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Abstract We establish the existence, uniqueness and asymptotic behavior of the 
solution to a class of difference equations in a real Banach space, namely 
(1.1) below. The operator A which governs the problem is m-accretive. 
This equation is of interest because it is the discrete analog of a class of 
evolution equations studied by many mathematicians. 
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1. Introd uction 

We are concerned with the difference equation 

{ 
Ui+1 - (1 + Oi) Ui + OiUi-l E CiAui, i;:::: 1 

Uo = a, sup Iluill < 00, 
i>l 

(1.1) 

where A is a nonlinear m-accretive (possibly multivalued) operator in a 
real Banach space (X,II.II), a E X is a given element, Oi ;:::: 1, Ci > 0, 
(\I) i ;:::: 1 are two given sequences of real numbers. The existence of the 
solution to (1.1) and some convergence properties of the solution are 
investigated in this paper. 

G. Morosanu [12] established the existence and uniqueness of the so-
lution for the boundary value problem 

{ 
Ui+l - 2Ui + Ui-l E CiAui, i ;:::: 1 

Uo = a, sup Iluill < 00, 
i>O 

(1.2) 
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which corresponds to the case Oi = 1 in (1.1) . E. Mitidieri and G. Mo­
rosanu [11] analyzed the asymptotic behavior of the solution of problem 
(1.2) . Problem (1.2) was considered in a Hilbert space, where A is a 
maximal monotone operator. It is the discrete analog of the boundary 
value problem 

{ 
U" E Au, t E (0,00) 

u (0) = a, sup Ilu (t) II < 00, 
t2:0 

(1.3) 

which was studied by V. Barbu [7], [8]. The equation of problem (1.3) 
with the condition u' (0) E 8j (u (0) - a) instead of u (0) = a (where 
function j : H --r (-00, +00] is convex, lower-semicontinuous and proper 
and 8j is its subdifferential), was investigated by H. [10]. 

The existence and asymptotic behavior for (1.2) in the case when A 
is an m-accretive operator in a Banach space, were proved by E. Poffald 
and S. Reich [14], [15] and by S. Reich and 1. Shafrir [16]. 

A generalization of equation (1.3) is 

pU" + ru' E Au + J, t E (0, T) (T::; 00). (1.4) 

In both cases T < 00 and T = 00, functions P and r are in W1,oo (0, T) . 
Papers concerned with this equation with different boundary conditions 
are due to L. Veron [17], N. Pavel [13], A. Aftabizadeh and N. Pavel 
[1], [2], N. Apreutesei [3], [4], [5]. 

A discretization of (1.4) with J = 0 is 

withpi 2: C> 0, ki > 0, (\I) i 2: 1. Denoting by Oi = Pi , Ci = 
Pi + ri Pi + ri 

we find the equation of (1.1). Suppose that (Oi)i>l is nonincreasing, 
Oi 2: 1, for all i. In Hilbert spaces, this equation-was studied by N. 
Apreutesei [6] . 

Recall some notions we need in the following sections. 
Let X be a real Banach space with the norm 11.11, X* its dual space 

and (.,.) the pairing between X and X*. Denote by J : X --r X* , 

J (x) = {x* E X*, (x, x*) = IIxl12 = Ilx*W} (1.5) 

the duality mapping of X. It is obvious that J is monotone. J is single­
valued if and only if X is smooth. In this case we say that J is strongly 
monotone if there is a positive constant M such that 

(x - y, Jx - Jy) 2: Mllx - Y112, (\I) x, y E X. (1.6) 
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A subset A of X x X with the domain D (A) and the range R (A) is 
called accretive if for any Yi E AXi, i = 1,2, there exists j E J (Xl - X2) 
such that 

(1.7) 

The accretive operator A c X x X is m-accretive if R (1 + A) = X, 
where 1 is the identity operator of X. It follows that R (1 +AA) =X, 
(\I) A> O. The operator A c XxX is said to be strongly accretive ifthere 
is a constant w>O with the property: (\I)YiEAxi, i=l, 2, (:3)jEJ(XI-X2), 
such that 

(1.8) 

It is known that if A c X x X is m-accretive, then A is closed. If in 
addition X* is uniformly convex, then A is demiclosed (strongly-weakly 
closed in X x X). 

Section 2 is dedicated to the existence of the solution to problem 
(1.1) . First we establish the existence for an auxiliary finite difference 
equation and then we use this result to the study of the problem (1.1) . 
If X has a strongly monotone duality mapping, then (1.1) has a unique 
solution, for any a E X. Section 3 is concerned with the asymptotic 
behavior of the solution. First we give a weak convergence theorem. 
The Hilbert spaces case is separately studied. Finally we establish a 
strong convergence result under the hypothesis that A is m-accretive 
and strongly accretive. 

2. Existence results 

In this section we shall study the existence and uniqueness of the 
solution for the difference inclusion (1.1) . 

We begin with an existence result for the auxiliary problem 

{ Ui+1 - (1 + Oi) Ui + OiUi-1 E CiAui +!i, 1 ::; i ::; N (2.1) 
Uo = a, UN+I = b, 

where N is a positive integer, Ci > 0, Oi 2:: 1 and fi E X, 1::; i ::; N. We 
work in the product space XN = X X •.• X X provided with the norm 

(2.2) 

Ifu = (UI' ... ,UN) E XN and u* = (ui, ... ,uN) E (X*)N, then we denote 

N 

(u, u*)N = L (Ui' ui) . (2.3) 
i=l 
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Theorem 2.1. If X is a Banach space, AeXxX is an Tn-accretive 
operator, (Oih<i<N a nonincreasing sequence, Oi>O, Ci>O, 15,i5,N, a, b 

are in X and UJl<i<N E X N , then (2.1) has a unique solution in XN. 

Proof. Denote by A eX N x X N the operator 

Au = {(CIVl, ... ,CNVN) , Vi E AUi, 15, i 5, N} + (Ola,O, ... ,O,b), 

where u = (Ul' ... ,UN) ED (A)N and by B: XN -+ XN the operator 

Bu = ((1 + (1) Ul - U2, -02Ul + (1 + (2) U2 - U3, ... , 
-ON-IUN-2 + (1 + ON-r) UN-l - UN, -ONUN-l + (1 + ON) UN). 

The operator A is m-accretive in X Nand B is continuous, everywhere 
defined and strongly accretive. Indeed, since B is linear, to show the 
strong accretivity of B it is sufficient to- prove that (:3) a > 0, such that 

(Bu, u*) N a JuJ2, (\I) U E X N , (\I) u* E Ju. (2.4) 

But 

N N-l 

(Bu,u*)N = L (1 + Oi) (Ui,Ui) - L [(Ui+1,ui) + 0i+l (ui,ui+1)] ' 
i=l i=l 

where ui E JUi, ui+1 E JUi+l. Since (Oi)l:::;i:::;N is nonincreasing, by 

for all Ii > 0, we find 

with 

N 

(Bu, u*)N L aiJJuiJJ2, 
i=l 

1 
al = 1 + 01 - -2 (1 + (2) , 

II 
1 li-l 

ai = 1 + Oi - 2'Yi (1 + Oi+l) - -2- (1 + Oi), 2 5, i 5, N - 1, 

a N =(1+0N )(1-

(2.5) 

Taking, for example Ii = i (i + 2) / (i + 1)2 , we get ai > 0, 1 5, i < N. 
Denoting a = min {ai, 15, i 5, N} > 0, from (2.5) one deduces 

(2.6) 
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i.e. B is strongly accretive. This implies that A+B is m-accretive and 
coercive, and consequently surjective: R (A+B) = XN. This means that 
problem (2.1) has a solution. It is easy to show the uniqueness of the 
solution. 

N ow we are going to study the difference equation (1.1) , supposing 
that X has a strongly monotone duality mapping J. For Bi == 1, this 
problem was studied by G. Morosanu [12J in Hilbert spaces and by E. 
Poffald and S. Reich [14J in Banach spaces. Recall that J is strongly 
monotone if and only if X is uniformly convex with a modulus of con­
vexity of power type 2 ([14]). 

We state the following existence and uniqueness result. 

Theorem 2.2. Let X be a Banach space with a strongly monotone 
duality mapping J and AcXxX an m-accretive operator, with OER (A) . 
Let (Ci)i>l' (Bi)i>l be two sequences, Ci > 0, Bi 1, (\I) i 1, Bi 
nonincreasing. Then, for every a E X, problem (1.1) has a unique 
solution (Ui)i>l , with Ui ED (A) for all i 1. 
Proof. By Theorem 2.1, the sequence of approximating problems 

{ - (1 + Bd uf + BiuEl E CiAuf, 1:::; i :::; N 
UN - uN - a o - N+1 - , 

has a unique solution (uf) 1 <i<N E X N. 

(2.7) 

For a given w E A-I (0) , ;e-set wf = uf - w, 0 :::; i :::; N + 1. By the 
accretivity of A, for every i E {I, ... , N} , there is a ji E J (wf) , such 
that 

This implies 

hence 

and thus 
Ilufll :::; Ilwll + Iia - wll, 1 :::; i :::; N. (2.9) 

We prove now the convergence of uf as N -+ 00 (uniformly for i 
belonging to every finite set of natural numbers) to an element Ui which 
verifies (1.1) . 

Let No < N1 < N2 be positive integers and Vi = Uf'2 - uf'I, 0 :::; i :::; 
N1 + 1. Since A is accretive, for each i there is a li E JVi such that 

(Vi+1 - (1 + Bi ) Vi + BiVi-1, ld O. 
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Hence 

and, since J is strongly monotone (say of constant M), we get 

MBillvi - Vi_111 2 (Vi+1 - Vi, li) - Bdvi - Vi-I, li-I) , (2.11) 

for 1 i NI. One multiplies (2.11) by Bk ... Bi+1 and one sums from 
i = 1 to i = k, with k E {I, ... , Nd, to find 

k 

M L Bk.·.Bi+IBillvi - Vi-I W (Vk+1 - Vk, lk) - Bk···BI (VI - Vo, lo) . 
i=1 

Since lo = 0 and Bi ;::: 1, i;::: 1, it follows 

(2.12) 

k k 

Since Ilvkll = 2: (IiVill-livi-lll) 2: IIVi - Vi-III, (2.12) implies 
i=1 i=1 

(2.13) 

We sum from k = No to k = N I , to get with the aid of (2.9) 

(2.14) 

By (2.13) we have IIVkl1 IIVk+lll, for alII k N I . Hence for every 
i No, 

(2.15) 

so 
Nl 1 

k), (2.16) 
k=No 

Therefore, there exists the limit Ui = lim u{", for all i belonging to 
N-too 

every finite set of natural numbers. Since A is m-accretive in X, we may 
pass to the limit in (2.7) to deduce that (Ui)i>1 is a solution of problem 
(1.1) . The uniqueness follows easily in the same manner. 
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3. Asymptotic behavior 

In this section, we give some weak convergence and strong convergence 
results for the solution of the problem (1.1) . Let's begin with an auxiliary 
result. 

Proposition 3.1. Under the hypotheses of Theorem 2.2, if (Ui)i>l is 
the unique solution of problem (1.1) , then ('if) w E A-I (0) , the sequ-ence 
(I lUi - wi J)i>l is noincreasing. Moreover, there exists the limit 

h (w) = .lim Ilui - wll. 
z-too 

(3.1) 

Proof. We pass to the limit as N --+ 00 in (2.8) , where wf' = uf' - w, 
1 :S i :S N. Since the limit Ui = lim uf' exists uniformly for i belonging 

N-too 
to every finite set of natural Immbers, we get 

Since (Ui)i>l is bounded, this inequality shows that (Ilui - wll)i>l is 
nonincreasini The monotonicity and the boundedness of Ilui - willead 
us to the conclusion that the limit (3.1) exists. 

Definition 3.1. The multivalued operator A c X x X is said to be 
injectiv ifAxl n AX2 =1= cI> implies Xl = X2. 

We state now a weak convergence theorem. 

Theorem 3.1. Let X be a Banach space with a strongly monotone 
duality mapping J and let its dual X* be uniformly convex. Suppose 
a E X is a given element and A c X x X is injectiv and m-accretive, 
o E R (A). Let (Ci)i>l' (Oi)i>l be like in Theorem 2.2, Ol···Oi lei :S K, 
('if) i 2 1 (K is a -positive -constant). Then, the solution (Ui)i>l of 
problem (1.1) converges weakly as i --+ 00 to a zero of A. -

Proof. Denoting by (ai)i>l the sequence aD = 1, ai = 1/(h ... Oi, ('if) 
i 2 1, observe that ai-dai = Oi, so 

Thus problem (1.1) can be written as 

(3.3) 
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where 'Pi = C¥i-I (Ui - Ui-I) = C¥i-I (Wi - Wi-I). Here Wi = Ui -W, with 
a fixed W E A-I (0) . Since A is accretive, for every i, there is ji E JWi 

such as 
(Wi+1 - (1 + Oi) Wi + OiWi-l,ji) o. 

This is equivalent with 

(3.4) 

and since J is strongly accretive (of constant M), for every positive 
integer N, we get 

N N 

M L C¥i-Illui - Ui_11l 2 ::; L [('Pi+l, ji) - ('Pi, ji-d] = 
i=1 i=1 (3.5) 

Using the estimation for Wi in the proof of Theorem 2.2, one obtains 

I 2 5 2 M L..- C¥i-I lUi - Ui-Ill ::; 2"a - wil . 
i=1 

(3.6) 

Passing to the limit as N -+ 00, one finds that C¥i-Illui - Ui_11l 2 -+ o. 
Since C¥i-I ::; 1, we have C¥i-I (Ui - Ui-I) -+ 0 strongly in X. 

Let U be a weak limit of a weakly convergent subsequence (Uin ) of 
(Ui)i>l. By the assumption OI ... Oi/Ci ::; K, (\I) i 1, since A is demi­
closen, we may pass to the limit in (3.3) (as in -+ 00) and obtain 0 E Au. 

If u, u are two such weak limits of some weakly convergent subse­
quences of (Ui)i>1 , then from the injectivity of A, we deduce that U = u. 
So there is an element U E A-I (0) such that Ui --'- u, i -+ 00. 

In Hilbert spaces, we have the following result, which for Oi == 1 was 
proved by G. Morosanu [12]. 

Theorem 3.2. Let H be a real Hilbert space, a E H be given and 
A :. D(A) C H -+ H be a maximal monotone operator in H, with 
o E R (A) . If (Ci)i>I' (Oi)i>1 satisfy the conditions of Theorem 3.1 and, 
in addition, there- is a constant C > 0 such that Ci C > 0, then the 
solution Ui of problem (1.1) is weakly convergent to a zero of A. 



Existence and asymptotic behavior for some difference equations ... 29 

We give now a strongly convergence result. The proof is similar to 
the Hilbert spaces case (see N. Apreutesei [6]). 

Theorem 3.3. Let X be a Banach space with a strongly monotone 
duality mapping J, a E X be a given element and A c X x X an 
m-accretive, strongly accretive and univoque operator with 0 E R (A) . 
Let (Ci)i2: I ' (Oi)i2:1 be two sequences such that (Oi)i2:1 is nonincreasing, 

00 

Ci > 0, Oi 2:: 1, (\I) i 2:: 1 and L Ci/Oi = 00. Then, the solution (Ui)i2:1 
i=l 

of problem (1.1) is strongly convergent as to the only element 
of A-IO. 
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