorithms lie in the box -1 :::;; Xi :::;; 1, and moreover, Rosenbrocks 
function possesses moderately bounded norms of \12 f at these points 
implying that M is consistently small. The reason for the observed 
exponential growth of the number of iterations lies in the fact that the 
norms of the gradients do become small very quickly (as predicted by 
Vavasis even for a steepest descent method), but for large n, the norm 
of \1 f needs to be extremely small to guarantee that the iterate is close 
to a local minimizer. Thus the exponential growth with respect to the 
number of variables is due to the fact that the .s-KKT condition is a 
poor condition for large n. (We don't know of any better condition 
though!) More results on local minimization issues are discussed in the 
forthcoming paper Hirschfeld and Jarre (2001). 
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4. Conclusion 

We have highlighted some issues of nonlinear semidefinite program­
ming related to a dual barrier method. In particular we have raised 
the questions of smoothness, regularity, and computational complexity 
related to semidefinite programs. As preliminary numerical results in 
Jarre (2001) indicate, variants of the predictor corrector method of the 
present paper are reasonably fast for medium size problems (up to 500 
unknowns). The numerical results were also compared with the ones 
in Fukuda and Kojima (2001). In all examples it turned out that the 
method proposed in this paper converged to the global minimizer. This 
gives some further weak evidence that the method is indeed unlikely to 
be "trapped" near poor local minimizers. We also indicated that the 
local convergence of solving the barrier subproblems in the predictor 
corrector method is slow; improvements of this convergence behavior 
are the subject of future research. 
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