
E 2XB: A DOMAIN-SPECIFIC
STRING MATCHING ALGORITHM FOR
INTRUSION DETECTION

K. G. Anagnostakis*, S. Antonatos, E. P. Markatos, M. Polychronakis t
Institute for Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)
P.O. Box 1385 - Heraklio, Crete, GR-711-1D GREECE
{kanag,antonat,markatos,mikepo} @icsJorth.gr

Abstract We consider the problem of string matching in Network Intrusion Detection Sys­
tems (NIDSes). String matching computations dominate in the overall cost of
running a NIDS, despite the use of efficient general-purpose string matching al­
gorithms. Aiming at increasing the efficiency and capacity of NIDSes, we have
designed E 2xB, a string matching algorithm that is tailored to the specific char­
acteristics of NIDS string matching. We have implemented E 2xB in snort, a
popular open-source NIDS, and present experiments comparing E 2xB with the
current best alternative solution. Our results suggest that for typical traffic pat­
terns E 2xB improves NIDS performance by 10%-36%, while for certain rule set
and traffic patterns string matching performance can be improved by as much as
a factor of three.

Keywords: network security, intrusion detection, string matching, network monitoring, net­
work performance

1. Introduction
Network Intrusion Detection Systems (NIDSes) are receiving considerable

attention as a mechanism for shielding against "attempts to compromise the
confidentiality, integrity, availability, or to bypass the security mechanisms of
a computer network" (2). The typical function of a NIDS is based on a set
of signatures, each describing one known intrusion threat. A NIDS examines
network traffic and determines whether any signatures indicating intrusion at­
tempts are matched.

The simplest and most common form of NIDS inspection is to match string
patterns against the payload of packets captured on a network link. The use

• Author is with the CIS Department, University of Pennsylvania, Email: allagllost@dsi.ris.upelllz.edu
t Authors are also with the Computer Science Department, University of Crete

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003

10.1007/978-0-387-35691-4_52

D. Gritzalis et al. (eds.), Security and Privacy in the Age of Uncertainty

http://dx.doi.org/10.1007/978-0-387-35691-4_52

218 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

of existing efficient string matching algorithms for this purpose, such as (3,
1), bears a significant cost: recent measurements of the snort NIDS (13)on
a production network show that as much as 31 % of total processing is due
to string-matching (6). The same study also reports that in the case of Web­
intensive traffic, this cost is increased to as much as 80% of the total processing
time. At the same time, NIDSes need to be highly efficient to keep up with
increasing link speeds, and, as the number of potential threats (and associated
signatures and rules) is expected to grow, the cost of string matching is likely
to increase even further.

These trends motivate the study of new string matching algorithms tailored
to the particular requirements and characteristics of Intrusion Detection, much
like domain-specific algorithms were developed for efficient routing lookups
and packet classification in IP forwarding (10, 7).

In this context, we present E 2xB, a string matching algorithm that is de­
signed specifically for the relatively small input size (in the order of packet
size) and small expected matching probability that is common in a NIDS en­
vironment. These assumptions allow string matching to be enhanced by first
testing the input (e.g., the payload of each packet) for missing fixed-size sub­
strings of the original signature string, called elements. The false positives
induced by E 2xB, e.g., cases with all fixed-size sub-strings of the signature
showing up in arbitrary positions within the input, can then be separated from
actual matches using standard string matching algorithms, such as the Boyer­
Moore algorithm (3). Experiments with E 2xB implemented in snort, show
that in common cases, E 2xB is more efficient than existing algorithms by up
to 36%, while in certain scenarios, E 2 xB can be three times faster. This im­
provement is due to an overall reduction in executed instructions and, in most
cases, a smaller memory footprint than existing algorithms.

2. Background
The general problem of designing algorithms for string matching is well­

researched. One of the most widely used algorithms was first proposed in (3).
The Boyer-Moore algorithm compares the search string with the input start­
ing from the rightmost character of the search string. This allows the use of
two heuristics that may reduce the number of comparisons needed for string
matching (compared to the naive algorithm). Both heuristics are triggered on
a mismatch. The first heuristic, called the bad character heuristic, works as
follows: if the mismatching character appears in the search string, the search
string is shifted so that the mismatching character is aligned with the rightmost
position at which the mismatching character appears in the search string. If the
mismatching character does not appear in the search string, the search string
is shifted so that the first character of the pattern is one position past the mis­
matching character in the input. The second heuristic, called the good suffixes
heuristic, is also triggered on a mismatch. If the mismatch occurs in the middle

A Domain-Specific String Matching Algorithm for Intrusion Detection 219

of the search string, then there is a non-empty suffix that matches. The heuris­
tic then shifts the search string up to the next occurrence of the suffix in the
string. Horspool (1980) improved the Boyer-Moore algorithm with a simpler
and more efficient implementation that uses only the bad-character heuristic.

Aho and Corasick (975) provided an algorithm for concurrently matching
multiple strings. The set of strings is used to construct an automaton which
is able to search for all strings concurrently. The automaton consumes the
input one character at-a-time and keeps track of patterns that have (partially)
matched the input.

Fisk and Varghese (2002) were the first to consider the design of NIDS­
specific string matching algorithms. They proposed an algorithm called Set­
wise Boyer-Moore-Horspool, adapting the Boyer-Moore algorithm to simulta­
neously match a set of rules. This algorithm is shown to be faster than both
Aho-Corasick and Boyer-Moore for medium-size pattern sets. Their exper­
iments suggest triggering a different algorithm depending on the number of
rules: Boyer-Moore-Horspool if there is only one rule; Set-wise Boyer-Moore­
Horspool if there are between 2 and 100 rules, and Aho-Corasick for more than
100 rules. This heuristic has been incorporated in snort and provides the
baseline for our comparison in Section 4. Independently of Fisk and Vargh­
ese, Coit et al. (2002) implemented a similar algorithm in snort, adapting
Boyer-Moore for simultaneously matching multiple strings, derived from the
exact set matching algorithm of Gusfield (977) .

Recently, we have proposed ExB, a precursor of E 2xB, providing quick
negatives when the search string does not exist in the packet payload (1).
E 2xB provides several improvements on ExB , the most important being a
faster pre-processing phase, removing much of the overhead associated with
initializing the occurrence map, and a wider set of experiment results, that
also highlight NIDS properties that are interesting beyond the scope of the
specific algorithm.

3. E 2 xB: Exclusion-based string matching
We present an informal description of E 2xB, first in its simplest and most

intuitive form and then in its more general form. E 2xB is based on the follow­
ing simple observation:

Suppose that we want to check whether an input string I contains a small string
s. If there exists at least one character of string s that is not contained in I, then
s is not a substring of I.

The above simple observation can be used to quickly determine several
cases where a given string s does not appear in the input string I: if s con­
tains at least one character that is not in I, then s is not a substring of I.
However, this observation cannot be used to determine the cases where s is a
substring of I. Indeed, if every character of string s belongs to input string I,
then we should use a standard string matching algorithms (e.g., Boyer-Moore-

220 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

Horspool) to confirm whether s is actually a substring of J or not. The cases
where every character of s is in J, but s is not a substring of J are called false
matches, or false positives.

This method is effective only if there is a fast way of checking whether a
given character c belongs in J or not. We perform this check with the help of
an occurrence map. Specifically, we first pre-process the input string I, and
for each (8-bit) character c that appears in string J, we mark the corresponding
(i.e. Cth) cell on the (256-cell) map. Although we could use a binary value to
mark the mentioned cells (i.e. if the Cth position of the cell map is 1, then the
character C appears in J, otherwise it does not), our experiments in (1l)suggest
that the cost of cleaning (i.e. filling with zeros) the cell map for each new
packet can be very high. To reduce this cost, we decided to mark the cell with
the (index) number of the current network packet. Thus, if the Cth position of
the cell map contains the number of the current network packet, the character
C appears in J, otherwise it does not 1.

In order to reduce the percentage of false matches, the above algorithm can
be generalized for pairs of (8-bit) characters: instead of recording the occur­
rence of single characters in string J, it is possible to record the appearance
of each pair of consecutive characters in string J. In the matching process,
instead of determining whether each character of s appears in J, the algorithm
then checks whether each pair of consecutive characters of s appears in J. If a
pair is found that does not appear in J, E 2xB knows that s is not in J.

Generalizing further, instead of using 8-bit characters, or I6-bit pairs of
characters, E 2xB can use bit-strings of arbitrary length (hereafter called ele­
ments). That is, E 2xB records all (byte-aligned) bit-strings of length x. The
element size exposes a trade-off: larger elements are likely to result in fewer
false matches, but also increase the size of the occurrence map, which could,
in tum, increase capacity misses and degrade performance.

The pseudo-code for pre-processing inpu t and for matching a string s on
inpu t is presented in Figure 1.

The main difference between E 2xB and ExB is the use of cells: ExB as­
sumed an occurence bitmap where each element was marked by setting the
I-bit cell to 1. This required the bitmap to be cleared for each packet, adding
unnecessary overhead. A second difference lies in the way the two bytes form­
ing an element are hashed together. E 2xB uses OR while ExB uses XOR.
Although in theory X 0 R does provide a better hash than OR, the difference in
the number of collisions was found to be negligible. The value of using X 0 R
lies more in that X 0 R instructions were found to result in slightly better per­
formance. Finally, an important implementation detail that has been addressed
in E 2xB is support for case-insensitive matching, as many NIDS signatures

I To reduce the number of bits needed to store the cell map. the numbers of network packets are limited to
a predefined number of bits, which we call cel/"size. If the number of network packets exceed 2eelLsize.

then the next packet gets the number O.

A Domain-Specific Str'ing Matching Algorithm for Intrusion Detection 221

pre_process(char *input, int len)
{

pktid=pktno & (l«cellsize - 1);

for (int idx = 0 ; idx < 1en-1 ; idx++)
element = s[idx]« (elementsize-8
occurence_map [element] = pktid;

s [idx+1] ;

search(char *s, char * input , int len_s, int len)
{

for (int idx = 0 ; idx < len_s-1 ; idx++)
element= s[idxJ« (elementsize-8) , s[idx+1J;
if (occurence_map [element J != pktid)

return DOES_NOT_EXIST ;

return boyer_moore(s, len_s, input, len);

Figu1'e 1, Pseudo-code for E 2xB pre-processing and search,

are case-insensitive. This is done by modifying the search procedure to test for
the occurence of all four combinations of upper- and lower-case for each of the
two bytes used to compute the element index.

4. Experimental evaluation
Using trace-driven execution, we evaluate the performance of E2xB against

the heuristic of (6)(denoted as FVh in the rest of this paper) and the implemen­
tation of (3)in snort.

4.1 Environment
For all the experiments we used a PC with a Pentium 4 processor running at

1.7 GHz, with aLl cache of 8 KB and L2 cache of 256 KB, and 512 Mbytes of
main memory. The measured memory latency is 1 ns for the L1 cache, lO.9 ns
for the L2 cache and 170.4 ns for the main memory, measured using Imbeneh
(12). The host operating system is Linux (kernel version 2.4.14, RedHat 7.3).
We use snort version 1.9.0 (build 205) compiled with gee version 2.96.

Each packet is checked against the "default" rule-set of the snort distribu­
tion. The ruleset is organized as a two-dimensional chain data-structure, where
each element - called a chain header - tests the input packet against a packet
header rule. When a packet header rule is matched, the chain header points to
a set of signature tests, including payload signatures that trigger the execution
of the string matching algorithm. The default rule-set consists of 187 chain
headers with a total of 1661 rules, 1575 of which are string matching rules.

We use packet traces from four different sources:

222 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

!
'l 60
J
.!!

§

20

0
8 10

__

70

60

cef'''' 6 bits ---.,..-­
.. .. " · 0 ·"

_______ ._ _ I 50

11 12 13 1. 15 18
olem..,1 SIze

.1 .0 '-..

jJO
20 --

10

oL--L __ L--L __ __
8 9 10 11 12 13 I. 15 18

010"""'1 SIze (bits)

Figure 2. Effect of element and cell size pa· Figul'e 3. Effect of element and cell size pa-
rameters on the fraction of false positives rameters on running time

• A set of full-packet traces from the DEFCON "capture the flag" data­
set. 2 These traces contain numerous intrusion attempts.

• A full packet trace containing Web traffic, generated by concurrently
running a number of recursive wget requests on popular portal sites.

• Three header-only traces from the NLANR archive. These packet traces
were taken on backbone links. Because these are header-only traces, for
our experiments we added random payloads. We argue that the results
are representative after determining that random payloads do not signif­
icantly alter NIDS performance.

• A set of header-only traces collected on the OC3 link connecting the
University of Crete campus network (UCNET) to the Greek academic
network (GRNET)(5), with random payloads.

For the experiments of Sections 4.2 and 4.3, we use the DEFCON ethO . dump2
trace containing 1,035,736 packets. For simplicity, traces are read from a local
file by using the appropriate snort option, which is passed to the underly­
ing pcap (3) library. (Replaying traces from a remote host provided similar
results.)

4.2 Element and cell size

We first determine the optimal size for E 2xB elements and cells. In Figure
2 we show the fraction of false positives for different element and cell sizes,
and in Figure 3 the corresponding running time of snort, obtained using the
time (1) facility of the host operating system. We observe that the fraction of
false positives is well below 2% when using elements 13 bits or more. Com­
pletion time decreases with increasing element size, as the fraction of false

2 Available at hltp://wwwshmoo.comlcctfl

A Domain-Specific String Matching Algorithm for Intrusion Detection 223

positives that have to be searched using Boyer-Moore is reduced. However,
it is not strictly decreasing: it is minimized at 13 bits but exhibits a slight in­
crease for more than 13 bits, apparently because of the effect of data-structure
size (8 KB for 13-bit elements, 64 KB for 16 bits, for a cell size of 8 bits) on
cache performance. For our specific configuration, 13-bit elements and 8-bit
cells appear to offer the best performance.

4.3 Experiments with the default rule-set

We determine if E 2xB offers any overall improvement compared to FVh
and BM using the ethO . sump2 trace. The completion time for E 2xB , BM
and FVh are 30.20, 47.31 and 47.36 seconds, respectively. We observe that
using E 2xB , snort is 36% faster than both known algorithms. E 2xB is
faster because, in the common case, it can quickly decide that a given set of
strings is not contained in a packet. More specifically, in this experiment, the
string matching function was invoked 22,716,676 times. Out of those, E 2xB
was able to quickly state that the considered string was not a substring of the
input packet in 22,395,2lO of the invocations (or 98.4%). Thus, in 98.4% of
all invocations, E2 xB was able to deliver the correct answer without actually
searching for the pattern in the packet. In the remaining l.6%, E 2xB used the
Boyer-Moore string searching algorithm to find whether the string is really in
the packet.

4.4 Other packet traces

We repeated the experiments with the three algorithms on the full set of
traces. The results are summarized in Table 1. We first confirm that random
payloads behave similarly to real payloads for the DEFCON ethO. dump2
trace: the difference in performance between the original trace and the trace
with the payload replaced with random data is negligible for all three algo­
rithms. Based on this observation, we can argue that using random payloads
on the NLANR and UCNET traces provides a reasonably accurate estimate on
how the algorithms would perform with real payloads.

Comparing the performance of the string matching algorithms, we observe
that E 2xB performs better than FVh and BM on all traces except for one
and that the relative improvement varies. It is also interesting to see that
FVh, reported in (6)to perform better than BM, sometimes performs worse
for the traces examined. Although the improvement of E 2xB is typically be­
tween 25% and 35%, and can be as high as 36.17%, there are cases where the
gain is only around 8% or, even in the case of the NLANR AIX trace, worse
than BM by 8%. This appears to relate, at least in part, to differences in the
packet size distribution: the average packet size is 835 bytes for the DEFCON
ethO . dump2 trace and 364 bytes for the NLANR AIX trace. For larger pack­
ets, snort spends more time in string matching, and E 2xB offers significant
benefits, while for smaller packets, snort spends less time in string match-

224 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

Trace characteristics Running time
trace name ID nr. of avg.pkt BM FYh E"xB %

packets (bytes) (sec) (sec) (sec)

ethO.dump2 D.02 1035736 835 47.31 47.36 30.20 +36.17
ethO.dump2.r D.02.R 46.35 46.60 29.77 +35.77
ethO.dump4 D.04 595267 1481 14.11 56.24 9.81 +30.47
ethO.dump8 D.08 497302 1111 9.79 41.51 6.74 +31.15

I webtrace I w.o I 1188660 I 761 " 345.60 I 300.86 " 274.51 I +8.76 I
NLANRIND N.lND 2254931 703 93.53 83.8 62.04 +25.97
NLANRMRA N.MRA 2760531 760 137.39 122.40 89.07 +27.23
NLANRAIX N.AIX 1624223 364 13.17 14.00 14.26 -8.28

UCNETOOOO UC.OO 1564131 422 II 103.93 82.35 66.84 +18.83
UCNETOIOO UC.01 2245938 413 Il 108.69 84.20 62.54 +25.72

Table 1. Completion time of snort with different string matching algorithms - all traces

% % avg % % avg
trace rules pkts bytes pkt trace rules pkts bytes pkt
D.02 60 21.13 35.53 1336 w.o 103 56.47 33.41 419

62 21.18 36.20 1358 107 0.53 0.31 410
66 54.09 26.45 388 820 42.99 66.28 1092

D.04 13 24.71 24.90 1472 UC.OO 36 15.81 13.52 316
32 73.98 74.60 1473 38 7.44 6.42 320

D.08 13 24.82 24.84 1093 60 18.85 16.63 326
32 74.83 74.91 1092 62 5.35 6.58 456

N.A1X 28 87.63 92.20 330 68 12.71 10.13 295
36 5.56 2.84 160 101 16.89 24.86 545

N.lND 36 4.98 5.25 692 102 9.62 10.47 402
38 40.07 30.31 495 820 4.79 3.76 290
60 30.82 36.90 785 UC.OI 36 11.54 9.51 296
62 8.38 9.22 721 38 5.75 4.78 299

N.MRA 60 43.72 44.04 713 60 42.71 39.91 336
61 9.82 9.96 718 61 5.35 4.76 320
62 13.89 14.17 722 68 7.35 5.70 279
63 14.04 13.90 701 101 10.42 17.33 599

101 6.16 5.80 667 102 7.68 10.09 473

Table 2. Analysis of rule-set invocations (rules rarely triggered are not presented)

ing, and E 2 xB is less useful. On the other hand, results can be very different
for traces with similar packet size statistics. For example, the average packet
size for webtrace and MRA are 761 and 760 bytes, respectively, but the gain of
E 2xB is 8.76% and 27.23%, respectively. More detailed analysis is therefore
needed to understand the benefits of our approach.

We obtain processor-level statistics of executed instructions and L2 data
cache misses for each trace using the brink/ abyss toolkit which collects
data from the Pentium performance counters (14). The results are presented
in Figures 4 and 5. We observe that the number of instructions for E 2xB is
significantly smaller in all cases except for the AIX trace. The reduction in

A Domain-Specific String Matching Algorithm for Intrusion Detection 225

180 O eM 3600 O eM 170 3400
160 O FV" _ 3200 O FV"
150 D E2l<B 3000 G3 Ez,,6

W 140 2BOO
130 §. 2600

e l20 2400
110 ::: 2200

.g 100 E 2000
2 90 Q)

lBOO .e
1ii 80

<>
.s '" 1600 <.>
'0 70 1400

60
'0 1200

.c 50 E 1000

" 40 .D eoo z E 30

lr " 600
20]f ,Irm

z
400

10 h 200
0 DIU D02.R D.Ot 0.01 W.O NINON WRA N,AI)t UC!XI LIe G. 0

trace file

Figure 4, Executed instructions, Figure 5, L2 data cache misses,

L2 data cache misses is relatively small compared to the reduction in executed
instructions. For example, for the W.O trace (Web-traffic) E 2xB has 30% less
instructions but a slighly higher number of cache misses. This explains the
relatively small overall performance gain (rougly 8%) for E 2xB on this trace.

To further understand the differences in the results, we instrumented snort
to provide a trace of the chain headers and content rules invoked for each
packet. The results for all packet traces are presented in Table 2. We ob­
serve that the string matching workload for different traces varies significantly.
For instance, for the AIX trace 87.6% of the packets are checked against only
28 rules, while for the Web trace 56.4% of the packets are checked against 103
rules, and 43% against 820 rules. Considering these statistics, it appears that
E 2xB offers larger improvements in cases where a large fraction of packets
are checked against 30 to 100 content rules (as in the IND, MRA and all DE­
FCON traces). This also indicates that it may be necessary to consider hybrid
algorithms, especially in cases where there is either a very small or very large
number of rules applying to a significant fraction of packets. In such cases,
E 2xB may not perform as well as BM when the number of content rules in a
chain header is very small or the Aho-Corasick algorithm used in FVh when
the number of content rules per chain header is large.

Although the details of such a hybrid algorithm are beyond the scope of this
paper, we run a simple experiment to confirm that the cost of E2 xB is higher
than BM for small sets of content rules and higher than Aho-Corasick for large
sets of content rules. For this, we measure algorithm performance off-line e.g.,
as an isolated standalone program, with random inputs checked against a set

226 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

§ 300

j

200 - --_.-.
!.

::I

8 100
" ,;

10 100 1000 10000
numtler Of signatures (Iog·scale)

z=

;;;
t'i!

§
0.5

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
number 01 signa lUJes

Figure 6. Off-line performance measurements of E 2 xB and FVh.

of random rules. We fix the input size at 1500 bytes and obtain the average
number of cycles for each input "packet" for different numbers of rules. Each
rule is assumed to be a 20-bytes string. The results are presented in Figure
6 (left). We see that E 2xB is indeed more expensive than FVh for less than
20 rules, and that the relative performance benefits are maximized at around
700-1000 rules. After a certain point, the cost of E2 xB rises sharply, possibly
due to the joint effect of increasing false-match rates per-packet and capacity
misses (due to the size of the rule-set). We also run the same experiment with
the input size set to 64 and 512 bytes, and compute the ratio of the average
number of cycles consumed per-packet of E 2xB over FVh. These results are
presented in Figure 6 (right). As expected, the relative benefits of the two algo­
rithms and the ranges in which they perform better depend a lot on packet size.
Experimentation with the actual NIDS and a more realistic traffic model and
rule-set (or rule-set model) is, therefore, required to obtain the right thresholds
for such a hybrid algorithm. Beyond the hybrid algorithm, these results also
provide some insights on the scalability of different algorithms: E 2xB ap­
pears to cover a reasonable range of rule-set sizes that is likely to be sufficient
as NIDS rulesets continue to increase in size.

4.5 Different architectures

We repeat the experiments on a system with a 1 GHz Pentium 3 processor
and a 512 KB L2 cache. The results for the Pentium 3 are presented in Figure
7. We see that the gain for E 2xB is slighly higher on the Pentium 3 compared
to the Pentium 4, with the proportion of the gain roughly consistent for the
different traces. When comparing the performance of the P3 vs. the P4 system,
the results may appear somewhat surprising: the P3 is almost always faster
than the P4, as shown in Figure 8. This happens because the P3 has a 512
KB cache and the P4 we used has a 256 KB cache. For the Webtrace which
has the highest memory usage among all traces, the P3 is almost 4 times faster
than the P4. Besides highlighting the importance of considering the underlying

A Domain-Specific String Matching Algorithm for Intrusion Detection 227

,eo
'50

'40

'30

'20 .,
110 " ..

e.IOO ...
90 :§

c: eo
0

70

15. eo
E
0 50
U

40

30

20

' 0
0

D BM

D F,H
D E2xB

hf tI Irm
002 004 001 WO NINO NMAA NAlX UCCO UCOI

1 •• e. f41 .

Figul'e 7. Performance on P3 processor.

250

., 200

" ! ...
:§ '50
c: o

o
U

o Penlium lV

CJ Penliumlri

Figul'e 8. Performance on P3 vs P4.

system architecture when designing (and deploying) NIDSes, this experiment
also demonstrates the great care needed in evaluating NIDS performance, as
the results can be very sensitive to the environment.

5. Summary and concluding remarks

We have studied the pertormance of NIDS string matching algorithms, and
presented the design E 2xB , a new algorithm for NIDS string matching. Using
an extensive set of packet traces, we have evaluated E 2xB against existing al­
gorithms. Our results show that in most cases E 2xB offers significant overall
improvement in NIDS performance. We have shown realistic cases in which
our approach improves performance by as much as 37%. The impact of E 2xB
appears to relate to the packet size distribution and the number of string match­
ing rules invoked per packet: small packets and very small or very large sets of
rules per packet reduce the effectiveness of E2xB . For medium-size rule-sets,
E 2xB appears to be much faster than existing algorithms. These results point
to the need for a hybrid algorithm, with E 2 xB covering a range of medium­
size rulesets. Determining the details of such a hybrid algorithm, including
exact thresholds will be the subject of future work.

Our results also allow for some more general observations to be made on
the performance as well as modelling, analysis and benchmarking of NIDSes :
we have found that results are very sensitive to traffic and NIDS host processor
and that random payloads behave similarly to real payloads. We expect these
results to be useful towards more effective NIDS benchmarking and design.

Acknowledgments

This work was supported in part by the 1ST project SCAMPI (lST-2001 -
32404) funded by the European Union . Work of the first author is also sup­
ported in part by the DoD University Research Initiative (URI) program ad-

228 SECURITY AND PRIVACY IN THE AGE OF UNCERTAINTY

ministered by the Office of Naval Research under Grant N00014-01-1-0795,
and by the USENIXlNLnet Research Exchange Program (ReX). We would
also like to thank Dionisis Pnevmatikatos for his constructive comments, and
Vasilis Siris for providing the Uenet traces.

References
[I] A.V. Aho and M.1. Corasick. Fast pattern matching: an aid to bibliographic search. Com­

munications of the ACM, 18(6):333-340, June 1975.

[2J R. Bace and P. Mell. Intrllsion Detection Systems. National Institute of Standards and
Technology (NIST), Special Publication 800-31, 200 J.

[3] R.S. Boyer and 1.S. Moore. A fast string searching algorithm. Communications of the
ACM, 20(10):762-772, October 1977.

[4] C. Jason Coit, S. Staniford, and J. McAlerney. Towards faster pattern matching for intrusion
detectIOn, or exceeding the speed of snort. In Proceedings of the 2nd DARPA Information
Survivability Conference and Exposition (DISCEX 1/), June 2002.

[5] C. Courcoubetis and V. A. Siris. Measurement and analysis of real network traffic. In
Proceedings of the 7th Hellenic Conference on Informatics (HC/'99), August 1999.

[6] M. Fisk and G. Varghese. An analysis of fast string matching applied to content-based
forwarding and intrusion detection. Technical Report CS200 1-0670 (updated version), Uni­
versity of California - San Diego, 2002.

[7] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Proceedings
of the conference on Applications, technologies, architectures, and protocols for computer
communication, pages 147-160. ACM Press, 1999.

[8] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com­
plltational Biology. University of California Press, 1997.

[9] R.N. HorspooJ. Practical fast searching in strings. Software - Practice and Experience,
10(6):501-506, 1980.

[10] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using effi­
cient multi-dimensional range matching. In Proceedings of the ACM SIGCOMM '98 con­
ference on Applications, technologies, architectures, and protocols for computer communi­
cation, pages 203-214. ACM Press, 1998.

[II] Evangelos P. Markatos, Spyros Antonatos, Michalis Polychronakis, and Kostas G. Anag­
nostakis. ExB: Exclusion-based signature matching for intrusion detection. In Proceed­
ings of the lASTED International Conference on Comlllunications and COlllputer Networks
(CCN), pages 146-152, November 2002.

[12] L. McVoy and C. Staelin. Imbench: Portable tools for performance analysis. In Proc. of
the 1996 Usenix Technical Conference, pages 279-294, January 1996.

[13] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of the
1999 USENIX LISA Systems Administration Conference, November 1999. (available from
http://www.snort.org/).

[14] Brinkley Sprunt. Brink and abyss: Pentium 4 performance counter tools for linux, Febru­
ary 2002. Available from http://www.eg.bucknell.eduFbspnmtl.

	E2XB: A DOMAIN-SPECIFICSTRING MATCHING ALGORITHM FOR INTRUSION DET
ECTION
	1. Introduction
	2. Background
	3. E 2 xB: Exclusion-based string matching
	4. Experimental evaluation
	4.1 Environment
	4.2 Element and cell size
	4.3 Experiments with the default rule-set
	4.4 Other packet traces
	4.5 Different architectures

	5. Summary and concluding remarks
	Acknowledgments
	References

