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1. Preliminaries 

The deconvolution problem has a long history and many different 
aspects. We are concerned here with the deconvolution problem for 
causal systems, which in the time invariant case is the solution of 

y = k*u 

in the unknown u. Here y, k and u are defined for t 2: 0 and the kernel 
k is in general a distribution supported on t 2: O. 

Our study of the deconvolution problem uses ideas that arose in con­
trol theory. In this context, the problem is as follows: a linear system is 
given, 

x=Ax+Bu, y = Cx+Du, x(O) = O. (1) 

We want to know whether a measured output y is produced by a unique 
input u. If this is the case than the system is called left invertible or 
ideally observable in the russian literature. 

If the system is left invertible then we want to construct u as the 
output of a new system 

- -
u = Ce+Dy. (2) 
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System (2) is the inverse system to (1). 
We observe that the output y to system (1) is given by 

K(t) = D5 + CeAt B 

(5 denotes Dirac's delta). If D is invertible and the system is time 
invariant, then the construction of the inverse system is trivial, A = 
A - BD-IC iJ = BD-I C = -D-IC, jj = D-I . If D is not , , 
invertible, and in the most important case D = 0, the construction of 
the inverse system leads to an ill posed problem and its study was most 
fruitful, since it led to the construction of the "geometric" theory of lin­
ear finite dimensional systems in the papers and books of Basile, Marro, 
Morse and Wonham and, stimulated by the ideas of Krasovski in [7J, 
the construction of an iterative scheme for the approximate inversion by 
Osipov [8J. We present an overview of our results, obtained in the line 
of the book [8J. 

We note that the geometric theory concerns mostly finite dimensional 
systems. The examples in [14J shows that extensions of the geometric 
theory to distributed systems can only produce weak results. 

We note that in many applications the output is read only on a finite 
time interval [0, TJ, at discrete times Tk = kT, T = T / N and the measures 
are corrupted by errors of known tolerance. Hence, available data are 

= y(kT) + ()k, \()k\ < h. 
We noted that, when D = 0, the problem is ill posed. Hence we relay 

on a penalization approach for the approximate inversion of the system. 
The penalization approach is performed at each step and, in fact, in 
the overall it leads to a "shift of the spectrum" of an operator. The 
method depends on the introduction of an additional parameter cy and 
constructs functions 

v = Vr,{O,a 

where {O is the vector of the measures. We want: 1) at time t, v(t) 
only depends on the measures taken at Tk :::; t; 2) when T, hand cy 
converge to zero, while respecting suitable relations, v should converge 
to u in a suitable topology. 

We observe that we cannot hope that v converges to u if T, hand cy 
converge to zero independently, since the problem is ill posed. 

2. The key idea 
Finite dimensional systems, both linear and non linear but with C = I 

and D = 0, full state observations (and special cases of C i= 1), have 
been investigated in [8J. The key idea is to associate a "model" to the 
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system: 
w=Aw+Bv, z=Cw. (3) 

and to choose v so to force z to track y. Hopefully, under suitable 
conditions, v will track u. A general analysis of system (I) in finite 
dimensional spaces and C =1= I is in [2]. The proposed algorithm is as 
follows: the input v is piecewise continuous, updated at each step 7k, 
v{t) = Vk{t), t E [7k' 7k+1) , defined by 

Vk = argmin {IICw(7k+l) - ekl12 + a IIv(s)1I2 dS} . 

This same idea will be used to study also the case of Volterra integral 
equations. 

We quote the papers [9, 10] for distributed systems in state space 
form. 

3. Finite dimensional results 

The class of left invertible finite dimensional systems (with D = 0) is 
geometrically characterized as those systems whose maximal controlla­
bility subspace in kerC, denoted R*, is {O}. 

The idea that we describe in sect. 2 was thoroughly analyzed in [2]. 
We proved: 

Theorem 1 If ker CB = {O} then limQ!->o [limr->o, h->O = u. 
More precisely we have the following result (where v = Vr,{e},Q!). 1) If 
the unknown input u is square integrable on [0, T] then v converges to 
u in L2(0, T); 2) if the unknown input u is of class WI2(0, T) then 
v converges to u uniformly on [0", T] for every 0" > 0, and it converges 
uniformly to u on [0, T] if, furthermore, u(O) = o. 

A system which satisfies condition ker CB = {O} is a "system of rel­
ative degree I" . 

The class of left invertible systems is larger then the class of those 
systems for which ker CB = {O}. The key instrument for the extension 
of the above result from the special case ker C B = {O} to the general 
case R* = {O} is Morse canonical form, see [12]. We do not describe this 
complicated instrument here. We simply note that the use of this form 
reduce the problem to the case that the system is a chain of integrators, 
essentially a system of ni-th order scalar equations, to which the method 
above can be applied step by step, as in the next example. 

Example 2 Let 

y = Xl· 
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In this case CB = 0 and Theorem 1 cannot be applied. But, we can 
associate WI = :1:2 to the first component ::h = X2. We observe that 
X2 E W I ,2 and X2(0) = 0 so that we can give a uniform estimate :1:2(t) 
of X2(t). At time Tk we can apply the procedure outlined above to the 
system X2 = u and we can recursively identify the input u. • 

3.1. An application 

The results above have been applied to the reduction of the effect 
of a disturbance (internally or externally generated), in [lJ. We present 
some simulations taken from this paper concerning the control of a robot 
motor, against (internally generated) disturbances, due to variations in 
the transported load. 

The block diagram of a robot motor can be found in [6J. It is composed 
of two blocks: the main block is the motor itself whose output is the track 
(let it be X) followed by the robot. This is fed-back to an "acceleration 
controller" which also accept as the input the signal X crnd , which is the 
track to be followed. It can easily be shown that the difference between 
the real path and the nominal path is 

X _ X cmd = _1_ . 1 v 

Mo 82 + KI8 + K2 

where KI and K2 are constants which enter in the definition of the 
"acceleration control". These constants are chosen in such a way to 
have an asymptotically stable system. The motor and its "acceleration 
controller" are designed on the basis of the choice of the nominal mass 
Mo that the robot should carry. In this way, if the disturbance v is equal 
to 0, path tracking is achieved: the values of the path X (and of its first 
and second derivatives) coincide with the one of xcmd. Errors on the 
initial condition, or impulsive disturbances, generate fast transients. A 
persistent disturbance v however is not canceled by the "acceleration 
controller" . 

We use the deconvolution ideas in order to identify and then to cancel 
the persistent disturbance due to changing loads to be transported. The 
results are in the plots below. The plots represent on the left x cmd 

and X, when we apply our algorithm for disturbance reduction and, on 
the left, the errors xcmd - X with and without compensation. in two 
extreme cases: the case that x cmd is a sinusoidal path (sin 7ft) and the 
case that the path has an abrupt change. 
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Figure 1. Motor. T = 0.01, a = 1/85, h = 0.1. 

Figure 2. Motor. T = 0.01, a = 1/85, h = 0.1. 

4. Distributed systems 

Applications to distributed systems of the previous ideas have been 
widely investigated by the Ekaterinburg school. An overview is in [13], 
see also the paper by Maksimov in these proceedings. As the geometric 
theory of linear systems seems not be extendible to distributed systems, 
the state space analysis at the moment gives weak results, which require 
full state observaetion, see [9, 10, 15], unless the system has a known 
special structure. See also the case of systems with delays examined 
in [11]. A special case of distributed input-output system is examined 
in [4], in the context of degenerate systems. 

It is well known that the general deconvolution problem for distributed 
systems (in particular for the heath equation) is a very hard problem, 
due to the fact that the kernel may have a zero for t -7 0+, of infinite 
order. However, this does not happen in important cases. Even more, 
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the kernel may be singular, as in the A bel equation 

y(t) = rt ( 1) u(s) ds,O::; 'Y < 1 io t - S "f 

which is encountered, for example, in some input-output problem of 
heat transmission. 

The solution of an Abel equation is a classical subject, see [5] and 
close formulas for the solution exist, which however require the compu­
tation of the derivative of an integral (fractional derivative). In spite 
of the fact that close formulas are always important, numerically these 
formulas contains redundancies since a part of the computed derivative 
is killed by the presence of the integral. For this reason in the next 
section we describe the results that we can obtain when applying the 
method outlined above to a class of integral equations which includes 
Abel equations. 

We shall distinguish the case of convolution equations, i.e. the case 
that the kernel depends on the difference t - s from the general case 
since, in the convolutional case, we can use powerful frequency domain 
techniques. 

5. Volterra integral equations 

We consider a Volterra integral equation 

y(t) = lot K(t, s)u(s) ds t E [0, T] 

and we want to solve for u, on the basis of observations taken on y at 
the time instants Tk = kT/N. 

We represent 

where 
F(t, s) = K(t + T, s) - K(t, s) 

We choose now a piecewise constant function v, 

V(t)=Vk, 

We represent 

Wk+l = Wk + loT K(Tk+1,Tk + S)V(Tk + s) ds + foTk F(Tk' s)v(s) ds 

k-l 

Wk + AkVk + L Fk,j'lJj . 
j=o 

(5) 
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Here 

We want a rule for choosing the constant value Vk at each time Tk. As 
suggested by the finite dimensional case, We choose 

Vk = argmin {llwk + Akv - ek+1112 + aTllvl12} 
i.e. 

(6) 

(we recall that ek is the observation). 
We shall prove that the piecewise constant function v(t) so constructed 

approximates the unknown input u in the following two cases: the convo­
lution case, under the assumptions described in sect. 7; the case that the 
kernel K(t, s) is Lipschitz continuous in t, uniformly for 0 :::; s :::; t :::; T. 
If the kernel is merely continuous, with det K(t, t) =1= 0 (see subsection 6 
for the precise statement) we must replace the piecewise constant func­
tion v with the piecewise continuous function v defined by 

1 
v(t) = --[w(t) - ek], 

a 
(7) 

With this definition, the candidate approximation v of u is constructed 
by 

Ifnt w(t) = -- K(t, s)[w(s) - e(s)] ds, 
a 0 

1 
v(t) = --[w(t) - e(t)] , 

a 

where 
(8) 

We prove that this input v indeed approximates the unknown input u if 
T, a and h converge to zero while respecting suitable conditions. 

6. The nonconvolution equation 

We state first the assumption on the kernel K: 
Assumption 1. The kernel is a square n x n matrix, continuous for 

o :::; s :::; t :::; T and satisfies 

K(t, t) = I t E [0, T]. 

Moreover, t -+ K(t, s) is differentiable for a.e. 8 E [0, t] and H(t,8) = 
K t (t, 8) satisfies 

IIH(t, 8)11:::; L(8), 0:::; 8 :::; t:::; T, lim rt IIKt(t+h, 8)-Kt(t, 8)W d8 = 0 
h--->oJo 

(9) 
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where L(s) E V(O, T), p > 1. 
If these conditions hold then the solution u is unique and we can show 

the following result, where 'Y = (p - 1) / p if p < +00, 'Y = 1 if p = 00: 
Theorem 3 Let 

T"f . h 
T, 0: and h converge to zero; lim - = 0, hm - = O. (10) 

a a 
Then: 1) If u is measurable and bounded then the sequence of the 

functions v converges to u in V(O, T) for every p E [1, +(0). 2) If 
u E C(a, b) and [a, b] (0, T] then the convergence is uniform on [a, b]. 
3) if u E C(O, T) then for every a > 0 the convergence is uniform 
on [a, T]. 4) If U E C(O, T) and if, furthermore, u(O) = 0 then the 
convergence is uniform on [0, T]. 

The first step in the proof of Theorem 3 is the proof that w tracks y. 
We sketch this part of the proof. 

It is clear that, under Assumption 1, the output y is Holder con­
tinuous: there exists a number Mo > 0 and 'Y E (0, 1] such that for 
t E b, Tk+l) we have JJy(t) - Y(Tk)1I ::; MOT"f. Let us introduce the 
function ¢(t) = - y(t) , t E [Tk, Tk+I) , 1I¢(t)1I ::; Mo(h + T"f) 
(the function is the one defined in (8)) so that 

IIw(t) - ::; IIw(t) - y(t) II + 1I¢(t) II ::; IIw(t) - y(t) II + C(T"f + h). 

Hence, v and w solve 

v(t) = y(t):w(t) + <Pit) 

y(t) - w(t) = rtK(t, s)[y(s) - w(s)] ds - rt K(t, s)¢(s) ds + y(t). 
h alo 

Let 
e(t) = y(t) - w(t) . 

We prove firstly an estimate for e(t) in terms of the parameters T, hand 
a. 

The function e is a.e. differentiable, with 

1 1 lot ¢(t) 1 lot e'(t) = --e(t)-- H(t,s)e(s) ds---- H(t,s)¢(s) ds+y'(t). 
a a 0 a a 0 

It follows 

e(t) = rt e-(t-s)/ay,(s) ds _ rt e-(t-s)/a ¢(s) ds 
lo h a 

- rt rs H(s, r)e(r) dr ds 
lo a lo 

- rt rs H(s, r)¢(r) dr ds. 
lo a lo 
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We use now boundedness of u to obtain 

Ile(t)11 ::; C[a + T'Y + h] + lot L(r)lle(r)11 dr. 

It follows: 

° ::; Ile(t)11 ::; za(t) ::; M[a + T'Y + h]. (11) 

The constant M does not depend on T, a and h. this implies that e 
converges to zero uniformly on [0, T]: Once that this is known, the proof 
of Theorem 3 is in two steps: we first prove that v converges weakly to 
u and then we use the compactness properties of the Volterra operator 
so to prove norm convergence. 

6.1. Explicit convergence estimate 

It is not possible to give convergence estimates without "a priori" 
information on the unknown input u. In order to give convergence esti­
mates, we assume that u is Holder continuous, 

Ilu(t) - u(s)11 ::; Cit - sl7J· 

Furthermore we assume that K is of class CIon the triangle ° ::; s ::; 
t ::; T. 

We have: 

Theorem 4 Let u be Holder continuous of exponent TJ on [0, T] and let 
K be Lipschitz continuous. There exists a number M such that for every 
(T > 0, T, h, a the following convergence estimate holds: 

t E [(T, T]. 

7. Convolution equations 

We consider now the case that the kernel is a function of the difference 
of the arguments, K(t, s) = K(t - s). In this case we assume that the 
kernel is scalar and of class L1(0, T). For simplicity of presentation, in 
order to have a continuous output, in this talk we assume u piecewise 
continuous. The general case of u E L2(0, T) can be found in [3]. 

Experience with the previous cases suggests that now we can choose 
v(t) as 

v(t) = _ W(Tk) -
a 
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We study directly the error between v and u. Hence now the error 
function is e(t) = vet) - u(t). It solves 

ae = -au + [K * u - K * vr + OT (12) 

where T denotes sampling, 

We want to compute the Laplace transform of both sides. We recall 
that we are working on a finite time interval. However, we can extend 
K(t) to [0, +00) so to have a Laplace transform and we can let e(t) be 
defined by (12) for every t > O. Let vc be the abscissa of convergence 
of the Laplace transform K(A) of K(t). 

In order to compute the Laplace transform of both sides we need a 
formula for the transfer function from a sample data input to the samples 
of a convolution. Let K(r, A) be such transfer function. It turns out that 

+00 
K( r, A) = e-)..T L Kne-)..Tn , IT (n+1) 

Kn = K(s) ds. 
n=O Tn 

This is the fundamental object of our study. 
We list now three conditions on the kernel K: 

(HPl) there exist positive numbers 1'1, M1 and R > Vc such that 

IK(A)I :::; for IAI > R; 
(HP2) there exist positive numbers 1'2, M2 and R > Vc such that 

A M2 
IK(A)I2': 1)..1'2· for IAI > R. 

(HP3) We assume that there is a sector Sr,B = {A E C, IAI < r, 
IArg AI > O} and a positive number Vs 2': Vc such that 
!Re A> vs => K(A) tt. Sr,B . 

Remark 5 We observe that the previous assumptions (HPl)-(HP3) 
are satisfied by a very large class of kernels, in particular Abel kernels 
lit!, [0:::; l' < 1) and piecewise regular kernels, as proved in [3]. The sec­
tor condition (HP3) has been formulated with a condition lim inf K (t) 2':0 

t--+O+ 
in mind. In concrete applications it may require to work with - K in-
stead then with K. • 

Conditions (HPl) and (HP2) justify the use of a formula originally due 
to Poisson, from which we obtain: 

K(r, A) = [ 17 e-)..T .J K (A + 2mri) . (13) 
n=-oo Ar + 2n1rz r 
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Formula (13) shows that K(T,).) is periodic of period 27ri/T and more­
over, on each horizontal strip [2k7ri/T, 2(k + l)7ri/T) one of the term is 
dominant. In particular, in the strip [-7ri/T,7ri/T) the dominant term 
is the one of index 0. 

Combining the three assumptions on K we have: 

Theorem 6 Assume conditions (HPO), (HPl), and (HP3). Then, 
there exist numbers TO > 0, L > ° and a sector s'p,jj such that if 

T E (O,TO) and if). is such that > Vs, then K(T,).) E Sr,jj ===> 
K( T,).) > - LT'Yl. 

This is the crucial result needed in the proof of the following consis­
tency result: 

Theorem 7 Assume conditions (HPO)-(HP3). Then, for every E > 0, 
there exist ao, TO, ho such that 

As usual, convergence estimates can be obtained provided that we 
have "a priori" informations on the regularity of the unknown input u. 
For example, 

Theorem 8 Assume conditions (HPO)-(HP3) and let u E W 1,2(0, T). 
Then, there exist M 2: 0, 61, 62 > ° such that 

M [a 1+1,Y2 + v:; + 

provided that T, a, : T'Yl/a < 61, a < 62, < h. 

Finally we note that in the proof of the previous results the fact that 
we are working on a finite time interval is explicitly used, in spite of 
the frequency domain nature of the method. The analysis of problems 
on [0, +(0) is still under study. We state a preliminary result which 
holds when condition (HP2) holds in the following more restrictive form: 
(HP2+) There exist positive numbers "'/2 and M2 such that 

IK().) 1 > M2 
- 1 + 1).1'Y2 • 

for any). such that > 0. We have: 

Theorem 9 Let K E L1(0, +(0) and assume conditions (HPl), 
(HP2+), and (HP3). Assume moreover, vs = 0, Then, for every 
E > 0, there exist ao, TO, ho such that 
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