
DESIGNING HIGH INTEGRITY SYSTEMS
USING ASPECTS

Geri Georg, Robert France, Indrakshi Ray
Agilent Technologies, Colorado State University, Colorado State University

Abstract: In this paper we show how design-level aspects can be used to develop high
integrity systems. In our approach, a system designer must first identify the
specific mechanisms required for high integrity systems. To support this
activity we have developed an initial tabulation of different kinds of threats
and the mechanisms used to prevent, detect, and recover from the related
attacks and problems. Each mechanism can be modeled independently as an
aspect. After the mechanisms are identified, the corresponding aspects are then
woven in the appropriate order into the models of the essential system
functionality to produce a model of a high integrity system.

Key words: Aspect, Integrity, Software design

1. INTRODUCTION

High integrity systems that carry out safety-critical and security-critical
tasks require that close attention be paid to integrity concerns during
software development. There is a growing awareness that the manner in
which software is designed can have a significant impact on the security of
the system [8]. Software developers need to consider integrity concerns
when making architectural, logical, and physical (including technology­
related) design decisions. For complex systems, developers also have to be
concerned with other concerns, for example, distribution, and usability. A
design technique that allows developers to model these concerns in a
relatively independent manner, and then integrate (weave) them with a
model of system functionality to produce a more comprehensive model of

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003
M. Gertz (ed.), Integrity and Internal Control in Information Systems V

10.1007/978-0-387-35693-8_16

http://dx.doi.org/10.1007/978-0-387-35693-8_16

38 Integrity and Internal Control in Information Systems

the system, can help pave the way for the development of systematic
approaches to complex system development.

In this paper we propose and illustrate an aspect-oriented design (AOD)
technique for designing a high integrity system. An aspect-oriented design
consists of a primary model and one or more aspect models. An aspect
encapsulates information related to a design concern (e.g., user
authentication) that is spread across the design units of a primary design
model (i.e., the concerns cross-cut the units of the primary design).
Incorporating the aspects into a primary model is called weaving. An
integrated model of the system can be obtained by weaving a primary model
with the aspect models.

Treating high integrity concerns (e.g., security and fault-tolerance
concerns) as aspects during design modeling has the following advantages:
(1) Aspects allow one to understand and communicate high integrity
concerns in their essential forms, rather than in terms of a specific
application's behavior. (2) An aspect focuses on one concern, hence it is
easier to model and understand its behavior. (3) The integrity aspects are
potentially reusable across different systems. (4) Changes to the respective
concerns are made in one place (aspects), and effected by weaving the
aspects into the models of essential functionality. (5) The impact of high
integrity concerns on system functionality can be analyzed by weaving the
aspects representing the concerns into models of system functionality and
analyzing the results. Analysis can reveal undesirable emergent behaviors
and interference across the woven aspects at the design level. System
designers are then better able to identify problems with the design of
integrity mechanisms before they are implemented.

In order to realize the above benefits we define aspects as patterns
expressed in terms of structures of roles called Role Models [11,12]. Roles
define properties of the concerns represented by aspects. Model elements
that have the properties specified in a role realize (or, can play) the role. In
our approach, the model elements are UML constructs. Our work is based on
UML because it is emerging as a de facto modeling standard.

The manner in which multiple aspects are woven into a primary model is
determined by weaving strategies. A weaving strategy identifies integrity
aspects based on the kinds of attacks and problems that are possible in a
system and the mechanisms that can be used to detect, prevent, and recover
from such attacks and problems. Each of these mechanisms can be modeled
as an aspect. These aspects can then be woven with a model of system
functionality to produce a design of a high integrity system. In this paper we
illustrate how two aspects can be woven with a primary model.

Designing High Integrity Systems using Aspects 39

The rest of the paper is organized as follows. Section 2 gives some
background information pertaining to this work. Section 3 shows how
integrity aspects can be specified using Role Models. Section 4 illustrates
how two different security aspects (authentication and auditing) can be
woven with a primary model. Section 5 concludes the paper.

2. BACKGROUND

2.1 Role Models

We use Role Models (see [11, 12]) to define aspects as patterns of model
structures. Roles are used to define properties of aspects. A Role Model is a
structure of roles, where a role defines properties that must be satisfied by
conforming UML model elements. A UML model element (e.g., a class or
an association) that has the properties specified in a role can play the role,
that is, it conforms to (or realizes) the role. A UML model is said to conform
to (or realize) a Role Model (i.e., is a realization) if (1) it contains model
elements that conform to the roles in the Role Model and (2) the structure of
the UML model is consistent with the structure characterized by the Role
Model. Weaving an aspect defined by Role Models into a primary model is
essentially a model transformation process in which a non-conforming
primary model is transformed to a conforming model (i.e., a model that
incorporates the aspect).

A design aspect (e.g., an integrity concern) can be modeled from a
variety of perspectives. In this paper we focus on two aspect views: static
and interaction views. An aspect's static view defines the structural
properties of the aspect. The interaction view specifies the interaction
patterns associated with the aspect. To model aspects from these views, we
use specialized forms of two types of Role Models: Static Role Models
(SRMs) and Interaction Role Models (IRMs) [12]. SRMs define patterns of
UML static structural models (e.g. Class Diagrams patterns), while IRMs
define UML interaction diagram patterns (e.g., Collaboration Diagrams
patterns). An aspect definition typically consists of a single SRM and one or
moreIRMs.

2.1.1 An Overview of SRMs

An SRM consists of classifier and relationship roles. Each role has a base
that restricts the type of UML construct that can play the role. An example of
an SRM for authentication (an integrity concern) is shown in Figure 1

40 Integrity and Internal Control in Information Systems

(details of the properties expressed in the roles are suppressed in this SRM).
This SRM consists of four class roles: Initiator, Target, IdentityRepository,
and IdentityEntity. The base of these roles is Class (as indicated by the Class
Role stereotype), thus only UML class constructs can play these roles. The
SRM also consists of three relationship roles (each with base Association)
that characterize associations between classes playing the connected roles.
Association roles have multiplicity constraints expressed in template forms
(e.g. [[nJl) or as explicit sets of ranges (e.g., a UML multiplicity such as
2 .. n). If a multiplicity (an explicit set of ranges) is shown on an association
role end, then the multiplicity must appear on the ends of the realizing
associations. Multiplicities in a realization of an association role containing
these template multiplicities can be obtained by substituting values of n that
satisfy the constraints associated with n (expressed using Object Constraint
Language (OCL)).

Each role defines properties that conforming constructs must possess.
Two types of properties can be specified in a SRM role: Metamodel-level
constraints are well-formedness rules that constrain the form of UML
constructs that can realize the role, and Feature roles characterize properties
that must be expressed in the conforming model elements. Metamodel-level
constraints are constraints over the UML metamodel expressed in OCL [24,
31]). For example, a metamodel-level constraint in a class role can constrain
conforming classes to be concrete with a class multiplicity that cannot
exceed a value m. In order to keep the diagrams simple in this paper, we do
not show metamodel-level constraints. For examples of their use see [11].

Feature roles are associated only with classifier roles. There are two
types of feature roles: Structural roles specify state-related properties that
are realized by attributes or value-returning operations in a SRM role
realization, and behavioral roles specify behaviors that can be realized by a
single operation or method, or by a composition of operations. A feature role
consists of a name, and an optional property specification expressed as a
constraint template (omitted in the examples given in this paper). For
example, each behavioral role (see [13]) is associated with pre- and post­
constraint templates that, when instantiated, produce pre- and post­
conditions of realizing operations.

Designing High Integrity Systems using Aspects 41

Security Aspect: Authentication - Static Model
«Qass Role»
ndantlyEnUty

«Class RlIa» «AssocIaIiaI Role»
nnitiatlr - /accesses . [[nil

«SehavioraI Role» «Class RlIa» «AssocIaIiaI RlIa»
/error(•• /Target

«AssocIatIon Role»
/IageInJp /repkIs

«Class RlIa» t-«SehavioraI Role>

«OCL Consbaints » r(;;u MorIfyID (•..)
IIockQJt (•••)

[[oJ] 1 1

{ n.l1Illtlpllcily.l""",," > O} I « BehaviaaI Role >:
{m.lTIJItiplicity.l""",," > O} IIookl.P (...)
...

Figure 1. Stal1c VIew of an authenticatIOn aspect.

2.1.2 An Overview ofIRMs

UML interaction models (e.g., Collaboration and Sequence Diagrams)
are used to specify the interactions between system parts. Interactions
characterized by an aspect are defined using a template form of interaction
models called Interaction Role Models (IRMs) [12]. An IRM consists of
template forms ofUML collaboration roles and messages. Instantiating these
templates results in an Interaction Diagram. In this paper we use only the
Collaboration Diagram template form of IRMs to describe the interaction
pattern defined in an aspect. An example of an IRM for an authentication
aspect is shown in Figure 2. This IRM is described in Section 3.

2.1.3 Generating Models Elements from Role Models

During aspect weaving new model elements may need to be created in
order to incorporate the aspect into the original model. Conforming
constructs are generated from an aspect's SRM as follows:

Create an instance of the role base that satisfies the metamodel-Ievel
constraints.
For each structural role, generate an attribute and associated constraints
by substituting a name for the role name, and substituting conforming
values for the template parameters of the constraint templates.
For each behavioral role, generate an operation and associated constraints
by substituting a name for the role name, and by substituting conforming
values for the template parameters for the pre- and post-condition
constraint templates.
When multiplicity templates are given on association roles, association
multiplicities can be obtained by substituting values that satisfy the
constraints on the template parameters.

42 Integrity and Internal Control in Information Systems

Interaction models can be produced from IRMs by substituting values for
the template parameters that satisfy any constraints associated with the
parameters.

Security Aspect: Authentication·

[(nIl .2B.2A.1 : /lockOut ([(Id]])
[(nil .2B.2A [[[outcomell = [[badlDIlI :
[(nIl .2B.1 : [[outcome]]:= lverifylD ([[idenll. [[id]])
[(nIl .2B [[[Iden]]1= NULLI :
[(nil .2A.1 : /lockOut ([(Id]])
[(nIl .2A [[[I den]] = NULLI : --.

Collaboration Diagram

[[nIl : IstartConvs ([[Id]]) n
I :/lnitlator I L: !Target I

[(nIl .2A.2 : lerror([[mess11l1 --.J.
[In]] .2B.2A.2 : lerror([[mess21l1 I [[n]].1: [[Idenll :=lIookUp ([(Id]])

[[nil .2B.2B [[(outcome]] = [(OK]]) : [(continue II +

I :lIdentltyReposltory :1----1: l[[Iden]]: I Identity Entity

Figure 2. IRM for the authentication aspect

2.2 Definitions

In this section we present some definitions that we use in the rest of this
paper. We begin with the definition of high integrity systems. A high
integrity system is one that performs some safety-critical or security-critical
operations. High integrity systems must be designed keeping in mind fault­
tolerance and security issues. The three main objectives of high integrity
systems are: (1) Confidentiality (sometimes termed privacy or secrecy): (i)
protecting against unauthorized disclosure of information, (ii) protecting
against accidental disclosure of information caused by system failures or
user errors. (2) Integrity: (i) protecting against unauthorized modification of
information, (ii) protecting against unintentional modification of information
caused by system failures or user errors. (3) Availability: (i) protecting
against unauthorized withholding of information or resources, (ii) protecting
against failures of resources. Note that, secure systems also have these three
objectives but the scope of these objectives focus only on unauthorized
access. (For the definition of security objectives we refer the interested
reader to [27].) High integrity systems, on the other hand, focus on both
fault-tolerance and security issues for each ofthese objectives.

In the security domain user usually refers to the human user interacting
with the computer system, subject is a computation entity, or executing
thread, that performs actions on other entities, and object is an entity acted
upon by a subject (not to be confused with the 00 notion of an object).
Typically not all subjects or users in a system can be trusted to maintain the

Designing High Integrity Systems using Aspects 43

security objectives. A trusted subject/user is a subject/user that will not
cause any security violations. A subject/user that may cause security
violations is said to be un-trusted. Some objects contain critical information
and others do not. The ones that contain critical information often need
additional protection. A sensitive object is an object that contains sensitive
information that should be protected from unauthorized access.

Finally, we define what we mean by attacks, threats, vulnerabilities, and
integrity mechanisms. An attack is any action that compromises the security
of information/resources owned by an organization. A threat is
circumstances that have the potential to cause harm to a system. There are
four threat categories: natural, environmental, human intentional and human
unintentional. Examples of natural threats are natural disasters, such as,
earthquake, volcano. Examples of environmental threats are power
disruption, and smoke. Human intentional threats include unauthorized
access, denial of service etc. Human unintentional threats include data loss,
communication disconnections. Note that, while designing high integrity
systems we assume that adequate protection is already in place for natural
and environmental threats; we focus only on human intentional and human
unintentional threats. High integrity systems must have secure mechanisms
to protect against human intentional threats and fault-tolerant mechanisms to
protect against human unintentional threats. Vulnerability is a weakness in
the system that might be exploited to cause harm. A problem is an error or
failure in the system. An integrity mechanism is a set of techniques that
describe how the information and the resources can be protected.
Mechanisms can be grouped into those that detect, prevent, or recover from
attacks or problems. Authentication, access control, and encryption are
examples of preventive mechanisms, auditing and intrusion tracking are
detection mechanisms, and intrusion response is a recovery mechanism.
Authentication is the process of verifying that the identity a user claims is
indeed his true identity. Auditing is the process of recording the activities
taking place in the system in an event log that is to be used for future
analysis.

2.3 Integrity Mechanisms

The first step in designing a high integrity system is to identify the
kinds of threats and the mechanisms that can be used to protect the system
against such threats. Table 1 gives examples of attacks and problems, and
the mechanisms that are commonly used to protect against them. (Note that
this list is by no means exhaustive.) The table gives the type of
attack/problem for each type of entity and the mechanisms used to protect
against such attacks/problems. For example, consider row 3. This row states

44 Integrity and Internal Control in Information Systems

that for un-trusted communication links the problem of lost communications
can be solved by some handshaking protocol. Often times, the technology
will dictate the presence or absence of problems. For example, when using
TCP connections the problem of lost messages is not an issue.

Note that, in a real world scenario, these entities will not be acting alone
but will act as a group. A group of entities will require a combination of the
respective mechanisms. For example, a sensitive object may require
encryption, authentication and access control to protect against unauthorized
modification. When this sensitive object passes over un-trusted
communication link we must incorporate the additional mechanisms needed
for lost, spurious and corrupted communications.

In our AOD approach, a weaving strategy determines the aspects and
constrains the manner in which they will be woven. Weaving strategies need
to be developed from the kinds of threats or problems that can be expected in
the system. For example, if the data passing over communication links in
the user management system is not sensitive, eavesdropping may not be of
concern. In this case, even if a communication link is un-trusted, encryptions
are not needed and can be omitted from the weaving strategies.

Table 1 Attacks Problems and Solutions , ,

Entity Type of AttackIProblem
Prevention, Detection,
Recovery Mechanisms

Trusted communication
Link error

Checksums
link
Trusted subject User error Auditing
Un-trusted communication

Lost communications
Handshaking protocol,

link message retransmission
Spurious or replayed Authentication, use nonce,
communications auditing, non-repudiation
Corrupted communications Checksums, encryption
Eavesdropping Encryption

Un-trusted subject Un-authorized access
Authentication, access-
control, auditil!g

Sensitive object Un-authorized disclosure
Encryption, authentication,
access-control, auditing
Authentication, access-

Un-authorized modification control, encryption,
checksums, auditing

Un-authorized execution
Authentication access-
control, auditing

Designing High Integrity Systems using Aspects 45

2.4 Related Work

There has been much work on aspect-oriented programming [4, 5, 20, 21,
25, 29] and a number of authors have tackled the problem of defining and
weaving aspects above the programming language level (e.g., see [3, 7, 10,
13, 16, 23, 26, 28]). In the latter cases, aspect specifications can be viewed
as template models, and they are generally woven by using regular
expression to match existing model elements and aspect elements. Many
aspect compositions essentially result in wrapping additional functionality
around an existing model. The proper model factoring must already exist to
apply the aspect, so it is conceivable that effort must be applied to re-factor
existing models to correctly compose them with aspect models. The
technique proposed in this paper supports a more flexible and rigorous
approach to aspect definition and weaving in aspect-oriented design (AOD).

There has been some work on using the UML to model security concerns
(e.g., see [1, 2, 6, 9, 12, 15, 17, 18, 19,22, 30, 32]). Chan and Kwok [6]
model a design pattern for security that addresses asset and functional
distribution, vulnerability, threat, and impact of loss. UML stereotypes
identify classes that have particular security needs due to their vulnerability
either as assets or as a result of functional distribution. Jurjens [18, 19]
models security mechanisms based on the multi-level classification of data
in a system using an extended form of the UML called UMLsec. The UML
tag extension mechanism is used to denote sensitive data. Statechart
diagrams model the dynamic behavior of objects, and sequence diagrams are
used to model protocols. Deployment diagrams are also used to model links
between components across servers. UMLsec is fully described in a UML
profile.

In a previous work [13] we show how aspects can be expressed as Role
Models that define patterns of design semantics, and how aspects can be
woven into designs expressed in terms of the UML. Our approach supports a
more rigorous approach to the design and weaving of aspects, and results in
better aspect reuse potential. A second work [14] is on how security aspects
can be modeled independently and then be woven into models of essential
functionality. By providing good support for separation of concerns during
the design phase, the complexity of designing large systems can be better
managed. Our work can also take advantage ofUML security extensions: the
weaving process can be designed to produce extended forms of the UML
that reflect the properties expressed in the aspects in a more direct manner.

This work extends our previous work [14] in the following manner. In
this work we model two independent integrity mechanisms as aspects and
show how these two aspects (authentication and auditing) can be woven in
with a model of system functionality (the primary model). We also show that

46 Integrity and Internal Control in Information Systems

the order in which the aspects are woven also plays a critical role. Incorrect
weaving order will produce an incomplete woven model.

3. MODELING HIGH INTEGRITY ASPECTS USING
ROLE MODELS

Different integrity mechanisms can be modeled as aspects (e.g., auditing
aspect, authentication aspect, data sensitivity aspect). To keep our paper
concise, we focus on specifying an authentication aspect and an auditing
aspect. Recall that authentication is the process of verifying that the identity
claimed by a user is his true identity. Auditing is the process of recording the
events in a system in an event log that is to be used for later analysis.

3.1 Modeling Authentication Aspect: Structural View

The authentication aspect from a structural perspective is shown in
Figure 1. In this aspect, Initiator is intended to be played by classes whose
instances will initiate the authentication request, Target is intended to be
played by classes whose instances will receive this request,
IdentityRepository is intended to be played by classes whose instances
represent the repository of user identities, and IdentityEntity is intended to be
played by classes representing user identities. Some of the features and
constraints defmed in the SRM are listed below:
- The behavioral role, lookUp in IdentityRepository, characterizes

behaviors that look up an identity in the repository.
- Target has behavioral roles verifyID (verifies whether the identity is

valid), lockOut (locks out the identity), and startConvs (initiates a
conversation using the claimed identity of the Initiator).

3.2 Modeling Authentication Aspect: Interaction View

We use IRMs to describe the interaction pattern defined by an aspect.
The interactions that take place when a user needs to authenticate itself are
shown in Figure 2. Constraints on the ordering of messages are expressed in
terms of message sequence templates. A particular ordering can be obtained
by substituting sequence values (ordered list of natural numbers) for the
template parameters that satisfy the parameter constraints. In Figure 2 there
is one template parameter, n, which can be substituted by sequence values
(e.g., 1.3.2).

The authentication process starts (message role [[nJJ) with the client (an
instance of a class that conforms to Initiator) sending a message containing

Designing High Integrity Systems using Aspects 47

the claimed identity to the server (an instance of a class that conforms to
Target). The server then sends a message to the identity repository to look
up the claimed identity (message role [[n}].i). If the identity does not exist
(message [[n}].2A), then the client is locked out (message role [[n}].2A.i)
and receives an error message (message role [[n}}.2A.2). Otherwise
(message [[n}}.2B), the server decides whether the claimed identity is the
true identity (message [[n}].2B.i). If not (message role [[nj}.2B.2A), the
client is locked out (message role [[n}}.2B.2A.i) and it receives an error
message (message role [[n}].2B.2A.2). If the claimed identity is the true
identity (message role [[n}].2B.2B), then control returns to the client but
with a continue signal.

3.3 Modeling Auditing Aspects

We use SRMs to model the structural component of the auditing aspect
(shown in Figure 3). In this aspect Invoker will be played by classes whose
instances will invoke a method on a class that plays the role of Invokee.
Invokee will be played by classes whose instances will invoke methods on a
class playing the SubInvokee role as a result of executing the method
invoked by an Invoker class. Log is intended to be played by classes whose
instances will log the outcome of the SubInvokee methods. Some of the
constraints defined by the SRM are:
- The multiplicities of the association between Invoker and Invokee are

parameterized in the SRM. The constraints on the multiplicities are
indicated by OeL constraints. The lower bound on the multiplicities is
each equal to one.

- There is a Log that logs the outcome of SubInvokee methods invoked by
Invokee as a result of executing MethodO.
We describe the interaction component of the auditing aspect using the

IRM shown in Figure 4. The Invoker sends a message (message playing the
message role [[nil) to the Invokee. The Invokee then executes the method,
which involves invoking a method (represented by the role otherOp) of
SubInvokee (message role [[n}].[[p}}). The Invokee then sends to the Log
the identity of the Invoker, the method invoked (method that plays the role
otherOp), and the outcome of the method (message role [[n].[[q)}, where
the first element of q is greater than the first element of p, i.e., a message
playing the [[n}].[[qj} role occurs after the message playing the [[n}].[[p}}
role).

48 Integrity and Internal Control in Information Systems

Security Aspect: Auditing - Static Model

« Class Role»
« Class Role»

« Class Role»
/Log IInvoker

[[s)] [[tIl IInvokee

« Behavioral Role> 1 « Behavioral Role»

/Method () [lull
Ilog (linvoker, 10therOp, loutcome)

« OCL Constraints » [[vII
{s.multlpllcity.lower >= 1 }
{t.multipliclty.lower >= 1}
...

[[w))

« Class Role»
ISubinvokee

« Behavioral Role»
lotherOp()

Figure 3. Static view of an auditing aspect.

Security Aspect: Auditing - Collaboration Diagram

I [[n 11 : !Method () [[n]]. [[q]] : lIog (Iinvoker,/oIherOp, [[outcome]])
:lInvoker ---. ---.

I I I :lInvokee r :/Log

[[nIl. [[p]]: [[outcome]] :=/otherOp()

I : ISublnvokee I
Figure 4. IRM for the auditing aspect.

4. WEAVING ASPECTS INTO A DESIGN MODEL

Weaving of an aspect into a primary model involves:

(1) Mapping primary model elements to the roles they are intended to play:
Before the weaver can incorporate the aspect into a primary model the
modeler must first indicate the parts of the model the aspect is to be woven
into. The modeler can accomplish this by explicitly indicating the model
elements that are intended to play the roles. Alternatively, the aspect can
characterize the points into which it will be woven (as is done with pointcuts
in AspectJ). In this paper the former approach is used. We are currently

Designing High Integrity Systems using Aspects 49

developing support for the second approach. Note that not all model
elements need be mapped to roles. Also, not all roles need be associated with
a primary model element. Roles not associated with primary model elements
indicate that new model elements must be created and added to the primary
model as described later.

(2) Merging roles with primary model elements: Each model element that is
mapped to a role has its properties matched with the properties contained in
the aspect, and additional properties are generated from the role if
deficiencies in the model element are found. For example, a class that is
mapped to a class role that does not have the attributes or operations that
play structural and behavioral roles defined in the mapped class role IS

extended with attributes and operations generated from the role.

(3) Adding new elements to the primary model: Each role that is not mapped
to a model element is used to generate a model element that is then added to
the model.

(4) Deleting existing elements from the primary model: If a model element is
mapped to a «delete» role (a «delete» role indicates that conforming
elements must not exist in the model), then the model element is removed
from the primary model.

4.1 Weaving Aspect into Static Models using SRMs

We use a simple example of a user management system to illustrate our
weaving technique. The Class Diagram shown in Figure 5 models the static
structure of this system. The user management system consists of (i)
Managers that direct actions on user information, (ii) SystemMgmt that
carries out the action, (iii) userList that contains information about users and
(iv) userInfo that contains information about individual users. We assume
that there is a single class that plays the SystemMgmt and a single userList.

Figure 7 shows the result of weaving the static view of the
Authentication aspect into the original User Management Class Diagram.
Manager is mapped to Initiator and SystemMgmt is mapped to Target.
IdentityRepository will be played by userList and IdentityEntity will be
played by userInfo. Merging of roles to mapped primary model elements
can result in modification to primary model elements. For example, the
SystemMgmt class must be augmented to play the role of Target by adding
operations of verifyIDO, 10ckOutO, startConvsO. The userList class is
augmented to play the IdentityRepository role by adding a 100kUpO
operation. The multiplicity of the association between Manager class

50 Integrity and Internal Control in Information Systems

(playing the Initiator role) and SystemMgmt class (playing the Target role)
must be changed from * to 1 .. *, that is, the aspect template n must be
substituted with 1 .. *. Other multiplicity substitutions are shown in Figure 7.
The aspect roles played by model elements are shown in the woven static
diagram using stereotypes (see Figure 7).

4.2 Weaving Aspects into Interaction Models using
IRMs

The collaboration diagram describing the Add User behavior is shown in
Figure 6. The collaboration starts with the manager sending a request to add
a user (message 1). The system management, in response, sends a look up
request to the user list (message 1.1). After the user list has completed this
request, control returns to the system management object. If the user already
exists, an error message (l.2B) is sent to the manager. Otherwise (l.2A), two
steps are performed in sequence - the add user request is generated (l.2A.1)
and the operation complete signal is generated (l.2A.2).

User Management Static Model

. 1 SystemMgmt I Manager
I

I addUser(u) W userList
1

1
addlnfo (u)
findlnfo (u)

.
1 I

I I "sarlnto
I

Figure 5. Design class diagram for a user management system.

Designing High Integrity Systems using Aspects

Add User Collaboration Diagram

1: addUse, luI

: Manager

1.2A [ulD2 = NULL) : -----..

11.1: ulD2 := flndlnfo luI + 1.2A 1 : outcome := addlnfo luI

Figure 6. Collaboration diagram for adding a user to a distributed system.

51

Figure 8 shows the result of weaving the authentication aspect interaction
view into this model of user management system. The weaving is
accomplished as follows:
• The id parameter is substituted with cid and the Men parameter is

substituted with uID1.

• The template parameter n in the IRM is set to 1 because authentication
must be carried out before any operation is performed. Consequently, all
the interactions shown in the primary model (shown in Figure 6) must be
renumbered. We do this by adding one to the outermost sequence
number; thus the interactions in Figure 8 are now represented by
interactions 2,2.1, 2.2A, ... in the woven model (see boxed messages in
Figure 8).

52 Integrity and Internal Control in Information Systems

Woven Static Model with Authentication

«Initiatop> «accesses» «Target»

Manager SystemMgmt

1 .. * 1 addUser(u)
verifylD ()

1

lockOut () «targatrap»
startConvs ()

1

«repids» «ldentityRepository»
«ldentityEntity» userList

userlnfo
* addlnfo () 1

findlnfo ()
lookUp ()

Figure 7. Static diagram of user management system with authentication
woven into it.

Woven Collaboration Diagram with
Authentication

12.2A [ul02 = NULL I :
1.2B.2A.1 : lockOut (cld)
1.2B.2A [outcome = b.dlO) :

Icld : Manager

1: st.rtConvo (cld)

2: addUser (u) I

2.2B [ul02 1= NULL) : error(userexlsts)
2.2A.2 : 0 Com lete
1.2A.2 : orror(lockodout)
1.2B.2A.2 : error(Jockedout)
1.2B.2B [outcome = OK]: continue

1.2B.1 : outcome = verifylO (u101, cld)
1.2B [uI011= NULL] :
1.2A.1: lockOut (cld)
1.2A [u101 = NULL] : -----.

1.1: ul01 := lookUp (cld)

2.1 : ul02 := flndlnfo (u)

Figure 8. Collaboration diagram of adding a user with authentication
woven into it.

Designing High Integrity Systems using Aspects

Static Model Woven with Authentication and Auditing

1
«Target» «Log»
«Invokee» LogFlle

«Initiator» «accesses»
«Invoker» SystemMgmt log (Invoker, method, outcome)

Manager 1 1 addUser(u)
vertfylO (.••)
lockOut (•••) «taraetrep»
startConvs (..•)

1

1

.
«ldentityRepository»

«ldentityEntlty» «Sublnvokee»
userlnfo «replds» L userList

1 addinfo(u)
flndlnfo (u)
lookUp (.•.)

Figure 9. Static diagram with authentication and auditing woven into it.

Woven Collaboration Diagram with
Authentication and Auditing

2: addUser (u)
1: startConvs (cid)
--;;.

2.3B [ul02 1= NULL] : error(•.•)
2.3A.3 : opComplete
1.3B.2A.2 : error(...)

2.3A [ul02 = NULL] :
1.3B.2A.1 : 10ckOul(cld)
1.3B.2A [outcome = badlO] :
1.3B.l: outcome :=verlfyIO (uIOl, cid)
1.3B [uIOll= NULL] :
1.3A.l : lockOut (cld)
1.3A[ulOl =NULL]:

-----. 1.2: log (cld, lookUp, ulOl)
2.3A.2 : log (cld, addlnfo, outcome)
2.2 : log (cld,flndlnfo, u102)

1.3B.2B [outcome = OK] : continue
1.3A.2 : error(•.•)

2.3A.l : outcome := addlnfo (u)
2.1 : ul02 := findlnfo (u)
1.1: ul01 := lookUp (cld)

53

Figure 10. Collaboration diagram with authentication and auditing woven into it

54 Integrity and Internal Control in Information Systems

4.3 Weaving Multiple Aspects

A system can be associated with multiple aspects - each aspect modeling
an independent concern. It may appear that the order in which the aspects are
woven is unimportant. Unfortunately, there are dependencies among the
aspects and the order of weaving plays an important role. The weaving of
multiple aspects with a primary model can proceed as follows:

(1) Analyze the dependencies between the aspects and decide on the
order in which the aspects must be woven.

(2) Weave the first aspect with the primary model to get a woven
model.

(3) Weave the next aspect (as dictated by the dependencies) with the
previous woven model.

(4) Repeat step (3) until there are no more aspects to be woven.
We illustrate this approach using the authentication and the auditing

aspect. There is a dependency between these aspects; auditing of
authentication activities is desired. For this reason, the authentication aspect
is woven before the auditing aspects. Figures 7 and 8 show the result of
weaving the authentication aspect to the user management system.

Once the authentication aspect has been woven in, we are in a position to
weave in the auditing aspect. Recall that the auditing aspects are shown in
Figures 3 and 4. In the user management system, Manager, SystemMgmt,
userList play the role of Invoker, Invokee, and SubInvokee respectively. The
intent is to log the invocation of userList methods as a result of methods
invoked on SystemMgmt. No existing model element plays the role of Log.
The new model element, Log File, is generated that will play the role of Log.
The final static woven model is depicted in Figure 9.

The weaving of the collaboration aspect requires inserting log messages
after the logged methods have been executed. The startConvsO method
generates a number of method invocations and we are interested in logging
!ookUpO. In this case we have to add a log operation after execution of this
method. This requires adding a new message (1.2), and renumbering
subsequent messages (the former 1.2 becomes 1.3, and so on). In this case n
and p are set to I (i.e., [[nJ]'[[pJJ is 1.1) and q is set to 2 (i.e., [[nJ].[[qJJ is
1.2). For the addUserO method, methodsfindInfoO and addInfoO are to be
logged. The log methods are given in the box shown in Figure 10.

The auditing aspect is concerned with logging methods invoked by a
subject. The authentication aspect is concerned with authenticating a user.
The authentication aspect invokes methods, such as, lockOutO. Thus, if the
auditing aspect is woven before the authentication aspect, and the Invoker
and Invokee roles are not associated with classes that will play the Initiator
and Target roles, the methods corresponding to the authentication aspect will

Designing High Integrity Systems using Aspects 55

not be logged. Thus, weaving the auditing aspect prior to the authentication
aspect results in an incomplete woven model. Weaving the authentication
aspect prior to the auditing aspect results in a correct woven model.

5. CONCLUSIONS

In this paper we propose a technique to model and integrate concerns into
designs. The approach is aspect-oriented in that integrity concerns are
modeled independently as aspects that can then be woven into models of
essential functionality. In our approach, a listing of the different kinds of
attacks/problems that are prevalent and the mechanisms required to protect
against such attacks is used to identify needed aspects and the strategy for
weaving them into a design. Thus, two levels of weaving rules are needed in
our approach. The first is the weaving strategies that identify the integrity
aspects needed for particular situations and that constrain how the aspects
are woven into models of essential functionality (e.g. weaving order). The
second level of weaving deals with the mechanics of the weaving process.

The weaving strategies are intended to be reusable forms of experiences
that can be used to assess the threats to a particular system and propose
techniques (i.e. a combination of mechanisms) to prevent or detect the
related attacks. An interesting by-product of the weaving strategies is that
we can change them (i.e., re-weave mechanisms), and see the impact on the
system of these proposed changes. Note that the integrity provided by
mechanisms in the model is only as good as the weaving strategies.

In this paper we have illustrated our approach on a very simple example.
In future, we plan to apply this approach to real world examples. Real world
examples typically will have a large number of aspects and many different
kinds of weaving rules. Applying to real world examples will help us in
formulating a methodology for designing complex high integrity systems
using aspects.

Our experience indicates that flexible tool support for weaving will
greatly enhance the practicality of our approach. Flexibility in the weaving
process is necessary because the manner in which the aspects are woven is
highly dependent on the form of source models and the type of aspects being
woven. Weare currently developing a prototype tool that will support
flexible weaving, by providing users with a language for describing reusable
weaving strategies and weaving procedures.

56 Integrity and Internal Control in Information Systems

REFERENCES

[1] G. 1. Ahn and M. E. Shin 2001. Role-based authorization constraints specification using

object constraint language. Proceedings of the 10th IEEE International Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises: 157-162,

Cambridge, MA, June.

[2] H. A. Ali 2001. A new model for monitoring intrusion based on Petri nets. Information

Management and Computer Security 9(4): 175-182.

[3] L. F. Andrade and 1. L. Fiadeiro 2001. Coordination technologies for managing

information system evolution. Proceedings of the 13th Conference on Advanced

Information Systems Engineering. Interlaken, Switzerland, June.

[4] F. Bergenti and A. Poggi 1999. Promoting reuse in aspect-oriented languages by means of

aspect views. Technical Report DII-CE-TR005-99, DII - Universita di Parma, Parma.

[5] L. Bergmans and M. Aksit 2001. Composing crosscutting concerns using composition

filters. Communications of the ACM 44(10), October: 51-57.

[6] M. T. Chan and L. F. Kwok 2001. Integrating security design into the software

development process for e-commerce systems. Information Management and Computer

Security 9(2-3): 112-122.

[7] S. Clarke and J. Murphy 1998. Developing a tool to support the application of aspect­

oriented programming principles to the design phase. Proceedings of the International

Conference on Software Engineering, Kyoto, Japan, April.

[8] P. T. Devanbu and S. Stubblebine 2000.Software Engineering for Security: a Roadmap.

Future of Software Engineering ICSE 2000 Special Volume.

[9] Z. Diamadi and M. J. Fischer 2001. A simple game for the study of trust in distributed

systems. Wuhan University Journal of Natural Sciences 6(1-2): 72-82.

[10] 1. L. Fiadeiro and A. Lopes 1999. Algebraic semantics of co-ordination or what is it in a

signature? Proceedings of the 1h International Conference on Algebraic Methodology and

Software Technology, Amazonia, Brasil, January.

[11] R. B. France, D. K. Kim, and E. Song 2002. Patterns as precise characterizatons of

designs. Technical Report 02-101, Computer Science Department, Colorado State

University.

[12] R. France, D. K. Kim, E. Song, and S. Ghosh 2001. Using roles to characterize model

families. Proceedings of the 10'h OOPSLA Workshop on Behavioral Semantics: Back to

the Basics, Seattle, W A.

[13] R. France and G. Georg 2002. Modeling fault tolerant concerns using aspects. Technical

Report 02-102, Computer Science Department, Colorado State University.

[14] G. Georg, I. Ray, and R. France 2002. Using aspects to design a secure system.

Proceedings of the 8th IEEE International Conference on Engineering of Complex

Computer Systems. Greenbelt, MD, December.

[15] L. Giuri and P. Iglio 1996. A role-based secure database design tool. Proceedings of

the12th Annual Computer Security Applications Conference: 203-212.

Designing High Integrity Systems using Aspects 57

[16] 1. Gray, T. Bapty, S. Neema, and 1. Tuck 2001. Handling crosscutting constraints in

domain-specific modeling. Communications of the ACM 44(10), October: 87-93.

[17] R. Holbein, S. Teufel, and K. Bauknecht 1996. A formal security design approach for

information exchange in organisations. Proceedings of the 9th Annual IFIP TCll Working

Conference on Database Security: 267-285, Rennselaerville, NY.

[18] 1. Jurjens 2001. Towards development of secure systems using UMLsec. Proceedings of

the 4th International Conference on Fundamental Approaches to Software Engineering:

187-200, Genova, Italy.

[19] 1. Jurjens 2001. Modeling audit security for smart-card payment schemes with UML­

SEC. Proceedings of the IFIP TCll 16th International Conference on Information

Security: 93-107, Paris, France, June.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold 2001.

Getting started with AspectJ. Communications of the ACM 44(10), October: 59-65.

[21] K. Lieberherr, D. Orleans, and 1. Ovlinger. 2001. Aspect-oriented programming with

adaptive methods. Communications of the ACM 44(10), October: 39-41.

[22] U. Nerurkar 2000. A strategy that's both practical and generic. Dr. Dobb's Journal

25(11), November: 50- 56.

[23] P. Netinant, T. Elrad, and M. E. Fayad 2001. A layered approach to building open

aspect-oriented systems. Communications of the ACM 44(10), October: 83-85.

[24] Object Management Group 2001. Unified Modeling Language Version 1.4.

http://www.omg.org, September.

[25] H. Ossher and P. Tarr 2001. Using multidimensional separation of concerns to (re)shape

evolving software. Communications of the ACM 44(10), October:43-50.

[26] 1. A. D. Pace and M. R. Campo 2001. Analyzing the role of aspects in software design.

Communications of the ACM 44(10), October.

[27] c. P. Pfleegler 1997. Security in Computing, 2nd Edition. Prentice-Hall.

[28] A. R. Silva 1999. Separation and composition of overlapping and interacting concerns.

Proceedings of the 1st Workshop on Multi-Dimensional Separation of Concerns in Object­

Oriented Systems. Denver, CO, November.

[29] G. T. Sullivan 2001. Aspect-oriented programming using reflection and metaobject

protocols. Communications of the ACM 44(10), October: 95-97.

[30] D. Trcek 2000. Security policy conceptual modeling and formalization for networked

information systems. Computer Communications 23(17): 1716-1723.

[31] J. Warmer and A. Kleppe 1999. The Object Constraint Language: Precise Modeling with

UML. Addison Wesley.

[32] 1. J. Whitmore 2001. A method for designing secure solutions. IBM Systems Journal

40(3): 747-768.

	DESIGNING HIGH INTEGRITY SYSTEMSUSING ASPECTS
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Role Models
	2.2 Definitions
	2.3 Integrity Mechanisms
	2.4 Related Work

	3. MODELING HIGH INTEGRITY ASPECTS USINGROLE MODELS
	3.1 Modeling Authentication Aspect: Structural View
	3.2 Modeling Authentication Aspect: Interaction View
	3.3 Modeling Auditing Aspects

	4. WEAVING ASPECTS INTO A DESIGN MODEL
	4.1 Weaving Aspect into Static Models using SRMs
	4.2 Weaving Aspects into Interaction Models usingIRMs
	4.3 Weaving Multiple Aspects

	5. CONCLUSIONS
	REFERENCES

