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Abstract This paper deals with optimal control problems for semilinear time-de­
pendent partial differential equations. Apart from the PDE, no addi­
tional constraints are present. Solving the necessary conditions for such 
problemsvia the Newton-Lagrange method is discussed. Motivated by 
issues of computational complexity and convergence behavior, the Re­
duced Hessian SQP algorithm is introduced. Application to a system of 
reaction-diffusion equations is outlined, and numerical results are given 
to illustrate the performance of the reduced Hessian algorithm. 
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Introduction 

There exist two basic classes of algorithms for the solution of opti­
mal control problems governed by partial differential equations (PDEs). 
They both are of an iterative fashion and are different in that Newton­
type methods require the repeated solution ofthe {non-linear) PDE while 
the algorithms of SQP-type deal with the linearized PDE only. Newton­
type methods have been successfully applied, e.g., to control problems 
for the Navier-Stokes equations in [4] and will not be discussed here. 

The main focus of this paper is on SQP-type methods which basi­
cally use Newton's algorithm in order to solve the first order necessary 
conditions. This scheme leads to a linear boundary value problern for 
the state and adjoint variables . lt is the size of the discretized linear 
boundary value problern that motivates a variant of this approach in 
the first place: The reduced SQP method, which has been the subject of 
the following papers: [5] introduces reduced Hessian methods in Hilbert 
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spaces. [4) studies various second-order methods for optimal control of 
the time-dependent Navier-Stokes equations. [2) and [3) discuss algo­
rithms based on inexact factorization of the full Hessian step {11) which 
involve the reduced Hessian (or approximations thereof) in the factors. 
[1] examines preconditioners for the KKT matrices arising in interior 
point methods, also using reduced Hessian techniques. 

This paper is organized as follows: In Section 1, the class of semilinear 
second order parabolic partial differential equations is introduced with 
control provided in distributed fashion. Section 2 covers optimal control 
problems for these PDEs and establishes the first order necessary con­
ditions. Section 3 describes the basic SQP method in function spaces 
(also called the Newton-Lagrange method in this context), that can be 
used to solve these conditions. The reduced Hessian method is derived 
as a variant thereof. It will be seen that this method is applicable only if 
the linearized PDE is uniquely solvable with continuous dependence on 
the right hand side data. The purpose of the reduced Hessian method is 
to significantly decrease the size of the discretized SQP steps. The asso­
ciated algorithm which requires the repeated solution of the linearized 
state equation and of the corresponding adjoint is presented in detail. 
In Section 4, this procedure is applied to a system of reaction-diffusion 
PDEs. Finally, numerical results are given in Section 5. 

While the ideas and algorithm are worked out for distributed control 
problems throughout this paper, boundary and mixed control problems 
can be treated in the very same manner with only minor modification 
of notation. 

1. Semilinear Parabolic Equations 
Let n be a bounded domain in JR2 with sufficiently smooth boundary 

r and Q = n x {0, T), E = r x {0, T) with given final time T > 0. 
We consider semilinear parabolic initial-boundary value problems of the 
following type: 

Yt(x, t) + A(x)y(x, t) + n(x, t, y(x, t), u(x, t)) = 0 in Q 
Ony(x, t) + b(x, t, y(x, t)) = 0 on E {1) 

y(x, 0)- Yo(x) = 0 on n. 
The elliptic differential operator A(x)y =- 2:;,j=l Dj(aij(x)Diy) is rep­
resented by the matrix A(x) = (aij(x)) E JR2 X 2 which is assumed to be 
symmetric, and 8ny(x, t) =n(x)T A(x)V'y(x, t) = L:L=l aijni(x)Djy(x, t) 
is the so-called co-normal derivative along the boundary r. When A 
is the negative Laplace operator -.D., A gives the identity matrix and 
8ny(x, t) is simply the normal derivative or Neumann trace of y(x, t). 



A Reduced SQP Algorithm for the Optimal Control of Parabolic PDEs 241 

Questions of solvability, uniqueness and regularity for non-linear PDEs 
shall not be answered here. Please refer to [7] and the references cited 
therein. We assume that there exist Banach spaces Y for the state, U 
for the control and Z for the adjoint variable such that the semilinear 
parabolic problem {1) is well-posed in the abstract form 

e(y, u) = 0 with e: Y x U-+ Z' {2) 

where Z' is the dual space of Z. The operator e may represent a strong 
or weak form of the state equation {1). Casting the PDE in this con­
venient form will allow us later to view the control problem as a PDE­
constrained optimization problem and hence support a solution approach 
based on the Lagrange functional. However, in the detailed presentation 
of the algorithms, we will return to interpreting the operator e and its 
linearization ey as time-dependent PDEs. 

2. Optimal Control Problems 
In the state equation {1), the function u defined on Q is called the dis­

tributed control function. A Neumann boundary control problem arises 
when, instead of u, a control function v is present in the boundary 
nonlinearity b(x, t, y(x, t), v(x, t)). Other possibilities include Dirichlet 
boundary control or even combinations of all of the above. Examples of 
boundary control problems can be found, e.g., in [3] and [1]. Everything 
presented in this paper can be and in fact has been applied to boundary 
control problems with only minor modifications. 

The core of optimal control problems is to choose the control function 
u E U in order to minimize a given objective function. In practical 
terms, the objective can, e.g., aim at energy minimization or tracking a 
given desired state. 

We shall use the objective for the distributed control case from [7]: 

f(y,u) =In rp(x,y(x,T))dx+ kg(x,t,y,u)dxdt {3) 

where rp asseses the terminal state and g evaluates the distributed control 
effort and the state trajectory in {0, T). 

The abstract optimal control problem considered throughout the rest 
of this paper can now be stated: 

Minimize f(y, u) over (y, u) E Y XU 
s.t. e(y, u) = 0 holds. (4) 

A particularly simple situation arises when the state equation (1) is in 
fact linear in (y, u) and the objective {3) is convex or even quadratic 
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positive definite. However, in the general case, our given problem (4) to 
find an optimal control u and a corresponding optimal state y minimizing 
(3) while satisfying the state equation e(y, u) = 0 E Z' is a non-convex 
problem. We will not address the difficult question of global optimal 
solutions but rather assume that a local optimizer (f), u) exists. The 
following first order necessary conditions involving the adjoint variable 
A are well-known, see, e.g., [7] (with -A instead of A): 

-At+ A(x)* A+ ny(x, t, y, u)A + gy(x, t, y, u) = 0 Ill Q 

OnA + by(x, t, y)A = 0 on L; 

A(T) + 'Py(x,y(T)) = 0 m n 
gu(x, t, y, u) + nu(x, t, y, u)A = 0 m Q (5) 

Yt + A(x)y + n(x, t, y, u) = 0 m Q 

OnY + b(x, t, y) = 0 on L; 

y(O)- Yo(x) = 0 on n. 

These can be derived by constructing the Lagrangian 

L(y, u, A) = f(y, u) + (e(y, u), A) Z' z , (6) 

and evaluating the conditions 

Ly(y, u, A) = 0 in Y' (adjoint equation) (7) 

Lu(Y, u, A) = 0 m U' (optimality condition) (8) 
L;._(y, u, A) = e(y, u) = 0 m Z' (state equation) (9) 

in their strong form. 
Triplets (f), u, 5.) that satisfy the first order necessary conditions are 

called stationary points. Obviously, the conditions (5) or (7)-(9) consti­
tute a non-linear two-point boundary value problem involving the non­
linear forward equation (initial values given) for the state y and the linear 
backward equation (terminal conditions given) for the adjoint A. In the 
next section we introduce an algorithm to solve this problem. 

3. SQP Algorithms 
As we have seen in the previous section, finding stationary points 

(f), u, 5.) and thus candidates for the optimal control problem requires 
the solution of the non-linear operator equation system (7)-(9). This 
task can be attacked by Newton's method that is commonly used to 
find zeros of non-linear differentiable functions. 
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This method is referred to as the Newton-Lagrange algorithm. It falls 
under the category of SQP solvers since {10) are also the necessary con­
ditions of an auxiliary QP problem, see, e.g., [6]. Note that in contrast 
to the so-called Newton approach (cf. [4]), the iterates (yk, uk) of the 
SQP method are infeasible w.r.t. the non-linear state equation, i.e. the 
method generates control/state pairs that satisfy the PDE {1) only in 
the limit. 

The operators appearing in the matrix on the left hand side {the 
Hessian of the Lagrangian) deserve some further explanation. First it 
is worth recalling that the first partial Fnkhet derivative of a mapping 
g : xl X x2 -t y between normed linear spaces X = xl X x2 andy 
at a given point x = (x1, x2) E X is a bounded linear operator, e.g., 
gx1 (x) E .C(X1, Y). Consequently, the second partial Fnkhet derivatives 
at x are gx1x1 (x) E .C(X1,.C(Xl,Y)), gx1x2 (x) E .C(X2,.C(X1,Y)), etc. 
They can equivalently be viewed as bi-linear bounded operators, e.g., 
the latter taking its first argument from x2 and its second from xl and 
mapping this pair to an element of Y. 

The adjoint operators (or, precisely speaking, conjugate operators) 
appearing in the equation (10) can most easily be explained by their 
property of switching the arguments' order in bilinear maps: 

ey (yk, uk) E .C(Y, Z') 

ey(yk, uk)* E .C{Z", Y') '---+ .C(Z, Y') smce Z '---+ Z" 

ey(yk,uk)*(z,y) = ey(yk,uk)(y,z) for all y E Y,z E Z. 

Exploiting the fact that the adjoint variable>. appears linearly in the 
Lagrangian L, the Newton step {10) can be rewritten in terms of the 
new iterate >.k+l rather than the update 8>.. For brevity, the arguments 
(yk, uk, >.k) will be omitted from now on: 

e;l [ oy l [fyl 8u =- fu . 
0 >.k+1 e 

{11) 
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As can be expected, this system (obtained by linearization of (7)-(9)) 
represents a linear two-point boundary value problem whose solution is 
now the main focus. 

To render problem (11) amenable for computer treatment, some dis­
cretization has to be carried out. Inevitably, its discretized version will 
be a large system of linear equations since it ultimately contains the 
values of the state, control and adjoint at all discrete time steps and 
all nodes of the underlying spatial grid. Thus, one seeks to minimize 
the dimension of the system by decomposing it into smaller parts. The 
reduced Hessian algorithm is designed just for this purpose: 

Roughly speaking, it solves the linear operator equation (11) for 6u 
first, using Gaussian elimination on the symbols in the matrix. A pre­
requisite to this procedure is the bounded invertibility of ey(y, u) for 
all (y, u) which are taken as iterates in the course of the algorithm. 
In other words, the linearized state equation ey(y, u)h = f has to be 
uniquely solvable for h (with continuous dependence on the right hand 
side fEZ') at these points (y, u). One obtains the reduced Hessian step 

( * -*L - 1 + L L - 1 * -*L ) !< euey yyey eu uu- uyey eu- euey yu uu 

= [/y- Lyye;1e] - fu + Luye;1e (12) 
ey 6y = - e - eu8u (13) 

e; >.k+1 = - /y - Lyy8y - Lyu8u. (14) 

The operator preceding 8u is called the reduced Hessian HJu in contrast 
to the full Hessian matrix H appearing in (11). Note that both the full 
and the reduced Hessian are self-adjoint operators. After discretization, 
the reduced Hessian will be small and dense, whereas the full Hessian 
will be large and sparse. Aiming at solving a discretized version of (12) 
using an iterative solver, the action of the reduced Hessian on given el­
ements 8u E U has to be computed, plus the right hand side of (12). 
It can be shown that once an approximate solution 8u to (12) is found, 
the remaining unknowns 8y and >.k+1 obeying (13) and (14) can be ex­
pressed in terms of quantities already calculated. The overall procedure 
to solve (7)-(9) applying the reduced Hessian method on the inner loop 
decomposes nicely into the steps described in figure 1 using the auxiliary 
variables h1, ha E Y and h2, h4 E Z. 

In many practical cases, the objective and the PDE separate as 

f(y, u) = fr(y) + h(u) and e(y, u) = e1 (y) + e2(u) (15) 

which entails Luy = Lyu = 0. 
We observe that for the computation of the right hand side b as well 

as for every evaluation of HJuD, it is required to solve one equation in-
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Reduced SQP Algorithm 

1 Set k = 0 and initialize (y0 , uo, >.o). 

2 Solve 

(a) eyhl = e 

(b) eZh2 = /y - Lyyhl 

and set b := fu + Luyhl. 

3 For every evaluation of H 0uD inside some iterative solver 
of H 0uOU = b, solve 

(a) eyh3 = euD 

(b) ezh4 = Lyyh3- LyuD 

and set HouD := - Luyh3 + LuuD. 

4 Set uk+1 := uk + ou. 

5 Set oy := -h1 - h3 and yk+1 := yk + oy. 

6 Set >.k+l := -h2 + h4. 

7 Set k := k + 1 and go back to step 2. 

Figure 1. Reduced SQP Algorithm 

volving ey and another involving ez. It will be seen in the sequel that 
in our case of e representing a time-dependent PDE these are in fact so­
lutions of the linearized forward (state) equation and the corresponding 
backward (adjoint) equation, see figure 2 in the following section. 

Note that the linear system involving the reduced Hessian Hou is 
significantly reduced in size as compared to the full Hessian of the La­
grangian, the more so as in practical applications, there are many more 
state than control variables. 

4. Example 
As an example, distributed control of a semilinear parabolic system 

of reaction-diffusion equations will be discussed. The PDE system de­
scribes a chemical reaction cl + c2 -+ c3 where the three substances 
are subject to diffusion and a simple non-linear reaction law. 
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While in the discussion so far only one (scalar) PDE appears, the gen­
eralization to systems of PDEs is straightforward. In the example, the 
state y = (c1, c2, c3)T as well as the adjoint A = (Al, A2, A3)T now have 
three scalar components while the control is still one-dimensional. The 
linearized systems occuring in the computation of the auxiliary variables 
h1 , ... , h4 feature a coupling between their components which is gener­
ated by the non-linearity in the state equation (16). Also note that this 
example satisfies the separation condition (15). 

The reaction-diffusion system under consideration is given by 

Clt = D1 - k1 c1c2 OnCl = 0 

C2t = D2 - k2 Cl c2 + U OnC2 = 0 

c1(0) = cw 
c2(0) = c2o 

C3(0) = C30 

(16) 

where the control acts only through component two. The boundary 
conditions simply mean that the boundary of the reaction vessel is im­
permeable. The constants Di and ki are all non-negative and denote 
diffusion and reaction coefficients, respectively. 

The objective in this case is a standard least-squares-type functional 

in order to minimize the distance of component one's terminal state 
ct (x, T) to a given desired state c1d while taking control cost into ac­
count, weighted by a factor 1 > 0. In case one is interested in maximum 
product yield, the term -J0 c3(x, T) dx can be inserted into the objec­
tive. 

The individual steps in the reduced Hessian algorithm for this particu­
lar example are given in figure 2. There the vector uk, 
denotes the current iterate. It stands out that the linear systems for 
h1, ... , h4 can equivalently be written as 

where the operator matrix 

[ h k 
K = -k2c2 

for i E {1, 3} 

for j E {2,4} 

(17) 

(18) 

(19) 

is non-symmetric. Please notice that this phenomenon does not occur 
in scalar PDE control problems. 



A Reduced SQP Algorithm for the Optimal Control of Parabolic PDEs 247 

Reduced Hessian steps for the reaction-diffusion example 

hu,- D1l:!.hu- = ct-

h12, - D2l:!..h12- = - + uk 

h13, - Dal:!.h13 + + = - + 
8nhu = 0 8nhl2 = 0 8nhla = 0 

hu(O) = c1(o)- c10 h12(0) = c2o h1a(O) = cao 

- h21, - D1D.h21 - - + = 921 

- h22, - D2D.h22- k1c1h21 + = 922 

- h2a, - Dal:!.h2a = 0 

921 = -

922 = -kahn 

8nhn = 0 

hn(T) = Cld- hu(T)] 

Set b = -h22 - 27uk. 
Solve for ha = (ha1,ha2,haa)T: 

8nh22 = 0 

h22(T) = 0 

ha1, - D1 D. hal - k1 ha1 - k1 ha2 = 0 

ha2, - D2l:!.ha2- = -0 

haa, - Dal:!.haa- = 0 

8nhal = 0 

ha1(0) = 0 

8nha2 = 0 

ha2(0) = 0 

8nh2a = 0 

h2a(T) = 0 

8nhaa = 0 

haa(O) = 0 

- h41, - D1l:!.h41 - - = 941 

- h42, - D2l:!.h42- = 942 

- h4a, - Dal:!.h4a = 0 

941 = + + 
942 = + + 

8nh4l = 0 8nh42 = 0 

h41 (T) = 2hal (T) h42 (T) = 0 

Set H&uO := -h42 + 270. 

8nh4a = 0 

h4a(T) = 0 

Figure 2. Reduced SQP Algorithm for the Reaction-Diffusion Example 
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5. Numerical Results 
In this section, results obtained from an implementation of the re­

duced Hessian algorithm will be presented. All coding has been done 
in Matlab 6.0 using the PDE toolbox to generate the spatial mesh and 
the finite element matrices. The performance of the reduced Hessian 
algorithm will be demonstrated in comparison to an iterative algorithm 
working on the full Hessian of the Lagrangian H given in (11). 

To this end the convergence behavior over iteration count of one par­
ticular SQP step (corresponding to steps 2 and 3 in the algorithm) will 
be shown. For the tests we chose 

t) = 0.5 c10(x) = 0.1 + X{x1 >0.3}(x) t) = 0 

t) = 0.5 c2o(x) = 0.1 + X{x2 >0.3}(x) t) = 0 

t) = 0.5 c3o(x) = 0 t) = 0 

cld(x) = 0 D1 = 0.01 kl = 0.5 
uk(x, t) = 0 D2 = 0.05 k2 = 1.5 

!=1 D3 = 0.15 k3 = 2.5 

on some finite element discretization of the unit circle n c JR2 , where 
XA denotes the indicator function of the set Ann. The final time was 
T= 10. 

As was seen earlier in equation (11), there are three block rows in 
H, corresponding to the linearizations of the adjoint equation, the op­
timality condition and the state equation, respectively. For our tests, 
these have been semi-discretized using piecewise linear triangular finite 
elements in space. The ODE systems obtained by the method of lines 
are of the following form: 

My+ Ky=f 
-M5-..+KT>. =g 

(forward equations) 

(backward equations) 

(20) 

(21) 

They were treated by means of the implicit Euler scheme with constant 
step size. Of course, suitable higher order integrators can be used as well. 
Using this straightforward approach yields one drawback that becomes 
apparent in figure 3: The discretized full Hessian matrix H is no longer 
symmetric, although the continuous operator His self-adjoint. The same 
holds for the discretized reduced Hessian Hou· 

This is due to the treatment of initial and terminal conditions in 
the linearized state and the adjoint equation. Nevertheless, there are 
methods that reestablish symmetry, but these will not be pursued in 
the course of this paper since qualitatively, the convergence results re­
main unchanged. For that reason, the non-symmetry will be approved, 
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.. .. i 

-.. :::.· 
l i 
1·1 
i 

Figure 3. Non-symmetry of dis­
cretized full Hessian, nt = 4 time 
steps, implicit Euler, dotted lines in­
dicate blocks corresponding to (11) 

thereby waiving the possibility to use, e.g., a conjugate gradient method 
to solve the reduced problem but relying on iterative solvers capable of 
non-symmetric problems. In the tests, GMRES has proved quite efficient 
on the full Hessian problem while CGS and BICGSTAB failed to generate 
reasonably better iterates than the initial all-zero guess. For the reduced 
Hessian, all three algorithms found the solution to high accuracy, and 
CGS needed the fewest iterations to do so. As a common basis, GMRES 
with no restarts was used for both the full and the reduced Hessian 
problem. 

Note that while the discretized state and adjoint allocate nt (equal 
to 4 in figure 3) discrete time steps, the discretized control needs only 
nt - 1. This is attributed to the use of the Euler method where, after 
discretization, u(t = 0) does not appear in any of the equations. 

In order to illustrate the convergence properties, it is convenient to 
have the exact discretized solution (8y, 8u, >.k+l) of the full SQP step 
(11) at hand. To that end, the full Hessian matrix was set up explicitly 
for a set of relatively coarse discretizations, and the exact solution was 
computed using a direct solver based on Gaussian elimination (Matlab's 
backslash operator). The exact solution 8u of (12) was obtained in the 
same way after setting up the reduced Hessian matrix, where the corre­
sponding 8y and >.k+1 were calculated performing the forward/backward 
integration given by (13) and (14). These two reference solution triplets 
differ only by entries of order 1E-15 and will be considered equal. 

It has to be mentioned that for these low-dimensional examples ( cf. ta­
ble 1), a direct solver is a lot faster than any iterative algorithm. How­
ever, setting up the exact reduced Hessian matrix of course is not an 
option for fine discretizations. 

Figures 4-6 illustrate the convergence behavior of GMRES working on 
the reduced versus the full Hessian matrix: For 8uref denoting the exact 
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discretized solution, the graphs show the relative error history 

d(t) = ll8ui(t)- dUrer(t)ll 
ll8urer(t) II (22) 

in the L2 norm, where 8ui (t) denotes the approximate solution generated 
by the iterative solver after j iterations, taken at the time grid point 
t E [0, T]. The same relative errors can be defined for 8u substituted 
by 8q, ... , 8c3 or ... , which are the components of the state 
update 8y and the new adjoint estimate >.k+1. 

Each figure shows the relative error history ej(t) of either 8u or 8c1 
obtained using GMRES with no restarts after j = 4, 8, ... , 28 iterations on 
the reduced problem and after j = 100,200, ... , 600 iterations on the full 
problem. The figures for 8c2, 8c3 and ... , look very much the 
same and are not shown here. The discretization level is characterized 
by the number of discrete time steps nt and the number of grid points 
in the finite element mesh poi. Table 1 lists the number of optimization 
variables in the full and reduced case for the individual discretizations 
used. 

nt poz 

9 25 
9 81 

19 81 

# of vars {reduced) 

200 
648 

1458 

# of vars (full) 

1550 
5022 

10692 

Table 1. Number of optimization variables for different discretizations 

It can clearly be seen that the iterative solver works very well on the 
reduced system while it needs many iterations on the full matrix. This 
was to be expected since it is a well-known fact (see, e.g., [1] and [2]) 
that iterative solvers working on the full Hessian require preconditioning. 
Although the evaluation of H8u times a vector is computationally more 
expensive than H times a vector, the reduced Hessian algorithm is by far 
the better choice over the unpreconditioned full algorithm. To give some 
idea why the reduced Hessian algorithm outperforms the full Hessian 
version, let us define 

(23) 
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Figure 4- Relative error history for ou (left) and 8c1 (right) on the reduced (solid 
lines) problem for j = 4, 8, ... , 28 iterations and on the full (dotted lines) problem for 
j = 100, 200, ... , 600 iterations at discretization level nt = 9, poi= 25 

•' '''' '0' 0 0 ' 0" 0 0 0 0•"'"" 0 ... '"I II I II Ill I II I I II;, •· I 11 I 11 I 11. 

.-
10 .. ... .. 

......... .. 
10-10 .. .. 
10-15 

10 10 
time time 

Figure 5. Relative error history for ou (left) and OC! (right) on the reduced (solid 
lines) problem for j = 4, 8, ... , 28 iterations and on the full (dotted lines) problem for 
j = 100, 200, ... , 600 iterations at discretization level nt = 9, poi= 81 

as the left preconditioner for the full Hessian problem (11) with the first 
two columns permuted (for simplicity, the separation condition (15) is 
assumed to hold): From (11), we get 

Lyy 

(24) 
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Figure 6. Relative error history for c5u (left) and 8c1 (right) on the reduced (solid 
lines) problem for j = 4, 8, ... , 28 iterations and on the full (dotted lines) problem for 
j = 100, 200, ... , 600 iterations at discretization level nt = 19, poi = 81 

which is equivalent to the block-triangular system 

l [ ou ]- [fy- Lyye1J1e] - ful 
ey oy - -e 

L e* >.k+l -f yy y y 
(25) 

whose rows are just the equations (12)-(14). Hence the reduced Hessian 
problem is nothing else than the full problem after preconditioning with 
P. Comparing (11) to (25), it turns out that the preconditioning actually 
provides the iterative solver with some insight into the interdependence 
of the unknown variables. While in the full Hessian system, the solver 
takes all variables as degrees of freedom, in the reduced system only 
the true free variables (i.e. the controls) appear and the state and the 
adjoint are calculated consistently. From this point of view, the reduced 
Hessian method resembles what is usually called a direct single shooting 
approach, applied to a linear-quadratic model. 

The necessity to have the full and reduced Hessian matrix explicitly 
available for the numerical tests limits the discretization levels to very 
coarse ones throughout this paper. In practice, however, control prob­
lems for time-dependent PDEs with about 275 000 unknowns (including 
40 000 control variables) have been successfully solved on a desktop PC 
within 2 hours using the reduced Hessian SQP algorithm. 
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