
APPLICATION CONTROLS IN A
CLIENT/SERVER ENVIRONMENT

Migration of controls towards the database?

Fred de Koning

Professor of Accounting Information Systems at Nyenrode University, The Netherlands
Partner of Mazars Paardekooper Hoffman, Utrecht, The Netherlands

Abstract: In clientiserver systems the integrity of data processing is threatened by the
lack of control over the front end applications. The migration of controls from
the application level to the database level might be a solution for this problem.
This paper will analyze how essential application controls can be
implemented in the database environment.

Validation controls are important to check the accuracy of input, especially in
case of manual input. The validation routines at the front end level can be
considered to be more important for the support of the user (,self-control')
than for the integrity of the corporate data. Essential validation routines
should be implemented at the server level. Referential integrity, integrity
constraints, stored procedures and database triggers can be used to support
validation controls.

For management and control purposes effective and reliable information
about business processes is needed. It will be shown that this information can
only be produced when the database that generates the information is based on
a data model, that reflects the successive stages of the financial, logistic and
physical flows in a company. The reliability of information about business
processes can be further secured by reconciliation of control totals, generated
for each stage. Data about variances between successive control totals, or
between control totals and related standards, should be kept available for
further investigation.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003
M. Gertz (ed.), Integrity and Internal Control in Information Systems V

10.1007/978-0-387-35693-8_16

http://dx.doi.org/10.1007/978-0-387-35693-8_16

78 Integrity and Internal Control in Information Systems

Key words: Application controls, integrity of data, separation of duties, authorization of
users, accounting information systems, data model, database management
systems.

1. THE CLIENT/SERVER ENVIRONMENT

1.1 Introduction

In modem client/server systems the integrity of data processing is
threatened by the lack of control over the front-end (or client) applications.
The migration of controls from the applications level to the database level
might be a solution for this problem. This paper will analyze how essential
controls can be implemented within the database management system, that
means as close to the data as possible. It will be shown that some controls
can be effectuated by means of an effective data model, that is to say a data
model that reflects the successive stages in the business processes. Other
controls can be effectuated by means of the facilities of modem relational
data base systems.

This paper will not advocate that all controls should be located in or
around the data base. In order to give the user adequate support, the front­
end applications should provide all the controls that are necessary to prevent
wrong input of data. Most of these controls can be categorized as 'self­
controls' for the user. The controls that are important for the organization as
a whole, that is to say the controls that assure integrity of the corporate data,
should be centralized by means of server applications, the database
management system, or the structure of the database. In some cases it can
not be avoided that these controls duplicate the controls in the front-end
applications. This kind of redundancy, however, is generally no problem and
can even benefit the integrity of data.

1.2 The client/server architecture

The Gartner Group defines client/server architecture as the application of
co-operative processing, in which a programmable workstation executes part
of the application, including the user interface. Client/server architectures
can take different forms, depending on the proportion of distribution or
decentralization of the application software. The well-known Gartner Group
model [1] presents different stages in distribution or decentralization of the
database itself, the related functionality and the presentation layers.

Application Controls in a Client/Server Environment 79

Figure 1. Client/server application model (based on Gartner model)

The client/server architecture will be characterized by several layers of
software, such as:

• the presentation layer (Graphical User Interface or GUI)
• decentralized functionality (input and output applications)
• the communication layer (middleware)
• central functionality (central applications and stored procedures)
• the database management system (DBMS)

These software layers can be implemented on different hardware
platforms, which are connected by a network. The client platforms can
consist of Personal Computers (PCs) or Unix workstations. For the server
platform microcomputers, mid-range computers or even mainframes can be
used. These servers can be network servers, application servers or dedicated
database servers.

The database management system in client/server architectures generally
supports a relational database, which is implemented on one or more of the
central servers. In the case of distributed databases the data can be stored on
the client systems as well, although this is actually not in line with the
client/server concept.

80 Integrity and Internal Control in Information Systems

1.3 Control problems with the client/server model

The client/server architecture causes some control problems. One of the
objectives of using client/server systems is to grant more autonomy to the
users. End users can be able to use query tools and to adapt input and output
screens to their needs. The control of the application software on the
workstation is questionable. A proponent of the client/server architecture
puts it this way: "In an application with a GUI the user is in control. With his
mouse he selects functions in the menu bar on top of his screen. There are
useful symbols (icons) that can be activated by the user. " [2].

In most cases the clients will be Personal Computers (PCs). Healy points
out that PCs offer insufficient facilities for the control of applications for
transaction processing. The PC is totally unprotected against the professional
hacker, who can decode the application on the PC very easily and
subsequently manipulate the central database. Healy recommends to restrict
the application software on the client to just presentation functions and to
install the applications for transaction processing on the central servers by
means of so-called stored procedures. These servers can be protected using
traditional methods, such as transaction monitors and security software [3].

The solution described by Healy resembles the traditional host/slave
solution, that means a mainframe with "dumb" terminals. The traditional
controls will hinder the flexibility and user friendliness of the applications.
They conflict with the objectives of the client/server-architecture and will be
considered by the users as an impediment. In consequence this solution will
be doomed to fail. There is a need for solutions, that give the user enough
freedom and at the same time protect the integrity of the corporate data.

1.4 A starting point for the control of CIS applications

The challenge is to combine the autonomy of the client/server
applications with a tight integrity control of corporate data. The integrity of
data can be undermined during the successive stages: input, processing,
storage and output. Controls are necessary to prevent human error, especially
in the case of manual input. Human involvement in the input stage tends to
be replaced by automatic registration of the business processes, but manual
input cannot be avoided in many cases.

In order to control manual input and update of data, authorization and
integrity controls are needed. Only authorized users should be allowed to
modify the data of the corporate database. Besides these modifications
should be controlled by as many validation routines as efficiently possible.

Application Controls in a Client/Server Environment 81

The identification and authentication of users can be a function of the
client operating system, the network operating system or the operating
system of the server(s). The client operating system can just protect the
client and no more than that. Generally the network software and the
operating system of the servers will be used to protect the network and the
data on the servers. Recent developments, such as the Kerberos
authentication system [4], offer opportunities for a useful identification and
authentication policy.

Traditionally the authorization of users will be implemented by granting
users the authority to execute certain application programs. Consequently
users should only be allowed to insert or update the data in the database by
using these application programs. In this way it can be arranged that the
validation routines in the application programs will be executed before the
data in the database will be modified.

A usual division ofthe application controls is as follows [5]:
• Source data controls
• Input validation routines
• On-line data entry controls
• Data processing and file maintenance controls
• Output controls

Examples of source data controls are:
• Check-digit verification of account numbers and other code numbers

entered into the system.
• Sequence tests to check the right numerical or alphabetical sequence

of input data.
• Manual reconciliation of batch totals.

Examples of input validation routines are:
• Validity checks, which compare customer numbers or other codes

with the data stored in the database.
• Limit checks to establish whether entered amounts do not exceed a

predetermined upper or lower limit, like a test of the order amount
with a credit limit.

• Reasonableness tests to determine whether the input data is logically
acceptable, e.g. a test whether the size of ordered quantities is
reasonable.

Examples of on-line data entry controls are:
• Prompting to enter data into fields on the screen.
• Completeness checks on the data to be entered for a transaction.

82 Integrity and Internal Control in Information Systems

• Closed-loop verification, such as displaying the name of the client
according to the client table when a client number has been entered.

In a client/server environment these application controls can be
implemented either on the client level or on the server level. The controls
relevant to the corporate data should be executed on the database level, that
is to say as close to the database as possible. There are no safeguards that the
application controls on the client level will always be executed. As a matter
of fact the function of the controls on the client is just to support the users.
One could call them: 'self-controls' for the user. They help the user at the
data input stage, but they are hardly useful for the control of the integrity of
the corporate data.

2. INFORMATION FLOWS IN A COMPANY

2.1 An information model of trading companies

Business information systems are supposed to give information about
business processes. The management will need information about the
successive stages in the business processes, especially for the control of
these processes. This information should be consistent and auditable, that is
to say there should be an audit trail into the underlying detailed data.

The model shown in figure 2 gives an overview of the information and
physical flows in a trading company regarding the primary business
processes. The financial information flow represents changes in the financial
relations with vendors, customers and financial institutions, including banks.
The physical flow (value chain) represents the flow of goods and services
received from the suppliers and (generally after some kind of
transformation) delivered to customers. The logistical information flow
steers the physical flow by means of purchase orders, sales orders, shipment
orders and so on.

This model is meant to show how the information and physical flows
should be measured and recorded in the database. The flows can be split up
into stages and each stage should be recorded by a dedicated application
program and recorded in a dedicated table of the database. This means the
basic design of the database should reflect the information flows and
physical flows in the organization.

Application COfltrols in a Client/Server Environment

Information flows of trading company

+- upstream r economic entity +-,
I financial information I

I > . . trading partner - economic entity trading partner

Figure 2. Information model of trading company

83

The model represented in figure 2 shows that an individual company is
only a link in a chain of information flows and value streams from one
company to another. The integration of the information systems with the
systems of the preceding companies (upstream) or succeeding companies
(downstream) in the chain is a challenge for many companies in the current
business environment.

In order to retain an audit trail of transactions with trading partners it is
essential to measure and record the information flows as soon as they cross
the borders of the economic entity. E.g., incoming sales and shipping orders
will have to be recorded as soon as these orders enter the network of the
company. In the past the primary recording of transactions played an
important role as a basis for the internal control and external audit.
Nowadays the primary recording can be safeguarded by grasping all the
transactions as soon as they are crossing the borders of the entity by means
of data communication. The recording of these transactions asks for control
and the files with the images of the transactions should be secured properly.

In order to obtain the necessary information about the value chain, the
logistical flow and the financial flow, these flows should be measured at
different stages. To secure the integrity of this information the (manual)

84 Integrity and Internal Control in Information Systems

input of data has to be controlled and the consistency of the information
about the business flows has to be reviewed.

2.2 Network of reconciliation totals

In figure 3 the interrelations which are recognizable in most trading
companies are shown. These interrelations can be used to check the
consistency of the financial representation of the value chain within the
organization.

BANK

Leakages and value leaps in trading companies

(variances in reconciliations)

SALES Accounts
receivable

Purchases Inventory
Accounts
payable

BANK

Discounts
received

Price Gross Discounts Write-offs
differences margin given

Figure 3. Value stream of trading companies

Note the following interrelations in this flow:
• payments to suppliers = debits on bank account
• recorded purchases = increase in accounts payable
• received goods = increase in inventories
• recorded sales = decrease in inventories
• recorded sales = increase in accounts receivable
• payments form customers = credits on bank account

However, these interrelations are never straightforward in practice.
There are "leakages" in the value chain, like lost inventories, discounts given
to costumers and non-payment by costumers, and "value leaps" like

Application Controls in a Client/Server Environment 85

discounts received from suppliers and the realized gross margin. These
discrepancies in the value chain have to be reviewed and analyzed in order
to find out their causes and to consider whether they are acceptable.

ill service companies, aimed at delivering services charged per man-hour,
the value stream could look like the representation in figure 4.

Leakages and value leaps in service companies

(variances in reconciliations)

Available
hours

Billable
hours Accounts

receivable BANK

BANK Salaries

Hours x tariffs J ndirect Discounts Write-oils
hours given

Figure 4. Value stream in service providing companies

The interrelations for this kind of companies can be:
• paid salaries = debits on bank account
• paid hours x rate = available man hours
• available man hours = billable hours + indirect hours
• billable hours = invoiced hours = increase in accounts receivable
• payments form customers = credits on bank account

These interrelations will be straightforward neither. The "leakages" in
figure 4 cover discounts, non-billable hours and write-offs. The "value
leaps" will cover gross margins, rating hours and so on. The information
system should present enough information to analyze these leakages and
value leaps. E.g., it must be possible to view the gross margin from different
viewpoints, such as the gross margin per product group, the margin per
customer group, region, sales person, branch, etc. The leakage of indirect

86 Integrity and Internal Control in Information Systems

hours can be analyzed by presenting the leakage per category hours, per
branch, level of employee, etc.

A check on consistency can also be a comparison with available
standards such as budgets, production standards, sales targets, budgeted
gross margin and so on. A discrepancy between budgeted margins and real
margins is a form of inconsistency and should be analyzed and elucidated.
The checks on consistency of the distinguished flows should be primarily
carried out as a standard function of the information system. The analytical
information regarding the discrepancies should be presented to the controller
or another functionary with controlling responsibilities, who has to
investigate and explain the discrepancies. The management decides whether
the discrepancies are acceptable.

In my thesis [6] I tried to combine systems theory with a reconciliation
approach, which is rather common in Dutch auditing theory and basically
described in a paper of the Dutch Institute of Certified Accountants [7] (the
"network of reconciliation totals"!. Systems theory tells us that there are
relations between input and output. These relations can be simple (e.g. in a
trading company, as described above) or very complex (e.g. in some
complicated industrial processes). In a industrial environment, the
information systems will typically record usage of raw materials or
components as the input to production processes and the delivery of parts or
finished products as the output of the production processes. There must be a
relationship between input and output. Generally this relationship can be
described in the form of an arithmetic formula. From this arithmetic formula
the standard usage of raw material and components can be derived.

To control these kinds of production processes, information must be
available about the usage of raw materials or components and about the
production of parts or finished goods. This information will typically be
presented in the form of totals per production cycle or period. In order to
judge the validity of these control totals, normative information should be
presented as well. When there is a difference between the normative
information (e.g. the standard usage of raw material) and the information
about the real results, it should be possible to investigate the underlying
basic data. As a consequence there is a need for storing data about the inputs
and outputs of the production processes in dedicated tables of the database,
in other words: the inputs and outputs form separate entities in the data
model.

! see also [8], page 37-41

Application Controls in a Client/Server Environment 87

3. THE DATA MODEL

3.1 Modelling information flows

This paper stresses the importance of database design (in fact the
development of the data model) for effective and reliable information
regarding business processes. In consequence it is essential that at least
controllers and accountants are involved in the development of the data
model. A defective or incomplete data model can have far reaching
consequences for management information and accounting information.
Romney and Steinbart [5] put it this way: "Accountants can and should be
involved in all stages of the database design process, although the level of
their involvement in each stage is likely to vary. In the requirements analysis
and design stages, accountants participate in identifying user information
needs, developing the logical schemas and designing the data dictionary, and
specifying controls."

The data model should reflect the successive stages of the information
and value flows in order to record the business processes in an adequate
way. Figure 5 represents a simple data model for a trading company.

INCOMING
PAYMENT

OUTGOING
PAYMENT

Figure 5. Simple data model for trading company

88 Integrity and Internal Control in Information Systems

In this data model there are entities which are visible in the real world,
such as "customer", "article" and "vendor". Besides these there are entities
which reflect an action or transaction, such as "order", "delivery", "invoice",
"payment". These entities are not tangible in the real world (apart from
documents recording these transactions). They resemble the "events" of the
REA-model of McCarthy [9], the model that makes a distinction between
Resources, Events and Agents as entities in the data model.

For the control of business processes the management will need
accumulated information about the "events", being the successive stages in
the transaction flows. There must be an opportunity to analyze this
accumulated information in case reconciliation of control totals will show
differences or inconsistencies. Therefore the information system will need
"drill down" facilities, that is to say facilities to recover the basic elements of
accumulated information.

3.2 Example of design flaw in data model

In this paragraph an analysis will be made of a data model presented in a
textbook for graduate students [10] with the object to illustrate the need of a
good database design.

The following objects (entities) for a library system were identified:
• Library user (client)
• Library item (book or paper)
• Library staff member

Library users are recorded in the user database before they can borrow
library items. Library items are recorded in the library items database.
Library users are allowed to borrow library items. Library items are checked
in and out by the library staff.

These notions can be described in the (simplified) data model, shown in
figure 7.

Application Controls in a Client/Server Environment 89

CLIENT .. ITEM ...

.. I
l account j

STAFF

Notation:
= I-to-many relationship

Figure 6. Simplified data modellihrary system

In this data model three separate entities are defined: CLIENT (Library
user), ITEM (Library item) and STAFF (Library staff member). Only the
relationships relevant for this example have been drawn. A staff member can
serve several clients. A client can only be served by one staff member. A
client can borrow several library items. A library item can only be borrowed
by one client (at the same time). The rectangular mentioning "account"
should not be regarded as an entity, but as an attribute of the entity client.
This data model could be used as the basis for a library system. The entities
chosen are entities that are visible in the real world, resources and agents
according to the REA-model of McCarthy. Apparently in this case there are
no events defined as entity.

The data model presented is like a snapshot, a picture of a situation at
just one moment. As soon as the book borrowed by the client has been
returned the relationship between the client and the item should be deleted;
otherwise it will not be possible to lend the same book to another client. The
historical information has been discarded at that moment. However, it can be
expected that later on the management will need management information,
e.g. how many books have been borrowed over a period of time, or how
many clients have been served by a staff member. This information cannot
be derived easily from an information system built up according to this data
model. Maybe (by chance) it can be derived from the aggregation of
accounts, though these attributes of the client are not meant to give that kind
of information. They are only meant to control the borrowing process. If the
decision were made to define an entity for the event "transaction", the

90 Integrity and Internal Control in Information Systems

problems mentioned above could be solved easily. ill that case the data
model could be drawn as shown in figure 8.

CLIENT ..

Notation:

TRANS-
ACTION

ISTAFFl

------II.. = I-to-n relationship
... • = n-to-m relationship

.....

Figure 7. Adapted data model for library system

... LIBRARY
ITEM

A client can be engaged in more than one borrowing transaction. A
borrowing transaction can conceive one or more library items. A library item
can be included in zero, one or more borrowing transactions. A staff member
will handle more than one borrowing transaction. This adapted model can be
the basis for recording historic transactions in order to present control
information over time and to offer the possibility of drilling down into detail
records of borrowing transactions.

This example illustrates the need for the involvement of controllers and
accountants in the data-modeling phase of systems development. ill this
phase important decisions are made for the information system to be built,
decisions that can have far reaching consequences for the information to be
gathered from the system and for auditing possibilities as well.

3.3 Separation of duties

Another reason for identifying the successive stages in a transaction flow
could be the wish to implement a suitable form of separation of duties.
Separation of duties forms an important measure of internal control,
especially with a view to the reliability of information about business
processes.

Traditionally the following separation of duties has been prescribed [11]:
• Authorization of transactions

Application Controls in a Client/Server Environment 91

• Execution of transactions
• Custody of assets
• Recording of transactions and assets

In addition to these "classic" separation of duties, independent
performance of various phases of accounting, such as separated recording
cash receipts and cash disbursements, has been recommended [12].

As Romney and Steinbart [5] point out, the REA-model (the data model
that distinguishes resources, events and agents) can be useful in evaluating
the extent to which incompatible duties are segregated since this model
shows which internal agents participate in each event.

Clark and Wilson proposed to implement the desired separation of duties
in a IT-environment by means of authorization controls [13]. This includes
assigning application programs to users. These application programs should
be what they call "well-formed transactions". The data in the database
should be changed exclusively by means of these application programs.

One of the problems of this approach is the integrity of the application
programs. In practice the well-formed transactions are often not as "well
formed" as one would desire. Application programs are prone to change and
error, and therefore less reliable in many instances. Besides, application
programs can be manipulated or circumvented by the user, especially when
they are installed on client systems.

A more reliable solution can be derived by implementing the
authorization controls on the database level, that is to say by assigning users
or groups of users the authorization to insert, update or delete data in tables
(or in columns in tables). Such a solution is particularly suitable for audit
purposes. In case the authorization controls are implemented on the level of
applications, a good knowledge of the functionality of the applications is
necessary to be able to evaluate authorizations and consequently separation
of duties. Usually it is very hard to get insight in the functionality of
application programs, due to a lack of good and actual documentation.

The authorizations on a database level, however, are typically
straightforward and easy to analyze. Leenaars stated in his thesis [14] that -
in a highly computerized environment - the "recording of transactions and
assets" as a separate function will be replaced by automatic recording within
the information system. In such an environment many business transactions
(such as the execution of sales orders) can only be carried out by using the
computer system, i.e. by entering the order into the computer system. The
information system will check whether the order remains within the credit
limit of the client and whether the level of stock is sufficient. After these
checks the order will be displayed in the warehouse, where it can be

92 Integrity and Internal Control in Information Systems

compiled, packed and shipped, and subsequently be entered into the system
as delivered.

If these kinds of procedures are followed and it is not possible to
circumvent these procedures (e.g. by passing sales orders to the warehouse
without using the computer system), then the completeness and accuracy of
the registration of the sales transactions is sufficiently safeguarded. In this
case the recording function has been transferred from a manual function to
an automatic procedure.

Besides the example given above illustrates that even the function
"authorization of transactions" can be replaced by automatic procedures,
such as the checks against the credit limit and the stock quantity. The result
will be that there is only a separation of duties between the "execution of
transactions" and "custody of assets". In many companies the custody of
assets is not an issue, especially in the service related industry. The
conclusion must be that in many cases the traditional model for separation of
duties, advocated by Romney and Steinbart [5], Vaassen [8] Gray and
Manson [11], Horngren [12] and many others, has become outdated.

The aim of the internal control measure "separation of duties" was
primarily to ensure the reliability of information about business events.
When more people were involved in a business event and each of these
persons kept a separate registration of the event, then the reliability of the
information about the event could be checked afterwards by comparing the
separate registrations.

However, when transactions are automatically registered, there is no
need for separate registrations of the same event anymore. What is needed is
a system that safeguards the reliability of the representation of the real world
transactions in the information systems. A solution could be to observe (and
record) the transaction flow at different stages and to compare the results of
these recordings.

There could, e.g., be a separation of duties related to:
• the recording of a sales order
• the recording of the shipment
• the recording of the incoming payment

These recordings should be consistent with each other within the
constraints of the "reconciliation network" described before. This approach
can be implemented by defining different entities and different tables of the
databases for successive stages in the transactions. Each table can then be
allocated to one user or a group of users in order to realize what might be
called "separation of phases"2.

2 Term introduced by Hartman [15].

Application Controls in a Client/Server Environment 93

4. DATABASE CONTROLS

4.1 Control facilities of a modern DBMS

Traditionally application controls are implemented by means of
application programs. It has been argued before that application controls on
the client level are less reliable, since the user may influence or circumvent
the applications on the client. But even the application programs on the
server level might not be very reliable, since they are prone to change and
error too. Many authors (e.g. [16] ,[17], [18]) point out, that data structures
tend to be more stable than procedures. That is an important argument to
investigate whether the application controls can be implemented on the
database level. In this section I will investigate the facilities of a modem
database management system from that point of view. These facilities3

include:
• referential integrity
• the data dictionary
• integrity constraints
• stored procedures
• database triggers

These facilities offer interesting opportunities to transfer (part of) the
integrity rules from the application programs to the database environment.

Referential integrity
Modem relational database systems offer facilities for controlling

referential integrity. A foreign key in a table should always point at a
primary (or unique) key in another table. E.g., when an order is recorded in
the order table, the customer will be identified by a foreign key referring to a
primary key in the customer table. The foreign key cannot be entered into
the order table when there is no corresponding primary key in the costumer
table. Besides the primary key cannot be removed from the customer table,
when there is still a reference to this key. This is called referential integrity,
an important concept regarding accuracy of data.

Data dictionary
The data dictionary will automatically be created when a database is

created. When the structure of the database is altered, the data dictionary will
be automatically updated.

3 Terminology from "Database Security in Oracle8i™, An Oracle Technical White Paper,
November 1999".

94 Integrity and Internal Control in Information Systems

The data dictionary describes the logical and physical structure of the
database. Besides the data dictionary can present the following types of
information:

• definitions of all schema objects in the database (tables, views,
indexes, synonyms, procedures, triggers, and so on)

• default values and integrity constraints for columns in the tables
• the users of the database with their privileges and roles
• historical information, e.g. updates of objects by users

The data dictionary is particularly interesting from the audit point of
view, presenting up to date and reliable information about application and
authorization controls.

Integrity constraints
The integrity constraints declare rules for the values stored in the

columns of a table. If an integrity constraint is declared for a table and some
existing data in the table does not satisfy the constraint, the constraint cannot
be enforced. Once a constraint is defined, all the updates in the column will
be checked against the integrity constraint. If a DML statement violates any
constraint, the statement is rolled back and an error message is returned.

Examples of integrity constraints are:
NOT NULL disallows nulls in a column of a table.
UNIQUE disallows duplicate values in a column or set of

columns.
PRIMARY KEY disallows duplicate values and nulls in a column or set

of columns.
FOREIGN KEY requires that each value in a column or set of columns

match a value in a related table's UNIQUE or
PRIMARY KEY

CHECK checks on a logical expression.

Stored procedures
Stored procedures are small programs, written in languages such as

PL/SQL or Java, that can be used to limit the way a user can insert, update or
delete the data in the database tables. The validation rules in (front-end)
applications can be bypassed by the user if the user has direct privileges in
the database. Stored procedures, however, can not be bypassed during
modification of data.

A procedure can be defined that performs a specific business function.
The user can be given authority to execute this procedure without being
granted any access to the objects and operations that the stored procedure

Application Controls in a Client/Server Environment 95

uses. This prevents users from modifying data outside the context of the pre­
defined procedure.

Database triggers
Database triggers are small programs like stored procedures. While

stored procedures are explicitly executed by users, database triggers are
automatically executed or "fired" in the case of predefined events. A trigger
can be executed either before or after an insert, update, or delete. When such
an operation is performed on that table, the trigger automatically fires. Four
types of triggers can be defined on a table: BEFORE statement, BEFORE
row, AFTER statement, and AFTER row.

Database triggers offer the opportunity to record operations by users.
E.g., a BEFORE UPDATE trigger can be defined on a table that
automatically records the existing values in the table before they are updated
by the user. In that way both the old and new values can be recorded in the
rows updated.

5. CONCLUSIONS

Good business information is information that gives a true and fair view
of the real world activities. In order to get good information, the real world
should be observed and recorded at different stages of the information and
value flows in a company. The data model that forms the basis of an
business information system should reflect these different stages. Such a
data model (a type of REA-model) offers opportunities for effective and
reliable information about the business processes. This information is needed
for management and control purposes. Besides, the auditability of the
information will be improved by a data model reflecting the stages in the
business processes.

The consistency of information about business processes requires
reconciliation of control totals. Variances and inconsistencies between
successive control totals, or between control totals and related standards,
should be presented to the controller or another user with a controlling task
for further analysis. This analysis can be supported by the information
system in the form of analytical information about variances and by offering
drill down facilities. These facilities require the retention of the basic data,
which must be foreseen in the data model.

The implementation of separation of duties requires authorization
controls. Traditional separation of duties tend to be replaced by a separation
of duties following the stages of the business processes. When the data
model reflects these stages, the separation of duties can be implemented

96 Integrity and Internal Control in Information Systems

using authorizations for the different tables in the database. Separation of
duties implemented at the database level is more reliable and auditable than
separation of duties implemented at the application level.

Validation controls are important to check the accuracy of input,
especially in case of manual input. Validation routines can be implemented
in application software. In client/server systems the front-end applications
are difficult to control. The validation routines at that level can be
considered to be more important for the user himself (self-control) than for
the corporate data. Truly reliable validation routines should be implemented
at the server level and preferably by means of the DBMS. With referential
integrity, integrity constraints, stored procedures and database triggers more
stable and reliable validation routines can be arranged. The data dictionary
facilitates the insight into the implemented controls.

REFERENCES

[1] Woolfe, R., Managing the Move to Client-Server, Wentworth Research
Program, 1995.

[2] Noordam, P.G. and A. van der Vlist, Trends in Informatietechnologie,
Deventer, NL, 1995.

[3] Healy, M., Clientlserver-omgevingen beveiligen, in: Computable,
September 8th, 1995, page 29.

[4] Schiller, J.I., Secure Distributing Computing, in: Scientific American,
November 1994, pages 54-58.

[5] Romney, M.B. and Steinbart, P.J., Accounting Information Systems, 8th

edition, Upper Saddle River, NJ, 2000.
[6] Koning, W.P. de, Informatie voor de beheersing van bedrijfsprocessen,

thesis, Rotterdam, 1997.
[7] NIVRA, NIVRA-geschrift nr 13, Automatisering en controle,

Amsterdam, 1975.
[8] Vaassen, E.H.J., Accounting Information Systems, Chichester, UK, 2002.
[9] McCarthy, W.E., The REA Accounting-model, in: The Accounting

Review, July 1982.
[10] Kotonya, G. en Sommerville, I., Requirements Engineering, Chichester,

UK,1998.
[11] Gray, I. and S. Manson, The Audit Process, London, 1989.
[12] Horngren, C.T., W.T. Harrison and M.A. Robinson, Accounting, 3rd

edition, Englewood Cliffs, NJ, 1996.

Application Controls in a Client/Server Environment 97

[13] Clark, D.D. and D.R. Wilson, A Comparison of Commercial and Military
Security Policies, Proceedings of the 1987 IEEE Symposium on Security
and Privacy, page 184-194.

[14] Leenaars, J.J.A., Functiescheidingen in hooggeautomatiseerde omgevin­
gen, thesis, Alphen aan den Rijn, NL, 1993.

[15] Hartman, W., Organisatie van de Informatieverzorging, The Hague,
1995.

[16] Veldhuizen, E., Ham, H.W.F. van den, Keijzer, c., Kielen, E.M. and
Koning, W.F. de, Rapport van de Werkgroep Informatietechnologie en
Interne Controle, Limperg Instituut, Amsterdam, 1994.

[17] Yourdon, E., Whitehead, K., Thomann, J., Oppel, K. and Nevermann, P.,
Mainstream Objects: An Analysis and Design Approach for Businesses,
Upper Saddle River, NJ, 1995

[18] Curits, G. and Cobham, D., Business Information Systems, 4th edition,
Harlow, UK, 2002

	APPLICATION CONTROLS IN ACLIENT/SERVER ENVIRONMENT
	1. THE CLIENT/SERVER ENVIRONMENT
	1.1 Introduction
	1.2 The client/server architecture
	1.3 Control problems with the client/server model
	1.4 A starting point for the control of CIS applications

	2. INFORMATION FLOWS IN A COMPANY
	2.1 An information model of trading companies
	2.2 Network of reconciliation totals

	3. THE DATA MODEL
	3.1 Modelling information flows
	3.2 Example of design flaw in data model
	3.3 Separation of duties

	4. DATABASE CONTROLS
	4.1 Control facilities of a modern DBMS

	5. CONCLUSIONS
	REFERENCES

