
PINPAS: A TOOL FOR POWER ANALYSIS
OF SMARTCARDS

J. den Hartogl, J. Verschuren2 , E. de Vinkl ,4, J. de Vos 2 , W. Wiersma3

Abstract This paper describes the PINPAS tool, a tool for the simulation of power
analysis and other side-channel attacks on smartcards. The PIN PAS
tool supports the testing of algorithms for vulnerability to SPA, DPA,
etc. at the software level. Exploitation of the PINPAS tool allows for
the identification of weaknesses in the implelllentation in an early 51 age
of development. A toy algorithm is discussed to illustrate the usage of
the tool.

Keywords: Smartcard, Power Analysis, Side-Channel Analysis, Simulation

Introduction
Developers of smartcard algorithms are confronted, among others, with
the question of the vulnerability of their final implementation to power
analysis attacks (Kocher, 1996; Falm and Pean.;on, 1999: Messerges,
2000). Typically, ill a late stage of the development of the smartcard ap­
plication some evaluating company is consulted. Over a period of several
weeks this specialized company assesses the security level of the smart­
card. In case a power analysis attack is successfully launched against
the smartcard, re-design and patches should improve the actual code.
Time-to-market and project deadlines seem not to allow for a different
approach.

Central to the situation, in our view, is that power analysis vulnera­
bility is tested on a physical smartcard in a late phase. It is possible to
do this inspection earlier. The key observation is that the implementa­
tion is not needed in hardware to find an attack. For power analysis it
is sufficient that the algorithm is available in software.

lCorresponding author, Eindhoven University of Technology, P.O.Box ,513, ,5600 1\18 Eind­
hoven, The Netherlands, jhartog@win.tue.nl
2TNO-TPD, Delft, The Netherlands
3Eindhoven University of Technology, Eindhoven, The Netherlands
4LIACS, Leiden, The Netherlands

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003

10.1007/978-0-387-35691-4_52

D. Gritzalis et al. (eds.), Security and Privacy in the Age of Uncertainty

http://dx.doi.org/10.1007/978-0-387-35691-4_52

454 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

An instruction level interpreter for the machine language of the smart­
card and a physical model of the smartcard will do. The power con­
sumption of an instruction with its data can be represented by a power
consumption frame. Then, interpretation of a program leads to a trace
of power consllmption frames. The trace is in fact an abstraction of
the power trace obtained when measuring the power consumption of a
smartcard running the program with an oscilloscope.

The set-up sketched above brings several advantages compared to the
physical approach: (i) Power analysis can be done in an early stage of
the development of the application, say on the code of a skeleton version
of the program. (ii) Immediate feedback can be given on the vulnerabil­
ity to power attacks as time-consuming measurements by an evaluator
can be avoided. (iii) As turn-around time has decreased significantly,
iterative improvements of the code are feasible and the power analysis
can be explored at leisure of the developer.

1. The PINP AS tool
Above we described a scheme for evaluating the vulnerability of a smart­
card to power analysis attacks. The PINPAS (Program INferred Power
Analysis in Software) tool is being developed to implement this scheme.
Currently the tool consists of two major components: a simulator and
an analyzer.

One part of the tool provides a simulator for programs to be run on
a given smartcard. The simulation not only calculates the input/output
behavior of a program, but also models the side-channel information
that becomes available during the execution of the program. From this
additional information the power consumption frames of the abstract
power traces, as mentioned above, are generated. By incorporating only
the information that leaks for the particular card, the abstract power
trace is an accurate representation of a trace that would otherwise have
been obtained physically. The simulator will in general deliver perfect
traces without any sort of jitter or noise, although this is not essential
in case of a sufficient signal-to-noise ratio; if noise is present more traces
may be required but the same attacks can still be mounted.

The other main part of the tool supports the power analysis of the
generated traces. Due to the modular software architecture it does not
matter which program and simulator were used to generate these traces;
only the traces have to be supplied to this part of the tool. In later
sections we explain how the PINPAS tool can be used on a toy algorithm
and leakage of Hamming weights over the bus. However, the tool has
been successfully applied in experiments including DES, TEA and AES.

PINPAS: A Tool for Power Analysis of Smartcards 455

2. A simple example
To illustrate the PINPAS tool at work we discuss a toy algorithm, viz.
return Sbox [input XOR key J. The algorithm takes the exclusive or
of an 8-bit input and an 8-bit key and calculates their 4-bit signature.
The function Sbox [x] selects one out of four S-boxes based on the first
two bits of x and uses the remaining six bits as the usual S-box input.
Further details of the S-boxes are omitted. Clearly this algorithm, as
such, is not secure, but it handles the main ingredients of an algorithm
like DES. As platform we assume some vanilla smart card using some
generic processor. The smartcard is assumed to leak information about
values transported on the memory bus.

As a first step we translate the algorithm to the assembler code for
our smartcard. A straightforward implementation is

MOV x, input; XOR x, key; MOV output, Sbox [x]; EXT

Here we have used the operations MOV x ,y to move data to x from y, XOR
for the exclusive or and storage of the result in the first operand, and EXT
to end the program by returning the value output. The implementation
of the program can be loaded into the simulator and run to test its
functionality.

The next step is to evaluate the vulnerability to power analysis of the
assembler code. A potential source for DPA is the value input XOR key,
which can be calculated from the known value of the input and a guessed
value of the key. After generating power traces with the simulator, the
traces can be split into two groups using the 'trace condition' for the
expected power consumption of XOR x, key. A difference trace is obtained
by subtracting the average traces for each of the two groups. This is
done for each possible value of the key. Exhibition of large amplitudes
indicates that the correct value of the key has been found.

t
The images above show some of the output produced by the simulator. The first

image shows an example of a generated power trace. The second trace shows the

difference trace for splitting on the input only. The spikes indicate where the input

can still be recognized. The third and fourth image show the difference trace for

an incorrect and a correct guess of the key, respectively. The correct guess can be
identified because it produces a large downward spike.

456 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

3. Flexibility of the PINPAS tool
The PINPAS tool is flexible in the selection of the algorithm that is be­
ing investigated, making it easy to check several algorithms for a given
platform. One can choose any well-known algorithm, e.g. DES, IDEA,
etc., or any proprietary algorithm but one can also switch between dif­
ferent implementations of the same algorithm. This makes it feasible to
evaluate software defenses introduced in an implementation to protect
against vulnerabilities that have been found. Another aspect of the flex­
ibility of the PINPAS tool lies in the choice of the hardware platform.
One can easily switch between different cards, for example cards based
on well-known processors, based on specialized processors or even based
on processors which have only been designed but not (yet) implemented
in hardware. This flexibility in the choice of the card allows testing of
an algorithm on several potential cards and assessing vulnerabilities of
an algorithm irrespective of the precise platform.

In the remainder of this section we illustrate how both software and
hardware defenses can be tested in the tool. This is done by introduc­
ing a DPA countermeasure for the vulnerability found in the example
algorithm. The DPA attack above is based on the fact that information
about the Hamming weights of certain values leaks in the power usage.
Several techniques have been proposed in the literature to strengthen
smartcard algorithms, e.g. (Chari et aI., 1999; Messerges, 2000; Goubin,
2001). One possible defense is to protect important values by mask­
ing them with random values. Unmasked values are only used within
the registers of the chip, which are assumed not to leak significantly.
This defense protects against the attack described above, but is still not
sufficiently safe. To render information about Hamming weight of val­
ues completely useless one can apply so called dual rail logic. When
using dual rail logic the Hamming weight of values is always the same
and thus cannot provide the attacker with any useful information. An
implementation of this scheme purely in hardware can be efficient and
transparent to the algorithm running on the card, but at a price; the
hardware resources have to be doubled in size. To limit the cost one
could include dual rail operations ill the processor but leave the choice
of when to invoke these to the programmer, allowing the non-sensitive
data to be coded normally.

By using the dual rail operation XDRdr, which calculates the exclu­
sive or of numbers in dual rail format, we can easily implement our
example program as x = single2dual(input); y = Sbox2 [x XDRdr
key2J; return dua12single(y). Here Sbox and key are stored in dual
rail format (denoted by Sbox2 and key2). The function single2dual

PINPAS: A Tool for Power Analysis of Smartca7'ds 457

converts an 8-bit number to its 16-bit dual rail equivalent. Finally,
dua12single converts back from the dual rail format. The implementa­
tion of this algorithm on our generic smart card is straightforward. The
function XORdr is directly mapped to a dual rail operation implemented
on the chip.

!L

The first image shows the difference trace for splitting on the input only. The value of

the input can only be recognized at the start (first two spikes), after this no leakage

occurs. The other two images show that a wrong and a correct guess of the key can

no longer be distinguished: The trace for the correct key guess is not significantly

different from the traces for incorrect guesses.

4. Conclusion
We have introduced the PINPAS tool which can simulate a smartcards
power consumption and a side channel attack on that smartcard. The
software simulation done with the PINPAS tool can be profitable in the
testing of existing cards and algorithms. The tool is especially useful
as an aid in the design of both cards (hardware) and algorithms (soft­
ware), allowing for an assessment of the risk of side channel attacks in a
much earlier stage of development. This way the production cycle and
time-to-market of a new smartcard product can be greatly reduced. We
have illustrated how the development process can be supported by the
PINPAS tool for a toy algorithm which, although being very simple,
contains steps comparable to widely accepted encryption standards.

References
Chari, S., Jutla, C., Rao, J., and Rohatgi, P. (1999). Towards sound approaches to

counteract power-analysis attacks. In Wiener, M., editor, Proc. CRYPTO '99, pages
398- 412. LNCS 1666.

Falm, P. and Pearson, P. (1999). IPA: A new class of power attacks. In Ko<;, C. and
Naccache, D., editors, Proc. CHES'99, pages 173- 186. LNCS 1717.

Goubin, L. (2001). A sound method for switching between boolean and arithmetic
masking, In Ko<;, C., Naccache, D., and Paar, C., editors , Proc. CHES 2001, pages
3-14. LNCS 2162.

Kocher, P .. (1996). Timing attacks on implementations of Diffe-Hellman, RSA, DSS,
and other systems. In Koblitz, N., editor, Proc. CRYPTO '96, pages 104- 113,

Messerges, T. (2000). Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois, Chicago,

	PINPAS: A TOOL FOR POWER ANALYSIS O
F SMARTCARDS
	1. The PINP AS tool
	2. A simple example
	3. Flexibility of the PINPAS tool
	4. Conclusion
	References

