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1. Introduction 
The aim of this paper is to generalize in terms of the contingent derivatives the 

basic differential relation: 

DV(t,z).(r,u) =< P(t,z),DX(t,z).(r,u) > -r.H(t,X*(t,z))- < q,UI > (Ll) 

if z = (e, q), u = (UI, U2), satisfied by the components of a smooth Characteristic flow 
C*(.,.) := (X*(., .), V(., .)), that is uniquely associated to a smooth Hamiltonian 
system: 

(x',p') = h(t,x,p):= (t,x,p),- (t,x,p)), (x(T),p(T)) = z E DT (1.2) 

in the following way: the (smooth) Hamiltonian flow X*(.,.) := (X(., .), P(., .)) : 
Dh R X DT -> R n x R n is defined by the unique, maximal (Le. non-continuable) 
solutions X*(.,z) : fez) R -> R n x Rn, z E DT:= {(e,q); (T,e,q) E D} of the 
problem (1.2) while the third component is given by the formula: 

V(t,z):= it[< P(s,z), (s,X*(s,z)) > -H(s,X*(s,z))]ds. (1.3) 

This type of relations are essential for the construction of classical and generalized 
"characteristic solutions" of Hamilton-Jacobi equations, for deriving "Hopf-Lax for­
mulas" and are particularly useful in optimal control and differential games. 
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In this paper the Hamiltonian H(.,.,.) : D = Int(D) <;;; R x R n x R n --+ R is 
differentiable with respect to the last two variables and such that the corresponding 
Hamiltonian vector field h(.,.,.) in (1.2) is a "Caratheodory-Lipschitz" mapping; un­
der these hypotheses, if T E PI D then the unique maximal Characteritic flow C· (., .) 
is locally-Lipschitz with respect to the second variable and locally-AC (absolutely 
continuous) with respect to the first one so the basic relation in (1.1) does not make 
sense any more. 

The main result of this paper, Theorem 3.4 below, states that in this case the 
contingent derivatives of the components X(., .), V(.,.) satisfy certain relations that 
coincide with the one in (1.1) in the particular case h(.,.,.) is a smooth (Hamilto­
nian) vector field; for the proof of this result we essentially use the generalization in 
Blagodatskih(1973) and Mirica(1985,2002) of the Bendixson-Picard-Lindelof theorem 
on differentiability of solutions with respect to initial data in the theory of ODE; this 
type of proof is new and apparently simpler than the traditional proofs of the relation 
(1.1) in the classical case (e.g. Courant(1962), Hartman(1964), Mirica(1987) etc). 

The paper is organized as follows: in Section 2 we present the necessary notations, 
definitions and preliminary results from Nonsmooth Analysis and from the theory of 
Caratheodory differential equations and in Section 3 we present the main results. 

2. Notations, definitions and preliminary results 
From the multitude of the existing concepts in Nonsmoth Analysis (e.g. Aubin 

and Frankowska(1990), Mirica(1982), etc.), we shall use in the first place the set­
valued contingent directional derivative of a mapping f(.) : X <;;; Rn --+ Rk at a point 
x E Int(X) in a direction u E R n defined by: 

+ k f(x + SmUm) - f(x) 
K f(x;u):={vER; 3 (Sm,Um)--+(O+,u): --+v} (2.1) 

Sm 

and, in the case g(.) : X <;;; R n --+ R is a real function we may use also its extreme 
contingent derivatives (to the right) at x E Int(X) in direction U ERn: 

-+ g(x + s.v) - g(x) 
DKg(X; u):= limsup 

(s,v)-.(o+,u) S 

D+ () 1·· f g(x + s.v) - g(X) -Kg X;U:= Imm 
(s,v)-.(O+,u) s 

(2.2) 

In what follows we shall consider only the particular case in which the domain X = 
dom(f(.» = dom(g(.» <;;; R n is open and the mappings f(.), g(.) are locally-Lipschitz. 

We recall first that for this type of mappings the contingent derivatives in (2.1), 
(2.2) have the properties in the following Proposition whose proof is straightforward 
(see Aubin and Frankowska(1990), Mirica(1982), etc.): 
Proposition 2.1. If the mapping f(.) : X = Int(X) <;;; R n -+ Rk is locally-Lipschiz 
and x E X then its contingent derivative in (2.1) has the following properties: 

(i) in any direction U E R n the subset K+ f(x; u) c Rk is non-empty and compact 
and is given by: 

+ k f(x + SmU) - f(x) 
K f(x;u):={vER; 3sm -+O+: --+v}; (2.3) 

Sm 

(ii) the multifunction K+ f(x;.) is ("globally") Lipschitzean with respect to the 
Pompeiu-Hausdorff distance in the sense that: 

(2.4) 
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where L is the Lipschitz constant of f(.) at x and: 

dH(A, B) := max{d*(A, B), d*(B, An, d*(A, B) := sup inf I/a - bl/. 
aEA bEE 

Moreover, K+ f(x; .) is positively homogeneous in the sense that: 

(iii) the mapping f(.) is (Ji1rechet) differentiable at the point x E X iff it is contin­
gent differentiable in any direction u E R n in the sense that: 

f+() l' f(x + s.v) - f(x) \-I R n 
:::J K x; u:= 1m vuE 

(s,v)-->(o+,u) s 
(2.5) 

and the "contingent derivative" fi«x;.) : Rn -> Rk is linear; in this case the two 
derivatives coincide i.e. Df(x) = fi«x; .). 

(iv) if g(.) : X -> R is locally-Lipschitz then its contingent derivatives in (2.1)-(2.2) 
are related as follows: 

Dtg(x;u) = max[K+g(x;u)] ::::: min[K+g(x;u)] = Dtg(x;u) VuE Rn. (2.6) 

Remark 2.2. According to the well-known Rademacher's theorem, the locally­
Lipschitz mapping f(.) in Prop.2.1 is a.e. differentiable hence there exists a subset 
'OF(f) X, of "full Lebesgue measure" (fL(.» such that: 

3 Df(x) = fi«x;.) V x E 'OF(f), fLeX \ 'O(f» = 0; (2.7) 

on the other hand, as simple examples show, the set of points at which the contingent 
derivative in (2.6) exists may be strictly larger than the (Frechet) "differentiablity 
set" in (2.7): 

(2.8) 

equivalently, for each point x E X one may consider the "set of contingent differen­
tiability directions" of f(.) at x defined as the domain of the mapping fi«x; .): 

'01<(f;x):= dom(fi«x; .»:= {u ERn; 3 fi«x;u)} (2.9) 

so that one may write: '01<(f) = {x EX; '01<(f;x) = Rn}. 
In this paper we shall use these concepts and results to the study of the" maximal" 

(i.e. non-continuable) flow, Xf(.;"') : Df Rx D -> Rn , of a CaratModory-Lipschitz 
differential equation: 

x' = f(t,x), xes) = y, (s,y) ED = dom(f(., .» R x R n (2.10) 

defined, more precisely, as follows: 
Definition 2.3. A mapping f(.,.) : D -> R n is said to be a CaratModory-Lipschitz 
(C-L) vector field if DC R x Rn is open and the following properties hold: 

(i) f(.,.) is a CaratModory mapping in the sense that the mappings f(.,x), x E 
pr2D are (Lebesgue) measurable, there exists a null subset If C pr1D (i.e. fL(If) = 0) 
such that f(t, .), t E prlD\If are continuous and, moreover, f(.,.) is locally integrably 
bounded in the sense that for any compact subset Do C D there exist an integrable 
function m(.) E Ll(prlDo; R+), R+ =, [0, 00) and a null subset 10 C pr1Do such that: 

Ilf(t,x)ll:S: met) V E Do, t Epr1Do \10; (2.11) 
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(ii) f(.,.) is locally-integrably Lipschitz with respect to the second variable in the 
sense that for any compact subset Do C D there exist an integrable function L(.) E 

Ll(prlDo; R+) and a null subset 10 C prlDo such that: 

Ilf(t,x) - f(t, y)11 :::; L(t)llx - yll 'if (t, x), (t, y) E Do, t E prlDo \lo. (2.12) 

Remark 2.4. As particular cases of the C-L vector fields in Def.2.3 one may consider 
the locally-essentially bounded ones when the function m(.) in (2.11) is essentialy 
bounded (Le. m(.) E LOO(prlDo;R+», the essentially bounded locally-Lipchitz ones 
for which L(.) E LOO(prlDo; R+) and the CaratModory-Cl vector fields for which, 
in addition to the properties in Def.2.3, one assumes that the mappings f(t, .), t E 
pr1 D\lf are differentiable and, moreover, the derivative, D2f(.,.) is of CaratModory 
type Le. D2f(., x), x E pr2D are measurable, the mappings D2f(t, .), t E prlD \ It 
are continuous and for any compact subset Do CD there exist L(.) E Ll(prlDo; R+) 
and a null subset 10 C prlDo such that: 

IIDd(t,x)1I :::; L(t) 'if (t,x), (t,y) E Do, t E prlDo \ 10 . (2.13) 

As further particular cases one may consider Peano-Lipschitz vector fields f(.,.) wich 
are continuous with respect to both variables and locally-Lipschitz with respect to 
the second variable, uniformly with respect to the first one (Le. the function L(.) in 
(2.12) is constant) and the" classical" Peano-C1 vector fields for which both mappings 
f(., .), Dd(·,·) are continuous. 

We summerize the basic results of the theory of CaratModory Ordinary Differential 
Equations in the following theorem for whose proof we refer to Kurzweil(1986),Ch.18: 
Theorem 2.5. If f(.,.) is a CaratModory-Lipschitz (C-L) vector field in the sense 
of Def.2.3 then the following statements hold: 

(i) for any initial point (s, y) E D there exists a unique maximal (i. e. non­
continuable) locally-AC (absolutely continuous on each compact interval) Caratheodory 
solution xf(.; s, y) : l(s, y) C R -+ R n of the equation in (2.10) that satisfies: 

DIXf(t; s, y) = f(t, xf(t; s, y» a.e.(t E l(s, y», Xf(S; s, y) = y; (2.14) 

(ii) moreover, l(s, y) is an open interval containing s, the domain of the flow, 
D f = {(t, s, y); (s, y) ED, t E l(s, y)} R x D is an open subset, and the "maximal 
flow" Xf(';.,.) : D f -+ R n is continuous; 

(iii) the mappings xf(t; s,.) are locally Lipschitz and the mappings x f(.; s, y), 
Xf(t; .,y) are locally-AC and satisfy the equivalent "associated integral equation" 

Xf(t; s,y) = y + it f(cy,Xf(CY; s,y»dCY 'if (t, s,y) E D f . (2.15) 

Therefore, each of the mappings, Xf(.;s,y), (s,y) ED satisfies the equation (2.10) 
outside of a null subset of the interval l(s, y); however, the folllowing important 
result shows that equation (2.10) is satisfied outside a "common" null subset by all 
the solutions: 
Theorem 2.6 (Scorza-Dragoni(1948». If f(.,.) is a C-L vector field in the sense 
of Def·2.3 then there exists a null subset Jf C prlD such that: 

DIXf(t; s,y) = f(t,Xf(t;s,y» 'if t E l(s,y) \ Jf, (s,y) ED. (2.16) 

For a proof of this theorem (actually valid for the more general class of the CaratModory 
vector fields in Def.2.3) one may see also Th.18.4.9 in Kurzweil (1986). 
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The differentiability properties of the flow Xf(';.,.) in Th.2.5 will be expressed, as 
usual, along a (fixed) "reference trajectory", z(.), given by: 

z(t) = Xf(t;to,xo), t E J(to,xo) (2.17) 

where (to, xo) E D is a fixed point, in terms of the set-valued contingent direc­
tional derivatives in (2.1) of the mappings f(t, .), Xf(t;to, .), Xf(t; .,xo) and of the 
Caratheodory solutions, v(.), of the contingent variational inclusion (CVI): 

v'(t) E co[K+ f(t; .)(z(t); v(t))] a.e.(J(to,xo)), v(to) = Uo ERn (2.18) 

where co [A] denotes the convex hull of the subset A C R n which, as it is well-known, 
coincides with the closed convex hull, colA], whenever A is compact; using the "con­
tingent differentiability directions" in (2.9) one may see that at certain points the 
CVI in (2.18) becomes the contingent variational equation (CVE): 

v'(t) = (f(t; .))j«(z(t);v(t)) a.e.(I(to,xo)), if v(t) E Vj«(f(t; .);z(t))), (2.19) 

while on the ("full measure") Frechet differentiability sets in (2.7) the CVI in (2.18) 
becomes the classical variational equation (VE): 

v'(t) = D2f(t,z(t)).v(t) a.e.(I(to,xo)), if z(t) E VF(f(t, .)). (2.20) 

In the proof of the main result in the next section we shall essentially uses the following 
generalization of the classical Bendixson-Picard- Lindel6f theorem: 
Theorem 2.7.Let f(.,.) : D -+ R n be a Caratheodory- Lipschitz vector field in the 
sense of Def.2.3, let (to,xo)) ED, fI E J(to,xo),h := [to,tl] C J(to,xo) and let z(.) 
be the reference trajectory in (2.17). 

Then the contingent derivatives in (2.1) of the maximal flow Xf(.; .,.) in Th.2.5 
have the following properties: 

(i) for any vectors Uo E R n , Ul E K+Xf(tl; to, .)(xo; uo) there exists a Caratheodory 
solution v(.) : h -+ R n of the contingent variational inclusion CVI such that: 

(2.21) 

(ii) if Jf c pr1D is the null subset in (2.16) and to E pr1D \ Jf then for any vector 
E K+ X f (tl; ., xo)( to; 1) there exists a Caratheodory solution Vo (.) of the contingent 

variational inclusion (CVI) in (2.18) such that: 

(2.22) 

Moreover, if f(.,.) is locally essentially bounded in the sense of Remark 2.4 and to E Jf 
then for any vector E K+ X f (fI; ., xo) (to; 1) there exists a Caratheodory solution 
Vo(.) of the contingent variational inclusion CVI in (2.18) that satisfies the last two 
conditions in (2.22) and also the "weaker" initial condition: 

vO(to) E - rO(to+, xo), rO(s+, y) := n n cof(([s, s + 8) \ J)) x Bo(y)). (2.23) 
o>O/k(J)=O 

For a proof of this result we refer to Blagodatskih(1973) and Miridi(1985,2002). 
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3. The main results 
Everywhere in what follows we assume the following: 

Hypothesis 3.1. The Hamiltonian H(.,.,.) : D = Int(D) RxRn xRn -+ R is such 
that there exists a null subset, IH C prlD (Le. fl(IH) = 0) such that the functions 
H(t,., .), t E ]ffID \ IH are (Fn§chet) differentiable and such that the corresponding 
Hamiltonian vector field h(.,.,.) = (hl(.,., .), h2(.,.,.)) in (1.2) is a Garatheodory­
Lipschitz vector field in the sense of Def.2.3; moreover, the null subset IH C ]ffID is 
taken such that for each t E ]ffID \ IH the mapping h(t,.) is locally-Lipschitz (on the 
"section" Dt:= {z E R2n; (t,z) ED}). 

To simplify the exposition we consider here only the particular case in which the 
initial values of the "time-variable" in (1.2) are fixed though statement (ii) in Th.2.7 
suggests the possibility of studying also the more general case in which these values 
are variable; noting first that the vector field of the characteristics defined by: 

c(t,x,p):= (h l (t,x,p),h2(t,x,p),C3(t,x,p)), hl(t,x,p):= (t,x,p), 
h2(t,x,p):= C3(t,x,p) :=<p,hl(t,x,p) > -H(t,x,p) 

is also of CaratModory-Lipschitz type, applying Ths.2.5, 2.6 one obtains: 

(3.1) 

Theorem 3.2. If Hypothesis 3.1 is satisfied, T E prlD and DT := {(e, q) E 
R n x Rn; (T,e,q) E D} then there exists a unique characteristic flow C'(.,.) = 
(X*(., .), V(., .)) : Dh R X DT -+ R n x R n x R and a null subset Jc C ]ffID, (IH 
Jc ) such that for each z = (e, q) EDT the mapping G·(., z) : I(z) R -+ R n x R n x R 
is the unique maximal Garatheodory solution of the "system of characteristics": 

(x',p',v') = c(t,x,p), (x(T),p(T),v(T)) = (e,q,O) EDT x {a} 

satisfying: 

DIC'(t,z)=cCt,X'Ct,z))VtEICz)\Jc , C*CT,z) = (z,O), zEDT. (3.2) 

Moreover, the characteristic flow C·C.,.) has the regularity properties in Th.2.5 i.e. 
the intervals I(z) R and the domain Dh := ((t,z); z EDT, t E ICz)} are open, 
C* C., .) is continuous, the mappings C* Ct, .) are Lipschitzean and the mappings C' (., z) 
are locally-AGo 

In addition, X·(.,.) = (X(., .),P(.,.)) is the unique maximal flow in the same sense 
of the Hamiltonian system in (1.2) and the third component, V(., .), is given by the 
formula in (1.3). 

Before applying Th.2.7 to the characteristic flow above we prove first a very specific 
property of the contingent derivatives in (2.1) of the characteristic vector field in (3.1). 
Proposition 3.3. If IH C ]ffID is the null subset in Hypothesis 3.1 then at any point 
(t, z) E D, t E ]ffID \ IH, z = (x,p) E Dt and in any direction U = (UI, U2) E R2n, 
the set-valued contingent derivative in (2.1) of the characteristic vector field in (3.1) 
is given by: 

K+c(t, .)(z;u) = {v = (VI,V2,V3); (VI,V2) E K+h(t, .)(z;u), 
V3 =< p, VI > + < h2(t, z), UI >} if z = Cx,p) EDt, t E ]ffID \ IH 

and its (closed) convex hull is given by: 

co[K+c(t, .)(z;u)] = {v = (VI,V2,V3); (VI,V2) E co[K+h(t, .)Cz;u)], 
V3 =< P,Vl > + < h2(t,z),UI >}. 

(3.3) 

(3.4) 
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where h = (hI, h2) is the Hamiltonian vector field in (3.1). 
In particular, at the Prechet differentiability points z = (x,p) E VF(h(t,.)) in (2.7), 

the component C3(t,.) is also differentiable and: 

D2c3(t,z).u =< p,D2hl(t,Z).u > + < h2(t,z),UI > Vu = (UI,U2) E RnxRn. (3.5) 

Proof. From the equivalent definition in (2.3) (for locally-Lipschitz mappings) it 
follows that if v = (VI, V2, V3) E K+ c( t, .) (z; u) then there exists a sequence Sm --> 0+ 
such that: 

( ) 1. h(t, z + SmU) - h(t, z) l' C3(t, z + SmU) - C3(t, z) 
VI,V2 = 1m ,V3= 1m 

m--+oo 8 m m---+oo 8 m 
(3.6) 

hence (VI,V2) E K+h(t, .)(z;u); on the other hand, from (3.6), (3.1) it follows: 

_ H(t, z + SmU) - H(t, Z)] 
Sm 

and since H(t,.) is differentiable, from (3.1) is follows: 

. H(t, z + smu) - H(t, z) 
lIm = - < h2(t,Z),UI > + < h l (t,z),U2 > 

m--+oo 8 m 

hence V3 =< P,VI > + < u2,hl (t,z) > + < h2(t,Z),UI > - < hl(t,Z),U2 > and the 
first inclusion (" ") in (3.3) is proved. 

To prove the reversed inclusion we consider v = (VI,V2,V3) such that (VI,V2) E 
K+h(t, .)(z;u), V3 =< P,VI > + < h2(t,z),UI > and note that from (2.3) it follows 
the existence of a sequence Sm --> 0+ such that the first relation in (3.6) is verified; 
next, since the component C3(t,.) in (3.1) is obviously locally-Lipschitz, the sequence 

{c3(t,z+s::) - c3(t,z) , mEN} C R 

is bounded hence it has a convergent subsequence and therefore there exists 'U3 E R 
such that, taking possibly a subsequence, one has: 

( _) . c(t,z+smu)-c(t,z) +()( ) 
VI,V2,V3 = lIm E K c t,. z;u. 

m--+oo 8 m 

Finally, from the proof above it follows that in this case 'U3 =< p, VI > + 
< h2 (t, z), U1 >= V3 and the relation in (3.3) is proved. 

The relation in (3.4) follows, obviously from the one in (3.3) since V3 depends 
"linearly" on VI while, in view of Prop.2.1, (3.5) is a particular case of (3.3),(3.4). 

We note that the relation in (3.4), which seems to be ignored in the classical theory, 
may be extended in the same form to the "sets of contingent differentiable directions" 
u E Vi(h(t, .));z) defined in (2.9). 

The main result of this paper is the following: 
Theorem 3.4. If Hypothesis 3.1 is satisfied and C*(.,.) = (X(., .), P(., .), V(.,.)) is 
the characteristic flow in Th.3.2 then at each point (t, z) E Dh, Z = (e, q) E DT and 
any direction U = (UI, U2) E Rn x Rn , the contingent derivatives in (2.1) with respect 
to the second variable of its components are related as follows: 

K+V(t, .)(z; u) = {< P(t, z), VI > - < q, UI >; VI E K+ X(t; .)(z; u)} (3.7) 
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and therefore the extreme contingent derivatives in (2.2), (2.6) are given by: 

-+ + DK V(t, .)(z; u) = max{ < P(t, z), VI > - < q, UI >; VI E K X(t; .)(z; u)} 
Dk V(t, .)(z; u) = min{ < P(t, z), VI > - < q, UI >; VI E K+ X(t; .)(z; u)}. 

(3.8) 

In particular, if U E 'Dk(X(t, .); z) (i.e. X(t,.) is contingent differentiable at z in 
direction u) then u E 'Dk(V(t, .); z) and: 

(V(t, .))k(z;u) =< P(t,z), (X(t; .))k(z;u) > - < q,UI > if U = (UI,U2) (3.9) 

and if z E 'Dp(X(t, .)) (i.e. X(t,.) is differentiable at z) then V(t,.) is also differen­
tiable at z and: 

Proof. To prove the inclusion "<::;:" in (3.7) we consider V3 E K+V(t, .)(z;u) and note 
that from (2.3) it follows that there exists Sm -> 0+ such that: 

V3 = lim V(t, z + SmU) - V(t, z) ; 
m-oo 8 m 

(3.11) 

next, since C*(t,.) = (X(t, .), P(t, .), V(t,.)) is locally-Lipschitz, as in the case above 
it follows that there exists (VI,V2) E K+X*(t,.)(z;u) such that, taking possibly a 
subsequence, the relations in (3.6) hold. 

In order to prove that in this case one has V3 =< P(t, z), VI > - < q, UI > we 
apply Th.2.7 to the C-L "standard" vector field defined by: 

c(t,x,p,V):= c(t,x,p) V (t,x,p) ED, V E R (3.12) 

and to its corresponding maximal flow, C*(.,.) for which one obviously has: 

C*(t,Z) = C*(t,z) if z= (z,O) E DT X {O}. (3.13) 

We take the "reference trajectory" 

C(s):= (X(s),P(s), V(s)) := C*(s,Z) = C*(s,z), s E h = [T,t] (3.14) 

and note that from statement (i) of Th.2.7 it follows that for the vectors u := 

(u,O) E R2n X {O}, V E K+C*(t, .)(z; U) there exists a Caratheodory solution w(.) = 
(WI(.),W2(.),W3(.)) E AC(I;R2n+l ) of the CVI: 

W'(s) E co[K+c(s, .)(C(s); w(s))] a.e.(h) (3.15) 

such that: 

w(T) = u, w(t) = V, w(s) E K+C* (s, .)(z; u) V s E h = [T, t]. (3.16) 

We note that from (3.12) and (2.1) it follows that: 

K+c(t,.)(z,u) = K+c(t,.)(z;u) if z= (z,r) EDt x R, u= (u,O) E R2n X {O} 

hence the CVI in (3.15) becomes: 

w'(s) E co[K+c(s, .)(X*(s); (WI(S),W2(S)))] a.e.(h), X*(.) = (X(.),P(.)) 
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We apply now Prop.3.3 to conclude that one has: 

E co[K+h(s, .)(X*(s)j WI(S), W2(S)) a.e.(h) 
=< > + < h2(S,X*(S)),WI(S) > a.e.(h). 
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(3.17) 

Therefore, since from (1.2) it follows that P'(s) = h2(S,X*(s)) a.e.(h), from the last 
relation in (3.17) it follows that: 

= ![< P(S),WI(S) >] a.e.(h) 

hence using the Leibnitz-Newton formula for AC mappings one obtains: W3(t) = 
w3(T)+ < P(t),WI(t) > - < P(T),WI(T) > which, together with the end-point 
conditions in (3.16) and the fact that X*(T) = = z, proves the fact that 
V3 =< P(t, z), VI > - < q, UI > and the first inclusion in (3.7) is proved. 

To prove the reversed inclusion we consider VI E K+ X(t, .)(Zj u), V3 :=< P(t, z), 
VI > - < q, UI > and note that from (2.3) it follows that there exists Sm -> 0+ 
such that: VI = lim (X(t, Z + smu) - X(t, z))/ Smj as in the other cases above, since 

m->oo 

V(t,.) is locally-Lipschitz it follows that there exists "113 E R such that, taking possibly 
a subsequence one has: 

- - l' V(t,Z+smU)-V(t,z) K+V( )(. ) V3- 1m E t,. Z,U 
8 m 

hence from the proof above it follows that "113 =< P(t, Z), VI > - < q, UI >= V3 and 
the theorem is completely proved since the relations in (3.9) and (3.10) are obvious 
particular cases of the one in (3.7). 

Noting that for r = 0 the relation in (1.1) coincide with (3.10), we prove now a 
more complete generalization of (1.1) in the case r E R: 
Corollary 3.5. If Hypothesis 3.1 is satisfied and Jc C prlD is the null subset in (3.2) 
then at each point Z = EDT, t E I(z) \ Jc and any direction (r,u) E R X R2n , 
the contingent derivatives in (2.1) of the components of the characteristic flow are 
related as follows: 

K+V((t,Z)j (r,u)) = {< P(t,Z),VI > -r.H(t,X*(t,z))- < q,UI >j 
VI EK+X((tjz)j(r,u))}, ifu=(uI,u2), tEI(z)\Jc , ZEDT. 

(3.18) 

In particular, if X(.,.) is differentiable at (t, z) E Dh then V(.,.) is also differen­
tiable at the same point and the formula in (1.1) is verified. 
Proof. We prove first that outside of the null subset Jc in (3.2) the contingent 
derivatives of the characteristic flow C* (., .) (and therefore, of each of its components) 
satisfy the relation: 

K+C*((t, z)j (r, u)) = DIC*(t, z).r + K+C*(t, .)(Zj u) if t E I(z) \ Jc . (3.19) 

To prove the inclusion we consider V E K+C*((t,z)j(r,u)) and note that from 
(2.1) it follows that there exists a sequence (Sm,rm,Um) -> (O+,r,u) such that: 

V= lim _l_[C*(t+smrm,z+SmUm)-C(t,z)]; 
m---+oo 8 m 

(3.20) 

next, since C*(t,.) is Lipschitzean, taking possibly a subsequence one may assume 
that: 

:3v2 := lim J..[C*(t,Z+SmUm)-C*(t,Z)]EK+C*(t,.)(Zju) 
m---+OOSm 

V - v2 = vl := lim J.. [C* (t + Smrm, Z + SmUm) - C(t, Z + SmUm)]. 
m---+ooSm 

(3.21 ) 
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Using the " integrable-Lipschitz" property in Def.2.3 of c(.,.) and the " usual" Lipschitz 
property in Th.3.2 of C*(.,.) one may easily prove that: 

1 It+smrm 
v l := lim - C(S,X*(S,Z+SmUm))ds= 

m-looo 8 m t 

1 It+smrm 
= lim - c(s,X*(s,z))ds = DIC*(t,z).r 

m-l>OO 8 m t 

(3.22) 

(since t E I(z) \ Jc ) and the first inclusion in (3.19) is proved; the reversed inclusion 
follows in the same way noting that if v2 E K+C*(t, .)(z;u) is of the form in (3.21) 
and VI := DI C* (t, z).r then using (3.22) it follows that v := VI + v2 is of the form in 
(3.20) and (3.19) is proved; the relation in (3.18) is an obvious consequence of (3.7) 
and (3.19) and Cor.3.5 is completely proved. 

We note that, apparently, the most general case in which (3.18) is verified also at 
the points t E Jc seems to be that in which the mappings H(.,z), h(.,z), z E pr2 D 
are regular, having one-sided limits at each point hence an at most countable number 
of discontinuity points, all of the first kind. 
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