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Abstract Global integrity of data across the boundaries of single database systems is an 
important requirement in multi-database systems, but cannot be achieved 
without transaction synchronization across the boundaries of database systems. 
The problem is to guarantee that global transactions leave these multiple 
databases in a globally consistent state and to avoid that global integrity 
checks unnecessarily block other application transactions. We present a 
solution that offers both, unlimited concurrency between global integrity 
constraint checks and local transactions, and increased concurrency of global 
integrity checks and global application transactions, thereby contributing to a 
higher performance of global integrity checks. We show that the key idea of 
our approach, i.e., to lock the integrity constraint itself, leads to a correct and 
efficiently implementable lock protocol for concurrent integrity constraint 
checks crossing database system boundaries. Since our approach blocks 
significantly less resources for global integrity checking than the conventional 
approach, we consider it to be an important contribution to guarantee global 
cross-database integrity. 

Key words global integrity of data, transaction synchronization, concurrent integrity 

checking. 

1. INTRODUCTION 

1.1 Problem origin and motivation 

Due to acquisitions and mergers, an increasing number of companies has 
enterprise data separated on different databases which have not yet been 
integrated or cannot be integrated into a distributed database running on a 
single database system. Whenever data in one or more of the involved 
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databases is modified, global data integrity involving multiple databases on 
possibly different DBMS is a key requirement. Whenever the check of 
global integrity constraints is time consuming, but essential for data 
consistency of an enterprise, it is desired that global data integrity checks 
can be done concurrently to other applications, e.g. to local applications 
accessing only a single database. The concurrent execution of global 
integrity checks and transactions of other applications requires an 
appropriate concurrency control strategy. 

Our work is motivated by a company with multiple divisions, each 
containing its own local product database, and a database in the 
headquarters, which summarizes some of the product data from several 
divisions for other purposes like external product information, marketing, 
etc .. Whenever a transaction runs on a database of a division and deletes, 
inserts or modifies product information, it has to be checked whether or not 
the corresponding information in the headquarters' database is still valid or 
has to be changed too. And vice versa, whenever a transaction running on 
the production headquarters' database changes information that is relevant to 
a specific division, the validity of corresponding information in the database 
of this division has to be checked too. While our contribution guarantees 
that such global transactions leave these multiple databases in a globally 
consistent state, it additionally allows for increased concurrency of global 
integrity checks and application transactions. 

1.2 Relation to other work and our focus 

There has been a lot of research on guaranteeing data integrity in multi­
database and distributed transaction environments. Some of these contributions 
cover semantic integrity control, the majority however contributes protocols for 
transaction synchronization. 

Since semantic integrity control usually involves queries on large amounts of 
data, two kinds of optimization techniques have been proposed: first, to prove at 
compile-time that update transactions cannot violate certain given integrity 
constraints [4,15,30], and second to reduce the complexity of the remaining 
queries at run-time [17,31,32,33]. While the strategies for run-time integrity 
control optimization focus on query simplification for integrity checks, our 
protocol focuses on the concurrent execution of integrity checks. Nevertheless, 
our protocol is compatible with this approach, because it is orthogonal to 
approaches used for the run-time optimization of integrity constraint checks, i.e., 
these optimization strategies can be combined with our protocol. 

Transaction synchronization protocols are classified according to at least five 
criteria [14]: their synchronization strategy (e.g. 2-phase locking or validation), 
synchronization granularity (e.g. tuple, page, object or XML fragment), whether 
or not they are multi-level synchronization strategies, whether or not they use a 



Concurrent Checking o/Global Cross-Database Integrity Constraints 5 

global scheduler on top of local schedulers, and whether or not a single unique 
synchronization technique is used for all pairs of conflicting operations. Our 
contribution to concurrent global integrity checks is an improvement along the 
last mentioned criterion, i.e., we use different synchronization techniques for 
different pairs of conflicting operations. Note that since our contribution is 
orthogonal to the first four criteria, it can be combined with any choice for the 
first four criteria (e.g. to locking or validation, e.g. to objects in OODBMS or 
XML fragments in XML databases, etc.). 

Additionally to other contributions (e.g. [6]) that suggest to synchronize 
read-write conflicts different from write-write conflicts, we distinguish two 
kinds of read operations - ordinary queries and integrity checks - and propose an 
improved strategy for the concurrent execution of (global) integrity checks and 
other operations. In this aspect, our approach is completely different from other 
work on semantic based concurrency control in (multi) database systems 
[11,16,18,19,20,21,22,24]. Our contribution is an add-on-protocol which can be 
used in combination with any existing synchronization protocol in a 
participating database that guarantees serializable schedules for write operations 
and other read operations (except global integrity constraints). 

Furthermore, different serializability levels are distinguished [14] (-1 : 
unrestricted concurrency, 0: avoid lost updates, 1: guarantee committed read, 2: 
repeatable read, 3: serializable). While a variety of approaches to global 
synchronization relax serializability in order to increase concurrency (e.g. [12, 
24, 2, 1, 5, 29]), most contributions argue that it is desirable to accept only 
serializable schedules [3, 23, 28, 35, 10, 9, 27, 13]. Our add-on-protocol offers 
both, it allows for unrestricted concurrency of global integrity checks with local 
transactions (i.e. global integrity checks can read database data without setting 
any locks), and it guarantees serializable schedules. Therefore, our contribution 
allows for a higher degree of application parallelism and guarantees global data 
consistency. 

2. FUNDAMENTAL PRINCIPLES AND PROBLEM 
DESCRIPTION 

2.1 The underlying transaction model 

We consider transactions as sequences of read operations, integrity 
checks, and committed write operations. We assume, that only those 
transactions commit which have previously checked all integrity constraints 
successfully, and other transactions are aborted. We furthermore assume, 
that uncommitted write operations of a transaction are not visible to (the 
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integrity checks of) other transactions. We distinguish local transactions, 
that, including their integrity checks, access only a single database system, 
from global transactions, that access multiple database systems. 

As mentioned above, our transaction model does not require a specific 
strategy (e.g. locking or validation) or a specific data model (e.g. relational, 
object oriented or XML) or a specific access granularity (e.g. objects or 
XML fragments) or a specific query language to define integrity constraints 
(e.g. tuple relational calculus or OQL). Note that only for simplicity reasons, 
we present our approach as an extension of a two-phase lock protocol and 
use formulas of tuple relational calculus to express integrity constraints 
throughout the discussion of our approach. However, the results can be 
equally applied to other data models and database systems, other languages 
for integrity constraints and other synchronization protocols. 
In the presented lock protocol, all locks needed for a specific operation are 
acquired before this operation and are released after commit and after the 
operation is completed. This transaction model is more formally defined in 
Section 4 and will be the basis of the correctness proof presented later in the 
paper. 

2.2 Conflict definition for integrity checks and write 
operations, explained using an example 

We will use and extend the following example throughout the paper: We 
have one production division, say in London, using a database called DBI 
which contains a relation called RI and another production division, say in 
Paris, using a database DB2 which contains a relation R2. Within the 
headquarters, a database DB3 contains a relation R3 which summarizes some 
of the information stored in RI in London and in R2 in Paris. For our 
example, we require the following two global integrity constraints to hold: 
1. "for every object 03 in relation R3 in the headquarters there exists an 

object 01 in RI with the same number (nr) or there exists an object 02 in 
R2 with the same number (nr)". This global cross database integrity 
constraint IC I can be written as formula in the tuple relational calculus 
as follows: 

ICI : V 03 E R3 (:3 01 E Rl (OI.Dr = 03.Dr) v 

:3 02 E R2 ( 02.Dr = 03.Dr) ). 

2. "for every object 01 in relation RI located in DBI in London, there is a 
corresponding object 03 in the summarizing relation R3 in DB3 in the 
headquarters with the same number (nr)". For this integrity constraint 
IC2, we get the following formula written in tuple relational calculus: 

IC2 : VOl E Rl :3 03 E R3 (OI.Dr = 03.Dr) • 

Furthermore, we have three (global) transactions TJ, T2 and T3 each 
modifying only a single local database: 
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T 1: { delete 01 from RI where 01.nr < 4 ; 
do time consuming operations on local database; } 

T2: { delete 02 from R2 where 02.nr < 4; } 
T 3: { delete 03 from R3 where 03.nr = 2 ; } 

We sayan integrity constraint is violated, iff the truth value of its 
formula is changed from TRUE to FALSE. Note that the delete operation of 
T 1 could violate the integrity constraintl ICt, because Rl occurs existentially 
quantified in IC I . However the delete operation of T 3 could never violate 
ICt, because R3 occurs universally quantified in ICt, and therefore the only 
possible change of the truth value is from FALSE to TRUE 2. Therefore T I 
and T2 respectively have to check ICt, whereas T3 does not need to check 
IC1. On the other hand, T3 which deletes an object from R3 may violate IC2, 
because R3 occurs existentially quantified in IC2. This can be generalized as 
follows. 

We say, a transaction violates an integrity constraint, iff its write 
operations (delete, insert, update) change the truth value of the Boolean­
valued query (or formula) associated with the integrity constraint from 
TRUE to FALSE [31,32]. Whether an insert (a delete) operation into (from) 
a relation Ri could violate an integrity constraint, depends on the positive (or 
negative) occurrence of Ri in the formula of the integrity constraint. An 
occurrence of Rj in a formula is said to be positive (negative), iff it occurs in 
the syntactic scope of an even (odd) number of negations and universal 
quantifications [17,33]. Within ICt, Rl and R2 occur positively and R3 
occurs negatively, whereas within IC2, Rl occurs negatively and R3 occurs 
positively. 

The following table summarizes the possible changes of the truth values 
of integrity check formulas IC by a following insert (Rj+o) or delete (Rj-o) 
operation: 

Rj occurs positively Rj occurs negatively 

In the formula ofIC in the formula ofIC 

Rj+o From FALSE to TRUE from TRUE to FALSE 

Rj-o From TRUE to FALSE from FALSE to TRUE 

This can be taken as the basis for conflict definitions. An integrity check IC 
and a following write operation on a relation Ri are called in conflict, iff the 

1 Read "could violate the integrity constraint" as: there exists a possible global database state 
(i.e. there may be a possible combination of objects in the databases) in which the integrity 
constraint is violated. 

2 A change of the truth value from FALSE to TRUE can be ignored by integrity checks of the 

current transaction, because it is assumed that all integrity constraints are TRUE after the 

completion of previous transactions. 
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write operation on R j may change the truth value of the formula of Ie from 
TRUE to FALSE. Note that it is not useful to extend the conflict definition 
to write operations that modify an integrity constraint's truth value from 
FALSE to TRUE, because a transaction is aborted when an integrity 
constraint check yields FALSE and aborted transactions are not considered 
in serialization graphs [7]. 

2.3 Problem description 

The problem description consists of two parts: first, checking global 
integrity constraints in multi-database systems needs synchronization; 
second, the usual treatment of integrity checks as queries tends to block 
more concurrent transactions than necessary from using large parts of the 
involved databases. 

We extend the above example and assume, that initially the integrity 
constraint is valid and all three relations Rt. Rz, and R3 contain at least one 
object Ot. Oz, and 03 respectively with ol.m = 2 , oz.m = 2, and 03.nr = 2 . 

In order to demonstrate that transactions TI and Tz have to synchronize 
their integrity checks although both perform write operations on different 
relations in different databases, we look at the following history, that without 
synchronization could cause a violation of the integrity constraint lei: 
1. TI perfomls the delete operation on RI on a storage, that is not visible to T2. 
2. T2 performs the delete operation on R2 on a storage, that is not visible to TI. 
3. TI checks ICI. but does not see the changes (by the delete operation) ofTz. 
4. T2 checks ICI. but does not see the changes (by the delete operation) ofTI. 
5. TI commits, since its integrity check ofICI was successful. 
6. T2 commits, since its integrity check ofICI was successful. 
7. Both transactions make their changes visible to other transactions, i.e., the 

object 03 with 03.nr=2 does neither have a corresponding object 01 in RI nor 
an object 02 in R2. 

Note that after these 7 steps, lei is violated, although both transactions 
checked the constraint. 

The usual way to avoid this history is to use a query that checks the 
integrity constraint, say let. [17,31,32,33,34] and to synchronize this query 
using ordinary read locks. In this case, T\ would require a write lock on (a 
part of) R\ and read locks on R2 and R3. Since T2 requires a write lock on R2 
too, and both locks on Rz are not granted at the same time, the history is 
avoided. 

However, the disadvantage of the usual treatment of integrity checks as 
queries can be shown, when we consider transaction T3 listed above. When 
T\ checks leI using a conventional query, the read lock required by T\ on R3 
blocks transaction T3 (which needs a write lock on R3), although T3 can 
never violate the integrity constraint Ie\, as shown above. Therefore, 
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treating integrity checks as queries blocks more concurrent transactions than 
necessary [8]. 

As the previous example shows, it is necessary to block some but not all 
write operations of concurrent transactions on the data which is read for an 
integrity check, because a modification of the truth value from TRUE to 
FALSE has to be prevented, whereas truth value modifications from FALSE 
to TRUE can be ignored, because in this case the violating transaction is 
aborted. However, this is different for ordinary Boolean-valued queries, 
where every truth value modification by concurrent transactions has to be 
prevented. 
Because of this difference, integrity checks allow for more concurrent 
transactions than other queries [8]. Now the problem can be stated as 
follows. "Find a simple and efficient lock protocol that correctly 
synchronizes global integrity checks but reduces unnecessary conflicts of 
these integrity checks with write operations of concurrent transactions". 

3. OUR SOLUTION TO THE PROBLEM: THE LOCK 
PROTOCOL FOR INTEGRITY CONSTRAINTS 

3.1 The basic idea: different synchronization for 
integrity checks and other queries 

As mentioned before, the traditional way to synchronize integrity checks 
against write operations of concurrent transactions is to synchronize them 
the same way as queries are synchronized against write operations, i.e., to 
read lock the objects (or tuples or relations or XML fragments) which are 
read in order to perform the integrity check. In contrast to that, we 
distinguish between integrity constraint checks and other queries w.r.t. 
synchronization. While other queries use read locks as usual, an integrity 
constraint check does not use a read lock for the data which is read for the 
constraint check. Therefore, ordinary read operations on a data item will 
block all write operations of concurrent transactions on that data item. 
However, an integrity constraint check (using our protocol) does not block 
every write operation of parallel transactions on data which is read for the 
integrity check. 

Note that we do not change the synchronization of conflicts between 
other queries and write operations, but use our protocol as an add-on 
protocol for conflicts between integrity checks and write operations. 
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3.2 Our solution: the integrity constraint as lockable 
object 

Our new approach to concurrent global integrity control avoids the 
incorrect history in the given example by locking the integrity constraint 
itself, i.e., each transaction has to lock those integrity constraints which it 
has to check. As with locks for other objects, the lock for an integrity 
constraint has to be obtained, before the integrity check can be performed, 
i.e., before the truth value of it can be read. And the lock of an integrity 
constraint is released, after the write operations of the transaction are 
committed and visible to other transactions. 

By forcing transactions to lock each integrity constraint before they 
check it, the scheduler allows only one transaction at a time to check that 
integrity constraint and perform those of its write operations that might 
violate the integrity constraint. Other transactions that want to check the 
same integrity constraint are forced to wait with their integrity check, until 
the first transaction is either committed and has completed its write 
operations, or is aborted. Thereby, the previous history of transactions Tl 
and T2 is avoided, because transactions Tl and T2 both have to acquire a lock 
on integrity constraint IC) - which is only granted to one transaction at a 
time. 

On the other hand, transaction T3 does not need such a lock on IC). 
Therefore T3 can run in parallel with transaction Th e.g., while Tl performs 
its time consuming work on local data. 

In order to give a more detailed insight in the idea, let us look at 
transactions T3 and Tl and integrity constraint IC2 from Section 2.2 . Since 
R3 occurs existentially quantified in IC2 , a deletion of objects from R3 may 
violate IC2. Therefore, T3 needs a lock on IC2, which allows it to check IC2. 
However, a lock on IC2 is not needed for Th because Rl occurs (only) 
universally quantified in IC2, and therefore a deletion from R) may not 
violate IC2. 

Note, that under our protocol it is still possible to run T) and T3 in 
parallel, whereas the usual treatment of IC2 as query would prohibit the 
parallel execution of T 1 and T 3, because T 1 modifies relation Rl and T 3 reads 
Rl for its integrity check. 

In general, transactions need to lock only those integrity constraints 
which they might violate. 

Furthermore, no transaction needs any read lock in order to check IC) or 
any other integrity constraint. The lock on the integrity constraint itself will 
be sufficient. Note that this is a significant simplification compared to a 
previous approach [8] that distinguishes insert-locks and delete-locks and 
blocks concurrent insert (delete) operations on positive (negative) 
occurrences of a relation R occurring in an integrity constraint check IC. 
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To summarize, our lock protocol requires to make a difference between 
integrity constraint checks and other queries. While other queries are 
synchronized by read locks as usual and integrity checks are not 
synchronized by read locks, our lock protocol can be considered as an add­
on for integrity checks, allowing for increased concurrency of transactions. 

3.3 Implementation of the global scheduler for cross 
database integrity constraint checks 

A global scheduler for integrity constraints can be added in the following 
way to multiple database systems. Transactions TJ, T2, and T3 can be 
synchronized locally in their databases DB}, DBz, and DB3 respectively, 
with the following extension. Whenever a transaction has to check a global 
integrity constraint (i.e., a constraint referring to data in a different 
database), it has to ask the global scheduler for a lock on that global integrity 
constraint (and release that lock after its commit and completing its write 
operations). Note that global synchronization is only needed for global 
constraints, i.e., checks for local integrity constraints could be synchronized 
locally on one database. 

Cross-database integrity checking can be implemented using a single 
global lock array for integrity constraints and a replicated table containing 
necessary checks for global integrity constraints. 

The single global lock array contains one entry for each global cross 
database integrity constraint and is used by the global integrity lock 
scheduler. The entries in the lock array change, when a transaction acquires 
or releases a lock on a global integrity constraint. A snapshot of the single 
global lock array might look like this. 

IC I IC2 ... ICn 

locked not locked locked not locked 

(by T3 in DB3) 

3.4 The replicated table of necessary cross-database 
integrity constraint checks 

The replicated table of integrity constraint checks contains the 
information of which insert or delete operations might violate which 
integrity constraints, and of which optimized queries can be submitted for 
integrity constraint checking. This table is never modified (unless a new 
integrity constraint is defined) and can therefore be replicated on all 
databases. 
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Each column of the table represents one cross-database integrity 
constraint. For each relation Ri occurring in at least one cross database 
integrity constraint, there are two rows in the table, one (Rj+o) for the 
insertion of objects 0 into the relation Rj, and one (R.-o) for the deletion of 
objects 0 from relation Rj. 

IC} ICz ICn 

R}+o O.K. Opt.Query21+(o) 

R}-o Opt.Query 11-( 0) O.K. 

Rz+o O.K. O.K. 

Rz-o Opt.Query12-(o) O.K. 

The fields of the table contain optimized queries which are needed for 
integrity checking. An O.K. entry in the field for R\+o and IC\ means that 
no integrity check ofIC\ is needed for insertions into relation R\. 

The entry Opt.QuerY21+(o) contains the optimized query, which is 
necessary in order to check IC2 for the insertion of an object 0 into relation 
R\. The inserted object 0 is an input parameter of that optimized query. 
Since R\ occurs universally quantified in IC2, and we assume that IC2 was 
valid before the insertion operation of 0 into Rt, the integrity constraint has 
to be checked only for the new object o. Hence, the integrity constraint 
check of IC2 could be simplified to the following optimized Boolean query 
function with the inserted object 0 as parameter [17, 31, 32, 33]: 

Boolean Opt.QUery2\+(0) {return ::I 03 E R3 (03.nr = o.nr) ; }. 
Each transaction which wants to insert an object 0 into R\ can provide the 

value for o.nr, and thereafter the optimized query can be applied to R3 which 
is stored in database DB3. 

Note that this optimized query can be executed on database DB3 without 
any synchronization with concurrent write operations of other transactions 
running on DB3, i.e., locking of the integrity constraint is sufficient for 
correct synchronization, since it prevents other concurrent transactions from 
modifying the result of the (optimized) integrity check. Therefore, the 
optimized query for the integrity check does not need any read locks on the 
data read in database DB3• This can be easily implemented in DB3 by using a 
lower degree of isolation (e.g. allow to read uncommitted data) for the 
integrity checks. 
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3.5 Concurrency of global integrity checks and local 
transactions 

We call a transaction local, if it needs to access only a single database 
including all necessary integrity constraint checks. Given the two integrity 
constraints IC! and IC2 as before, a transaction running on database DB2 

T 4: { insert 02 into R2 ; } 
is a local transaction for the following reason. It cannot violate ICI, 

because an insert into R2 can never change the truth value ofIC! from TRUE 
to FALSE. Since T4 does not have to check any global integrity constraint, 
there is no need to access another database, i.e. T4 can be executed localll. 
Note that the traditional approach to treat integrity checks as queries would 
require a read lock on R2 for the check ofICI, i.e. it would forbid to execute 
the check of the global integrity constraint IC! concurrently with the local 
transaction T4. However, our approach allows to run T4 concurrently with 
the check of the global integrity constraint ICI, because T4 cannot violate a 
successful check of the global integrity constraint IC!. More generally, our 
approach allows all global integrity constraints to be checked concurrently 
with all local transactions.4 

3.6 Comparison with the conventional synchronization 
of integrity checks 

If we compare our protocol to the conventional treatment and 
synchronization of integrity checks as queries, our protocol needs exactly 
one additional lock for each (global) integrity constraint check of a 
transaction, but it does not need a single read lock for the (global) integrity 
checks in any of the databases. 

However, when cross database integrity constraint checks are treated and 
synchronized as ordinary queries, a lock for each object (or page or relation 
or XML fragment) occurring in the optimized integrity check has to be 
acquired. Since in global cross-database integrity constraints at least two 
relations in different databases are involved, after optimization at least one 
remote relation is accessed. In the case of fine-grained lock operations, 
usually multiple objects will have to be locked, hence, our protocol will need 
much fewer locks. On the other hand, the coarser-grained the locks are, the 
more likely an ordinary query used for an integrity check will unnecessarily 

3 Note that T4 is still a local transaction, when it has to check a local integrity constraint, e.g. a 
local constraint that aIIows inserts into R2 only until a limit ofn objects in R2 is reached. 

4 The reason is that a transaction that may violate a global integrity constraint check, has to 

check that global integrity constraint itself, and therefore can not be a local transaction. 
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block insert (or delete) operations of concurrent transactions, i.e., the more 
will our protocol allow for increased concurrency of global integrity checks. 

But even in the case of fine-grained locks, our protocol allows for 
increased concurrency compared to the treatment of integrity checks like 
queries, as can be seen in the above example of transactions TJ and T3 . 

Whenever global integrity checks tend to read large parts of the involved 
databases, the conventional treatment of global integrity checks as queries 
tends to block (or to be blocked by) a large number of concurrent writing 
transactions. This includes not only global transactions, but also local 
transactions writing only into a single database. Therefore, our protocol 
optimizing the synchronization of these global integrity checks will 
significantly contribute to increased parallelism, not only for global 
transactions, but also for local transactions. Therefore, we consider our 
protocol to be an important improvement to global consistency and increased 
application transaction parallelism. 

4. THE LOCK PROTOCOL AND ITS CORRECTNESS 

4.1 Lock protocol definition 

The correctness criterion for a lock protocol is whether (or not) it 
guarantees serializability. The definition of serializability is usually based on 
a conflict definition for pairs of operations [7]. Conflicting operations op! 
and Opz of different transactions T! and T 2 define a dependency (a directed 
edge in the dependency graph), formally written T! iff op! is executed 
before 0P2. A history of concurrent transactions is serializable, iff the 
dependency graph of the committed transactions is acyclic. 

Formally, a transaction Tj is legal, if it obeys the following precedence 
rules for its operations: 

Transaction Tj waits for a read lock lock-r(T;,o) for any data item OJ 
accessed by an ordinary query of Tj before the transaction reads the data 
item OJ (i.e. performs read(T;,oj)) , and the transaction releases this read lock 
unlock-r(T&o) after transaction commit c(T J . Hence, for these operations 
the lock protocol guarantees the following precedence relation < : 

10ck-r(Tj,oj) < read(Tj,oj) < c(Tj) < unlock-r(Tj,oj) . 
Transaction Tj waits for an integrity constraint lock lock-i(T;,Ic) for any 

integrity constraint Ie that has to be checked by transaction Tj before the 
transaction checks the integrity constraint Ie, and the transaction releases this 
lock unlock-i(T;,Ic) after transaction commit c(T J and after each of its write 
operations (e.g. write(Ti,oj)) is completed. Furthermore, write operations are 
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performed after all integrity constraints are successfully checked. Hence, for 
arbitrary operations lock-i(Tj,IJ, write(Tj,o), unlock-i(Tj,IJ of committed 
transactions the lock protocol guarantees the following precedence relations < : 

lock-i(Tj,L:) < write(Tj,oj) < unlock-i(Tj,L:) and 
lock-i(Tj,L:) < c(Tj) < unlock-i(Tj,L:) . 

Finally, every transaction Tj waits for a write lock lock-w(Tj,o) for any 
data item OJ written by Tj before the transaction writes the data item OJ 
write(Tj,o) and the transaction releases this write lock unlock-w(Tj,o) after 
the completion of the write operation and after transaction commit crT J. 
Hence, for these operations the lock protocol guarantees the following 
precedence relation < : 

10ck-w(Tj,oj) < write(Tj,oj) < unlock-w(Tj,oj) and 
10ck-w(Tj,oj) < c(Tj) < unlock-w(Tj,oj) . 

The compatibility rules for locks are as follows: 
Write locks on the same object OJ cannot be held by different transactions 

Th and Tj at the same time, i.e., ifboth transactions get write locks on OJ, then 
the following lock rule holds: 

unlock-w(Th,oj) < 10ck-w(Tj,0) or unlock-w(Tj,oj) < 10ck-w(Th,oj) . 
An equal lock rule states that locks on the same integrity constraint L: 

cannot be held by different transactions Th and Tj at the same time, i.e., if 
both transactions get locks on L:, then 

unlock-i(Th,L:) < 10ck-i(Tj,Ie) or unlock-i(Tj,L:) < 10ck-i(Th,L:) . 
A similar rule holds for read locks 10ck-r(Th'0) and write locks lock­

w(Tj,oj) on the same object OJ. 

unlock-r(Th,oj) < 10ck-w(Tj,oj) or unlock-w(Tj,o) < 10ck-r(Th,oj) . 
The 2-phase rule states for each transaction Tj, that all of its lock 

operations must precede all of its unlock operations: 
Let lock(Tj,X) be any lock operation of Tj, i.e. lock-r(li,o) or lock­

i(Tj,IJ or lock-w(Tj,o) on an object OJ or an integrity constraint Ie ,and let 
unlock(Tj, J} be any unlock operation of Tj on the same or a different object 
Ob or integrity constraint LI , i.e. unlock-r(Tj,ob} or unlock-i(Tj,Iq) or 
unlock-w(Tj,ob} , then the 2-phase rule guarantees the following precedence: 

10ck(TbX) < unlock( Tj,Y) 

4.2 Sketch of the correctness proof 

Legality of transactions, together with 2-phase locking and the 
compatibility rules for locks guarantee serializability. The serializability 
proof is identical to that given for ordinary 2-phase locking (e.g. in [7]), 
except that it is extended to the additional locks for integrity constraints and 
the compatibility rules for integrity constraint locks. 

If there is a dependency Tj Tj , then there are conflicting operations OJ 

of Tj and OJ of Tj, and both transactions must have acquired conflicting locks 
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for these operations. Since the dependency requires OJ < OJ , the lock 
rule and the legality rules allow only one possible order for the lock and 
unlock operations handling this conflict: the unlock operation of Tj must 
precede the lock operation ofTj, i.e. unlock(Tj,X) < 10ck(Tj,X) 5. 

Since each transaction Tj is two phased, it does all its lock operations 
before this unlock operation which occurs before the lock operation of Tj. 
This can be extended by induction to arbitrary long paths in the serialization 
graph, i.e. if there is a path Tj Tk ... Th Tj, then Tj must 
execute an unlock before Tj executes a lock ( unlock(Tj,X) < 10ck(Tj,X) ) and 
Tj executes this lock ( 10ck(Tj,X) ) before Tj executes an unlock conflicting 
with the lock operation of T k ( unlock(Tj, Y) < 10ck(T ko Y)) ... and so on ... 
and this is before Ti executes a lock operation which conflicts with the 
unlock operation ofTh. 

To summarize: Tj performs an unlock operation before it performs a lock 
operation, but this contradicts the assumption that all transactions are two 
phased. Therefore each history accepted by the lock protocol must have an 
acyclic serialization graph and must therefore be serializable. 

5. SUMMARY AND CONCLUSIONS 

We present a technique to guarantee global integrity constraints that 
cross the border of a single database system. The key idea, to use no read 
locks at all for integrity constraint checks on the underlying database 
systems, but to lock the integrity constraint itself, has the following 
advantages. It allows to perform global integrity checks parallel to all local 
transactions, i.e. it increases application parallelism. Furthermore, it allows a 
higher degree of concurrency of global integrity checks with global 
transactions. Finally, our lock protocol can be implemented in a very 
compact way (i.e., it needs only one single lock operation for each integrity 
constraint that a transaction has to check), and it is compatible with run time 
query optimization strategies proposed for integrity checks (e.g. [17,26]). 

The presented lock protocol does not require the local database system to 
use a specific granularity of locks for read-write and write-write conflict 
synchronization. Note that the key idea of our protocol, to lock the integrity 
constraint itself, is independent of the lock granularity (e.g. object, page, or 
XML fragment) and compatible with arbitrary lock protocols obeying the 
underlying transaction model. 

We have presented our contribution to global integrity control as an 
extension to two-phase locking schedulers, in order to keep the discussion 

5 unlock(Tj,x) < lock(Tj,X) is not possible, because we could deduce OJ < unlock(Tj,X) < 
lock(Tj,X) < OJ which contradicts OJ < OJ. 
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and the correctness proof simple. However, the idea of accessing the 
constraint itself does not depend on a specific synchronization strategy (i.e. 
two-phase locking). As long as the transactions obey the transaction model, 
i.e. make their changes visible to other transactions after commit, our 
protocol can be used in combination with other synchronization strategies 
too. For example, extending optimistic schedulers with our approach would 
result in the same distinction between integrity checks and queries, the same 
kind of conflict definitions, the same kind of optimizations and a similar 
extension to the correctness proof for optimistic schedulers. Therefore, the 
result seems to be applicable to optimistic schedulers too. 

Furthermore, our lock protocol can be combined with local schedulers or 
global schedulers of multi-database systems. For example, an addition of our 
scheduler to [28] that itself is already an improvement of the ticket technique 
[13], would additionally allow the parallel execution of write transactions 
with global integrity checks, as long as different global integrity constraints 
are involved. 

Finally, there seems to be a much broader spectrum of application areas, 
which may profit from our key idea, to lock the constraint itself instead of 
locking the data needed to check the constraint. For example, when a 
production plan that fulfills several "global" constraints is modified by 
parallel transactions, it seems to be advantageous too, to lock each constraint 
that has to be checked, instead of locking the data, which has to be read in 
order to check the constraint. 
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