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Abstract We study the uniform stability of a coupled system of hyperbolic/para­
bolic partial differential equations (PDEs) with nonlinear internal dissi­
pation. We analyze both the case of distributed damping on the entire 
domain, and the case of damping with localised support. In the cor­
responding stability results, decay rates of weak solutions to the PDE 
system under consideration are described via the solutions to appropri­
ate nonlinear ordinary differential equations. 

Keywords: coupled partial differential equations, uniform decay rates, saturation, 
locally distributed damping, multipliers' method. 

Introduction 

The problem of stabilization of coupled or interconnected systems 
of Partial Differential Equations (PDEs) has become in the last se­
veral years a central topic of mathematical control theory of infinite­
dimensional systems [11, 9]. The present paper is focused on uniform 
stabilization of a coupled system of hyperbolic/parabolic PDEs, which 
is a nonlinear generalization of a PDE model originated in [6]. 

The mathematical model studied in [6] consists of a wave equation in 
a bounded domain n of]R3 (the "acoustic chamber"), which is strongly 
coupled to a linear (abstract) structurally damped plate-like equation 
acting only on the elastic, flat wall of the chamber (the interface). A 
distinguished feature of this model is that it displays a boundary dissi-
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pation term of the wave component which accounts for lack of uniform 
stability of the overall system, even in the presence of viscous damping 
on the entire domain (overdamping phenomenon). In [6J it has been 
shown that by introducing a comparable static damping in the boun­
dary condition of the wave component, then the corresponding feedback 
system is (exponentially) uniformly stable. 

In this paper we study the stability properties of that ultimate model 
when internal damping is subject to nonlinear effects, namely system 
(1.1) described in the next section. More precisely, we aim to estabilish 
uniform decay rates for the (natural) energy E(t) of the corresponding 
weak solutions, as t +00. We shall examine both (i) the case of 
(nonlinear) damping distributed on the entire domain, and (ii) the more 
challenging case when internal damping is active in a thin layer near the 
interface. 

In the former situation uniform decay rates of the underlying energy 
are obtained, without assuming a priori growth conditions on the non­
linear function F near the origin. Furthermore, we allow maximum 
polynomial growth of F at infinity (up to power five). Decay rates are 
described via the solution to an appropriate nonlinear ODE (see Theo­
rem 2.2). 

Unlike most literature, our analyis will include the case when the 
dissipation term is bounded at infinity (saturation). In this significant 
case uniform decay rates are achieved for the solutions with initial data 
which belong to a slightly smoother function space than the energy space 
[4J. We stress that the novelty of this second result is that 

• we obtain uniform decay rates of the energy of solutions correpond­
ing to a bit smoother initial data, rather than of strong solutions 
(i.e. solutions corresponding to initial data in the domain of the 
dynamic operator), as done, e.g., in [14J in the case of dissipative 
wave equations; 

• in addition, we still do not require any a priori assumption on the 
growth of F near the origin. 

Next, if appropriate geometric conditions on n are in force (Hypothe­
sis 3.1), by restricting the polynomial growth at infinity on the nonli­
nearity, we are able to show that a locally distributed damping near the 
interface is in fact sufficient to stabilize the system at a uniform decay 
rate (Theorem 3.6), thus the analysis of case (ii). 

We note that these stability results obtained for the coupled PDE 
system (1.1) hold, as well, for the single, uncoupled wave equation (even 
without "overdamping" term). A technical comparison with the vast 
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literature on stabilization of dissipative wave equations can be found in 
[4]. 

As a final comment we point out that it would be very interesting 
to study (infinite-dimensional) Hamilton-Jacobi-Bellman (HJB) Equa­
tions associated with optimal control problems for abstract equations 
in Banach spaces of the form y' = Ay + Bu + F(y), when (a) the con­
trol operator B is unbounded, and (b) the operator eAt B satisfies the 
so called "singular estimate" (cf [1,9, 12, 6]). Let us recall that in the 
special Linear Quadratic (LQ) case, recently it has been shown that in 
the framework defined by (a)-(b), namely if the singular estimate holds, 
yet in the absence of analyticity of the underlying semigroup, then well­
posedness of associated Riccati equations, along with the sought after 
property that the gain operator is bounded, follow as well [12]. The 
question whether in the more general case of control problems for semi­
linear equations subject to (a) and (b) (and with possibly non quadratic 
cost functionals) one can develop a theory of HJB equations closely akin 
to the one relative to the "analytic" class of systems with unbounded 
control operator-such as it arises in the context of nonlinear control 
problems for a parabolic PDE with boundary or point control [7, 8]-is 
still an open problem. 

1. The PDE model 
The PDE model under consideration in this paper is a nonlinear ge­

neralization of a coupled system of hyperbolic/parabolic PDEs studied 
in [6]. A brief mathematical description of this system is given below; 
see [6] for a thorough analysis of the linear problem. 

Let n c ]R3 be an open bounded domain with boundary f = fo U fl' 
where fo and fl are open, connected, disjoint parts, fo n fl = 0 in ]R2, 
of positive measure. The sub-boundary fo is flat and is referred to as 
the elastic (or flexible) wall, while fl is referred to as the rigid (or hard) 
wall. At the outset, we assume that either n is sufficiently smooth (say, 
f is of class C2), or else n is convex. 
The acoustic medium in the chamber n is described by the wave equa­
tion in the variable z, while v represents the (abstract) deflection of 
the abstract structurally damped plate equation on fo. The interaction 
between wave and plate takes place on f 0 (the interface). 
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Thus, our goal is to investigate the stability properties of the following 
system of coupled PDEs: 

Ztt = ..6.z - F(zt) 

OZ 
OV + dIz = ° 
oz ov + Dozt + j3Doz = Vt 

z(O,·) = zo, Zt(O,.) = zl 

in Q = (0,00) x n 

on = (0,00) X r l 

on = (0,00) x ro 

in n 

Vtt + Av + pAQ;vt + ztlro = ° on = (0,00) x ro 

v(O,·) = va, Vt(O,·) = vI in r o . 

(1.1) 

Basic assumptions. The assumptions pertaining to the linear ope­
rators A and Do in (1.1) will be held throughout the paper and will not 
be mentioned explicitly any more. 

(HO) A (the elastic operator): L2 (ro) :J V(A) -t L2(ro) is a positive, 
self-adjoint operator. Moreover, p> 0, 132::0, dl>O and a 1 
are constants. 

(HI) Do: L2(ro) :J V(Do) -t L2(ro) is a positive, self-adjoint operator, 
and there exists a constant ro, ° ro 1/4, and positive constants 
15 I, 152 such that 

b"lllzll;(ATO) (Doz,zh2 (ro) b"21Izll;(ATO) 
V z E V(ATO) C 

Moreover, it is assumed that HI(ro) that is, 

: continuous HI(ro) -t L2(ro). 

(1.2) 

In particular, for simplicity of exposition, we shall examine only 
the case when Do is the realization of a differential operator of 
order s, with 1 < s 2. Accordingly, it is assumed that 13 > 0, 
see [6, Sections 1.1-1.2]. 

Instead, the mathematical features of the dissipation term F(zt) for 
the wave component will be made more precise in the different frame­
works of model (1.1) that we are going to consider. We recall that a 
thorough analysis of stability properties of system (1.1) with full viscous 
damping (i.e. with F(zt) = Zt), has been performed in [6]. Here, we shall 
examine first the case when (1.1) displays nonlinear damping distributed 
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on the entire domain 0, next the more challenging case of damping with 
localised support. Specific assumptions on the nonlinear function F and 
possible geometric constraints on 0 will be introduced correspondingly. 

Function spaces. Before going into the heart of the stability issue, we 
need to introduce the natural state space for system (1.1). It is known 
from [6] that the functfon space Yl which is needed to describe the wave 
component of system (1.1) is given by Yl := Z x L2(0), with 

endowed with the norm 

Then, the state space Y for problem (1.1) is given by 

Y := Z x L2(0) X D(AI/2) x L2(ro) . 

(1.3) 

(1.4) 

(1.5) 

Thus, the energy E(t) of weak solutions [z(t, .), iJ(t, .)] to the coupled 
system (1.1) is defined by 

E(t) = EAt) + Ev(t) ; (1.6a) 

Ez(t) .- lIV'z(t)IIL(D) + + Il zt(t)IIL(D)(1.6b) 

Ev(t) .- IIA1/ 2v(t)IIL(ro) + Ilvt(t)IIL(ro)' (1.6c) 

where Ez(t) and Ev(t) denote the wave and plate energy, respectively. 

Remark 1.1. We note that due to space constraints, we shall omit from 
this article the description of the abstract set-up for problem (1.1) and 
the analysis of well-posedness of the corresponding nonlinear evolution 
equation (see [6, 4]). 

Notation. In order to simplify the notation, hereafter the norms 
11·IIH8(D) and 11·IIH8(ro) will be denoted by 1·ls,D and 1·ls,ro' respectively. 
In particular, the symbols I· 10,D and 1·lo,ro will represent II ·IIL2(D) and 
II· IIL2(rO)' respectively. 

2. Stabilization by nonlinear damping 
on the entire domain 

This section is focused on the asymptotic behaviour of solutions to 
the coupled PDE system (1.1) with dissipation distributed on the entire 
domain O. Regarding the nonlinear function F, we shall assume that 
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Hypothesis 2.1. F is a continuous function on the real line such that: 

(i) F is monotone strictly increasing, F(O) = 0,-

(ii) ms2 S sF(s) S M s6 for lsi 2: 1, with 0 < m sM. 

We recall that from part (i) of Hypothesis 2.1 it follows that there 
exists a real valued function h(x) which is defined for x 2: 0, it is concave, 
strictly increasing, with h(O) = 0, and it satisfies 

h(s F(s)) 2: s2 + F2(s) , for lsi S N, for some N > O. (2.1) 

Such function can always be constructed, thanks to the monotonicity 
property assumed on F by Hypothesis 2.1, as explained in [10, p. 510]. 
With this function one first defines 

(2.2) 

where IQoTI denotes the measure of QOT = (0, T) x Q. Note that since 
h is monotone increasing, cI + h is invertible for any constant c 2: O. 
Then, with K a positive constant, we set 

p(x) := (cI + h)-l(Kx) , (2.3) 

which is readily a continuous, positive, strictly increasing function, with 
p(O) = O. Finally, let 

q(x) := x - (I + pr1(x), x> O. (2.4) 

Then, decay rates of the energy E(t) of weak solutions [z(t, .), v(t, .)] to 
the PDE model (1.1), as defined by (1.6), are described by the following 
result. 

Theorem 2.2. ([4]) Assume Hypothesis 2.1. Then the energy E(t) of 
every weak solution to the coupled system (1.1) decays uniformly to zero, 
as t +00. More precisely, there exists a To > 0 such that 

E(t) S s(t/To - 1) for t > To, (2.5) 

where lim s(t) = 0 and s(t) is the solution to the Ordinary Differential 
t-.+oo 

Equation 

{ 
s'(t) + q(s(t)) = 0 

s(O) = E(O) , 
(2.6) 

(where q is as given in (2.4)). Here, the constant K in (2.3) will de­
pend on E(O) and time To, and the constant c (in (2.3)) depends on the 
measure of QOTo' 
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Remark 2.3. We note that we do not assume a priori any kind of 
growth condition on the nonlinearity F near the origin. Knowledge of 
the rate growth of the nonlinear function F at the origin allows to obtain 
more explicit decay rates of the energy (see [10, 9]). 

The case of saturated feedback laws. Since the dissipation term 
F(Zt) in (1.1) can be interpreted as a control in feedback form, it is both 
natural and of significance to include in the present analysis the case of 
feedback laws F subject to saturation. A typical example is given by 
F(y) = min{l, k/lyl} y, with k a positive constant. However, in this case 
the lower growth condition in Hypothesis 2.1(ii) is not fulfilled and needs 
to be removed. To accomplish this goal, we aim to study the stability 
properties of the coupled PDE system (1.1) by simply assuming that 

Hypothesis 2.4. F is a continuous function on the real line such that 

(i) F is (monotone) strictly increasing for lsi:::; 1, while it is non­
decreasing for lsi 2: 1; F(O) = 0; 

(ii) there exists M > 0 such that 0 < s F(s) :::; M s6 for lsi 2: 1. 

Under this weak condition we are able to show that decay rates of 
the energy E(t) are still uniform, provided that initial data belong to a 
slightly smoother function space WE C Y, rather than the energy space 
Y (see [4, Theorem 2.8]). 

Remark 2.5. Due to space constraints, the precise statement of the 
aforementioned stability result will not be included in the present article. 
It would require the introduction of some preliminary material: first of 
all, the definition of the new function space WE and the corresponding 
new energy El(t). In short, Theorem 2.8 in [4] estabilishes that if the 
nonlinear function F fulfils the weaker Hypothesis 2.4, then decays rates 
can be described as well via the solution Sl(t) to a nonlinear ODE (as 
(2.6) of Theorem 2.2), depending this time on El (0) instead of E(O). 
The new key ingredient in the proof of this result is an estimate of the 
norm IZt/c,n (of solutions to (1.1) with initial data in WE)' which can be 
shown by using linear and nonlinear interpolation methods (see [4]). 

3. Stabilization by a locally distributed damping 

In this section we consider the PDE system (1.1) with damping acting 
only on an arbitrary small layer around the interface rD. Henceforth, we 
shall write in this case 

F(Zt(t, x)) = d(x) g(Zt(t, x)), (3.1) 
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where d is a nonnegative function on n which is active only in a neigh­
bourhood ofro, and g is a real function subject to appropriate conditions 
(see Hypothesis 3.5 below). Preliminarly, we recall that model (1.1) with 
linear localized damping (i.e. with g(Zt) = Zt in (3.1)) has been studied 
in [5], in the case when the following geometric assumptions hold true 
(cf [13]): 

Hypothesis 3.1. 

• The domain n is convex and the following negatively star shaped 
condition is satisfied: there exists a point Xo E IRn such that 

(x - xo) . v :::; ° on rl ; 

• d(x) == 1 on Den and D => roo 
Under these conditions it has been shown that the energy E(t) of system 
(1.1), as defined by (1.6), decays exponentially to zero, as t ....... +00. 
More precisely, the following stability result has been estabilished for 
system (1.1) with F(zt) = d(x)zt, which we rewrite here for readers' 
convenience: 

Ztt = .6.z - d(x)zt 

oz 
OV + dIz = ° 
oz ov + Dozt + j3D oz = Vt 

z(O, .) = zo, Zt(O,') = zl 

in Q 

on 'EI 

in n 

Vtt + Av + pAO<vt + Ztlro = ° on 'Eo 

v(O,·) = va, Vt(O,') = vI in ro . 

(3.2) 

Theorem 3.2. ([5]) Assume Hypothesis 3.1. Then the energy E(t) of 
every solution [z, i1J to the coupled system (3.2) decays exponentially to 
zero, as t ....... +00, that is 

E(t) :::; Ce-wt E(O) , t 0, (3.3) 

for some positive constants C, W. The constants C and w do not depend 
on E(O), but they depend on D. More precisely, C ....... +00 as j3 ....... ° or 
the area of the support of d (the "height" of D) goes to zero. 

Remark 3.3. The proof of Theorem 3.2 is contained in [5]. The ex­
ponential decay in (3.3) is achieved by showing the equivalent property 
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that for T sufficiently large one has E(T) :::; with ° < < 1. In 
turn, this property follows as a consequence of an appropriate integral 
estimate of the energy functional, whose proof is rather technical and 
requires several intermediate steps. The integral estimates leading to 
the final estimate are obtained by applying the well known multipliers' 
method. Here a key role is played by suitable multipliers which are con­
structed by using both appropriate cut-off functions and a non-radial 
vector field h E [C2 (D)]n such that 

h . 1/ :::; ° on rl , and J(h) > ° in D, (3.4) 

where J(h) denotes the Jacobian matrix of h. Existence of h with the 
features in (3.4) is guaranteed by Hypothesis 3.1 (cf [13]). 

Our present goal is to extend the previous result to a more general 
model with nonlinear localized damping. More precisely, we shall con­
sider the PDE system 

Ztt = - d(x)g(zt) in Q 

8z 
81/ + dIz = ° on L:I 

8z 
81/ + Dozt + j3Doz = Vt on L:o (3.5) 

z(O,·) = zo, Zt(O,.) = zI in D 

Vtt + Av + pAO<vt + ztlro = ° on L:o 

v(O,·) = va, Vt(O, .) = vI in ro , 

where d(·) is the characteristic function of the neighbourhood fi of ro 
where the damping is active. 

Remark 3.4. In the present case where the model displays locally dis­
tributed damping, we cannot expect to maintain the polynomial growth 
of the nonlinear term 9 allowed by Hypothesis 2.1 (up to power five). In 
fact, as in the case of similar models with boundary dissipation (see [10, 
2], [9] and references therein) we need to require linear growth at infinity. 

Let us assume that 

Hypothesis 3.5. 9 is a continuous function on the real line such that: 

(i) 9 is monotone strictly increasing, g(O) = 0; 

(ii) ms2 :::; sg(s) :::; Ms2 for Isl2 1, with ° < m:::; M. 
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Then, the following generalization of Theorem 3.2 holds true. 

Theorem 3.6. Assume Hypotheses 3.1 and 3.5. Then the energy E(t) 
of every weak solution to the coupled system (3.5) decays uniformly to 
zero, as t ---t +00. Decay rates are estimated via the solution s(t) to an 
appropriate nonlinear ODE, as described by (2.5) and (2.6). 

Proof of Theorem 3.6 (sketch). Here we give an outline of the 
proof of Theorem 3.6 for which complete details will be available in a 
separate paper. 

A preliminary step: well-posedness. As a preliminary step in the 
proof of Theorem 3.6, one needs to consider system (3.5) as an ab­
stract evolution equation of the form y' = Ay in an appropriate Hilbert 
space Y, where A denotes the nonlinear dynamics operator. Then, well­
posedness of this system can be shown by applying the theory of non­
linear semigroups ([3]) as done in [1, 4]. Moreover, the regularity of 
solutions corresponding to smooth initial data will contribute to justifi­
cation of the computations which are performed next. 

Basic approach. In order to obtain decay rates estimates of (finite 
energy) solutions to system (3.5), we shall follow once more the powerful 
method introduced by the authors of [10] in the study of semilinear 
wave equations with nonlinear boundary velocity feedbacks and applied 
subsequently to various linear and nonlinear coupled PDE models (see 
[9], providing numerous references). Following this approach, our final 
objective will be to achieve the nonlinear functional inequality (3.10) 
below. To accomplish this goal, a major role will be played by the 
choice of suitable multipliers, as described in Remark 3.3. 

Energy identity. The starting point is to derive the usual energy 
identity which illustrates the fact that the system is dissipative. 

With respect to the PDE system (3.5), the following energy equality 
holds for all sand T, with a ::; s ::; T: 

E(T)+21a
T

(!D6/2 Zt!6,ro +(d(x)g(zt), zt)n+p!Aa / 2vt!6,ro) dt=E(s) (3.6) 

In particular, E(T) ::; E(t), Vt::; T. 
Estimate of the energy functional. Next, we seek to obtain an integral 

estimate of the energy functional on a finite time interval [0, T]. Initially, 
estimates are performed separately on each component of the system. 
The most difficult step is to obtain an estimate of the wave energy func­
tional It Ez(t)dt. It is here where Hypothesis 3.1 is used in a crucial 
way. Then, by combining the integral inequalities pertaining to the plate 
and wave energy functionals, and by using Hypothesis 3.5, along with 
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monotonicity and concavity properties of h as defined by (2.2), one gets 
the following sought after estimate for the coupled system. 

With respect to the total energy E( t) of system (3.5) as defined in 
(1.6), the following inequality holds for all T > 0: 

(3.7) 

where crucially C1 does not depend on T, while the expression lot(z, v) 
includes all terms which are below energy level. More precisely, for some 
constant C we have that 

(T( 2 2 2) 1 
lot(z,v)SoC io dt, 0<8<"2. (3.8) 

Absorption of lower order terms and final estimate. The lower or­
der terms can be absorbed by means of a (by now) standard nonlinear 
compactness/uniqueness argument (see [9]). Then, by using the energy 
identity (and dissipativity property), the following estimate of the energy 
function is estabilished. 

For T large enough, the energy E(t) of every solution to system (3.5) 
satisfies 

E(T)SoCT(E(O)) [cI +Ih]( foT{I D6/2 Ztl6,ro + (d(x)g(zt), Zt)n+ 

+ pIAa/2Vt I6,ro} dt) 

(3.9) 

where the constant CT(E(O)) remains bounded for bounded values of 
E(O). 

Conclusion. By using the energy identity (3.6) in the right hand side 
of inequality (3.9), we finally attain 

E(T) + p(E(T)) So E(O) , (3.10) 

with the function p as defined by (2.3). We recall, in particular, that p 
is constructed in terms of h in terms of h), which depends on the 
growth rate of 9 near the origin. Thus, conclusion follows by applying 
the general result given in [10, Lemma 3.3], here with Sm = E(mT) (see 
[10, p. 532] and [2, p. 304]). 
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