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PRIVILEGE ADMINISTRATION FOR THE 
ROLE GRAPH MODEL 

Cecilia Ionita and Sylvia Osborn 

Abstract The role graph model for role-based access control has been introduced in a 
number of previous papers. In these previous presentations of the role graph 
model, it is assumed that when privilege p is present in a role, all privileges that 
might be implied by p are also present in the role. This paper gives revised algo­
rithms to ensure that this is done, using a model for implication of permissions 
originally developed for object-oriented databases. 
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1. Introduction 

The role graph model for role-based access control was first introduced in 
[2]. The role graph model considers users/groups, the role hierarchy and priv­
ileges to be three separate spheres of discussion, which have been referred to 
as three planes. On the user/group plane, we look at set of users (which we 
call groups), and the relationships between them [4]. On the role plane, we 
consider the role hierarchy (which we call the role graph) and its algorithms 
which permit various operations on the role graph [3]. On the privileges plane, 
we consider privileges, which are (object, operation) or (object, access mode) 
pairs. In these previous papers, it has always been assumed that when a privi­
lege p is added to a role, any privileges implied by p are also added to the role. 
In this paper, we will present an algorithm to ensure that this is done, using 
a model for implications of permissions originally published in the context of 
object-oriented databases (OODB) [5]. Note that we use the words permission 
and privilege interchangeably. 

In the next section we review the model of Rabitti et al. for object-oriented 
databases. Then, in Section 3, we briefly review the role graph model. Section 
4 presents revised algorithms for privilege addition and role insertion. Section 
5 contains some conclusions. 
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2. The OODB Work 

The model presented by Rabitti et al. [5] is a discretionary access control 
model for OODBs. It models an authorization as a triple: 

f : S x 0 x A -+(True, False) 
where S represents the set of subjects, 0 the set of objects and A the possible 
authorizations in a system. For each of S, 0 and A, they provide a lattice. The 
lattice of subjects is just a role graph, which they call a role lattice. We should 
note that the authors never justify why they require lattices for these - directed 
acyclic graphs are all that is really required since the presence of a unique 
least upper bound for each of these hierarchies or graphs is never justified. We 
shall call these graphs, but the correspondence to what are called lattices in [5] 
should be clear. 

The role graph presented in [5] is very similar to the role graphs of the role 
graph model, having a super-user role which corresponds to MaxRole in the 
role graph model, and a minimum role which corresponds to our MinRole. 
They even include the comment that the super-user role does not always need 
to be assigned, because it makes available to any user so assigned all the privi­
leges available in the system. 

The other two graphs will form the basis for our discussion in the rest of 
this paper. They are graphs which model relationships in A and 0, and are, 
here, called the authorization type graph and the authorization object graph 
respectively. 

The authorization type graph (ATG) allows one to model implications among 
authorizations or operations in a system. For example, one might have a system 
in which the write permission on an object 0 always implies the read permis­
sion on 0, when these operations make up the A component of an authoriza­
tion. In this case, the edge write -+ read would be in the authorization type 
graph. We will call this relationship implies. Another example of an implies 
relationship in an object-oriented environment is that the permission to read an 
object would imply the permission to read the class definition for its class, so 
that one would know how to interpret the object. We will assume that for the 
system to be protected by a role graph security model, the security designer 
will provide the authorization type graph. If there are no implications between 
authorizations, then this graph will consist only of the nodes, which each rep­
resent an operation (this would be true if modeling Unix, for example, in which 
the three permissions on a file, read, write and execute, are usually considered 
to be completely independent). 

Figure 1 shows an example authorization type graph for a relational database 
and its operations. Note that this implies relationship means that for the same 
object, e.g. the same relation, grant-update implies update, etc. 
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owner 

grant-select grant -insert grant-update grant-delete 

t t t t 
select insert update delete 

read schema 

Figure 1. An example of an authorization type graph for a relational database. 

The authorization object graph (AOG) in [5] is based on the authorization 
object schema. Since the authors are discussing a situation for an OODB, 
the OODB has a schema or class hierarchy, which defines the structure of the 
objects. As well as the schema, an OODB has a way of representing object 
containers or collections of objects, which varies from one system to another: 
some systems provide one container per class to hold all the instances of a 
class, whereas others provide the ability to create arbitrary named sets of ob­
jects. For a Student class, for example, the former system would put all Student 
instances in a single container, whereas the latter would allow one to build 
different collections, say MyClass, AllUndergraduates, etc., which could of 
course overlap. The reason this is necessary is that an OODB is a database, 
and one expresses queries in a database. The containers provide the targets for 
queries. Since our discussion in this paper is attempting to be for a general se­
curity model, not one specifically for an OODB, we will ignore the authoriza­
tion object schema, and simply build the authorization object graph directly. 
The AOG contains individual objects or containers. The nodes in this graph 
refer to any granularity of object on which one can carry out operations, and 
are thus the granularities about which one can express authorizations. 

The authorization object graph models implications which arise because of 
object containment. For example, in a relational database, the permission to 
read a relation implies the ability to read the tuples in the relation. It would 
also imply the permission to read any indexes built on the relation. Thus, the 
authorization object graph for a relational database might look like Figure 1, 
where FI, S 1, etc. represent individual tuples. 

We will refer to the relationship defined by an edge in an authorization ob­
ject graph as contains. 
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Index1 F1 F2 Fn 51 G1 G2 

Figure 2. An authorization object graph for a relational database. 

As well as the three graphs, the model of [5] includes a way of distinguish­
ing how authorizations propagate in the AOG. In our relational example, select 
(which would be called read in most systems) would propagate down, so that 
having select permission on a relation implies having read permission on all 
the tuples. Similarly select on a database would imply select on all the rela­
tions. Some permissions do not propagate, such as grant-select, which might 
be issued on a specific relation but should not propagate anywhere. Something 
like read schema, would propagate up, so that permission to read the schema of 
relation Faculty would imply permission to read the schema of the Personnel 
Database. The authorization types are thus partitioned into three sets: a. up, 
a.down and a.nil depending on how they propagate in the authorization ob­
ject graph. This must also be specified by the security designer as part of the 
specification of such a system. 

It is quite common in relational packages to have very different permission 
sets for relations than for columns or indexes - i.e. some authorizations do 
not make sense on some object types. In our example, read schema makes 
no sense on individual tuples. Insert makes no sense on the Database System 
granule. The model of [5] also includes an authorization association matrix 
(AAM) which indicates which (object type, authorization type) pairs can be 
specified. Propagation would stop if a disallowed pair is encountered. 

Finally, the Rabitti et al. model has both negative and positive permission, 
and strong and weak permissions. Our model does not have negative permis­
sions, as we prefer to deal with these situations using constraints. We also do 
not have strong and weak permissions. 
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3. The Role Graph Model 
The role graph model [2, 3] models the role-role relationship with an acyclic, 

directed graph in which the nodes represent roles, and the directed edges rep­
resent the is-junior relationship. Roles are represented by a pair (marne, pset) 
where marne is a unique role name, and pset is the set of privileges assigned 
to the role. Role r i is-junior to role r j iff r i' s pset C r j 's pset. Conversely, we 
say that rj is senior to rio We also distinguish between the direct and effective 
privilege sets of a role. The direct privileges are those assigned directly to the 
role, and not inherited from any junior roles. The effective privileges consist 
of the direct privileges unioned with the effective privileges of all junior roles. 
The is-junior relationship is based on the subset relationship between the ef­
fective privilege sets of two roles. In order to ensure that the graph remains 
acyclic, no two roles are allowed to have equal privilege sets. 

In [3], a number of algorithms are given to manipulate role graphs. There 
are two algorithms for role insertion, one to delete a role, an algorithm to add 
a privilege to a role, one to delete a privilege, one to add an edge and one to 
delete an edge. Each of the algorithms restores the graph to a canonical form, 
which is given by the following role graph properties: 

• There is a single MaxRole. 

• There is a single MinRole. 

• The Role Graph is acyclic. 

• There is a path from MinRole to every role ri . 

• There is a path from every role ri to MaxRole. 

• For any two roles ri and rj, if ri.rpset C rj.rpset, then there must be a 
path from ri to rj. 

We have already discussed the importance of acyclicity. All of the algo­
rithms abort if a cycle would be created, leaving the graph unchanged. The 
last three role graph properties ensure that the graph has enough edges. When 
displaying the graph, we remove redundant edges, put MaxRole at the top, 
MinRole at the bottom and show the is-junior edges going up the page. The al­
gorithms all have run time which is polynomial in the number of roles, number 
of edges and size of the privilege sets. 

The two role insertion algorithms differ in their inputs. In the first, the 
new role, its proposed direct privileges and proposed immediate junior and 
senior roles are given. The algorithm inserts the new role, adds the appropriate 
edges, and then adjusts the direct and effective privileges of the new role and 
all seniors on a path from the new role to MaxRole. Some privileges which 
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were given as direct may now be just in the effective privilege set of a senior 
role. Similarly some privileges which were thought to be direct in the new 
role may be inherited from a junior role and thus get moved to the effective 
set. There may be other juniors and seniors defined by the r/s pset C r/s 
pset relationship which were not given, for which edges or paths will be added 
when the role graph properties are restored. 

In the second role insertion algorithm, the new role and its proposed effec­
tive privileges are given. The algorithm determines its junior and senior roles, 
and direct privileges. 

These algorithms assumed that privileges implied by other privileges some­
how appeared in the appropriate roles. We will now show the revised affected 
algorithms in which permission/privilege implications are explicitly handled. 
The algorithms which are affected by this are the privilege insertion and role 
insertion algorithms. We will discuss these changes in the next section. 

4. Revised Algorithms 

The main task in revising the algorithms is to improve the privilege addition 
algorithm. After that, we will look at changes to the two role addition algo­
rithms. The original privilege addition algorithm from [3] is given in Figure 
3. The algorithms in [3] also considered various forms of conflict of interest. 
In this paper we just consider conflicts in a very general way, assuming that 
prohibited privilege-privilege or role-privilege conflicts are represented by a 
set C. 

In the old algorithms, the statement "Reestablish role graph properties" 
meant that necessary edges would be added. This is done by comparing every 
pair of effective privilege sets, adding an edge ri -7 rj whenever effective(ri) 
c effective(rj). Then redundant edges are removed using an algorithm from 
[1]. After that, the step ''Adjust Direct and Effective of affected roles" would 
use any of these new edges to propagate new privileges to the effective set of 
all roles senior in the graph, and also possibly remove privileges from a direct 
set. 

We now look at the revised algorithm which will take into account all of 
the ATG implies relationships, the contains relationships of the AOG, a.up 
and a.down (authorizations in a.nil do not propagate) as well as the AAM. 
To simplify the algorithm, we assume that ATG and AOG are given as their 
transitive closure. The role graph is represented by RG =(R, -7) where R is 
the set of roles and -7 represents the is-junior relationship (i.e. the edges in 
the role graph). In the new algorithm, we assume there is information about 
constraints, which we just refer to as C. 

The revised algorithm is given in Figure 4. This algorithm has a structure 
which repeatedly checks for new implications, since a new privilege Ca, 0) may 



Ionita fj Osborn 

Algorithm: PrivilegeAddition(RG, n, p, P-Confiicts) 

Input: RG =(n, -+) (the role graph), 
n,l* the role to which a privilege is to be added *1 
p,l* the privilege to be added to role r *1 
P-Conflicts. 1* set of pairs of conflicting privileges *1 

Output: The role graph with privilege p added to role r, 
and the role graph properties intact, 

or RG unchanged if an error was detected. 
Method: 

Var r: role; 
Begin 

If p E Effective(n) 1* p is already in n - do nothing *1 
Then return; 

Direct(n) := Direct(n) U p; 1* add p to Direct privileges of n *1 
Effective(n) := Effective(n) U iI: and to Effective of n *1 
1* Reestablish role graph properties *1 
1* Adjust Direct and Effective of affected roles *1 
If RG has any cycles /* Detect cycles */ 

then abort (message: Graph is not acyclic); 

1* Conflict of Interest Detection *1 

end. 

For every role r E {n} U n -MaxRole Do 
If Effective(r) contains a pair of privileges which is in P-Conflicts 

Then abort (message: Privilege addition creates a conflict); 

Figure 3. Privilege insertion algorithm from [3]. 
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create new implications either from the ATG or from the AOG. New privileges 
are added to a temporary set SetToAdd until there are no more changes. Then 
all of these privileges are propagated to senior roles in the role graph, at which 
time we check to see if any cycles would be created. Finally we clean up the 
direct and effective privileges of r and any other roles affected, and correct the 
edges to reflect the new effective privilege sets of all the roles. 

In [3], the role insertion algorithms also ignored possible implications among 
privileges. In order to modify these algorithms to take into account the im­
provements, we really just have to arrange for the privilege insertion algorithm 
to be called when a new role is created. 

Recall that the first role insertion algorithm takes a role with its proposed 
direct privileges, proposed juniors and seniors, and adds this role to the graph 
if no cycles would be created. The change we need to make is to put the new 
role in the graph connected to its proposed immediate juniors and seniors, and 
then use the privilege insertion algorithm to insert the privileges given one at 
a time, so that all the implied privileges also get included. Since the privilege 
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Algorithm: RevisedPrivAdd(RG, r, p, ATG, AOG, a.up, a.down, AAM, C) 

Input: RG ;(R, -+) (the role graph), 
r, 1* the role to which a privilege is to be added *1 
p, 1* the privilege also denoted by (a, 0) to be added to role r *1 
ATG, 1* the authorization type graph *1 
AOG, 1* the authorization object graph *1 
a.up and a.down 1* two disjoint sets of authorization types *1 
AAM, 1* the authorization association matrix *1 
C 1* the constraints on role-permission assignment *1 

Output: The role graph with privilege p and all privileges implied by it 
added to role r, and the role graph properties intact, 
or RG unchanged if an error was detected. 

Method: 
begin 

if p E Effective(r) 1* p is already in r - do nothing *1 
thenretum; 

SetToAdd +- {(a, o)} 
while changes are made to SetToAdd do 

(ak, Ok) +- a privilege from SetToAdd 
for all ai E {ak} U {aj lak implies aj} 1* using the ATG *1 

if (ai, Ok) fi SetToAdd and (ai, Ok) is allowed by AAM and 
adding (ai, Ok) to r is not prevented by C 

then SetToAdd +- SetToAdd U {(ai, Ok)} 

if ak E a.down /* using the AOG */ 
then for all Oi E {Ok} U {OJ 10k contains OJ} 

if (ak, Oi) fi SetToAdd and (ak, Oi) is allowed by AAM and 
adding (a k , Oi) to r is not prevented by C 

then SetToAdd +- SetToAdd U {(ak, Oi)} 

if ak E a.up 
then for all Oi E {ok} U {OJ 10j contains Ok} 

if (ak' Oi) fi SetToAdd and (ak, Oi) is allowed by AAM and 
adding (ak, Oi) to r is not prevented by C 

then SetToAdd +- SetToAdd U {(ak, Oi)} 

end while 
Direct(r) +- Direct(r) U SetToAdd 
Effective(r) +- Effective(r) U SetToAdd 
for all ri in R such that r is-junior r; 

Effective(rd +- Effective(ri) U SetToAdd 
iffor any rio rj. Effective(ri); Effective(rj) 

abort /* duplicate roles create a cycle */ 
Reestablish the role graph properties 

end. 

Figure 4. Revised privilege insertion algorithm. 
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insertion algorithm reestablishes the role graph properties, we do not need to 
repeat this step in the new version of role insert 1. The revised algorithm is 
given in Figure 5. 

Algorithm: RevisedRoleAdditionl(RG, n, Seniors, Juniors, P-Conflicts) 

Input: RG ={R, -7} /* the role graph */ 
n, /*the new role to be added (role name along with its proposed direct privilege 

set) */ 
Seniors, /* proposed immediate Seniors for n */ 
Juniors, /* proposed immediate Juniors for n */ 
C /* role-permission and role-role constraints */ 

Output: The role graph with n added and role graph properties intact, 
or RG unchanged if an error was detected. 

Method: 
begin 

R +- R U {role n with empty privilege set} 
for all ra E Seniors add the edge n -7 ra 
for aU rj E Juniors add the edge rj -7 n 
if RG has any cycles 

then abort 
for aU rj E immediate Juniors of n 

Effective(n) +- Effective(n) U Effective(rj) 
for all p E proposed Direct(n) 

RevisedPrivAdd(RG, n, p, ATG, AOG, a.up, a.down, AAM, C) 
end. 

Figure 5. Revised Insert 1 algorithm. 

The second role insertion algorithm takes as parameters just the new role and 
its proposed effective privileges; the algorithm determines how the new role is 
connected to juniors and seniors in the graph. In the revision, this is done 
first, using the given effective privileges and the relationship between the new 
role's effective set with other roles' effective sets to insert edges in the graph. 
Then the starting value for the new role's direct privilege set is initialized to 
the given effective set minus any privileges in any junior roles. Each of these 
direct privileges is then explicitly added to the new role using the new privilege 
insertion algorithm, which in turn will add any implied privileges to the new 
role and all of its seniors. By calling the new privilege insertion algorithm at the 
end of this role insertion algorithm, we also know that the role graph properties 
will be restored. The revised second role addition algorithm is given in Figure 
6. 

The running time of the new algorithms is increased over that of the original 
algorithms, mainly because of the while loop in the revised Privilege Insertion 
Algorithm in Figure 4. This while loop adds one new permission for every 
combination of (a, 0) that can be derived by the two acyclic graphs ATG and 
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Algorithm: RevisedRoleAddition2(RG, n, C) 

Input: RG =(R, -+) 1* the role graph *1 
n, I*the new role to be added (role name with proposed effective privilege 

set) *1 
C 1* role-permission and role-role constraints *1 

Output: The role graph with n added and role graph properties intact, 
or RG unchanged if an error was detected. 

Method: 
begin 

end. 

for all r E R 
if Effective(n) = Effective(r) 

then abort 1* this role is already in the graph*1 
R:=RU{n} 
for all r E R 1* Create edges to seniors *1 

if Effective( n) C Effective( r) 
then add the edge n -+ r 

for all r E R 1* Create edges from juniors *1 
if Effective(r) C Effective(n) 

then add the edge r -+ n 
Direct(n) f- Effective(n) I*correct Direct and Effective of n*1 
for all rj junior to n 

Direct(n) f-Direct(n) - Effective(rj) 
for all p E Direct(n) 

RevisedPrivAdd(RG, n, p, ATG, AOG, a.up, a.down, AAM, C) 

Figure 6. Revised Insert 2 algorithm. 

AOG. In general, the original a and 0 will not be connected in their respective 
graphs in a position that makes all the other nodes reachable. However, the up­
per bound on the number of privileges derivable from a given (a, 0) is (number 
of nodes in ATG) * (number of nodes in AOG), which are, respectively, the 
number of authorizations and the number of objects in the system. 

5. Conclusions 

In this paper we have presented a new privilege insertion algorithm for the 
role graph model, which takes into account any implications given among au­
thorization types or object granules that the security designer can specify. We 
looked only at the privilege insertion algorithm and the two versions of role 
insertion. The role graph model also includes role and permission deletion, as 
well as edge insertion and deletion algorithms. It is fairly clear that edge inser­
tion and deletion can work simply with the effective privileges already deter­
mined and stored in their respective roles. One might want to ''unwind'' some 
of the privilege implications when privilege deletion is performed. This could 
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be done, but perhaps one of the implied privileges was separately granted to the 
role. In order to really do this, the tradeoff is the cost of keeping track, for each 
privilege, of whether it was deduced by the algorithms or directly given by the 
security designer. At the moment, when a role is deleted, the designer is given 
the choice of deleting the direct privileges with the role, or propagating them 
to the immediate seniors of the role being deleted. Coupled with this would be 
the determination of whether the privileges are original ones or derived ones. 

We also saw that the number of implied privileges can be proportional to 
the size of the ATG, times the size of the AOG. In practical applications, the 
ATG is unlikely to be very large, but the AOG can be extremely large. The 
ATG is unlikely to have very many edges, and in many situations the AOG 
might be fairly flat: an application based on a relational database, for example, 
will probably have just the depth of granules shown in Figure 1. In managing 
operating systems security, the ATG likely has no edges, and the AOG also 
probably treats files as distinct objects, just as UNIX does, and thus would not 
have any edges either. 

This addition to the role graph model provides a succinct way of describing 
implications among privileges, using the only two dimensions of a privilege, 
namely the object and the authorization which together make up a privilege. 
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